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Chapter 1

Introduction

In one of its most basic and informal shapes, the principle of the common

cause states that any surprising correlation between two factors which are

believed not to directly in�uence one another is due to their (possibly hidden)

common cause. In the history of philosophy it is easy to �nd examples of

similar reasoning; one needs to look no further than the mind-body problem.

There is a truly astonishing correlation between our thoughts of the �I want

to wave my hand� sort and the movements of our hands of the waving sort.

A venerable solution to this quandary is that of invoking God as the common

cause (which was the road taken e.g. by Malebranche).

We can perhaps look for similar causal intuitions in Mill's System of Logic.

From the �fth Canon of Induction it follows that a concomitant variation in

two phenomena of which none is a cause of the other is a sign of a connec-

tion between the two by �some fact of causation�. Mill begins his exposition

of the Canon by referring to the case in which this fact is the phenomena

being two e�ects of a common cause (Vol. I, Book III, Chapter VIII of Mill

(1868)). Bertrand Russell is on a similar track when he writes of �identity

of structure� leading to �the assumption of a common causal origin� (Rus-

sell (2009), p. 409). We, however, will be concerned with an idea which
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possesses a probabilistic formulation. It was introduced, in the form of a

general principle, by Hans Reichenbach in his posthumously published book

The Direction of Time. The central notion of the principle in Reichenbach's

formulation, and of the current essay, is that of screening o�: two correlated

events are screened o� by a third event if conditioning on the third event

makes them probabilistically independent. Reichenbach's principle marks

also the beginning of a new �eld of philosophy: namely, that of �probabilistic

causality�.

The main results of this work are presented in chapters 6 and 7. For the

most part, the current essay can be seen as an e�ort at checking how far one

can go with the purely statistical notions revolving around Reichenbach's

idea of common cause. In short, the answer is �surprisingly far�; in some

classes of probability spaces all correlations between �interesting�1 events

possess explanations of such sort. However, this fact lends itself to opposing

interpretations; more on that in the conclusion. Chapters 6 and 7 contain

mathematical results concerning these issues. The screening-o� condition

requires an equality of a probabilistic nature to hold; chapter 8 is a short

discussion of slightly weakened versions of the condition, which hold if the

sides of the above mentioned equality di�er to a small degree.

In chapter 2, after some mathematical preliminaries, we study the various

formulations of the principle which might be said to stem from the original

idea of Reichenbach. We also examine a few of the most salient counterar-

guments, which undermine at least some of the formulations. Chapter 3 is

of a formal nature, dealing with various probabilistic notions which can be

thought of as generalizations of Reichenbach's concept of common cause. The

next chapter concerns the relationship between the idea of common causal ex-

planation and the Bell inequalities. In chapter 5 we brie�y present the form

of Reichenbach's principle which can be found in the �eld of representing

1 E.g. �logically independent�, this will be formally de�ned in chapter 6.
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causal structures by means of directed acyclic graphs.
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Chapter 2

The Principle of the Common

Cause: its shapes and content

2.1 Probability: the basics

Before we state the various forms of the Principle, some of which will be of

a formal nature, a few de�nitions are in order.

De�nition 1 [Probability space] A probability space is a triple 〈Ω,F , P 〉
such that:

• Ω is a non-empty set;

• F is a nonempty family of subsets of Ω which is closed under comple-

ment and countable union;

• P is a function from F to [0, 1] ⊆ R such that

• P (Ω) = 1;

• P is countably additive: for a countable family G of pairwise dis-

joint members of F , P (∪G) =
∑

A∈G P (A).
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In the context of a probability space 〈Ω,F , P 〉, Ω is called the sample

space, F is called the event space, and P is called the probability function (or

measure). The members of F are called events.

The above de�nition captures the content of the concept of a classical

probability space. In one of the chapters to come we will also discuss non-

classical spaces, but let us postpone their de�nition till then. Also, in a

later chapter we will treat probability spaces as pairs consisting of a Boolean

algebra and a measure de�ned on it; this is because we will be speaking mostly

about �nite structures for which any Boolean algebra of subsets is of course

complete with regard to the operations of complement and countable union

(and vice versa, any such family is a Boolean algebra). In general, though, it

may be that a Boolean algebra of subsets of a given set is incomplete w.r.t.

the operation of countable union.

The complement of an event A, F \ A, will be written as �A⊥�. If it is

evident from the context that A and B are events, we will sometimes write

�P (AB)� instead of �P (A∧B)� or �P (A∩B)� for �the probability that both

A and B occur�.

Every event B ∈ F such that P (B) 6= 0 determines a measure PB on the

same event space: namely, for any A ∈ F , PB(A) := P (AB)
P (B)

. We de�ne the

conditional probability of A given B to be equal to PB(A); to refer to it, we

will almost exclusively use the traditional notation �P (A | B)�. If P (B) = 0,

we take P (A | B) to be unde�ned.

We will now de�ne the concept of a random variable. Our main reference

is Feller (1968), but the formulation of some de�nitions is inspired by Forster

(1988). Since in the sequel we do not use continuous random variables, we

can omit the usual measure-theoretic de�nitions; in fact, we will only need

random variables with a �nite number of possible values. This is why by

�random variable� we will mean what is traditionally referred to as ��nite-

valued random variable�.
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De�nition 2 [Random variable] Let 〈Ω,F , P 〉 be a probability space. Let
V be a �nite subset of R. A random variable on Ω is a function X : Ω→ V

such that

∀v ∈ V X−1(v) ∈ F .

If |V | = 2, X is called a binary random variable.

Thus every random variable determines a set of events directly tied to its

values. �P (X = v)�, �probability that the random variable X takes the value

v�, is to be understood as �P (X−1(v))�; this is straightforwardly generalized

for any subset of V , so that for any V ′ ⊆ V , P (X ∈ V ′) =
∑

v∈V ′ P (X = v).

Though random variables as de�ned above are real-valued functions, on

some occasions it might of course be useful to think of them as functions with

values of a di�erent type, e.g. expressions �yes� or �no�. In numerical contexts

below we will always treat binary random variables as if they assume values

0 and 1.

It is immediate that a random variable X : Ω → V can be thought of

as a method of dividing the sample space Ω into at most |V | pieces�the

preimages of the members of V . There are two intuitive and important ways

of thinking about this, depending on our view of the sample space.

First, Ω can be considered to consist of all possible outcomes of an ex-

periment�for example, if the experiment is a single toss of a six-sided die,

then Ω = {1, 2, 3, 4, 5, 6}. A random variable may correspond to a feature

which some outcomes possess; for example, if X(1) = X(3) = X(5) = “yes”,

and X(2) = X(4) = X(6) = “no”, then the feature is �being odd�, and

�P (X = “yes”)� is to be interpreted as �the probability that the outcome of

the toss is odd�.

On the other hand, sometimes Ω is to be viewed not as a set of outcomes

of an experiment, but rather as the population on which an experiment is

conducted. Suppose a group of people is tested for a virus. Ω will then
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consist of the test subjects, and P (X = “yes”) will mean �the probability

that a randomly chosen test subject has the virus�.

Notice also the close correspondence of events and binary random vari-

ables. An event A is a subset of the sample space; we can construct a binary

random variable so that the preimage of �yes� is A and the preimage of

�no� is A⊥. Similarly, any binary random variable gives rise (by way of the

preimages of its values) to two events, A and A⊥.

The concept of �correlation� usually concerns random variables, but in the

literature around the Principle of the Common Cause it has frequently been

de�ned for events, too.1 (Usually no probability spaces are de�ned and the

notion of events is an intuitive one, frequently that of a space-time region.)

Since in the course of this work we will mostly be talking about events, and

not random variables, we shall continue that practice and begin with the

simpler concept.

De�nition 3 [Correlation (events)] Let 〈Ω,F , P 〉 be a probability space

and let A, B ∈ F . We say that A and B are:

• positively correlated, or just correlated, whenever P (AB) > P (A)P (B);

• negatively correlated, or anti-correlated, whenever P (AB) < P (A)P (B);

• uncorrelated, or (probabilistically) independent, whenever P (AB) =

P (A)P (B).

To de�ne correlation for random variables, we need the notion of covari-

ance; and for that, the notion of expected value.

De�nition 4 [Correlation (variables)] Let 〈Ω,F , P 〉 be a probability

space and X : Ω → V , Y : Ω → W be random variables on Ω. Suppose

1 The relation between the two notions is described e.g. in Forster (1988).
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X and Y have �nite expectations. The correlation coe�cient of X and Y is

de�ned as

ρ(X, Y ) =
Cov(X, Y )√

Cov(X,X) ·
√
Cov(Y, Y )

.

We will say the variables X and Y are correlated whenever ρ(X, Y ) > 0.

In the context of the Principle of the Common Cause, what demands

explanation is a correlation between events or a dependence between random

variables. As for the latter, some recent authors (e.g. Reiss (2007)) say

simply that �Two variables X and Y are probabilistically dependent just in

case P (XY ) 6= P (X)P (Y ).� Let us expand this into a de�nition.

De�nition 5 [Dependence (variables)] Let 〈Ω,F , P 〉 be a probability

space and let X : Ω→ V and Y : Ω→ W be two random variables on Ω. X

and Y are dependent if

∃V ′ ⊆ V ∃W ′ ⊆ W : P (X ∈ V ′ ∧ Y ∈ W ′) 6= P (X ∈ V ′)P (Y ∈ W ′).

Note that for random variables the concepts of independence and noncor-

relation diverge. If two variables are independent, their correlation coe�cient

is 0, but not always vice versa; for examples see Feller (1968), p. 236. Still,

to restate the above, a non-zero correlation coe�cient means the variables

are dependent.

For binary variables X and Y their covariance is obviously equal to

P (X = 1 ∧ Y = 1)− P (X = 1)P (Y = 1).

This explains why the de�nition 3 can be seen as a special case of the de�-

nition 4; events are correlated whenever their corresponding binary variables

are and vice versa.
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2.1.1 Screening o�

Perhaps the most important notion concerning the idea of common causes is

one of screening o�.

De�nition 6 [Screening o�] Assume a probability space 〈Ω,F , P 〉 is given.
Let A,B ∈ F . An event C is said to be a screener-o� for the pair {A,B} if

P (AB | C) = P (A | C)P (B | C). (2.1)

In the case where A and B are correlated we also say that C screens o� the

correlation.

If C is a screener-o� for {A,B}, we will also frequently say that C �screens

o� A from B� and vice versa. Another way of putting the fact is saying that

C renders A and B conditionally probabilistically independent. Observe that

the screening o� condition 2.1 is equivalent to the following:

P (A | BC) = P (A | C) (2.2)

provided all probabilities are de�ned.

De�nition 7 [Statistical relevance] Let 〈Ω,F , P 〉 be a probability space.

Let A,B ∈ F . We say that an event C ∈ F is positively statistically rele-

vant for A if P (A|C) > P (A|C⊥). We say that a family of events {Ci} is
statistically relevant for A and B if, whenever i 6= j,

(
P (A | Ci)− P (A | Cj)

)(
P (B | Ci)− P (B | Cj)

)
> 0.

Notice that P (A|C) > P (A|C⊥) is equivalent to P (A|C) > P (A), if all

the probabilities are de�ned.
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2.1.2 Observing probabilities and correlations

We now have the requisite de�nitions of probability and related concepts.

But how do we observe probabilities �in the world�? If probabilities are to

be �limiting frequencies�, as one notable interpretation would have it, then

we have a problem, since, as beings capable of �nitely many operations, we

naturally observe only relative frequencies in �nite samples. We can only pose

hypotheses about probabilities�but these hypotheses may be well-grounded,

thanks to the law of large numbers (see e.g. Feller (1968), p. 243).

If a probability of our experiment ending with a particular outcome is φ,

the more we repeat the experiment, the closer should the observed relative

frequency of the outcome come to φ. If the probability is unknown, the

question regarding the number of repetitions needing to be conducted for us

to be able to o�er a reliable hypothesis regarding it is subtle, and the answer

to it depends on how reliable we require the hypothesis to be. These issues

are treated extensively e.g. in Blalock (1979). The technical details will not

be of interest to us; the important thing is that no reliable information about

probabilities of particular events (and so, a fortiori, about their correlation,

as well as probability distributions and correlation of random variables) can

be gathered from a small experimental sample.

It will be worthwhile to reiterate this point in an analysis of single oc-

currences of events which we �nd unexpected or surprising. Suppose, for

instance, that someone rolled two fair six-sided dice on a �at table and ended

up with two sixes. Why are we (a bit) surprised? Is the result improbable?

That particular combination (a six on the �rst die, a six on the second die)

is improbable to exactly the same degree (1/36) as any other possible com-

bination; so the reason for the surprise must be something di�erent. And

perhaps it is two-fold:

1. the sum of the results (12) is maximally di�erent from the expected
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value (7); and perhaps we implicitly compare the probability of rolling

it (1/36) with the probability of rolling 11 or more (1/12), 10 or more

(1/6) or more and so on;

2. all throws end up with the same score, which is quite an improbable

event (1/6) compared to the alternative, which we implicitly expect to

occur.

IfXi is the event �die number i ends up with a 6�, then P (X1X2) = 1
36
; but

just from the occurrence of that particular event we by no means infer that

P (X1X2) > P (X1)P (X2). The reason for the fact that a single occurrence

of an improbable coincidence, being a conjunction of other events, startles

us, is not that we perceive it as evidence of a yet unsuspected correlation.

Otherwise we would always have to accuse lucky dice players, or have pity

on unlucky ones, for playing with unfair dice.

This is not to say that a proponent of the frequentist interpretation of

probability necessary cannot speak in any way about probabilities of sin-

gle events. Reichenbach himself would be an example to the contrary�his

way of ascribing probabilities to single events is described in section 72 of

Reichenbach (1949). Even though he states on p. 375 that single-case prob-

ability is a �pseudo-concept�, he develops a way of thinking about the single

case as �the limit of the [reference] classes becoming gradually narrower and

narrower� (ibid.). However, on his account single-case probabilities are, in

contrast to �regular� probabilities, dependent on the state of our knowledge;

and on the whole, he regards �the statement about the probability of the

single case, not as having a meaning of its own, but as an elliptic mode of

speech� (ibid., p. 376-377). Anyway, a frequentist should not in general let a

single occurrence of an event in�uence his beliefs regarding the probabilities

inherent in a given situation.

A di�erent issue is whether the data we are analyzing originates from any
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sort of probabilistic set-up; whether it is appropriate to consider any under-

lying probabilities at all. If e.g. some parts of the experiment are in�uenced

by human choice, is it wise to consider the probability of a person choosing

a particular option? Cartwright (1999) holds the view that no statements

regarding probabilities in the world are true simpliciter, but in fact may only

be true ceteris paribus ; they need to arise in the context of a �probability

machine�, a �xed arrangement of components with stable capacities giving

rise to regular behaviour.

�We can make sense of the probability of drawing two red balls in

a row from an urn of a certain composition with replacement; but

we cannot make sense of the probability of six percent in�ation

in the United Kingdom next year without an implicit reference to

a speci�c social and institutional structure that will serve as the

chance set-up that generates this probability� (Cartwright (1999),

p. 175).2

The chance set-ups may be of various kinds: �the stochastic process is

the world line of the persisting object (a die, a socio-economic structure)�

(Reiss (2007), emphasis ours). With no additional information, though, it is

unwise to expect a set of data, and the derived relative frequencies of events

as indicative of probability.

2.2 The plurality of the Principles

The literature on the Principle (henceforth referred to as �PCC�) abounds

in dissenting opinions regarding its validity. It is �false� (Arntzenius (1992)).

It is �non-falsi�able� (Hofer-Szabó, Rédei & Szabó (2000)). It is a �fallible

2 Chapter 7.4 of Cartwright's book contains a detailed description of a probability

machine in the context of probabilistic claims about causality made by Salmon (1971).
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epistemic principle� (Reiss (2007)). Lastly, it is �derivable from the second

law of thermodynamics3� (Reichenbach (1971)). Since each of the above is

well-argued for, and since there is such a plethora of views on the subject, the

subject clearly must be something di�erent in every case. The principle some

authors are arguing against is not always the same principle their opponents

promote.

The multiplicity of forms of the PCC has already been discussed in the

literature in e.g. Berkovitz (2000) and sections 3.4 − 3.5 of Placek (2000),

but we shall initially take an approach di�erent from those displayed by

these texts. Berkovitz analyzes how the prospects of the principle depend

on which concepts of correlation (between types or tokens) and causation

are employed. Placek di�erentiates various versions of the principle on the

basis of the mathematical constitution of the common cause�whether it is

a single event or an n-tuple of events�and whether it is to explain a single

correlation or more. While we will also discuss these important matters later

on, right now we propose to consider a gradual process of infusing an initially

sketchy and informal principle with formal content.

Throughout the process we will move from purely �informal� principles to

purely �formal� ones. The former may arouse deep intuitions and interesting,

yet usually inconclusive discussions; the latter can be formally proved or

disproved, but one may doubt their relevance to philosophy, or, in the case

an antipathy to all things formal is displayed, to anything interesting at all.

This is perhaps the usual case when philosophy meets mathematics: the

more formal your considerations, the bigger risk of losing track of signi�cant

philosophical content. That said, I have a predilection for formal philosophy,

which will perhaps be mostly visible in chapter 6; I �nd it heartening for

a philosopher to be able to prove something from time to time. It would

be ideal if an interesting and sound philosophical argumentation could be at

3 Admittedly, only with an additional assumption. See section 2.3.1.
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least partly based on mathematical proofs.

A side-note: probability is a relatively new tool for philosophy. Perhaps

a big role in its introduction to philosophy was played by Hans Reichen-

bach's 1956 book The Direction of Time (to which we refer throughout this

essay as �Reichenbach (1971)�), where the PCC was �rst formulated. Sub-

sequently probability has been widely used by researchers in the �eld of so

called �probabilistic causality�. To this day, most philosophers writing about

probability usually simply use expressions like �P(A)� in contexts in which

they would normally say �the probability that A occurs�, without de�ning

any probability spaces. This has the drawback that the notion of event is

foggy. The reader cannot be sure what quali�es as an event and what does

not; he is expected to rely on his intuitions. We will see an example where

this can result an in unfortunate misunderstanding (see p. 39). I believe that

philosophy would bene�t if every author explicitly de�ned their probability

spaces, at the cost of their texts becoming perhaps a bit more �dry� and the

process of writing them getting more unwieldy.

We will not cite any proponents of the principles listed below, because it

seems almost every participant in the discussion uses a principle which is in

at least one small respect di�erent from most of the others.

PCC 1 Suppose there is a correlation between two events, which are not

directly causally related. Then there exists a common cause of the correlated

events.

Notice that no views on the nature of causality are included in the above

formulation. While it is di�cult to �nd authors who would openly advocate

this view, some arguments o�ered against �the� PCC (or �Reichenbach's�

PCC)�most notably Sober-style examples we will discuss in section 2.4.2�

actually negate PCC 1, since the probabilistic description of the allegedly

existing common cause is largely irrelevant to the argument.
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PCC 2 Some correlations demand explanation. Of these, some demand

explanation by means of a common cause. In each such case there exists

a common cause of the correlated events, which renders them conditionally

probabilistically independent.

There are two additions in comparison to PCC 1: �rst (twofold), a quali-

�cation is added that perhaps only some (not all) correlations stand in need

of common causal explanation; some authors use the word �improbable� to

describe them. Second, a probabilistic ingredient is added: the postulated

common cause of the correlated events should screen them o�.

PCC 3 Let 〈Ω,F , P 〉 be a probability space. For any A, B ∈ F (such that

〈A,B〉 belongs to a relation of independence Lind), if P (AB) > P (A)P (B),

then there exists an event C ∈ F (di�erent from both A and B) such that

P (AB | C) = P (A | C)P (B | C);

P (AB | C⊥) = P (A | C⊥)P (B | C⊥);

P (A | C) > P (A | C⊥);

P (B | C) > P (B | C⊥).

This version of the principle is of a formal nature. The word �cause� is

nowhere to be seen; it can be of course introduced, by de�ning a common

cause for A and B as an event meeting the four requirements above. (We

assume this de�nition for the remainder of this section.) PCC 3 is actually

meant to possess two variants: with or without the �rst expression in paren-

theses. Frequently a relation of independence is introduced; it is usually at

least logical independence (so that e.g. the correlation between �heads up�

and �tails down� will not stand in need of an explanation in terms of a com-

mon cause), and perhaps ideally it is supposed also to cover direct causal
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independence. However, if Lind is just logical independence, then PCC 3 is

simply false, as it is easy to �nd examples of spaces with correlations between

logically independent events, for which no event meeting the requirements

above exists (see e.g. Hofer-Szabó, Rédei & Szabó (2000), p. 91). It is also

highly unlikely that ��xing� the relation of independence so that it includes

less pairs than the relation of purely logical independence will alleviate this

di�culty and make the principle generally plausible. However, an interesting

question is: in which classes of probability spaces and for which relations of

independence does the principle hold? We will discuss these issues at length

in chapter 6.

To state the last form of the principle we need to de�ne extension of

probability spaces.

De�nition 8 [Extension] Let A = 〈Ω,F , P 〉, be a probability space. A

space A′ = 〈Ω′,F ′, P ′〉 is called an extension of A if there is a Boolean

algebra embedding h : F → F ′ which preserves the measure, that is, ∀A ∈
F , P ′(h(A)) = P (A).

PCC 4 Let A = 〈Ω,F , P 〉 be a probability space. Suppose that A, B ∈ F
(such that 〈A,B〉 belongs to a relation of independence Lind) are correlated,

but there exists no C ∈ F (di�erent from both A and B) such that

P (AB | C) = P (A | C)P (B | C);

P (AB | C⊥) = P (A | C⊥)P (B | C⊥);

P (A | C) > P (A | C⊥);

P (B | C) > P (B | C⊥).

Then there exists a space A′ = 〈Ω′,F ′, P ′〉 such that A′ is an extension of A

by means of a homomorphism h and there exists an event C ′ ∈ F ′ such that
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P ′(h(A)h(B) | C ′) = P ′(h(A) | C ′)P ′(h(B) | C ′);

P ′(h(A)h(B) | C ′⊥) = P ′(h(A) | C ′⊥)P ′(h(B) | C ′⊥);

P ′(h(A) | C ′) > P ′(h(A) | C ′⊥);

P ′(h(B) | C ′) > P ′(h(B) | C ′⊥).

As we have already said, there are numerous counterexamples to PCC 3,

which is a statement postulating, for each correlation in a given space, a

common cause in the same space. PCC 4 is, however, more subtle. Sup-

pose we observe an unexpected correlation during an experiment, but the

probability space we have chosen to operate within lacks common causes for

the correlated events. But perhaps the choice of the space was unfortunate;

perhaps we have not taken some factors into account and a di�erent, more

��ne-grained� space, compatible with the observations to the same extent

as the original one, provides an explanation for the correlation in terms of

a common cause? In other words, can the original space be extended to a

space possessing a common cause for the yet unexplained correlation? And

in general, is it possible to extend a given probability space to one containing

common causes for all correlations? Perhaps surprisingly, the answer to both

questions is �yes�. We will deal with these matters extensively in chapter 7.

We have already mentioned that the place in which the PCC was intro-

duced was Reichenbach's Direction of Time. Subsequently, regardless of the

version of the principle they are concerned with, many authors credit Re-

ichenbach with the original idea. Some of them (e.g. Hoover (2003), p. 527)

content themselves with the following quotation: �If an improbable coinci-

dence has occurred, there must exist a common cause�4. In the next section

4Reichenbach (1971), p. 157.
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we will try to convince the reader that such a selective quotation misses a

few important facets of Reichenbach's view of the Principle.

2.3 What Reichenbach wrote

Reichenbach's 1956 book is frequently taken to contain an important meta-

physical view of probabilistic causality (see e.g. Williamson (2009)). The

main object of the book, however, is to analyze the possibilities of de�n-

ing time direction by means of causal relations. Part IV discusses the case

of macrostatistics and it is there, in chapter 19, where the Principle of the

Common Cause originally appears.

Throughout his book Reichenbach frequently writes about probability

(his formulas will be put here in modern notation), however he did not choose

to adopt the Kolmogorovian concepts of �event space� and �probability space�,

which were then slowly gaining recognition. The choice was undoubtedly

motivated by the fact that he already had his own von Mises-style theory

of probability, developed earlier in Reichenbach (1949) (originally issued in

German in 1935). It is important to note at the beginning of this section

that, for Reichenbach, �the term �probability� is always assumed to mean

the limit of a relative frequency� (Reichenbach (1971), p. 123). Therefore

the question of probability of an event regarded in isolation of any sequence

of its possible occurrences or non-occurrences should be meaningless. To use

a popular philosophical term, for Reichenbach there should be no such things

as single-case probabilities.

The guiding idea behind Reichenbach's principle, and the source of�

as we will see�an important argument for one of Reichenbach's theses is

that �the improbable should be explained in terms of causes, not in terms

of e�ects� (Reichenbach (1971), p. 157); the short version of the Principle of

the Common Cause quoted at the end of the previous section comes right at
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the end of the same paragraph. Let us quote the �rst examples with which

Reichenbach's illustrates his principle (all quotes from ibid., p. 157):

• �Suppose that lightning starts a brush �re, and that a strong wind

blows and spreads the �re, which is thus turned into a major disaster.

The coincidence of �re and wind has here a common e�ect, the burning

over of a wide area. But when we ask why this coincidence occurred,

we do not refer to the common e�ect, but look for a common cause.

The thunderstorm that produced the lightning also produced the wind,

and the improbable coincidence is thus explained.�

• �Suppose both lamps in a room go out suddenly. We regard it as

improbable that by chance both bulbs burned out at the same time, and

look for a burned-out fuse or some other interruption of the common

power supply. The improbable coincidence is thus explained as the

product of a common cause.�

• �Or suppose several actors in a stage play fall ill, showing symptoms of

food poisoning. We assume that the poisoned food stems from the same

source�for instance, that it was contained in a common meal�and

thus look for an explanation of the coincidence in terms of a common

cause.�

Keeping in mind the concept of probability quoted above, up to this point

it would hardly seem surprising that the principle�

Reichenbach's PCC�the �coincidence� formulation: �If an im-

probable coincidence has occurred, there must exist a common cause�

�makes no mention of probability save for the word �improbable� in the

antecedent. Reichenbach quickly injects his principle with more probabilistic

content, though. First, he admits that �chance coincidences, of course, are
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not impossible�, since the bulbs may simply burn out at the same moment

etc. Therefore, in such cases the existence of a common cause is �not abso-

lutely certain, but only probable� (ibid., emphasis mine), with the probability

increasing with the number of repeated coincidences. (Let us just note that

the concept of probability implicit here seems to be decidedly epistemic�the

more repeated coincidences we observe, the more strongly we should believe

in the existence of a common cause�and thus hard to reconcile with the

earlier de�nition.) The author o�ers another two examples supporting the

principle (ibid., p. 158):

• �Suppose two geysers which are not far apart spout irregularly, but

throw up their columns of water always at the same time. The exis-

tence of a subterranean connection of the two geysers with a common

reservoir of hot water is then practically certain.�

• �The fact that measuring instruments such as barometers always show

the same indication if they are not too far apart, is a consequence of

the existence of a common cause�here, the air pressure.�

We are then advised to �treat the principle of the common cause as a

statistical problem� (ibid.). In Reichenbach's view this means that we should

assume events A and B have been observed to occur frequently, which en-

ables us to consider probabilities P (A), P (B) and P (AB). The relationship

between two (improbably) simultaneously occurring events and both their

common cause and e�ect is depicted in terms of forks seen in �gure 2.1.

Reichenbach claims the forks depict statistical relationships between the

events. However, in his examples cited above there always is some physical

process behind each arrow on the diagram.

The coincidence of events A and B has, for Reichenbach, �a probability

exceeding that of a chance coincidence� (ibid., p. 159) precisely when the

two events are correlated in terms of our de�nition 3. Suppose, then, the
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Figure 2.1: A double fork, a fork open towards the future, a fork open towards

the past (from Reichenbach (1971)).

events are correlated. We �assume that there exists a common cause C. If

there is more than one possible kind of common cause, C may represent the

disjunction of these causes� (ibid.). An important assumption is now that

the fork ACB satis�es exactly the statistical requirements listed above in the

formulation of PCC 3:

P (AB | C) = P (A | C)P (B | C); (2.3)

P (AB | C⊥) = P (A | C⊥)P (B | C⊥); (2.4)

P (A | C) > P (A | C⊥); (2.5)

P (B | C) > P (B | C⊥). (2.6)

Namely, both C and C⊥ should screen o� A from B, and C should be

statistically relevant both for A and B.

Reichenbach proceeds to point out two explanatory features of the pro-

posed common causes. The �rst one is that from the conditions 2.3-2.6 the

correlation between A and B is deducible. (We shall investigate this and
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related ideas in section 3.1.) This fact is interpreted by Reichenbach as

meaning that the fork ACB �makes the conjunction of the two events A and

B more frequent than it would be for independent events� (ibid.), and that

is why the author proposes to call such forks conjunctive forks. The second

explanatory feature of common causes is that, due to screening-o�, the cor-

relation in a sense �disappears���relative to the cause C the events A and

B are mutually independent� (ibid.). Due to these features, a common cause

makes it possible to derive statistical dependence from an independence. The

common cause is therefore the �connecting link�, and the conjunctive fork �is

therefore the statistical model of the relationship formulated in the principle

of the common cause� (ibid., p. 160).

What follows next is the proof of the above mentioned fact that from

conditions 2.3-2.6 one can derive the correlation between A and B. It is

thus quite puzzling why, on the next page (163), Reichenbach writes �These

results may be summarized in terms of the principle of the common cause

(...)�. Which results? So far, the existence of common causes as the middle

links in conjunctive forks was distinctively assumed, not reached as any sort

of result. What is more important now, though, since the author attempts a

justi�cation of the principle later on, is its formulation (reworded so it would

not refer to equations in Reichenbach's text by their numbers):

Reichenbach's PCC�the �correlation� formulation: �If coinci-

dences of two events A and B occur more frequently than would correspond

to their independent occurrence, that is, if the events are correlated, then

there exists a common cause C for these events such that the fork ACB is

conjunctive.�

Notice that with the move from speaking about single coincidences to

correlations the word �improbable� disappears. In the above formulation

there is no division between �probable� and �improbable� (or �unexpected� /
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�accidental�) correlations. Common causes are to exist for all correlations.

What is, for Reichenbach, the relationship between the statistical condi-

tions 2.3-2.6 and the concept of common cause? Being a common cause of

A and B is not su�cient for being the middle link of a conjunctive fork: A

and B may simply not be correlated (Reichenbach's example is that of two

dice being thrown by the same hand). In the other direction, being the mid-

dle element of a conjunctive fork is for Reichenbach certainly not su�cient

for being a common cause, since common e�ects may also satisfy conditions

2.3-2.6. However, for his idea for de�ning time direction to work, it is ab-

solutely crucial to ascertain that if a conjunctive fork ACB is open5, then

C is a common cause of A and B and not their e�ect. This way he will be

able to frame his de�nition of time direction in terms of macrostatistics as

�In a conjunctive fork ACB which is open on one side, C is earlier than A or

B� (ibid., p. 162). But does he succeed in showing the causal asymmetry of

conjunctive forks? This may initially seem to be a side issue for the principle

of the common cause, but it is not: an example of a conjunctive fork open to

one side, containing two events and their common e�ect, such that there is

no common cause for the two events which together with them constitutes a

conjunctive fork, would be a counterexample to the principle. The fact that

the issue was discussed in this context by perhaps the staunchest proponent

of the principle, Wesley Salmon (1984), is another reason for which we will

return to it in one of the coming sections.

5 This seems to mean that one of the two possibilities (one of which is almost imme-

diately excluded) occurs: either (1) C is a common cause of A and B, and there exists no

common e�ect D of A and B such that ADB would constitute a conjunctive fork, or (2)

C is a common e�ect of A and B, and there exists no common cause D of A and B such

that ADB would constitute a conjunctive fork.
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2.3.1 Reichenbach's argument for the Principle

What is, then, the justi�cation given by Reichenbach for his principle? It

is supposed to follow from the second law of thermodynamics�the entropy of

an isolated system which is not in equilibrium tends to increase�supplemented

with an additional assumption, labeled �branch hypothesis�, which we shall

now consider.

As we said earlier, in his book Reichenbach does not use the formalism of

probability spaces which has since then become the standard approach. In-

stead in �12 he introduces the so called �Probability Lattice�. In the context

of the book, it is a mathematical construction for describing processes of mix-

ture. A probability lattice is a two-dimensional matrix; each row represents

the history of a single object, e.g. a molecule of gas (thus it is also called a

�time ensemble�), and each column is a time-slice through the system under

consideration, containing information about the state of all molecules in the

system at a given time (being thus also called a �space ensemble�). To use

Reichenbach's own example, consider a container with two compartments�L

and R�and assume there are molecules of nitrogen in compartment L and

oxygen in compartment R. Suppose the wall dividing the compartments is

removed and the substances begin to mix with each other. If we restrict our

attention to nitrogen only, and record only the positions of the molecules (in

a binary way, �L� or �R�), the �rst column of our probability lattice should

be �lled exclusively with Ls, while the farther we go to the right, the more

the proportion of Ls and Rs in a given column approaches 1/2.

The lattice will be a �lattice of mixture� (Reichenbach (1971), p. 103) only

if it meets a few conditions, discussed on pages 100-103 of the book. The

two simple ones regard the initial column (which should be ordered6) and

6 In the sense that it should illustrate a state of order; just like in the previous example,

the initial�ordered�state of the system is illustrated by a column with the letter �L� in

all entries.
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aftere�ect in rows (an R at position i in a row increases the chance for an R at

position i+1 in the same row). The other two, though, �independence of the

rows� and (especially) �lattice invariance� (which allows making inferences

�from the time ensemble to the space ensemble�), are highly non-trivial. It

would not be proper to study the conditions here in detail, since they are

not at the heart of Reichenbach's argument for the PCC.7

The formalism was needed because the branch hypothesis itself refers to a

lattice of mixture (Reichenbach (1971), p. 156). The general idea is that the

whole universe, as a whole, is a system the entropy of which is currently low,

but increases over time (barring some short-term anomalies). From the main

system smaller systems branch o�, and are isolated for a certain period�but

they are connected with the main system at both ends. The entropy of these

�branch systems� is also (in general) low at one of these points and high at

the other; the crucial thing is that the direction towards higher entropy is in

general parallel throughout the branch systems. This covers four out of �ve

assumptions making up the hypothesis; the remaining one is that the lattice

of branch systems is a lattice of mixture.

Suppose, for now, the branch hypothesis is true. How should the PCC

follow? Reichenbach tries to shows �rst (pp. 164-165) that if an ensemble of

branch systems is considered which contains two types of systems TA and TB

(the systems of the �rst type may assume state A and the others state B)

7 But it has to be noted that while there may be some intuitive appeal of those two

conditions being connected with a mixing process, the author himself struggles with his

own notation, being forced to use sub-subscripts, and we hope the reader who consults

the book will agree that it is not evident that Reichenbach's formulas in his lattice-lingo

adequately express what he says in English. (For example, why does the right-hand side of

formula (17) (p. 101) express any �vertical probability� (as de�ned on p. 99) at all?) Even

if these di�culties were dispensed with, there is no justi�cation for lattice invariance save

for a reference to Reichenbach (1949), where (p. 174) it is stated that the kinetic theory

of gases makes a similar assumption.
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such that sometimes a system of type TA and another of type TB coincide in

their �rst state (call it C), and a composite probability lattice is constructed

from the two lattices for two system types by appropriately �gluing� some

rows on top of others so that for any case of the above mentioned coincidence

the row for the system of type TA is on top of the row for the system of type

TB, then the composite lattice satis�es the conditions for a conjunctive form

transcribed into Reichenbach's lattice notation. For future reference, let us

state that his goal here was to ascertain that �whenever two causal lines

leading to A and B are connected by their �rst element C, the fork ACB is

conjunctive� (*).

Then Reichenbach claims that �the branch hypothesis tells us that if a

state occurs more frequently in the space ensemble than corresponds to a

certain standard, namely, to its probability in the time ensemble, there must

have existed an interaction state in the past� (p. 166) (**). This sentence

is di�cult to grasp due to its lack of quanti�ers over columns and rows.

Should we read it as �the branch hypothesis tells us that if in a lattice of

mixture there exist row k and column i such that a certain state occurs more

frequently in k than in i, (...)� or �the branch hypothesis tells us that if

in a given lattice of mixture it is true that for any row k and column i a

certain state occurs more frequently in k than in i, (...)�? The fact that

in the previous paragraph we seem to have been actually considering three-

dimensional probability lattices8 does not help, either.

But let us, again, drop this issue (and the issue of whether the above

actually follows from the branch hypothesis). The next step in Reichenbach's

8 The additional dimension, apart from rows and columns, stems from the fact that

rows from the lattice for systems of type TA are �above� the ones for systems of type TB ; it

cannot be the two-dimensional sort of �above� used in statements like �on this very page,

the previous line is above this one�, since were it so, it wouldn't be possible for As and

Bs to happen in the same row of the composite lattice, which is explicitly required by

Reichenbach's mathematical formulas.
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reasoning is that

�If the two causal lines leading to A and B were not connected by

their �rst elements, the probability of the joint occurrence would

be given by P (A) · P (B).�9 (***)

This, unfortunately, begs the question. By contraposition and combi-

nation with (*) we get: �if A and B are correlated or anti-correlated, the

two causal lines leading to A and B are connected by their �rst element C,

and the fork ACB is conjunctive �, which is at �rst sight an even stronger

statement than the PCC.10 Statement (***) needs to be backed up, but is

not. It cannot be backed up by (**)�because, however we understand it, it

is an implication from the fact that the probability of a given state in the

space ensemble is di�erent (higher) from its probability in the time ensemble,

without reference to the actual values of the probabilities! So, a priori, it is

consistent with (**) that for some A and B, the causal lines leading to A

and B are not connected by their �rst elements, but the probability of the

joint occurrence is given by P (A) · P (B) + 0.05, which is inconsistent with

(***).11 Sadly, we have to conclude that the argument given by Reichenbach

misses a link without which part (***) assumes the thesis. Thus the status

9 ibid.
10 Only at �rst sight, because if events A and B are anti-correlated, then A and B⊥

are positively correlated (and vice versa), so the PCC may also be read as demanding

explanation for anti-correlations.
11 The point will be perhaps more palatable if made colloquially: everyone remembers

that �correlation does not mean causation�. But (since A and B, belonging by assumption

to isolated branch systems, cannot cause one another) (***) says basically that �absence of

causation means absence of correlation�! The author, when claiming (***), has to have in

mind something similar to the negation of the hackneyed slogan; namely, that correlation

does mean causation, if not between the correlated events (since they occur at the same

time or belong two isolated systems), but between them and their common cause. This is

a yet another informal statement of Reichenbach's PCC.
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of the principle of the common cause in The Direction of Time is still that

of a hypothesis. It does not change the fact that it may well be a valuable

rule of human reasoning; simply, Reichenbach does not succeed in showing

it to be a well-proved theorem.

It has to be added that Reichenbach himself thought that the PCC �reit-

erates the very principle which expresses the nucleus of the hypothesis of the

branch structure� (ibid., p. 167). Perhaps, then, no separate argument for

PCC is needed and a justi�cation of the hypothesis of the branch structure

would su�ce. We will argue that this prospect is sadly also not hopeful in

the next section, among a few other drawbacks of Reichenbach's account.

2.3.2 Other problems with Reichenbach's approach

The hypothesis of the branch structure: �main system� and entropy

The �rst worry regarding the hypothesis concerns what it is that is supposed

to branch. Reichenbach o�ers a few illustrations. In the �rst one (�gure 2.2)

we are supposed to see a �long upgrade of the entropy curve of the universe�

and �systems branching o� from this upgrade, assuming that these branch

systems remain isolated for an in�nite time� (ibid., p. 118). The second one

(�gure 2.3) di�ers in that the systems which branch o� from the main system

return to it and that it contains also a downgrade of the entropy curve.

In both images the vertical axis is supposed to depict entropy. And the

problem is that, while not all concepts of entropy are that of an additive

quality (see e.g. Palm (1978)), the types of entropy considered by Reichen-

bach are additive, as he says himself on p. 53 (�If two systems are brought

together, their entropies are additive�). Therefore, suppose the universe con-

sisted of a system which from time to time divides into two systems that

remain isolated for a certain period and then connect again. Since entropy is

additive, the initial part of the curve depicted in �gure 2.3 should rather look
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Figure 2.2: Upgrading entropy curve of the universe with a few isolated

systems branching o� (reprint of Fig. 20 from Reichenbach (1971), p. 119)

.
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Figure 2.3: The entropy curve of the universe in its upgrade and downgrade,

with isolated systems branching o� and returning to the main system (reprint

of Fig. 21 from Reichenbach (1971), p. 127)

.

more like the segments in �gure 2.4. The entropy of the composite system

increases, as do entropy levels of the �branch� systems. But the image no

longer contains any branching. I think it would be true to Reichenbach to

say that two systems branch if they become isolated from one another (i.e.

no (or minimal) �ow of energy between them is possible). Branching in this

sense should not, as we have seen, be depicted by a branching entropy curve.

Perhaps this was just a pictorial di�culty of no greater import. But the

bigger problem with the hypothesis is that it refers to �the main system�; pre-

sumably, �the main system of the universe�. It is never made clear what the

main system is. Is Earth a part of it, or is the humanity in some backwater

part of the universe? At �rst sight, the concept of the main system is impor-

tant for the hypothesis; the main system is to serve as the root from which

the other systems branch, and to which they eventually return. On the other

hand, perhaps the hypothesis could be reformulated so that it would refer

to an ensemble of systems whose both ending points are in other systems,
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Figure 2.4: Entropy of a system which divides from time to time into two

systems for a certain period.

and which are isolated from all other systems apart from their endpoints.

In this case, there would be no distinguished �root�, or �main�, system�and

similarly, there would be no need to use the name �branch system� instead of

simply saying �system�: all systems would have equal rights, so to speak. One

would also have to take care when accommodating the old Assumption 4 (�In

the vast majority of branch systems, one end is a low point, the other a high

point�) to the new hypothesis; what if a system K branches o� a system L

at a point of L's high entropy, but, after a period of isolation, connects with

a system M at a point of M 's low entropy? I do not think these di�culties

are insurmountable. It is feasible that one could reformulate Reichenbach's

hypothesis of the branch structure so that it would not refer to any �main

system�, while still capturing as much of the intentions of the original author

as possible. Then the task of deriving the PCC could be approached again.

A problem with this is that one would still be trapped with Reichenbach's
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probability lattice approach and his notation. We prefer to pursue another

option and consider the chances of proving theorems related to the PCC us-

ing the machinery of �modern� probability theory. This endeavour is taken

up in chapter 6.

What do the initial examples illustrate?

As we said earlier on, Reichenbach himself claims that in his book probabil-

ity is always to be understood as a limit of a relative frequency. This would

seem to preclude ascribing probability to �token�, unrepeatable events; in

other words, there should be no �single-case probabilities�. However, we al-

ready quoted passages from Reichenbach (1949) indicating that there is an,

albeit elliptic, way of speaking about constructs which are to serve as a sub-

stitute for them in Reichenbach's theory. How should we, then, understand

the initial examples of common-causal reasoning o�ered by the author (and

quoted here on p. 22), the �re and the wind, the burned-out bulbs, and the ill

actors? The common cause is invoked after the occurrence of a single event

is observed. At the end of section 2.1.2 we claimed that no beliefs about

the probability of such an event should be formed just because of a single

occurrence. Reichenbach seems to agree, writing on p. 158, not long after

the examples have been presented, �(...) we assume that A and B have been

observed frequently; thus it is possible to speak about probabilities P (A),

P (B) and P (B | A) (...)�. So, in the initial examples we are not supposed to

think of probabilities, let alone correlations. Therefore they cannot be of any

support for the principle in its �correlation� formulation; they only illustrate

the �coincidence� formulation in action.

Remember, though, that the two features Reichenbach advertised as due

to which a common cause has explanatory value stem from the common cause

being a middle link in a conjunctive fork. Since the de�nition of the fork is

probabilistic, if we know nothing about the probability of the given common
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cause C, we cannot judge whether it is the middle link in a conjunctive fork

ACB, and so cannot bene�t from the above-mentioned features: (1) that the

correlation disappears when the events A and B are considered conditional

on C, and (2) that the correlation is derivable from the conjunctive fork

condition. These two features show us why the PCC may be promoted as

one of the principles guiding the human search for explanation, but only in

its formulation referring to a �correlation� (p. 25), not in the one bringing up

an �improbable coincidence� (p. 22).

In conclusion, Reichenbach's initial examples illustrate only the �coinci-

dence� formulation of the principle, which lacks the important explanatory

features of the �correlation� formulation.

On forks open to the past

First let us ask about su�cient conditions for a triple of events ACB to con-

stitute a conjunctive fork. Are the statistical requirements 2.3-2.6 enough?

Consider some events A, B and their common cause C, which operates in a

deterministic way: P (A | C) = P (B | C) = 1, P (A | C⊥) = P (B | C⊥) = 0.

Notice that

P (AC | B) = 1 = P (A | B)P (C | B);

P (AC | B⊥) = 0 = P (A | B⊥)P (C | B⊥);

P (A | B) = 1 > 0 = P (A | B⊥);

P (C | B) = 1 > 0 = P (C | B⊥),

so the triple ABC satis�es the statistical requirements for being a conjunctive

fork, with B being the middle link. But, if forks are to represent causal

relations, then ABC cannot be a conjunctive fork, because it is not a fork

in the �rst place. The moral is this: prior causal knowledge is needed to
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determine whether the fact that a triple of events satis�es conditions 2.3-2.6

means that the triple constitutes a conjunctive fork. We di�er in this opinion

from e.g. Salmon, who considers the statistical conditions as de�nitional12

for the notion of the conjunctive fork, but (for unrelated reasons) assuming

additionally that none of the probabilities occurring in the requirements may

be equal to 0 or 1, and who would thus be una�ected by my counterexample.

Conjunctive forks open to the past would of course (just as any exam-

ples of two correlated any events with neither a common e�ect nor a com-

mon cause) constitute counterexamples to the PCC. Reichenbach claims that

whenever a conjunctive fork AEB is found such that E is a common e�ect of

A and B, there exists an event D, which is a common cause of A and B, and

is the middle link of a conjunctive fork ADB. There exist no conjunctive

forks open to the past.

Reichenbach o�ers both a general argument and some speci�c examples.

The argument is of a teleological nature and refers to the fact that we do not

accept �nal causes as explanations. Final causes are deemed incompatible

with the second law of thermodynamics in the preceding chapter (§18 of

Reichenbach (1971)); a general question is asked: how are we to explain the

presence of a highly ordered (and so, very improbable) state of a system

(such as a trace of footprints in the sand)? Reichenbach's answer is that

we are supposed to look for an interaction �at the lower end of the branch

run through by an isolated system which displays order�, which will be the

cause; �the state of order is the e�ect� (p. 151). The ordered state is, then,

to be understood as a post-interactive state. Since the overarching goal is

to provide a de�nition of time direction (as we have seen Reichenbach doing

in the following chapter�§19 of Reichenbach (1971)�by de�ning what is to

be meant by �past�), the author proposes to consider the system containing

the beach with the footprints in �reverse time� (p. 153). We would have to

12 See Salmon (1984), p. 159-160.
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think of the ordered state as a pre-interactive state, and so, in our search

for its explanation would end up with a �nal cause (�The wind transforms

the molds in the sand into the shapes of human feet in order that they will

�t the man's feet when he comes�, ibid.); in general, we would �explain the

improbable coincidences by their purpose rather than by their cause� (ibid.).

Since this is implausible, the conclusion is that the direction of time should be

de�ned, generally speaking, from interaction to order, rather than the other

way round. And so, �if we de�ne the direction of time in the usual sense,

there is no �nality, and only causality is accepted as constituting explanation�

(p. 154).

Unfortunately, the nonexistence of conjunctive forks open to the past

would follow from the above only had it been established that such a con-

junctive fork would necessitate the usage of �nal causes. This would only

be the case if (1) every correlation between events having a common e�ect

but no common cause (i.e. events being the extreme elements of a causal

fork open to the past) had an explanation; (2) the only accepted way of

explaining such a correlation would be to refer to an event in their causal

future. But Reichenbach does not give arguments for any statements similar

to the two above; in fact, he seems to rely on an (unsupported) fundamental

principle that every correlation whatsoever has an explanation. Notice also

the curious jump from the epistemic to ontological perspective on p. 163: �A

common e�ect cannot be regarded as an explanation and thus need not ex-

ist�. In general, it does not seem that Reichenbach's general argument for the

nonexistence of open conjunctive forks with a common e�ect as the middle

element holds up under scrutiny, mainly due to the trick of deriving the on-

tological conclusion from epistemic premises (like the universal requirement

for explanation for correlations).

Coming now to the speci�c examples, the author gives an instance of a

fork open to the past on p. 163, aiming to convince the reader that the fork
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cannot be conjunctive. Let us quote a part of the example:

�For instance, when two trucks going in opposite directions along

the highway approach each other, their drivers usually exchange

greetings, sometimes by turning their headlights on and o�. We

have here a fork AEB, where E is the exchange of greetings,

which is a common e�ect of the �coincidence� of the trucks, that

is, of the events A and B� (Reichenbach (1971), p. 163).

It is not evident how we should think about probabilities in this case, but

one way would be to hold �xed a fragment X of some highway, and let A be

the event �there is a truck going in the eastern direction in the fragment X�,

B be the event �there is a truck going in the western direction in the fragment

X�, and E �two trucks going in the opposite directions in the fragment X are

�ashing their headlights�. We can check whether the events occur e.g. every

second. Then it is very likely that E⊥ does not screen o� A from B, so the

three events indeed do not form a conjunctive fork. Still, a general argument

against the mere possibility of such a fork open to the past is needed.

A related problem appears in Salmon (1984), where on p. 164-165 an

example o�ered by Frank Jackson of a conjunctive fork open to the past is

discussed.

�[C]onsider a case that involves Hansen's disease (leprosy). One

of the traditional ways of dealing with this illness was by segre-

gating its victims in colonies. Suppose that Adams has Hansen's

disease (A) and Baker also has it (B). Previous to contracting

the disease, Adams and Baker had never lived in proximity to

one another, and there is no victim of the disease with whom

both had been in contact. We may therefore assume that there is

no common cause. Subsequently, however, Adams and Baker are
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transported to a colony, where both are treated with chaulmoogra

oil (the traditional treatment). The fact that both Adams and

Baker are in the colony and exposed to chaulmoogra oil is a com-

mon e�ect of the fact that each of them has Hansen's disease.

This situation, according to Jackson, constitutes a conjunctive

fork A,E,B, where we have a common e�ect E, but no common

cause� (Salmon (1984), p. 164)

To check whether the statistical conditions are satis�ed, one has of course

to check e.g. probabilities P (A | E⊥) and P (A⊥ | E⊥). But how should we

do this? We had already assumed that Adams has Hansen's disease and that

he is in the colony. How can we ask about the probability that he is not ill

or that he is not in the colony? Certainly we are not evaluating a probability

of a counterfactual statement13. Instead, it is evident from p. 165 of Salmon

(1984) that the author calculates the probability P (B⊥ | E) simply by taking

the proportion of people in the colony who are not ill (the medical personnel)

to all members of the colony. But in this way he transforms a constant into a

variable and it is no longer possible to di�erentiate between events A and B,

since both of them are �a randomly chosen man from the colony has Hansen's

disease�.

It would seem, then, that Reichenbach's account lacks a general argument

for his point, and Salmon's considerations on the subject are defective. On

the other hand, we have to admit we have been unable to �nd a �real-world�

example of a conjunctive fork open to the (causal) past. Still, consider the

following hypothetical situation: a group of 10000 men (labeled, for our con-

venience, from ”1” to ”10000”) considered as representative for the region is

tested for hypocalcemia (E), lactose intolerance (A) and hypoparathyroidism

(B). Lactose intolerance and hypoparathyroidism have no known common

13 Which is a task attempted later on e.g. in chapter 7 of Pearl (2000).
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cause, while it is known that each may lead to hypocalcemia. If:

• men labeled from 1 to 1000 (and only them) have hypocalcemia;

• men labeled from 1 to 500 and from 1001 to 4000 (and only them) have

lactose intolerance;

• men labeled from 251 to 750 and from 3001 to 6000 (and only them)

have hypoparathyroidism;

then it is straightforward to see (if we accept the move from relative fre-

quencies to probability: here, for the sake of the example, we can simply say

that the population from which the sample had been drawn is identical to

the sample) that the fork AEB satis�es the requirements from the de�nition

of a conjunctive fork (2.3-2.6). However, the middle element of the fork is

a common e�ect of the two other elements, which have no known common

cause. I do not see why such situations should be impossible; yet again, I

have been unable to �nd a �real� example.14

(A di�erent matter is whether a �conjunctive fork open to the past� and

a �conjunctive fork AEB with the middle element E being a common e�ect

of A and B, such that there is no common cause C of the two events such

that the fork ACB is conjunctive� are to be identi�ed. They certainly are

on the assumption that �past� in the �rst expression is to be understood as

�causal past�).

2.4 The PCC after Reichenbach

Reichenbach's principle was heavily promoted in the 70s and 80s by Wesley

Salmon (e.g. Salmon (1971)). More recently, it has been an inspiration for a

14 Another hypothetical example of a conjunctive fork not pointing to a common cause

was also presented in Torretti (1987).
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fundamental condition in the �eld of representing causal relations by means

of directed acyclic graphs (see chapter 5). However, a plethora of counter-

arguments appeared; most are gathered and discussed in Arntzenius (1992).

Some, e.g. Sober's (1988) �sea levels vs. bread prices� argument, were directed

against any sort of general requirement of common causal explanation. Oth-

ers lead a few philosophers (e.g. Salmon (1998b)15 and Cartwright (1988))

to transform Reichenbach's idea, preserving the principle's requirement of

common causes for correlations, but changing the screening o� condition,

or supplementing it with other conditions. It would be of no use for the

current essay to discuss all these ideas in detail: our focus is on the notions

of common cause revolving around the original idea of screening o�. We

will however describe the three arguments we would rate as most important.

These are:

• the argument from Bell inequalities, to which we will devote the whole

chapter 5;

• the argument from conservation principles, described in section 2.4.1;

• and the �sea levels / bread prices� argument, described in section 2.4.2.

Later, in the 90s, Reichenbach's idea in the form of PCC 4 was defended

in papers by M. Rédei, G. Hofer-Szabó and L. Szabó (e.g. Hofer-Szabó et al.

(2000)): rather then confronting the earlier counterarguments to Reichen-

bach's idea directly, the authors proposed mathematical arguments in favour

of PCC 4. It is to this area of research that the current study aims to con-

tribute in chapters 6 and 7. Let us �rst describe the two arguments against

Reichenbach's principle we just mentioned above.

15 Originally published in 1978.

42



2.4.1 The argument from conservation principles

We will cite the formulation of this argument given in Arntzenius (1992),

since it seems to be the most concise:16

�Suppose that a particle decays into 2 parts, that conservation

of total momentum obtains, and that it is not determined by

the prior state of the particle what the momentum of each part

will be after the decay. By conservation, the momentum of one

part will be determined by the momentum of the other part. By

indeterminism, the prior state of the particle will not determine

what the momenta of each part will be after the decay. Thus

there is no prior screener o�.� (Arntzenius (1992), p. 227-8.)

There are numerous variants of this argument in the literature; the ver-

sion from Salmon (1998b) refers to Compton scattering. In the same paper

Salmon, as an answer to the problem, proposes the introduction of another

kind of fork (apart from the conjunctive variety), the so called interactive

fork. Probabilistically, an interactive fork with the middle element C and

two extreme elements A and B di�ers from a corresponding conjunctive fork

in that instead of the two screening o� requirements a single condition is

introduced: namely, P (AB|C) > P (A|C)P (B|C). That it is met by the

examples built around some conservation principle becomes evident when we

notice that in such examples (if C is the state of the compound before the

splitting) 1 = P (A|B ∧ C) > P (A|C) .

Notice that the argument only implicitly refers to probability, via the

notion of screener o�. No probability spaces are de�ned. Therefore it is an

argument against PCC 2. It is not clear what force it would have against

PCC 4, which�as mentioned above�has been mathematically proven to

16 It is labeled �Indeterministic Decay with Conservation of Momentum� and attributed

to van Fraassen (1980).
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be true. One would have to consider all probability spaces which could be

used to describe the decay event and its consequences; then the extensions

of those spaces which contain common causes in the sense of PCC 3; and

�nally ponder the question whether such events could have anything to do

with what we would naturally accept as a common cause of the properties

of the two particles.

An ad hoc solution�but not without intuitive merit�on part of a pro-

ponent of PCC 2 could be that correlations which arise due to conservation

principles do not demand (additional) explanation: if we know the princi-

ple at work, we do not require anything more to explain the correlation.

Salmon's way out (philosophically rooted in the distinction between causal

processes and interactions) was simply to incorporate interactive forks into

the picture and to say that some correlations are explained by events which

together with the correlated events form a conjunctive fork, but some others

demand as their explanantes the middle elements of interactive forks.17

2.4.2 The �sea levels vs. bread prices� argument

This argument �rst appeared in Sober (1988) and was elaborated in Sober

(2001). The most important thing is that, in the parlance of the current

essay, it is an argument for abandoning PCC 1 for PCC 2: not all correlations

demand a common causal explanation.18 By reductio: otherwise a correlation

between Venetian sea levels and British bread prices would demand such an

explanation, while it surely does not. More extensively:

Consider the fact that the sea level in Venice and the cost of bread

in Britain have both been on the rise in the past two centuries.

17 In fact, Salmon himself eventually espoused a variant of the �conserved quantity�

theory, see Salmon (1998a).
18 Which demand and which do not is in Sober's account decided by our background

theory.
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Both, let us suppose, have monotonically increased. Imagine that

we put this data in the form of a chronological list; for each date,

we list the Venetian sea level and the going price of British bread.

Because both quantities have increased steadily with time, it is

true that higher than average sea levels tend to be associated

with higher than average bread prices. The two quantities are

very strongly positively correlated.

I take it that we do not feel driven to explain this correlation

by postulating a common cause. Rather, we regard Venetian sea

levels and British bread prices as both increasing for somewhat

isolated endogenous reasons. (Sober (1988), p. 215.)

There are several strands of thought in the literature on the argument.

We will try to label and shortly discuss them.

1. No correlation at the level of changes. Forster (1988) was the

�rst to notice that, while the sea levels and bread prices are correlated,

their respective changes are not: year by year, both the former and the

latter increases. It is hard to estimate the import of this observation:

in fact, the lack of correlation on the level of changes would perhaps

intuitively indicate lack of causal connection, which would strengthen

Sober's point. In any case, Sober (2001) presented an example stem-

ming from evolutionary biology in which the correlation persists on the

level of changes of the values of two attributes, and in which also no

common causal explanation is expected.

2. Mixing. Some authors (e.g. Spirtes, Glymour & Scheines (2000), p. 33-

37) point out�going back to the work of G. Udny Yule in the begin-

ning of the XXth century�that a correlation between attributes in a

population may be the result of mixing two populations in which the
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attributes are not correlated. The solution of Spirtes, Glymour and

Scheines, working in the formalism of directed acyclic causal graphs

(more on that in chapter 4), is to treat �belonging to one of the given

subpopulations� as an attribute in the �big� population, which enables

them to recover the proper conditional independencies. This amounts

to saying that whenever such a mixing occurs, the correlation is ex-

plained by the mixing itself. The authors treat (p. 37) Sober's example

as a case of mixing (in fact, they claim that his point was similar to

Yuly's) and consider the case closed. This is consistent with PCC 2: if

we know that such a mixing occurred, then we either do not think of

the correlation as demanding an explanation at all, or we consider it

explained by the mixing itself. However, the particular example of sea

levels and bread prices does not lend itself easily to the �mixing� inter-

pretation. What are the two populations to be mixed? They cannot

be the 200 years, since there is only one set of years to be considered.

Thinking of Sober's example as a case of mixing seems to require some

serious mind-twisting. It might be better to look at it as consisting of

two monotonically increasing time series.

3. Time series. Hoover (2003) observes that the data given by Sober

allow us to infer that there is a correlation on the level of frequencies,

but it does not necessarily follow from that that there is a correlation

on the level of probabilities. �(...) most statistical inference and most

of our own probabilistic intuitions are based on stationary probability

distributions� (p. 532).

A rigorous discussion of this point would require numerous de�nitions,

so let us settle for a more informal account. A necessary condition for a

time series to be stationary is that �the covariance between the values

of the series at di�erent times depends only on the temporal distance
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between them� (p. 532). Of course, a monotonically increasing time

series is not stationary. However, for any time series we can consider

a series of di�erences between the consecutive values of the series. It

may very well happen that the series is stationary (consider e.g. the

case of the series of consecutive natural numbers from 1 to 200); in

that case the original series is said to be integrated of order 1, or �I(1)�.

As Hoover points out (p. 545-546), a linear combination of two I(1)

time series is in general also I(1), but it may happen that there exists a

linear combination which is stationary: only in this case (in which we

say the time series are cointegrated) the data constitute evidence for

probabilistic dependence. As Reiss (2007) puts it (p. 184), �inferring

from a sample correlation to a probabilistic dependence means that

one takes the most likely data-generating process to be stationary�. In

Sober's case we are likely to assume otherwise. Hoover proposes to

let PCC apply to cases in which the correlated series are either (1)

both stationary or (2) both I(1), but cointegrated. Since Sober's time

series are not cointegrated, they do not constitute a counterexample to

Hoover's version of the principle.

We would like to divert attention to a di�erent issue. Why do we think

the correlation between Venetian sea levels and British bread prices does not

demand explanation? Is there more to say on the topic than Hoover's idea

of referring to the two time series being nonstationary but not cointegrated?

2.4.3 Which correlations demand explanation?

Various authors have �eshed out the beginning part of PCC 2 di�erently.

Some say that only �improbable� correlations demand explanation. This can

mean simply �statistically signi�cant� (Forster (1988), p. 539), �unexpected

or surprising� (U�nk (1999)), or e.g. �such that the assumption that it arises
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from causally unrelated processes will render it unexpected�, with a formally

de�ned notion of �unexpected� (Berkovitz (2000), p. 65).

There is a sense, meta-probabilistic in a way, in which a correlation can

be rigorously thought of as �improbable�. Consider a �nite probability space

〈Ω,F , P 〉, in which Ω has n elements, F is the set of all subsets of Ω, and for

any A ∈ F , P (A) = card(A)
n

. Suppose two subsets A and B of Ω are chosen at

random in the sense that every member of Ω has a chance of 1
2
of belonging to

A and the same chance of belonging to B. It can be checked using a moderate

dose of combinatorics and Stirling's approximation that with n approaching

in�nity, the chance of arriving at a probabilistically independent pair by the

process just outlined approaches 0. Informally, we would say that �in a big

enough population, (almost) everything is correlated with (almost) every-

thing�. But the proportion of pairs such that
∣∣P (AB) − P (A)P (B)

∣∣ < 0.05

(which is one, quite arbitrary, way of saying �weakly correlated pairs�) to all

pairs increases with n, too�strongly correlated pairs are infrequent in this

sense (i.e., it is hard to come upon them by pure chance). We have to confess

that for this statement we only have an argument of �consulting statistical

software��we used the �R� software to track the proportions of weakly and

strongly correlated pairs in populations of increasing sizes. So, if we do not

possess any knowledge about the genesis of some two events, it should be

natural to expect them to be correlated, but only weakly. The subjective de-

gree of this expectation should vary with the size of the population involved.

However, this approach is too abstract to properly illustrate our beliefs re-

garding the probabilistic nature of phenomena we observe in the world: we

in general do not start with a �clean slate�, but possess some background

knowledge which in�uence our beliefs regarding such issues.

In his account19, to the condition of �improbability� Berkovitz also adds,

without further commentary, that the correlation should be �non-accidental�

19 Berkovitz (2000).
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(p. 56). What does it mean for a correlation to be accidental? Perhaps it

will be illuminating to consult a clari�cation of types of correlation from Haig

(2003), where a reinterpretation of the notion of spuriousness is argued for.

A traditional (see e.g. Hitchcock (2010)) example of a spurious correlation

is that of a barometer and a storm. Shortly speaking, a spurious correlation

arises between events which are not directly causally connected, but have a

common cause. Haig notices that the word �spurious� might be misleading

in this case, since the correlation is due to a genuine causal connection�in

contrast with the correlations which arise e.g. from a sampling bias. Haig's

classi�cation is presented in �gure 2.5.
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Figure 2.5: A classi�cation of correlations from Haig (2003).

A �nonsense correlation� is that for which �no sensible, natural causal

interpretation can be provided� (Haig (2003), p. 127). Haig's examples are

�the high positive correlation between birth rate and number of storks for

a period in Britain� and �the negative correlation between birth rate and

road fatalities in Europe over a number of years�. It is clear, I think, that

Haig would interpret Sober's examples as falling into this category. �Spurious

correlation� are these which are �not brought about by their claimed natural

causes�, but �by accident�, for example due to �sample selection bias, use

of an inappropriate correlation coe�cient, large sample size, or errors of
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sampling, measurement, and computation� (Haig (2003), p. 128). Of the

genuine correlations, the �indirect� are due to either �common or intervening

causes� (p. 129)20. Notice that if we formulate our principle as �any non-

accidental correlation between events which are not directly causally related

or logically dependent is due to a common cause�, it is clearly true under

Haig's account. Whether the common cause in question should screen o�

the correlated events is a di�erent matter.

On the other hand, Sober would most likely say that�in the cases like the

�sea levels vs. bread prices��there is a perfectly natural causal interpretation

which consists of two separate causal explanations of the two phenomena,

and thus such correlations should not be counted as �nonsense�. But let us

examine this line of reasoning. Suppose that there is an explanation E for

the ongoing rise of sea levels; perhaps the melting of sub-polar glaciers. E

explains why the data for sea levels in Venice form a monotonic time series.

Likewise, suppose there is some explanation F for the ongoing rise of bread

prices; perhaps a combination of high taxes and deteriorating crop levels.

F explains why the data for bread prices in Britain form a monotonic time

series. But this does not yet explain the correlation in question. But why

is A higher than average in the given time period precisely whenever B is?

The only reason we can �nd is that the processes E and F are active in the

same time period. If this is accidental, then the correlation between A and

B should be deemed as accidental, too. Van Fraassen (1991, p. 350) uses the

word �coincidence� in this context.

20 A correlation between X and Y can arise partially due to an intervening cause if

there is a cause Z which with X jointly produces Y .
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2.5 An epistemic position

It is interesting that in recent years two diametrically opposed approaches

to PCC have emerged: one (by Rédei, Hofer-Szabó and Szabó, discussed in

chapter 7) we could label as �maximalist�, which aims to prove that any cor-

relation has an explanation by means of a common cause if the probability

space is suitably chosen, and one perhaps aptly labeled as �minimalist�, due

to Reiss (2007). The latter renders the PCC as an intrinsically epistemic

principle. Since it seems to have an illustrative purpose and amounts to say-

ing �if there is no con�icting knowledge, correlation is evidence for causation�,

we will only give the formulation here without extensive discussion:

PCC(Reiss). �The proposition e = �Random variables X and Y are

(sample or empirically) correlated� is prima facie evidence for the hypothesis

h = �X and Y are causally connected�. If all alternative hypotheses hai

(e.g. �the correlation is due to sampling error�, �the correlation is due to the

data-generating processes for X and Y being non-stationary, �X and Y are

logically, conceptually or mathematically related�) can be ruled out, then e

is genuine evidence for h� (Reiss (2007), p. 193).

The epistemic nature of the principle is evident from its use of the notion

of �evidence��no existential statements about the world are to be inferred

from other statements of a similar nature; the principle concerns the shaping

of our conception of the causal structure of the world. The principle is

eminently fallible because we may simply have wrong evidence against the

hypotheses alternative to the one of the existence of a common cause.

Before we tackle the issue of Bell inequalities, it is �tting to devote a

chapter to the formal features of various notions related to screening o�.
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Chapter 3

Screening o� and explanation:

formal properties

Arguably, the most important feature of Reichenbach-style common causes

is that they screen o� their e�ects. In this chapter we will consider a few

constructions based on this idea which extend, or transform, Reichenbach's

original notion.

A part of literature refers to events de�ned as meeting Reichenbach's

conjunctive fork conditions as (�Reichenbachian�) �common causes�; see e.g.

Hofer-Szabó & Rédei (2004). Hofer-Szabó, Rédei & Szabó (2000) and Hofer-

Szabó & Rédei (2006) even go so far as to state that Reichenbach himself

de�ned common causes as the middle elements of conjunctive forks with

correlated extreme elements; in other words, that ful�lling the statistical re-

quirements for being the middle element of a conjunctive fork is su�cient

to be a common cause for the correlated events. Due to the reasons already

presented in section 2.3 we are reluctant to adhere to this tradition. Nev-

ertheless, the main results of this work (see chapter 6) pertain to problems

posed in various papers by the above-cited authors. Therefore, some slight

terminological changes are in order.
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De�nition 9 [Statistical Common Cause] Let 〈Ω,F , P 〉 be a probability
space. Let A,B ∈ F . If there exists C ∈ F di�erent from both A and B

such that

P (AB | C) = P (A | C)P (B | C);

P (AB | C⊥) = P (A | C⊥)P (B | C⊥);

P (A | C) > P (A | C⊥);

P (B | C) > P (B | C⊥),

then C is called a statistical common cause of A and B.

It is intuitive that a similar notion could be considered, with the di�er-

ence that it would permit the cause to be more complicated than a simple

�yes� / �no� event. This is indeed the path taken without further comment

by van Fraassen (1982), but only the screening o� requirement is retained.

A generalization which takes into account also the conditions of statistical

relevance was developed by Hofer-Szabó & Rédei (2004); the resulting con-

structs were called �Reichenbachian common cause systems�, but, for reasons

given above, we will abstain from the adjective �Reichenbachian�.

In view of the de�nition of statistical relevance (de�nition 7, p. 12) we can

say that a statistical common cause C is positively statistically relevant for

both its e�ects, or that in such a case the pair {C,C⊥} is statistically relevant
for the same events; it would be wrong to say that {C,C⊥} is positively

relevant, since one of its elements lowers the probability of the e�ects.

De�nition 10 [Statistical Common Cause System] Let 〈Ω,F , P 〉 be a
probability space. A partition of unity of F is said to be a statistical common

cause system (SCCS) for A and B if it satis�es the statistical relevance

condition w.r.t. A and B, all its members are di�erent from both A and B,

and all its members are screener-o�s for the pair.
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The cardinality of the partition is called the size of the statistical common

cause system.

Statistical common cause systems come in di�erent cardinalities; it was

proven in Hofer-Szabó & Rédei (2006) that SCCSs of arbitrary �nite size

exist. However, for some time it has not been clear which range of cardi-

nalities is admissible. The problem whether in�nite SCCSs exist is posed in

Hofer-Szabó & Rédei (2004). We will now show that

Theorem 1 (Wro«ski & Marczyk (2010)) The greatest possible cardi-

nality of an SCCS is ℵ0.

Proof:

1. No uncountable SCCSs exist. To see this, suppose that in some

probability space 〈Ω,F , P 〉 an SCCS {Ci}i∈I of size greater than ℵ0 ex-

ists. Since all elements of the SCCS are screener-o�s, they have to have

positive probability�otherwise the required conditional probabilities are not

de�ned. But we know from measure theory (see e.g. Theorem 10.2 in Billings-

ley (1995), p. 162) that this is impossible, since the SCCS is a partition of

unity of F and so the set of its non-zero probability members can only be

countable.1

2. We will now construct an example of a countably in�nite SCCS.

1The reader may prefer conditional probabilities given probability zero events to be

always equal to 0, or 1 (see e.g. Adams (1998), p. 57). In these cases we note that for some

distinct k, l ∈ I, P (A | Ck) = P (A | Cl), which violates the statistical relevance condition.
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Let 〈[0, 1),W, λ〉 be a classical probability space with W being the set of

all Lebesgue-measurable subsets of the real interval [0, 1) and λ being the

Lebesgue measure. Put

Cn :=

[
2n − 1

2n
,
2n+1 − 1

2n+1

)
;

C := {Cn}n∈N

It is evident that if n 6= m (n,m ∈ N), Cn∩Cm = ∅ and that
⋃
C = [0, 1),

so C is a countably in�nite partition of [0, 1). Notice that for any natural n,

λ(Cn) = 1
2n+1 .

For any n ∈ N, we want both λ(A ∩ Cn) and λ(B ∩ Cn) to be equal to
1

(n+2)·2n+1 . To improve the clarity of the notation below, put ln = 1
(n+2)·2n+1 .

De�ne

A :=
∞⋃
n=0

[
2n − 1

2n
,
2n − 1

2n
+ ln

)
;

B :=
∞⋃
n=0

[
2n − 1

2n
+
n+ 1

n+ 2
· ln,

2n − 1

2n
+
n+ 1

n+ 2
· ln + ln

)
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From the above de�nitions it follows that

λ(B | Cn) = λ(A | Cn) =
λ(A ∩ Cn)

λ(Cn)
=

1
(n+2)·2n+1

1
2n+1

=
1

n+ 2
;

whereas

λ(A ∩B | Cn) =
λ(A ∩B ∩ Cn)

λ(Cn)
=

(1− n+1
n+2

) · 1
(n+2)·2n+1

1
2n+1

=

=

1
(n+2)2·2n+1

1
2n+1

=
1

(n+ 2)2

and so

λ(A ∩B | Cn) = λ(A | Cn)λ(B | Cn),

which means that C satis�es the screening-o� condition.

Now, let m,n ∈ N,m 6= n. Without loss of generality assume m > n. It

follows that

λ(A | Cn) =
1

n+ 2
>

1

m+ 2
= λ(A | Cm)

and

λ(B | Cn) =
1

n+ 2
>

1

m+ 2
= λ(B | Cm).

Therefore the di�erences λ(A | Cm)− λ(A | Cn) and λ(B | Cm)− λ(B | Cn)

have the same sign and are nonzero, so(
λ(A | Cm)− λ(A | Cn)

)(
λ(B | Cm)− λ(B | Cn)

)
> 0 (m 6= n)

which means that C satis�es the statistical relevance condition.

We have shown that in the space 〈[0, 1),W, λ〉 the countably in�nite set

C is an SCCS for 〈A,B〉. �
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3.1 The �deductive� explanatory feature

We have already said that one of the two explanatory features of statistical

common causes considered by Reichenbach was the �deductive� one; namely,

from the fact that the conjunctive fork conditions are satis�ed for A, C and

B one can deduce the correlation between A and B. We have to justify

not reproducing here the original proof by Reichenbach, which was simple

and to the point, and using a bit more complicated argument instead. The

reason is that we want to use the following fact, which is a characterization of

correlation between two events in terms of their relations to a third event; the

relations being �how close the event is to being a screener-o� for the pair� and

�how statistically relevant it is for both events�. The fact makes the deductive

feature of SCCs evident and will also be useful in various endeavours below.

Fact 1 If events A and B are correlated, that is,

P (AB) > P (A)P (B),

then for all events C such that 0 < P (C) < 1

P (AB|C)− P (A|C)P (B|C)

P (¬C)
+
P (AB|¬C)− P (A|¬C)P (B|¬C)

P (C)
>

− [P (A|C)− P (A|¬C)][P (B|C)− P (B|¬C)]. (3.1)

Conversely, if there exists an event C such that 3.1 is satis�ed, then events

A and B are correlated.

Proof: Assume that C is such that 0 < P (C) < 1. Write P (AB) as

P (AB|C)P (C)+P (AB|C⊥)P (C⊥), P (A) as P (A|C)P (C)+P (A|C⊥)P (C⊥)
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and P (B) as P (B|C)P (C) + P (B|C⊥)P (C⊥). After straightforward calcu-

lations we see that

P (AB)− P (A)P (B) =

P (C)P (C⊥)
[
− P (A|C)P (B|C⊥)− P (A|C⊥)P (B|C)

]
+

+ P (AB|C)P (C)− P (A|C)P (B|C)
[
P (C)

]2
+

+ P (AB|C⊥)P (C⊥)− P (A|C⊥)P (B|C⊥)
[
P (C⊥)

]2
. (3.2)

Considering the last two lines of the above equation, observe that

P (AB|C)P (C)− P (A|C)P (B|C)
[
P (C)

]2
=

P (C)P (C⊥)
[P (AB|C)− P (A|C)P (B|C)

P (C⊥)
+ P (A|C)P (B|C)

]
and

P (AB|C⊥)P (C⊥)− P (A|C⊥)P (B|C⊥)
[
P (C⊥)

]2
=

P (C)P (C⊥)
[P (AB|C⊥)− P (A|C⊥)P (B|C⊥)

P (C)
+ P (A|C⊥)P (B|C⊥)

]
.

After substituting the two above expressions in equation 3.2 we can infer

that

P (AB) > P (A)P (B) ≡(P (AB|C)− P (A|C)P (B|C)

P (¬C)
+
P (AB|¬C)− P (A|¬C)P (B|¬C)

P (C)
>

− [P (A|C)− P (A|¬C)][P (B|C)− P (B|¬C)]
)
.

Therefore, if A and B are correlated, 3.1 is valid for any C of non-zero and

non-one probability. In the other direction, if we �nd some event C for which

3.1 is valid, due to the above equivalence we can deduce the correlation of A

and B. �
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It is immediate from the inspection of the form of 3.1 that if C is a

statistical common cause of A and B, then 3.1 holds. We can thus claim the

following (which was originally proven in Reichenbach (1971)):

Corollary 2 Let 〈Ω,F , P 〉 be a probability space. Let A,B ∈ F . If C ∈ F
is a statistical common cause of A and B, then A and B are correlated.

A similar result for statistical common cause systems is due to Hofer-

Szabó & Rédei (2004):

Fact 3 (Hofer-Szabó & Rédei (2004)) Let 〈Ω,F , P 〉 be a probability space.
Let A,B ∈ F . If C ⊆ F is a statistical common cause system of A and B,

then A and B are correlated.

3.2 In search for common causes, screening o�

is enough

Let us now change the perspective. Suppose we know that some events A and

B are correlated and we are looking for a statistical common cause. It turns

out that it is enough to �nd an event C such that both it and its complement

screen o� A and B; it is then guaranteed that either C or C⊥ will be an SCC

for the correlated events. This is because in such a situation the left-hand side

of inequality 3.1 will be 0, therefore [P (A|C)−P (A|¬C)][P (B|C)−P (B|¬C)]

will be positive, which means that both di�erences have the same sign�so

either C or C⊥ will meet the conditions for being a statistical common cause

for A and B. Let us summarize this in a corollary, for future reference in

chapter 6:

Corollary 4 Let 〈Ω,F , P 〉 be a probability space. Let A,B,C ∈ F . Suppose
A and B are correlated. If both C and C⊥ screen o� A from B, then either

C or C⊥ is a statistical common cause of A and B.
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In other words, if�given two correlated events�we �nd a two-element

partition of the unity of the space such that both its elements screen o� the

correlation, we are guaranteed that (1) one of the elements is a statistical

common cause and (2) one of the elements is positively statistically relevant

for both correlated events, which is a somewhat intuitive feature of probabilis-

tic causes (this being one of the biggest foundational issues of probabilistic

causality). We separate (1) from (2), because they can come apart when we

switch our attention to more than 2-element partitions of the unity of the

space which consist of screener-o�s only. The following examples will show

that, in general, if such a partition of unity (which we will call a screener

system, see the de�nition below) has more than 2 elements, we can neither

infer that we have found an SCCS, nor that at least one of its elements is

positively statistically relevent for both A and B.

De�nition 11 [Screener System] Let 〈Ω,F , P 〉 be a probability space.

Let A, B ∈ F . If C is a partition of unity of F , then C is called a screener

system for A and B if all elements of C screen o� A from B.

We already know that a two-element screener system for correlated A

and B has to contain a statistical common cause for the two events. Both

examples to follow will present, for given correlated events A and B, three-

element screener systems which will not be statistical common cause systems.

Example 1 Consider a probability space 〈Ω,F , P 〉, where Ω = {1, . . . , 100} ⊆
N, F = Ω2, and P is the uniform measure on F (for any x ∈ Ω, P ({x}) =

1
100

). Consider events A = {1, . . . , 30} and B = {11, . . . , 40} ∪ {51, . . . , 85}.
P (AB) = 2

10
> 195

1000
= P (A)P (B), so A and B are correlated. De�ne

C := {Ci}i∈{0,1,2}, where C0 := {11, . . . , 20}, C1 := {1, . . . 10} ∪ {21, . . . , 50},
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and C2 := {51, . . . , 100}. Check that

P (AB|C0) = 1 = P (A|C0)P (B|C0);

P (AB|C1) = 1
4

= P (A|C1)P (B|C1);

P (AB|C2) = 0 = P (A|C2)P (B|C2),

therefore C is a screener system for A and B. However, P (A|C2) = 0 <

P (A|C1), but P (B|C2) = 7
10
> 1

2
= P (B|C1), which means that C does not

satisfy the statistical relevance conditions for {A,B} (see de�nition 7, p. 12),

and so is not a statistical common cause system for A and B.

In the above example both C0 and C1 were positively statistically relevant

for both A and B. We will now see that it may happen that no element of a

screener system is positively statistically relevant for any of the two correlated

events.

Example 2 Consider a probability space 〈Ω,F , P 〉, where Ω = {1, . . . , 6} ⊆
N, F = Ω2, and P is the uniform measure on F (for any x ∈ Ω, P ({x}) =
1
6
). Consider events A = {1, 2, 3} and B = {2, 3, 4}. P (AB) = 1

3
> 1

4
=

P (A)P (B), so A and B are correlated. De�ne C := {Ci}i∈{0,1,2}, where
C0 := {1, 2}, C1 := {3, 4}, and C2 := {5, 6}. Check that

P (AB|C0) = 1
2

= P (A|C0)P (B|C0);

P (AB|C1) = 1
2

= P (A|C1)P (B|C1);

P (AB|C2) = 0 = P (A|C2)P (B|C2),

therefore C is a screener system forA andB. Notice, however, that P (B|C0) =
1
2

= P (B|C⊥0 ), P (A|C1) = 1
2

= P (A|C⊥1 ), P (A|C2) < P (A|C⊥2 ) and P (B|C2) <

P (B|C⊥2 ). Therefore none of the elements of C is positively statistically rel-

evant for both A and B�even though C0 raises the probability of A and C1

raises the probability of B.
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A part of the motivation for calling a statistical common cause a �cause�

in the �rst place is that it raises the probability of both its �e�ects�. We now

see that, in general, in case of more than 2-element screener systems we do

not have the guarantee that one of its elements will do this job. On the other

hand, not all elements of a �nite screener system for two correlated events A

and B may lower the probability of both A and B (we conjecture that the

fact holds also in the case of in�nite systems):

Fact 5 Let 〈Ω,F , P 〉 be a probability space. Let A, B be correlated events

in F . Suppose a �nite C = {Ci}i∈I is a screener system for A and B. Then,

for some i ∈ I, P (A|Ci) > P (A) or P (B|Ci) > P (B).

Proof: Suppose to the contrary, that for all i ∈ I, P (A|Ci) 6 P (A) and

P (B|Ci) 6 P (B). We know from our assumption that P (AB) > P (A)P (B).

But, since C is a partition of unity of F ,

P (AB) =
∑
i∈I

P (AB|Ci)P (Ci) =
∑
i∈I

P (A|Ci)P (B|Ci)P (Ci) 6

6 P (A)P (B)
∑
i∈I

P (Ci)︸ ︷︷ ︸
1

= P (A)P (B),

therefore we arrive at a contradiction. �

3.3 �Common common� constructs

It is one thing to look for a common cause of a single correlation; it is

another to ask whether two (or more) correlations can be explained by means

of the same common cause. These issues are important for the discussion

of the relationship between the PCC and Bell's inequalities, the topic of

chapter 4. In this section we will give formal de�nitions of common statistical
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common causes and common screener systems, as well as notice a simple fact

regarding the existence of common screener systems for �nite families of

correlations. For completeness we will also include the concept of common

statistical common cause systems, though�to our knowledge�no results

concerning them have been published.

De�nition 12 [Common SCC, Common Screener System, and Com-

mon SCCS] Let 〈Ω,F , P 〉 be a probability space. Let G ⊆ F2 be a family

of pairs of correlated events in F .

• An event C is called a common statistical common cause (�CSCC�)

for G (or for all pairs in G) if for every 〈A,B〉 ∈ G, C is a statistical

common cause for A and B.

• If C is a partition of unity of F , then C is called a common screener

system (�CSS�) for G if for every 〈A,B〉 ∈ G, C is a screener system for

A and B.

• If C is a partition of unity of F , then C is called a common statistical

common cause system (�CSCCS�) for G if for every 〈A,B〉 ∈ G, C is a

statistical common cause system for A and B.

Since it is nothing unusual for a correlated pair of events not to have a

statistical common cause in the given probability space (see chapter 6), it

is not surprising that not all pairs of correlated events have common SCCs.

Hofer-Szabó, Rédei & Szabó (2002) have established necessary conditions for

two correlated pairs of events having a common SCC. We will now show

that, in any space, a �nite family of correlated pairs always has a common

screener system. Let us just note that in the case of a �nite probability

space the problem is trivial�it su�ces to construct a partition of the unity
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of the event space from all singletons of the elements of the sample space2.

However, the screener system constructed this way�while �doing the job��

can be huge. During the proof of fact 6 we will construct a more e�cient

screener system.

Fact 6 Let 〈Ω,F , P 〉 be a probability space. Let G =
{
{Ai, Bi}

}
i∈I ⊆ F

2 be

a �nite family of pairs of correlated events in F . There exists a partition C
of the unity of F which is a common screener system for G.

Proof: Consider the set of atoms of the Boolean subalgebra of F gen-

erated by ∪G. Remove any empty atoms. Add any zero-measure atoms to

an arbitrary atom with non-zero measure. Notice that the resulting set C is
a partition of unity of F . It is immediate that ∀i∈I∀C ∈ C either

P (AiBi|C) = 1 = P (Ai|C)P (Bi|C)

or

P (AiBi|C) = 0 = P (Ai|C)P (Bi|C)

(all probabilities are de�ned, because due to our precautions all elements of

C have positive measure). Therefore, every member of C screens o� all the

correlations belonging to G. We conclude that C is a common screener system

for G. �

Problem 1 Do in�nite families of correlations also always have common

screener systems?

2 If any of these singletons have zero probability, simply append them to arbitrary

singletons with non-zero probability.
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3.4 Explanation via screeners�the general pic-

ture

In this section we will discuss constructs di�erent from SCC(S)s, but which

nonetheless share the previously mentioned deductive explanatory feature.

Let us �rst put some labels on the already introduced conditions, for future

reference:

P (AB|C) = P (A|C)P (B|C) (SCR(A,B,C))

P (A|C) > P (A|C⊥) (STAT(A,C))

P (AB) > P (A)P (B) (CORR(A,B))

The deductive explanatory feature of common causes postulated by Re-

ichenbach can be expressed as the fact that CORR(A,B) follows from

SCR(A,B,C), SCR(A,B,C⊥), STAT(A,C) and STAT(B,C). In general, let

us call a set of conditions deductively explanatory for CORR(A,B) if the

fact that all conditions from the set are satis�ed entails positive correlation

between A and B. Of course, {CORR(A,B)} is trivially deductively ex-

planatory for CORR(A,B). Reichenbach's conjunctive fork criteria comprise

an example of non-trivial deductively explanatory set of conditions. We al-

ready said that screening-o� alone has some explanatory value tied with the

vanishing of the correlation when conditional probability is considered. This

brings us to the following problem:

The screener-o� classi�cation problem. Apart from Reichenbach's

criteria for a conjunctive fork, are there any other interesting sets of condi-

tions which would contain SCR(A,B,C) and would be deductively explana-

tory for CORR(A,B)?

The word �interesting� is to mean �non-trivial�, to exclude explanations of
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CORR(A,B) by CORR(A,B) or its equivalents which refer to A and B only.

Also, since the overarching goal is to �nd an explanation for a correlation

between two events by means of a third event C, the explanatory condition

should refer to the third event in a non-trivial way.

From a bit di�erent angle: an event C, which is a statistical common cause

for A and B, can be viewed as an explanation for the correlation between A

and B because its existence makes true a certain set of conditions which are

deductively explanatory for the correlation. We can ask a question: apart

from SCC (and the general concept of SCCS), are there di�erent types of

screeners which could act as explanations for the same �deductive� reason?

3.4.1 Weakening the screening o� condition

Before we provide a general classi�cation of explanatory screeners, let us focus

on the �perfectness� of screening o� as required by SCR(A,B,C). It would be

unreasonable in any experimental situation ever to expect the observation of

frequencies of any events A,B,C (�fr(A)� and so on) such that fr(ABC)
fr(C)

=
fr(AC)
fr(C)

· fr(BC)
fr(C)

. Moving now from �nite frequencies to probabilities, one could

have the idea that a weaker condition then SCR(A,B,C), for example the

following:∣∣P (AB | C)− P (A | C)P (B | C)
∣∣ 6 ε (SCR(A,B,C,ε))

should also�for some small ε�together with STAT(A,C), STAT(B,C) and

SCR(A,B,C⊥) (or SCR(A,B,C⊥, ε)) form a set of conditions deductively ex-

planatory for the correlation between A and B. In other words, one could

consider weakening the notion of a statistical common cause by relaxing the

requirement of perfect screening o�. We will now show that the existence of

such a �weakened� statistical common cause no longer permits us in general
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to deduce the correlation. That is: for arbitrarily small ε ∈ (0, 1), the set{
SCR(A,B,C,ε), SCR(A,B,C⊥), STAT(A,C), STAT(B,C)

}
is not deductively

explanatory for the correlation between A and B.3

Choose an ε ∈ (0, 1). Let i be the smallest natural number (bigger than 1)

such that ε > 10−i. We will construct a probability space and events A,B,C

satisfying SCR(A,B,C,ε), SCR(A,B,C⊥), STAT(A,C), and STAT(B,C), but

not CORR(A,B).

Let the sample space Q consist of natural numbers between 1 and 2 ·
10i (inclusive). Let the event space S be the set of subsets of Q. Let the

probability measure P assign to each subset U of S the number card(U)
2·10i

.

Events A, B and C are de�ned as follows (square brackets indicate an interval

in the set of natural numbers):

• A := [1, 10i

2
] ∪ [10i + 1, (3

2
10i)− 1]

• B := [10i

4
+ 1, 3

4
10i + 1]

• C := [1, 10i].

It is immediate that STAT(A,C), STAT(B,C) and (since B ∩ C⊥ = ∅)
SCR(A,B,C⊥) are satis�ed. Notice that P (AB | C) = 1

4
and P (A | C) = 1

2
.

P (B | C) is equal to 1
2
· 10i+2

10i
. Therefore

P (A | C)P (B | C)− P (AB | C) =
1

4
(1 +

2

10i
− 1) =

1

2 · 10i
< 10−i 6 ε,

so SCR(A,B,C,ε) is satis�ed, too.

But the events A and B are not positively correlated. This can seen from

the fact that while P (AB) = 1
8
,

P (A)P (B) =
10i − 1

2 · 10i
· 10i + 2

4 · 10i
=

1

8
· (10i − 1)(10i + 2)

(10i)2
>

1

8
,

3 From this of course follows that the set {SCR(A,B,C,ε), SCR(A,B,C⊥, ε), STAT(A,C),
STAT(B,C)} likewise lacks the deductive explanatory feature for CORR(A,B).
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which concludes the argument that for arbitrarily small ε ∈ (0, 1), the set

comprised of SCR(A,B,C,ε), SCR(A,B,C⊥), STAT(A,C), and STAT(B,C)

is not deductively explanatory for the correlation between A and B. To

deduce a correlation from a statistical common cause one needs an exact

by-the-book SCC�one cannot accept any substitutes which �almost� screen

o� the e�ects, even if the di�erence in probabilities between P (AB | C) and

P (A | C)P (B | C) is less then .0000001.

Another example will demonstrate that, supposing a pair of correlated

events A and B is considered, if the requirement of screening o� is weakened

by an arbitrarily small ε, we can no longer bene�t from the feature discussed

in section 3.2, namely: the �almost-perfect� screener C may increase the

probability of A and decrease the probability of B.

Again, choose an ε ∈ (0, 1). Let i be the smallest natural number such

that ε > 10−i. We will construct a probability space and events A,B,C

satisfying SCR(A,B,C,ε), SCR(A,B,C⊥), STAT(B,C), CORR(A,B), but not

STAT(A,C).

Let the sample space Q and measure P be de�ned exactly as in the last

example. Events A, B and C are de�ned as follows (square brackets indicate

an interval in the set of natural numbers):

• A := [1, 10i

2
] ∪ [10i + 1, 2 · 10i]

• B := [10i

4
, 3

4
10i] ∪ [10i + 1, 3

2
10i]

• C := [1, 10i].

First, notice that P (A|C⊥) = 1 > 1
2

= P (A|C), so C decreases the proba-

bility of A and STAT(A,C) is violated. On the other hand, SCR(A,B,C⊥) is

satis�ed since P (A|C⊥) = 1. Notice that

P (B|C⊥) =
1

2
<

1

2
·

10i + 1
2

10i
= P (B|C),
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so STAT(B,C) holds. In a similar fashion,

P (AB) =
(3

4
· 10i) + 1

2 · 10i
>

3

4
· 10i + 1

2 · 10i
= P (A)P (B),

so the events A and B are correlated. Lastly, regarding the weakening of

screening o�:

∣∣P (AB|C)− P (A|C)P (B|C)
∣∣ =

(1
4
· 10i) + 1

10i
− 1

2
·

(1
2
· 10i) + 1

10i
=

=
1

2 · 10i
< 10−i 6 ε.

This concludes the argument that when looking for a �weakened� statistical

common cause (i.e. an event C which would be an SCC for A and B had

it not violated SCR(A,B,C) by a small margin) for two correlated events

A and B, weakened screening o� is not enough. The statistical relevance

conditions have to be checked independently. This will motivate the method

of operation of a computer program used in gathering the data presented in

chapter 8.

3.4.2 Introducing deductive explanantes

Let us now move to the task of classifying explanatory screeners. The tool

we will use is inequality 3.1 (p. 57).

Suppose, �rst, that an event C is found such that both SCR(A,B,C) and

SCR(A,B,C⊥). When is CORR(A,B) deducible? One look at inequality 3.1

is enough to convince us that it is the case if and only C is a statistical

common cause or a complement of a statistical common cause.

The case of screeners whose negation is not a screener for the given pair

of events is (marginally) more complex. Suppose, then, that an event C

is found which screens o� A from B: SCR(A,B,C) holds. What else would

have to be true in order for us to be able to deduce CORR(A,B)? After again
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consulting 3.1, we are left with two main possibilities, depending on whether

C behaves �symmetrically� towards the probabilities of A and B: whether it

increases (or decreases) them both, or increases one, but decreases the other.

For clarity, we isolate the case in which C does not in�uence the probability

of A or B as a separate one. To sum up:

1. If C (which screens o� A from B) behaves symmetrically towards

the probabilities of A and B, then from its existence we can infer

CORR(A,B) only when

[P (A|C)− P (A|C⊥)][P (B|C)− P (B|C⊥)] >

>
P (A|C⊥)P (B|C⊥)− P (AB|C⊥)

P (C)
(3.3)

2. If C (which screens o� A from B) behaves asymmetrically towards

the probabilities of A and B, then from its existence we can infer

CORR(A,B) only when

P (AB|C⊥)− P (A|C⊥)P (B|C⊥)

P (C)
>

> [P (A|C)− P (A|C⊥)][P (B|C)− P (B|C⊥)] (3.4)

3. If C (which screens o� A from B) does not change the probability of

A or B (P (A|C) = P (A|C⊥) or P (B|C) = P (B|C⊥)), then from its

existence we can infer CORR(A,B) only if

P (AB|C⊥)− P (A|C⊥)P (B|C⊥) > 0. (3.5)

We propose to call an event C which screens o� eventA fromB a deductive

explanans of the correlation between A and B if it is either a statistical

common cause of A and B, or the complement of one, or meets any of the

three conditions in the above list. This de�nition captures the notion of an
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event whose discovery contributes to the explanation of a given correlation

not only by means of screening o�, but also by means of the previously

discussed deductive feature. From the above considerations it should also

be evident that no other type of screeners possessing the deductive feature

exists; this boils down again to inequality 3.1.

Deductive explanantes may be useful in describing situations in which

many partial common causes of a correlation are involved. Reichenbach

advised giving attention to the disjunction of all such causes4; on the other

hand, it may well be that even one of them, considered in isolation, has

explanatory value for the given correlation.

Consider an example in which little Jimmy is dragged by his mother to

a philharmonic hall for his �rst experience with classical music. His aunts

Ann (A) and Betty (B) play the �rst violin. To his amazement, Jimmy no-

tices a perfect correlation between the movements of his aunts: for example,

whenever Annie enters, Betty likewise begins playing. This amazing coinci-

dence is explained when Jimmy widens his attention to include more of the

stage and notices a person furiously waving his hands at the orchestra (the

conductor (C)). Since the players in the �rst violin section are well-trained,

the appropriate gesture of the conductor is always a signal clear enough to

make Ann start playing; the fact that Betty begins to play, too, is irrelevant.5

This expresses the idea of SCR(A,B,C). It is evident that STAT(A,C) and

STAT(B,C) hold, too�a conductor's gesture at a given moment increases

the probability that the players will enter shortly after. However, suppose

the conductor has a bad day and forgets to clearly point out all the entrances;

perhaps the music is so complicated he had earlier made a deliberate selection

of important entrances he would like to stress. But even if he does not point

4 See p. 159 of Reichenbach (1971).
5 This example could easily be made formal by quantization of time; e.g. choosing a

sixty-fourth note as the time unit.
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out a 1st violin entrance, Ann and Betty (typically) also begin to play at the

same time, therefore SCR(A,B,C⊥) does not hold! Why is that? Because

they have notes lying on their desk (D). C and D are both partial common

causes of the correlation between A and B.

C fails to be a statistical common cause for A and B, but this does not

mean it should be dismissed as an explanation. To the contrary, we would

intuitively say that the correlation between entrances of the 1st violin players

is explained by the movements of the conductor. And thus it is fortuitous

that C is a deductive explanans for the correlation (case 1. in the list above;

the left-hand side of the inequality is positive while the right-hand side is

negative).

In chapter 6 we will prove that in �nite probability spaces with the uni-

form measure every correlation between logically independent events has a

deductive explanans. However, we have to note that�since the conditions

for a deductive explanans are weaker than these for an SCC�it is �easier�

for an event to be a deductive explanans than it is for an event to be a sta-

tistical common cause. This means that there will be more �false positives�,

i.e. events which meet the probabilistic requirements from the de�nition of

deductive explanans, but in fact fail to be genuinely explanatory for the given

correlation despite screening it o� and possessing the deductive explanatory

feature.
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Chapter 4

The Principle of the Common

Cause and the Bell inequalities

In this chapter we will discuss the famous Bell inequalities and the issue

whether the fact that they are falsi�ed both by the predictions of quantum

mechanics and by empirical tests impugns the Principle of the Common

Cause; and if so, which version of it is in danger.

Consider a source emitting pairs of spin-1
2
particles prepared in the singlet

state 1√
2
(|↑↓〉− |↓↑〉). Assume that each particle travels towards one of two

spatially separated detectors (which we will label �L� and �R�). During the

�ight of the particles each detector is set to measure spin of the particle

in a certain direction. The detectors are situated so that light emitted on

measurement at one detector cannot reach the location of the other detector

before the other measurement takes place. Assume there is a �nite set of

possible detector settings. The result of the measurement is always binary�

�up� or �down�1, which we will refer to by �+� and �−�. From the formalism

1 We do not include particles which are emitted by the source but do not hit any of

the detectors in the picture. There are models for Bell-type correlations which exploit the

ine�ciency of detectors�see section 4.7.
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of quantum mechanics it follows that the probability of obtaining a �+� result

on both particles is equal to 1
2
sin2(

φij
2

), where φij is the angle between the

direction i, set on the left detector, and direction j, set on the right detector.

And so, if the directions are identical, a perfect anticorrelation of results

is expected�a �+� from the left detector means a �−� from the right one.

On the other hand, the probability of obtaining a �+� from a detector is

predicted to be 1
2
, regardless of the setting. Since the joint probabilities are

not, in general, equal to 1
4
, there will be correlations between the results. The

stunning result of Bell (1964) is that if a hidden variable (e.g. the complete

state of the source) is posited as screening o� the results, it is possible (with

some additional intuitive assumptions) to derive inequalities falsi�ed by the

above predictions. This has been subsequently corroborated experimentally

(see the classical paper Aspect, Dalibard & Gérard (1982) or, for newer

results, Scheidl et al. (2008)).

The exposition in the last paragraph was necessarily informal, since we

did not want to settle in advance the formalism in which the Bell inequalities

are to be formulated and discussed. This is due to the fact that there are

two approaches present in the literature, frequently called �big space-� and

�many spaces approach�. Since the PCC in various formulations considers

the existence of events in probability spaces, to judge the force with which

the violation of Bell inequalities strikes the PCC we have to be clear how the

probability spaces involved look like.
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4.1 The big space approach and the many spaces

approach

Consider a probability space 〈Ω,F , P 〉. Any event A ∈ F with non-trivial

probability2 induces a new measure on the same event space: for any C ∈
F , PA(C) := P (C|A). In fact, a �smaller� probability space is induced:

〈A,FA, PA〉, where FA := {C ∩ A|C ∈ F}. In short, an n-element partition

of the sample space induces n �smaller� probability spaces, provided that

each element of the partition has positive probability. The probability of an

event in one of the smaller spaces is interpreted as conditional probability in

the original �big� space.

In the other direction, suppose you have two probability spaces 〈Ω1,F1, P1〉
and 〈Ω2,F2, P2〉. You can then build a �bigger� probability space. First, take

as the new sample space Ω the Cartesian product of Ω1 and Ω2. Then con-

sider the set of �rectangles�, that is, sets of the shape A1 × A2 for some

A1 ∈ F1, A2 ∈ F2. The �rst task, before the set of rectangles is expanded

to be a proper event space, is to de�ne the measure P on it. And the only

requirement is that it should have the so called �marginal property�; that is,

for any A ∈ F1, P (A×Ω2) should be equal to P1(A) and similarly P (Ω1×B)

should be equal to P2(B) for any B ∈ F2. It is due to this requirement that

each of the smaller spaces is embeddable in the big one. But it is easy to

see that there is in general more than one way of de�ning the measure P

on the set of rectangles, and therefore, one cannot speak of �the� big space

constructed from the smaller spaces.

A di�erent, more informal, but perhaps more illuminating di�culty con-

cerns assigning weights to alternatives. Suppose you have a fair coin and can

either toss it (with probabilities PA(H) = PA(T ) = 1
2
), or conduct a chemical

experiment on it in which the presence of nickel in the coin will be assessed

2 We use this term as meaning �di�erent from both 0 and 1�.
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(to the best of your knowledge, the probability is PB(N) = 9
10
). The choice

is yours. The probabilities are given by two measures, PA and PB. Suppose

you would like somehow to combine them into a single measure P , saying

that PA(H) is to be understood as �the probability of the coin landing heads

given that I decide to toss it�, in other words, as P (H|A). The problem is

that your new measure has to ascribe probability to the event A itself; in a

case such as this one, when occurrence of A depends on your choice, one can

consider it unwise to think of A having any probability whatsoever.

It turns out we encounter a similar problem when describing the Bell-type

experiments. From now on, let �L+
i � be the event �the measurement of the

spin in direction i of the particle hitting the left detector yielded the result

<up>�. The quantum mechanical probabilistic algorithm yields numbers

naturally interpreted as probabilities in small spaces labeled by the directions

of spin measurement chosen at both (or just one) detectors. For example,

P13(L+
1 ∧R+

3 ) is the probability of obtaining two �up� results at detectors set to

direction 1 (the left one) and 3 (the right one); as said above, this probability

is equal to 1
2
sin2(φ13

2
). P1(L+

1 ) is the probability of getting the �up� result at

the left detector set to direction 1. Describing the experiment in this way is

called the �many spaces approach�. It employs as many probability spaces

as there are possible combinations of the directions to be chosen at both

detectors. However, one could prefer to have a single probability space and

instead of writing �Pij(L
+
i ∧ R+

j )�, write �P (L+
i ∧ R+

j | Li ∧ Rj)�, where Li

is the event that the direction i has been chosen at the left detector, and

similarly for Rj. This�the �big space approach��is frequently encountered

in the literature regarding the connection between the PCC and the Bell

inequalities (see e.g. van Fraassen (1982) or Hofer-Szabó (2008)). It however

requires ascribing probabilities to choices of detector setting. This is one of

the reasons for which we prefer to work in the small space approach (the

other being its naturalness given QM's predictions) and will be using it in
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the next section.

4.2 Deriving the Bell inequalities

Suppose from now on that there are four directions of spin measurement

available at both detectors; let them belong to I = {1, . . . , 4}. Consider the
set of the values of the hidden variable to be {λk}k∈K for some K. The �rst

assumption is frequently labeled as �No Conspiracy� (�NC�; it may be also

referred to e.g. by �Hidden Autonomy�): the value of the hidden variable

should not be statistically relevant for our choices of detector settings. In

the small space approach, this is represented as

∀i,j,l,m∈I;k∈K Pij(λk) = Pi(λk) = Pj(λk) = Pl,m(λk) (NC)

It would also be unreasonable to think that, given the value of the hidden

variable, the direction chosen by us at one detector should be statistically

relevant for the result of the measurement conducted at the other detector.

This condition is called �Parameter Independence� (�PI�; sometimes labeled

e.g. �Hidden Locality�):

∀k∈K,i,j,l∈I,j 6=l Pij(L+
i |λk) = Pil(L

+
i |λk) = Pi(L

+
i |λk)

Pij(R
+
j |λk) = Plj(R

+
j |λk) = Pj(R

+
j |λk) (PI)

(similarly for �<down>� results).

The last assumption at least partly shares the motivation with PI: given

the value of the hidden variable, the result of the measurement at one de-

tector should be statistically irrelevant to the result of the measurement

conducted at the other detector. This condition is called �Outcome Indepen-

dence� (�OI�):
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∀k∈K,i,j∈I Pij(L
+
i |λk ∧R+

j ) = Pij(L
+
i |λk)

Pij(L
−
i |λk ∧R−j ) = Pij(L

−
i |λk)

(similarly for both pairs of �mixed� results and with L and R exchanged).

Notice that OI states that each value of the hidden variable screens o� the

results of the experiment:

∀k∈K,i,j∈I Pij(L
+
i ∧R+

j |λk) = Pij(L
+
i |λk)Pij(R+

j |λk) (OI)

(similarly for all other three pairs of possible results).

PI and OI can be jointly expressed as the following condition3, known in

the literature as �factorisability�:

∀k∈K,i,j∈I Pij(L
+
i ∧R+

j |λk) = Pi(L
+
i |λk)Pj(R+

j |λk) (Factor.)

It turns out, as we will see, that PI, OI and NC jointly allow the derivation

of the inequality

− 1 6 P13(L+
1 ∧R+

3 ) + P14(L+
1 ∧R+

4 ) + P24(L+
2 ∧R+

4 )+

− P23(L+
2 ∧R+

3 )− P1(L+
1 )− P4(R+

4 ) 6 0, (Bell-CH)

which is falsi�ed when φ13, φ14, φ24 and φ23 are suitably chosen. Consider

e.g. φ13 = φ24 = 3π
4
, φ14 = 5π

4
, φ23 = π

4
and φij = 0 for any i = j. In this case

we would get
√

2−1
2
6 0, which is clearly false.

In section 4.4 we will present a �direct� derivation of the Bell-CH, with an

additional parameter referring to a potential weakening of the OI assumption

(perhaps some of the values of the hidden variable are not perfect screeners?).

In the coming section, though, we will use PI, OI and NC to arrive at the

inequality in an indirect way, via a theorem of Fine (1982a).

3 See Jarrett (1984) for a discussion of this point (which uses di�erent terminology).
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4.3 The Bell inequalities via a non-empirical

joint measure

There are several types of Bell inequalities. The Bell-CH23 inequality above

is one of the so called Clauser-Horne inequalities, which refer to two mea-

surement directions at each detector. A. Fine [1982a] proved a theorem to

the e�ect that all inequalities of this type are derivable if and only if there

exists a probability distribution over four-tuples of measurement results at

all possible detector settings which returns the experimental probabilities as

marginals. Such a distribution must of course be non-empirical, since it will

ascribe non-zero probabilities to events such as �L+
1 ∧L+

2 ∧R+
3 ∧R+

4 �, which

are conjunctions of outcomes of measuring incompatible observables. We

will show, following Fine's directions (though he used a di�erent formalism

in which the role of NC was implicit) how PI, OI and NC permit �gluing�

the �small� measures P1 . . . P4 so that the appropriate �big� measure P is ob-

tained. A similar task was undertaken in Müller & Placek (2001)�however,

in the context of branching models. Our considerations will not employ any

additional structures.

The following is a corrected and rephrased version of Fine's theorem as

presented in Müller & Placek (2001).

Theorem 2 (Fine (1982a)) Consider four probability spaces Li (i ∈ {1, 2};
the event spaces FLi have two atoms, L+

i and L−i ) and Rj (j ∈ {3, 4}; the
event spaces FRj

have two atoms, R+
j and R−j ). Consider four measures Pij

in the joint probability spaces with the sample space consisting of four pairs

〈L∗i , R∗j 〉 (L∗i ∈ {L+
i , L

−
i }, R∗j ∈ {R+

j , L
−
j }) and the event space being the

power set of the sample space. Suppose that for any i and j the measures Pij

return Pi and Pj as marginals. Then the following conditions are equivalent:

• It is possible to de�ne a joint probability measure P on a sample space
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consisting of sixteen four-tuples of the shape 〈L∗1, L∗2, R∗3, R∗4〉 (L∗i ∈
{L+

i , L
−
i }, R∗j ∈ {R+

j , L
−
j }), with the event space being the power set

of the sample space, in such a way that the measure returns the four

joint probabilities Pij as marginals;

• The eight given probability measures satisfy the following four Bell-CH

inequalities

− 1 6 Pij(L
+
i ∧R+

j ) + Pij′(L
+
i ∧R+

j′) + Pi′j′(L
+
i′ ∧R

′+
j )+

− Pi′j(L+
i′ ∧R

+
j )− Pi(Li1+)− Pj′(R+

j′) 6 0, (Bell-CH)

for i, i′ ∈ {1, 2}; j, j′ ∈ {3, 4}.

To improve on clarity, instead of n-tuples and pairs we will write n-element

conjunctions.

Consider �rst the �empirical� measures Pij and Pi. Enlarge the corre-

sponding probability spaces so that the atomic events are not measurement

results (or pairs of measurement results), but measurement results in con-

junction with a value of a hidden variable (e.g., for some k ∈ K, L+
1 ∧ λk

in L1 or L+
1 ∧ R+

3 ∧ λk in L13). And so we can speak e.g. of the probability

P1(λk) for any k ∈ K. The proposed measure is de�ned as such:

P (L+
1 ∧L+

2 ∧R+
3 ∧R+

4 ) =
∑
k∈K

P1(L+
1 |λk)P2(L+

2 |λk)P3(R+
3 |λk)P4(R+

4 |λk)P1(λk)

and similarly for the remaining four-tuples of possible results; each formula

contains P1(λk) as its last factor. We will show that if PI, OI and NC are

assumed, the measure P returns the experimental probabilities as marginals.

It will su�ce to consider one case (the reasoning is analogous in other cases);

let us show the following:
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P (L+
1 ∧ L+

2 ∧R+
3 ∧R+

4 ) + P (L+
1 ∧ L+

2 ∧R+
3 ∧R−4 )+

+ P (L+
1 ∧ L−2 ∧R+

3 ∧R+
4 ) + P (L+

1 ∧ L−2 ∧R+
3 ∧R−4 ) = P13(L+

1 ∧R+
3 ).

(4.1)

The left-hand side of the equality is a sum of non-empirical probabilities,

while the right-hand side is the experimental probability of two <up> results

given detector settings 1 and 3.

First, notice that due to No Conspiracy we have P1(λk) = P13(λk). Also,

by employing Factorisability to each of the four elements of the above sum

we can substitute P13(L+
1 ∧ R+

3 |λk) for P1(L+
1 |λk)P3(R+

3 |λk). The left-hand

side of 4.1 is then equal to

∑
k∈K

P13(L+
1 ∧R+

3 |λk)P13(λk)
(
P2(L+

2 |λk)P4(R+
4 |λk)+

+ P2(L−2 |λk)P4(R+
4 |λk) + P2(L−2 |λk)P4(R+

4 |λk) + P2(L−2 |λk)P4(R+
4 |λk)

)
which after applying Factorisability to the expression in the big parentheses

can be seen to equal∑
k∈K

P13(L+
1 ∧R+

3 |λk)P13(λk) = P13(L+
1 ∧R+

3 ),

as required.

We have shown how adopting PI, OI and NC leads to the Bell inequalities

in an indirect way. In the next section we will present a direct derivation.
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4.4 A Bell-CH inequality from weakened as-

sumptions

It should be clear where each of the three assumptions, one of them be-

ing the requirement that the values of the hidden variable should screen

o� the measurement results from each other, was used in the above argu-

ment. Is it possible to derive an empirically falsi�able inequality from weaker

assumptions�for example, that the values of the hidden variable are imper-

fect screeners, with a �margin of error� equal to some non-zero ε? The answer

turns out to be positive, although the margin is unfortunately close to being

negligible.

Notice �rst that in any probability space, for any events A, B and C the

maximal possible value of |P (AB|C) − P (A|C)P (B|C)|, intuitively under-

stood as the inverse of the degree of �quality� of C as a screener for A and

B, is 1
4
. The following will be our amended version of OI:

∃ε ∀k∈K,i,j∈I Pij(L
+
i ∧R+

j |λk) = Pij(L
+
i |λk)Pij(R+

j |λk)± ε (OI')

That is, the ε is the �margin of error� for all values of the hidden variable

and all correlations.

The derivation here proceeds using the method from Clauser & Horne

(1974). The presentation is similarly to the one in Placek (2000), save for

introducing the ε. The starting point is the following elementary fact:

∀u,u′,v,v′∈[0,1] − 1 6 uv + uv′ + u′v′ − u′v − u− v′ 6 0. (4.2)

Now let us make the following substitutions:

u := P13(L+
1 |λk); u′ := P23(L+

2 |λk);

v := P13(R+
3 |λk); v′ := P14(R+

4 |λk).
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Observe that, with the above substitutions, due to PI we know that

u = P14(L+
1 |λk); u′ := P24(L+

2 |λk);

v = P23(R+
3 |λk); v′ := P24(R+

4 |λk).

After taking this into account and multiplying all sides of 4.2 by P13(λk)

we get

− P13(λk) 6 P13(λk) ·
(
P13(L+

1 |λk)P13(R+
3 |λk) + P14(L+

1 |λk)P14(R+
4 |λk)+

+P24(L+
2 |λk)P24(R+

4 |λk)−P23(L+
2 |λk)P23(R+

3 |λk)−P13(L+
1 |λk)−P24(R+

4 |λk)
)
6 0.

It is now time to employ OI', so the term ε is introduced:

− P13(λk) 6 P13(λk) ·
(
P13(L+

1 ∧R+
3 |λk)± ε+ P14(L+

1 ∧R+
4 |λk)± ε+

+P24(L+
2 ∧R+

4 |λk)±ε−P23(L+
2 ∧R+

3 |λk)±ε−P13(L+
1 |λk)−P24(R+

4 |λk)
)
6 0.

We now use NC and multiply all expressions in the big parentheses by

P13(λk):

− P13(λk) 6

P13(L+
1 ∧R+

3 |λk)P13(λk)± ε ·P13(λk) +P14(L+
1 ∧R+

4 |λk)P14(λk)± ε ·P13(λk)+

+P24(L+
2 ∧R+

4 |λk)P24(λk)±ε ·P13(λk)−P23(L+
2 ∧R+

3 |λk)P23(λk)±ε ·P13(λk)+

− P13(L+
1 |λk)P13(λk)− P24(R+

4 |λk)P24(λk) 6 0

which is by the de�nition of conditional probability equivalent to

− P13(λk) 6

P13(L+
1 ∧R+

3 ∧ λk)± ε · P13(λk) + P14(L+
1 ∧R+

4 ∧ λk)± ε · P13(λk)+

+ P24(L+
2 ∧R+

4 ∧ λk)± ε · P13(λk)− P23(L+
2 ∧R+

3 ∧ λk)± ε · P13(λk)+

− P13(L+
1 ∧ λk)− P24(R+

4 ∧ λk) 6 0
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Let us now sum over k ∈ K. We arrive at two inequalities:

− 1 6 P13(L+
1 ∧R+

3 ) + P14(L+
1 ∧R+

4 )+

+ P24(L+
2 ∧R+

4 )− P23(L+
2 ∧R+

3 )− P1(L+
1 )− P4(R+

4 )− 4ε;

P13(L+
1 ∧R+

3 ) + P14(L+
1 ∧R+

4 )+

+ P24(L+
2 ∧R+

4 )− P23(L+
2 ∧R+

3 )− P1(L+
1 )− P4(R+

4 ) + 4ε 6 0.

If ε = 0, the outcome is simply the Bell-CH23 inequality. Notice that if

the angles between measurement directions are chosen as noted on p. 78, we

get that
√

2−1
2

+ 4ε 6 0, which is false for ε < 0.052. This is the degree to

which we can weaken the requirement of screening o� present in OI and still

derive a falsi�able inequality. Admittedly, it is a modest weakening.

4.5 Connection with the PCC

Since the Bell inequalities have been shown to be false, it would seem that one

(at least) from the three assumptions�NC, PI or OI�must go. Although

there are dissenting opinions (e.g. Stapp's arguments against locality), the

majority view is that OI is the culprit. Van Fraassen [1982] was apparently

the �rst to claim that the issue was connected with Reichenbach's ideas; the

Bell setup is an example of a �conceivable phenomenon in which there is a

correlation for which there can exist no common cause�. Structurally, the

argument proceeds by reductio; if a common cause is posited, Bell inequal-

ities follow. And the existence of a common cause is taken to be expressed

by OI�but in the big space approach (van Fraassen labels the assumption

as �Causality�). Earlier (p. 100), the author generalizes the notion of a com-

mon cause to �not just a yes-no event�, leaving out the statistical relevance

conditions, thus arriving at the notion which we labeled as �screener system�.
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Of course, if in the case of the Bell setup no screener systems exist (given

NC and PI, which we do not want to abandon), then a fortiori no statistical

common cause systems exist, too, which would seem to be against Reichen-

bach's idea. Since then, however, a number of authors have raised concerns

that one cannot disprove Reichenbach's principle by such arguments, because

they show the nonexistence of a single common cause for all correlations (a

common common cause), which the principle does not require to exist. The

situation in the literature is roughly as follows (since all the authors use their

own formalisms, in the following list we will abstain from using any formalism

whatsoever):

• Belnap & Szabó (1996) �rst note the apparent discrepancy in what

the violation of Bell inequalities is taken to prove and what the PCC

actually claims; an argument regarding the nonexistence of a common

common cause of the EPR correlations (modally interpreted) is given

in the Branching Space-Time setting;4

• Szabó (2000) presents a model for the EPR correlations in which di�er-

ent correlations are screened-o� by di�erent common causes; however,

as the author himself notes, the model does not satisfy a stronger (but

feasible) version of No Conspiracy: namely, detector settings may be

statistically relevant for some Boolean combinations of the values of

common causes; Szabó conjectures that this is inevitable and no �cor-

rected� model can be given;

• Graÿho�, Portmann & Wüthrich (2005) prove Szabó's conjecture by

providing a derivation of a Bell-type inequality from separate com-

mon causes (as opposed to a common common cause); however, the

4 The BST approach to Bell-type experiments is still being developed, see e.g. Placek

(2010); however, discussing it here would not be worthwhile, since it would require intro-

ducing the BST formalism, and the conclusions do not consider the issue at hand.
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derivation is made under the assumption that measurement results are

perfectly anti-correlated, which is practically unveri�able;

• Hofer-Szabó (2008) observes that under the assumptions of the above

mentioned derivation common common causes may be de�ned, and so

the derivation is only reducibly separate-common-causal; the author

presents an irreducibly separate-common-causal derivation for �yes�-

�no� common causes;

• independently, Portmann & Wüthrich (2007) address the faults of their

previous paper and present an irreducible separate-common-causal (with

the common causes building up partitions of arbitrary �nite size) deriva-

tion of a Bell-CH inequality with the requirement that the anticorrela-

tions be close to perfect�the upper bound5 was given as 2.689 · 10−5;

• Higashi (2008) also presents a separate-common-causal derivation of

a Bell-CH inequality, although this time the parameters are probabil-

ities of detector settings (the author works in a kind of a big-space

approach);

• �nally, Hofer-Szabó (2010) improves on the bound of Portmann &

Wüthrich (2007) by providing a derivation of a falsi�able inequality

(of the Wigner-type) with the requirement that the anticorrelations

may be non-perfect to the margin of 1.73 · 10−2.

To sum up, the move from common common causes to separate common

causes did not lead to creating a fully non-conspiratorial model for the Bell-

type correlations which would preserve PI; eventually, the task was proven

impossible.6

5 Meaning: the probability of a �plus� result in one wing given a �plus� result in the

other wing, which in the case of perfect anticorrelations is equal to zero.
6 Suárez (2007) describes a few di�erent kinds of �causal models� which are supposedly

able to explain the failure of factorisability (the author claims that the NC condition
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Let us consider the connection between OI and the various forms of the

PCC. The outcome will be a bit di�erent depending on whether we choose

the big or small space approach.

Big space approach. This is the formulation of OI in this approach:

∀i,j∈I,k∈KP (L+
i ∧R+

j |Li ∧Rj ∧ λk) = P (L+
i |Li ∧Rj ∧ λk)P (R+

j |Li ∧Rj ∧ λk)

(and similarly for all other pairs of measurement results).

As said earlier, there is no mention of the statistical relevance conditions.

Still, this could at �rst sight be simply a weakened version of PCC 3, gener-

alized to a more than 2 element partition. The starting point of the above

mentioned arguments by Belnap, Szabó, Hofer-Szabó and Rédei could then

be the observation that OI is presumed to be in the scope of an existential

quanti�er referring to Λ, the set of values of the hidden variable, and there-

fore the order of the quanti�ers is in fact ∃Λ={λk}k∈K
∀i,j∈I,k∈K , meaning that

by assuming OI we in fact assume the existence of a set of screening factors

common for all correlations.

The matter looks di�erently, though. In this formulation screening o�

is not done by the values of the hidden variables, the various λk. The role

of screeners is played by triples consisting of the values of hidden variables

together with the choices of measurement settings on both detectors, for ex-

ample, �L1∧R3∧λk� for some k ∈ K. All such triples do, in fact, constitute

a partition of the �big� space. But the elements of this partition are screener-

o�s for di�erent pairs of measurement outcomes, depending on which mea-

is a necessary condition for factorisability, so he is concerned only with the failure of

the latter, not the former). We will not discuss them here. They are to show that the

failure of factorisability does not exclude any sort of causal model for the correlations, but

the models o�ered are obviously just �proofs of concept� and exhibit some controversial

features, e.g. a past cause in�uencing both the emission event and the choice of detector

settings or faster-than-light causation. One of the models is similar to the one from

Butter�eld (2007) and will be brie�y described in section 4.8.
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surement settings go into the particular screener!7 It could be responded that

this description is wrong, since what is to be screened in this case are not

correlations, but conditional correlations. This, however, is simply moving

the discussion to the small space approach. Recall that Reichenbach's princi-

ple concerns correlation between events; a statement that for some A,B,C,

P (AB|C) > P (A|C)P (B|C) (i.e., a statement of correlation of A and B

conditional on C) does not fall within its scope.

Small space approach. Recall the formulation of OI in this approach:

∀k∈K,i,j∈I Pij(L
+
i ∧R+

j |λk) = Pij(L
+
i |λk)Pij(R+

j |λk)

(and similarly for all other pairs of measurement results).

In this formulation, the values of the hidden variables are screeners for

the correlations in question. What is more, the same λk's screen o� various

correlations, with di�erent measurement settings. However, they do so in

di�erent probability spaces. In each of these, the values of the hidden variable

form partitions of the sample space, and all elements of the partition screen

o� one set of correlations: the one for the particular measurement settings.

Screening o� of correlations under di�erent measurement settings is done in

a di�erent probability space, with (at least potentially) a di�erent measure.

Therefore, once again, even if we allow for the generalization of Reichenbach's

view to more than 2-element partitions of sample spaces, the situation here

does not fall within the scope of his principle due to various spaces being

required.

The moral of the last two paragraphs is this: it is not the formal notion

of the common cause in Reichenbach's sense, even without the statistical rel-

evance condition, but with the requirement of a partition of screeners, which

7 For example, L1 ∧R3 ∧λk screens o� L+
1 from R−3 , while L2 ∧R4 ∧λk screens o� L+

2

from R−4 .
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is undermined by the falsi�ability of inequalities derived from OI (among

other assumptions).

On the other hand, there is an obvious intuitive connection with a less

formal (and still Reichenbachian) view, e.g. that of PCC 1. If we simply

require that for any correlation there should exist a common cause, and in

the case of the Bell-type setups we are looking for common causes among

the (properties of) states of the source on emission, then of course OI says

more then we require8; it posits the same common causes for all correlations.

It is worthwhile, then, to distinguish between common common causes and

separate common causes in this case. Most of the papers cited on the list on

p. 85, while they do refer to Reichenbach's principle:

• formally do not operate using exactly Reichenbach's notions, since they

either work in various probability spaces or consider conditional corre-

lations; but

• informally fully adhere to Reichenbach's view of requiring common

causes, not common common causes, for correlations.

There is another�general�way of �saving� the PCC, via the notion of

�causal completability� (see e.g. Hofer-Szabó et al. (1999)). Informally speak-

ing (for now), if a probability space lacks a common cause for a correlation,

it can always be extended to a bigger space, which preserves the measure

on all �old� events, but contains a common cause for the previously unex-

plained correlation. Discussion of this notion and the proof of some results

concerning it is one of the main topics of chapter 7.

Lastly, let us note that the perspective outlined at the beginning of this

section�namely: that the failure of Bell's inequalities means that at least

8 Even if we use the small space approach and adopt PCC 2.
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one of the three assumptions of its derivations must be abandoned�may be

misguided. This is because NC, PI and OI are not independent assumptions

which stand or fall in isolation. In fact, the whole trio forms a single as-

sumption, since there is an implicit existential quanti�cation over the set of

lambdas, the values of the hidden variable. An a bit extreme illustration of

the idea would be this: suppose someone says �consider an integer x such

that 1) x 6 0 and 2) x > 0�. Of course, there can be no such x, because

the proposed conditions are mutually exclusive. But we do not conclude

that one of them is false and should meet with general abandonment. The

situation here is di�erent, because we have intuitive grounds to believe that

NC and PI should hold. Still, the failure of the Bell inequalities means that

the three conditions cannot jointly hold of the set of values of the posited

hidden variable. If it is non-conspiratorial and screens o� the measurement

results at one wing from detector settings at the other wing, then it cannot

be a screener o� for the correlations between measurement results.

4.6 Separate common causes�contra and pro

Placek (2009) claimed that in the case of EPR-type correlations the distinc-

tion between (separate) common causes and common common causes is a

red herring.9 According to OI, each value λk of the hidden variable screens

o� the correlations (the proponents of the big space approach would say

�conditional correlations�). This λk is supposed to be a complete state of

the system on emission of the two particles, typically �a di�erent state from

the quantum-mechanical pair's state�, which �is assumed to be an incom-

plete state of the pair� (Berkovitz (2008)). Two emitted pairs in the same

quantum state may be in di�erent complete states. If this interpretation of

9 Similar misgivings are cited by Hofer-Szabó (2010) and attributed to an anonymous

referee.
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various lambdas is adopted, then, were there di�erent screener systems for

di�erent correlations, it would follow that a system could simultaneously be

in two di�erent complete states�and so the states would not be complete

after all. I believe that this strike at the notion of separate common cause ex-

planation hits the target only if we cling to the notion that ultimately, what

screens o� correlations are complete states, or�in other words�complete

descriptions of objects in question. In my opinion we should not expect this

to happen. I will now give an (abstract) example of how we are inclined to

accept screening o� by incomplete states and would not expect screening o�

by (more) complete states.10

Look at �gure 4.1. Consider a population in which two pairs of symptoms

are correlated: symptom A with symptom B and symptom C with symptom

D. There is no information suggesting direct causation between either A

and B or C and D; what is more, there is similarly no information regarding

causal connections between the two pairs: neither A nor B are thought to

be causally relevant for C or D, and vice versa. Suppose two previously hid-

den genetic features are discovered (between which there is also no hint of

a causal connection), which meet the requirements for a statistical common

cause from PCC 3: all people with the trait SAB display both symptoms A

and B, while the absence of the trait SAB makes the display of symptoms

A and B statistically independent; similarly, all people with the trait SCD

display both symptoms C and D, while in the absence of the trait SCD the

symptoms C and D are statistically independent. It is natural to conclude

that both correlations are explained by their (separate) common causes, SAB

in one case, SCD in the other. These are not complete descriptions, or com-

10 Of course, formally there is nothing like a �more� complete state, since states are

either complete or incomplete, but the gist of the example should be obvious: in general

we do not expect that by including more information in the description of the events in

question we close in on �real� screeners.
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plete states; suppose for clarity that other predicates are excluded and the

individuals are to be described by means of possession (or lack) of the two

genetic traits in question. Then, a complete state would be a Boolean com-

bination of SAB and SCD, but we would have no reason at all to expect any

such combination to screen o� both correlations.
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Figure 4.1: Two correlations, each screened o� by an incomplete state de-

scription, but not screened o� by complete descriptions.
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4.7 Exploiting the detection loophole

In a given run of any experiment similar to the one described at the beginning

of this chapter, it may happen that only one detector ��res�, or even none of

them does. The detectors are ine�cient. This may be attributed simply to

random errors of the experimental equipment, but one could also entertain

the thought that the ine�ciency is due to a hidden property of the emitted

particles. This is the central idea behind the so called �Prism models� (dating

back to Fine (1982b)).

A model of this kind is given by a meticulous construction in Szabó & Fine

(2002). The hidden variable may take one of 48 values. It is deterministic

in the sense that each value of the hidden variable predetermines whether

the given particle will be detected by the detector and, if this happens, what

the measurement result will be. Experimental probabilities are recovered.

The main trick is a sort of �unfair sampling�, introduced so that the detected

particles violate Bell-CH inequalities.

Since the model is deterministic, factorisability (and a fortiori OI) has

to hold in it. However, such models are understandably generally considered

�ad hoc� (Shimony (2009)) and, with the increasing e�ciency of detectors,

methods were proposed for closing the detection loophole (see again Shimony

(2009)).

4.8 Common causes as hypersurfaces

Lastly, let us brie�y mention another PCC-related option present in the

literature. Up to now, both in the big space and small space approach, the

supposed common causes for Bell-type correlations were events in probability

spaces. Butter�eld (2007) describes in detail a view (developed �rst in But-

ter�eld (1989)) called �Stochastic Einstein Locality� (SEL), in which common
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causes are factors which determine probabilities of events (while nothing is

said about the probabilities of the factors themselves). For an event E (asso-

ciated with a space-time region), any hypersurface cutting through E's past

light cone C−(E) determines a probability, Pt(E), of E's occurrence.

The author discusses a few formulations of the SEL idea and provides

proofs of their formal relations. In one version, if E and F are space-like

related events (none is in either past- or future light cone of the other) and

t is a hypersurface cutting through
(
C−(E) ∪ C−(F )

)
\
(
C−(E) ∩ C−(F )

)
,

then

Pt(E ∧ F ) = Pt(E) · Pt(F ).11

The similarity with the screening o� condition is obvious; it is just that the

screener is in the subscript. SEL is also taken to be violated by violations

of Bell inequalities. The conceptual di�erence between SEL and PCC is

that while PCC (at least in its more formal shapes, like PCC 3) is plausibly

falsi�ed by everyday examples (sea levels / bread prices etc.), it takes a

Bell-type experimental setting to violate SEL.

4.9 Summary

The violation of Bell inequalities has an impact on these formulations of PCC

which require screening o�. If the only candidates for common causes in this

case are complete states of the source on emission, then�if they are not

statistically relevant for the choices of detector settings and they in turn are

not statistically relevant for the measurement results in the other wing�the

common causes cannot act as screeners, thus violating the �rst condition in

the de�nition of a statistical common cause. This is one of the motivations

for abandoning the general requirement of screening o� from the de�nition

11 We omit the subscript referring to a possible world.
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of common causes, even if one would like to preserve Reichenbach's idea that

common causes for correlations should exist (i.e. PCC 1)). The motivation is

similar to the one given in arguments from conservation principles (see e.g.

chapter 6 of Cartwright (1989) and section 2.4.1 of the current essay). Recent

results by Portmann & Wüthrich (2007) and Hofer-Szabó (2010) show that

the additional caution gained by the move from assuming common common

causes to assuming separate common causes for the various correlations is not

enough to block derivations of empirically falsi�able Bell-type derivations.
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Chapter 5

The Principle of the Common

Cause and the Causal Markov

Condition

A big part of modern probabilistic causality is concerned with the task of

causal modeling�that is, deriving causal information from statistical data

and depicting causal structures by means of graphs (usually directed acyclic

graphs, or �DAGs�; de�nitions will follow). The graphs are frequently called

�Bayesian networks�1. We have all heard the slogan that �correlation does

not mean causation�; it would be a trivialization, but perhaps an illustrative

one, to say that the Bayesian networks project begins with a contraposition

of �causation means correlation�: �independence means absence of (direct)

causation�. From statistical data information about independence (and con-

ditional independence) of variables is gathered, and on that basis a DAG is

constructed with the variables as nodes and arrows denoting direct causal

relationship (according to one of many algorithms available; see Spirtes et al.

1 Not because the interpretation of the probability is Bayesian, but because of the use

of Bayes' theorem for updating probabilities.
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(2000) and Williamson (2005) for the �adding arrows� algorithm).

There is a condition, called the �Causal Markov condition� (henceforth

usually �CMC�), which is frequently taken as one which a pair consisting of a

DAG and a probability distribution for the values of its nodes should satisfy

if the pair is to be admitted as reliably depicting a real causal situation. One

of the most important books for the whole movement, Pearl (2000), cites the

Principle of the Common Cause as one of two sources of inspiration for the

condition (which will be discussed below). Later on, it seemed to have become

common knowledge that the PCC follows from the CMC; proofs of this fact

are given e.g. by Williamson (2005) and Arntzenius (2005), while Eberhardt

(2009) states that �Reichenbach's principle of common cause is a special

case of the causal Markov condition when taken to apply to distributional

properties�. It is therefore quite surprising that one of the most distinguished

writers on the subject, Clark Glymour, claims in a recent paper (Glymour

(2010)) that �Neither, contrary to many commentators, does it [the CMC]

imply Reichenbach's Principle of the Common Cause� (p. 175). Are all the

proofs wrong, then? Or is the principle they refer to something di�erent from

Reichenbach's PCC? The issue is important, since if the implication holds,

then any argument against the PCC is dangerous for the CMC, too. We

will study this question in this chapter by providing the needed de�nitions

(the presentation will be based mainly on Spirtes et al. (2000)), discussing

the philosophical relationship between the CMC and PCC, and presenting

a proof regarding the CMC/PCC relationship. While the proof is based on

Williamson (2005) (p. 52), we will present it in a di�erent way, to highlight

the fact the main idea can be expressed without reference to any causal

concepts.
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5.1 DAGs�an introduction

Let us start with the required de�nitions. A directed graph G over V is a

pair 〈V,E〉, where V is a set of nodes and E a set of arrows (ordered pairs

of nodes). A path between nodes X and Y is a sequence of nodes beginning

with X and ending with Y such that for any two nodes adjacent in the

sequence there is an arrow between them (the direction does not matter).

A node X on a path is a collider if together with its adjacent nodes Y and

Z in the path it forms an inverted fork: Y → X ← Z. There is a directed

path between vertices X and Y , a fact symbolized by �X  Y �, if there is

an arrow between X and Y (�X → Y �) or there is some node Z such that

X  Z and Z → Y . A directed graph is acyclic if for any node X it is not

true that X  X. We will always assume that the nodes of any given graph

represent random variables.

Par(X), the set of �parents� of a node X, consists of the nodes Z such

that Z → X. Childr(X), the set ofX's �children�, includes exactly the nodes

Z such that X → Z. The sets Anc(X) (�ancestors�) and Desc(X) (�descen-

dants�) are de�ned by substituting � � for �→� in the last two sentences�

but with the addition that a node always is its own ancestor and descendant,

but never its child or parent (see Spirtes et al. (2000), p. 10).

Not to stray from the recent literature, we will express the fact that

variables X and Y are independent2 as �X |= Y �; that they are independent

given a third variable Z as �X |= Y | Z�; and that they are not independent

as �X 
 Y �.

The Markov Condition, in contrast to the Causal Markov Condition, is

expressed exclusively by means of probabilistic and graph-related notions. It

does not concern DAGs per se, but DAGs together with probability distri-

butions over the set of their nodes.

2 See de�nition 5 in chapter 2, p. 7.
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De�nition 13 [Markov Condition] A DAG G over V and a probability

distribution P (V) satisfy the Markov Condition if and only if for anyW ∈ V,

W |= V \
(
Desc(W ) ∪ Par(W )

)
| Par(W ).

In other words, in a graph which (together with a probability distribution

over the set of its nodes) satis�es the Markov Condition (MC), every variable

is independent of its nondescendants conditional on its parents. It is also

independent (again, conditional on its parents) of its ancestors which are not

its parents.

The MC can hold of DAGs and probability distributions with no appeal

to any causality whatsoever. The Causal Markov Condition (CMC) holds of

a subset of graph-probability distribution pairs for which MC holds; namely

the graphs have to be �causal�: they should represent a causal structure and

the distribution to be �generated� by that structure. A causal structure for

a population is a set of variables V together with a set E of ordered pairs

of these variables, where a pair 〈X, Y 〉 belongs to E whenever X is a direct

cause3 of Y relative to V4 (Spirtes et al. (2000), p. 22). Suppose we have a

causal structure C = 〈V,E, 〉 and P (V) is the actual probability distribution

over V; we then say that the distribution P (V) is generated by the causal

structure C. A causal structure 〈V,E〉 is causally su�cient for a given

population i� it contains all common causes of any two variables in V, apart

from the ones which have the same value for all elements of the population.

It is interesting that the de�nition of causal representation (Spirtes et al.

3 It is interesting that the de�nition of a variable X being a direct cause of variable Y

is in this framework a counterfactual de�nition; see Spirtes et al. (2000), p. 20.
4 This last quali�cation is important�if X causes Z by means of an intermediary

variable Y , and yet we exclude Y from our causal structure, then even though X is not a

direct cause of Z �in general�, we should have the pair 〈X,Z〉 in the set of pairs being the

second element of our causal structure.
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(2000), p. 24) explicitly refers only to graphs representing causally su�cient

causal structures; a DAG G = 〈V,E〉 represents a causally su�cient causal

structure C = 〈W,F〉 if each node from V represents a variable from W,

every variable from W is represented by some variable from V, and there

is an arrow between two vertices from V if and only if the ordered pair

consisting of the two variables represented by the nodes at the rear end and

the head of the arrow belongs to F. A causal graph is then de�ned as a DAG

which �represents a causal structure� (Spirtes et al. (2000), p. 24).5

We take the quoted part of the de�nition of a causal graph to mean �a

causally su�cient structure�, since working on such structures seems to be

the overall goal. The reasons are obvious; e.g., should one ignore a common

cause C for two correlated (but really directly causally unrelated) variables

A and B, one would be tempted to draw �A → B� or �B → A� in the

causal graph, which would then give an incorrect picture of the real causal

structure. Of course, it may be by no means evident what the �real� common

causes are, and, a fortiori, which variables should be included for the causal

structure to be su�cient. Nevertheless, we take causal graphs to be graphs

representing causally su�cient structures; this decision will have no impact

on the conclusions of this chapter.

5.2 The Causal Markov Condition

De�nition 14 [Causal Markov Condition] A DAG G over V and a

probability distribution P (V) satisfy the Causal Markov Condition if and

only if

5 In fact, it does not seem that any signi�cant generality is lost if a causal graph is

thought to be coextensive with the structure it represents; in other words, if we can think

of causal graphs simply being causal structures, and of its nodes being variables.
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• G is a causal graph;

• P (V) is generated by the structure represented by G;

• G and P (V) satisfy the Markov Condition.

What is the relationship of the CMC and the principle of the common

cause, e.g. in the PCC 2 version, reformulated so that it would refer to

random variables, and generalized so that the correlation would require the

existence of a set of common causes?6 Suppose there are only two vari-

ables in the causal structure, X and Y . If they constitute a real-life coun-

terexample to the PCC�that is, they are correlated, but there are no di-

rect causal relations between them and there is in the world no set of vari-

ables which would render them conditionally independent�then the struc-

ture C := 〈{X, Y }, ∅〉 is causally su�cient for the given population. There-

fore the graph G := 〈{X, Y }, ∅〉, with two vertices but no arrows7, is of

course a causal graph, but together with the real distribution over X and Y ,

according to which X and Y are correlated, of course fail to meet the Markov

Condition (X is not independent of Y conditional on the empty set), and so

a fortiori the Causal Markov Condition.

In the other direction, suppose PCC 2 (in the reformulation hinted at

above) is generally true, and that a causally su�cient structure is consid-

ered. The exogenous variables8 have to be pairwise independent, since if

they were not, then some of them would have to have (common) causes, and

6 See Gyenis & Rédei (2010) for a rigorous translation of Reichenbach's ideas to the

language of random variables; we will return to these matters at the end of chapter 6.
7 Again, the �X� in the graph is a node which represents the �X�, a variable in the

structure.
8 Meaning, the ones which are not pointed to by any arrow; the variables which have no

causes in the structure considered. Such variables have to exist if the plausible assumption

of �nitude of the causal structure (we can only measure a �nite number of variables and
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so some of them would not be exogenous after all. It is a well known fact

(for a proof see e.g. Steel (2005)) that the MC is true in any graph with

independent exogenous variables. However, a stronger independence then

pairwise independence is needed: due to the so called �Bernstein Paradox�,

there might be a dependence between sets of variables even if there is no de-

pendence between any two variables9. Therefore, to arrive at an implication

from PCC to the CMC, one would have to reformulate the principle not only

so that it considered random variables and more than one common cause, but

also generalized the starting point from the correlation of two variables to the

existence of a correlated set of variables (with no direct causal relationships).

We would like to show that some arguments o�ered in the literature as

proving some version of the PCC on the basis of CMC can be expressed

without reference to any causal notions. For example, the following principle

is called by Williamson (2005) a �Principle of the Common Cause�.

De�nition 15 [Principle of the Common Ancestor] The Principle of the

Common Ancestor holds of a DAG G over V and a probability distribution

P (V) if, whenever A
 B, then A B or B  A or there is a U ⊆ V such

that C ∈ U implies C  A and C  B, and A |= B | U .

The shortest (known to us) proof of the relationship between the Markov

Condition and the Principle of the Common Ancestor uses the notion of

d-separation (Pearl (1988); we use the de�nition from Spirtes et al. (2000),

p. 14). (The �d� is from �directional�; the notion of d-separation is highly tech-

nical and not easy to illustrate intuitively�see e.g. chapter 3.7.1 of Spirtes

et al. (2000).) Consider a graph G. If X and Y are distinct vertices of G

and W is a set of vertices of G containing neither X nor Y , then X and Y

adding an in�nite number of unmeasured variables to the given structure would require

some serious argument) is made, due to the fact that the graphs are to be acyclic.
9 For a discussion of this paradox in the context of common causes, see U�nk (1999).
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are d-separated given W (W d-separates X and Y ) in G if and only if there

exists no path U between X and Y such that

• every collider on U has a descendant in W;

• no other vertex on U belong to W.

The notion of d-separation is very useful when discussing Bayesian net-

works due e.g. to the following fact, which we will need later on (we cite here

the formulation from Williamson (2005), p. 17):

Fact 7 (Verma & Pearl (1988)) Given a DAG G over V and R, S, T ⊆
V, T d-separates R and S if and only if R |= S | T for all probability

distributions P (V) which together with G satisfy the Markov Condition.

For example, if we know that a DAG with a probability distribution

satis�es the Markov condition, and we �nd that distinct variables X and Y

are d-separated by ∅, we can infer that X and Y are not correlated.

The following fact is a direct companion to Proposition 4.1 from

Williamson (2005), p. 52; it has (together with the proof) been only reworded

so that it does not refer to causal notions.

Fact 8 The Markov Condition implies the Principle of the Common Ances-

tor.

Proof: Suppose the Markov Condition holds of a graph G over V and

a probability distribution P (V). Let A,B ∈ V. Suppose it is not the case

that (A B or B  A or there is a C ∈ V such that C  A and C  B).

Then variables A and B are d-separated by ∅, since any path between them

has to include a collider. In such a case, A |= B.
Suppose, then, that A
 B. From the last paragraph we infer by contra-

position that, if it is not the case that A B or B  A (when the Principle
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would be trivially true), there has to be at least one C ∈ V such that C  A

and C  B. Let U be the set of all such Cs. U d-separates A and B, so

A |= B | U. �

Of course, if the graph under consideration is causal, the Principle of the

Common Ancestor becomes a version of PCC, claiming the existence of a

set of common causes for the correlated variables, which act as screeners for

those variables.

5.3 Conclusions

We have seen that real-life counterexamples to PCC would lead to failure

of CMC. We have also presented a general proof that in any graph which

satis�es MC a certain principle is valid; if the graph is a causal graph (and

the distribution is the one generated by the structure), then this principle be-

comes a version of PCC. What is, then, the reason for the already mentioned

claim of Glymour (2010) that Reichenbach's PCC does not follow from the

CMC?

Perhaps the matter is simple and the word �Reichenbach� is the key;

notice the complete absence of the statistical relevance conditions from the

considerations of these chapter. This is of course reasonable; if we speak

about correlated events, we can consider a cause raising the probability of

the events; but the correlation of two variables (e.g. X and Y ) typically leads

to numerous correlations between events (e.g. �X = 1� and �Y = 1� and so

on, for various (but maybe not all) values of the variables). But let us con-

sider two correlated binary variables10, which do not in�uence each other

directly. One can look at the existence of a common cause variable for such

two variables as the existence of a common screener o� for the correlations

10 Recall the close correspondence between binary variables and events, section 2.1, p. 7

above.
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between the appropriate events. But, as we know from example 2 in section

3.2, it might very well be that no element of the screener o� is positively

statistically relevant for any of the correlated events, so Reichenbach's con-

ditions (even as generalized as in the de�nition of a statistical common cause

system) cannot be satis�ed.

106



Chapter 6

Causal closedness

The material in sections 6.1-6.5 originates from joint research by Michaª

Marczyk and the author, gathered in Marczyk & Wro«ski (2010).

6.0.1 A preliminary formal remark

For the majority of the results of this chapter, the sample spaces of the prob-

ability spaces involved are irrelevant. The crucial factors are the Boolean

algebra being the event space and the measure de�ned on that algebra.

Therefore�until section 6.9�if no other quali�cation is given, a probability

space is meant to be a pair 〈S, P 〉, where S is a Boolean algebra1 and P is a

classical measure on S. In section 6.5 nonclassical spaces are considered, in

which the Boolean algebra is exchanged for a nondistributive orthomodular

lattice. The required de�nitions are presented.

Also, throughout this chapter, by a �common cause� we always mean a

�statistical common cause�. At the beginning we usually supply the addi-

tional adjective, but then sometimes refrain from using it to conserve space,

1 We omit the usual requirement of σ-completeness because, while the notion of causal

up-to-n-closedness will be general, the results proved regarding it will concern the �nite

cases only.
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as the arguments unfortunately become rather cluttered even without the

additional vocabulary.

6.1 Causal (up-to-n-)closedness

6.1.1 Introduction

Suppose a probability space contains a correlation between two events we

believe to be causally independent. Does the space contain a common cause

for the correlation? If not, can the probability space be extended to contain

such a cause but `preserving' the old measure? This question has been asked

and answered in the positive in Hofer-Szabó, Rédei & Szabó (1999), where

the notion of common cause completability was introduced: speaking a bit

informally, a probability space S is said to be common cause completable

with respect to a set A of pairs of correlated events i� there exists an exten-

sion of the space containing statistical common causes of all the correlated

pairs in A. Gyenis and Rédei (2004) introduced the notion of common cause

closedness, which (in our slightly di�erent terminology) is equivalent to the

following: a probability space S is common cause closed (or �causally closed�)

with respect to a relation of independence Rind ⊆ S2 i� it contains statistical

common causes (recall de�nition 9, p. 53) for all pairs of correlated events

belonging to Rind. The authors have proven therein that a �nite classical

probability space with no atoms of probability 0 is non-trivially common

cause closed w.r.t. the relation of logical independence i� it is the space

consisting of a Boolean algebra with 5 atoms and the uniform probability

measure.2 In other words, �nite classical probability spaces (big enough to

2 The phrasing of the paper was in fact stronger, omitting the assumption about non-

0 probabilities on the atoms (due to a missed special sub-case in the proof of case 3 of

proposition 4 on p. 1299). The issue is connected to the distinction between proper and

improper common causes and is discussed below in section 6.3.
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contain correlations between logically independent events) are in general not

common cause closed w.r.t. the relation of logical independence, i.e. they

contain a correlation between logically independent events for which no sta-

tistical common cause in the space exists; the only exception to this rule is the

space with precisely 5 atoms of probability 1
5
each. More spaces are common

cause closed w.r.t. a more stringent relation of logical independence modulo

measure zero event (�L+
ind�, see de�nition 17 below): they are the spaces with

5 atoms of probability 1
5
each and any number of atoms of probability 0.

Still, a (statistical) common cause is not the only entity which could

be used as an explanation for a correlation. As we mentioned earlier in

chapter 3, Hofer-Szabó and Rédei (2004) generalized the idea of a statistical

common cause, arriving at statistical common cause systems (�SCCSs�; recall

de�nition 10, p. 53). As already noted, SCCSs may have any countable size

greater than 1; the special case of size 2 reduces to the usual notion of

common cause.

It was natural for corresponding notions of causal closedness to be intro-

duced; a probability space is said to be causally n-closed3 w.r.t. a relation

of independence Rind i� it contains an SCCS of size n for any correlation

between A,B such that 〈A,B〉 ∈ Rind. It is one of the results of the present

chapter that with the exception of the 5-atom uniform distribution probabili-

ty space, no �nite probability spaces without 0 probability atoms are causally

n-closed w.r.t. the relation of logical independence, for any n > 2. Similarly,

with the exception of the spaces with 5 atoms of probability 1
5
each and

any number of atoms of probability 0, no �nite probability spaces with 0

probability atoms are causally n-closed w.r.t. L+
ind, for any n > 2.

We are interested in a slightly di�erent version of causal closedness. If the

overarching goal is to �nd explanations for correlations, why should we expect

all explanations to be SCCSs of the same size? Perhaps some correlations

3 The notion was introduced in Hofer-Szabó & Rédei (2006).
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are explained by common causes and other by SCCSs of a bigger size. We

propose to explore the idea of causal up-to-n-closedness�a probability space

is causally up-to-n-closed w.r.t. a relation of independence Rind i� it contains

an SCCS of size at most n for any correlation between events A,B such that

〈A,B〉 ∈ Rind.

It turns out that, in the class of �nite classical probability spaces with

no atoms of probability 0, just as the space with 5 atoms and the uniform

measure is unique with regard to common cause closedness, the whole class

of spaces with uniform distribution is special with regard to causal up-to-3-

closedness�see theorem 4: a �nite classical probability space with no atoms

of probability 0 has the uniform distribution i� it is causally up-to-3-closed

w.r.t. the relation of logical independence. We provide a method of con-

structing a statistical common cause or an SCCS of size 3 for any correlation

between logically independent events in any �nite classical probability space

with the uniform distribution.

We require (following Gyenis and Rédei) of a causally closed probability

space that all correlations be explained by means of proper�that is, di�ering

from both correlated events by a non-zero measure event�statistical common

causes. This results in the fact that a space causally closed w.r.t. the relation

of logical independence can be transformed into a space which is not causally

closed w.r.t. this relation just by adding a 0-probability atom. Perhaps,

to avoid this unfortunate consequence, the notion of logical independence

modulo measure zero event should be required? We discuss the matter in

section 6.3.

In this chapter we also brie�y consider other independence relations, a

generalization of our results to �nite non-classical probability spaces, and

closedness w.r.t. to the more general deductive explanantes. Lastly, we brie�y

report some known results on causal closedness of atomless spaces we will

use in the next chapter.
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6.1.2 Preliminary de�nitions

In the following assume that we are given a �nite classical probability space

〈S, P 〉, where S is a �nite Boolean algebra and P is a classical measure on S.

By Stone's representation theorem, S is isomorphic�and may be identi�ed

with�the algebra of all subsets of the set {0, . . . , n− 1} for some n ∈ N.
In the sequel we will sometimes consider spaces of the form 〈S+, P+〉,

where S+ and P+ are as de�ned below:

De�nition 16 Let 〈S, P 〉 be a �nite classical probability space. S+ is the

subalgebra of S containing all and only the non-zero probability atoms of S.

P+ is the restriction of P to S+.

We will now de�ne two relations of logical independence. Intuitively, we

will regard two events as logically independent if, when we learn that one of

the events occurs (or does not occur), we cannot infer that the other occurs

(or does not occur), for all four Boolean combinations.

De�nition 17 [Logical independence] We say that events A,B ∈ S are

logically independent (〈A,B〉 ∈ Lind) i� all of the following sets are nonempty:

• A ∩B;

• A ∩B⊥;

• A⊥ ∩B;

• A⊥ ∩B⊥.

We say that events A,B ∈ S are logically independent modulo measure

zero event (〈A,B〉 ∈ L+
ind) i� all of the following numbers are positive:

• P (A ∩B);

• P (A ∩B⊥);
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• P (A⊥ ∩B);

• P (A⊥ ∩B⊥).

Equivalently, two events are logically independent if neither of the events

is contained in the other one, their intersection is non-empty and the sum of

the two is less than the whole space. Two events are logically independent

modulo measure zero event if every Boolean combination of them has a non-

zero probability of occurring. It is always true that L+
ind ⊆ Lind; if there are

0-probability atoms in the space, the inclusion may be strict.

The following de�nition is a re�nement of the SCC idea, expressing the

requirement that a common cause should be meaningfully di�erent from both

correlated events.

De�nition 18 [Proper SCC(S)] A statistical common cause C of events

A and B is a proper statistical common cause of A and B if it di�ers from

both A and B by more than a measure zero event. It is an improper SCC of

these events otherwise.

An SCCS {Ci}i∈I of events A and B is a proper SCCS of A and B if all

its elements di�er from both A and B by more than a measure zero event.

It is an improper SCCS of these events otherwise.

We will sometimes say that a probability space contains an SCCS, which

means that the SCCS is a partition of unity of the underlying algebra of the

space.

We now come to the concept being the main topic of this chapter. Should

someone prefer it, the following de�nition could be phrased in terms of SCCSs

only.
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De�nition 19 [Causal up-to-n-closedness] We say that a classical prob-

ability space is causally up-to-n-closed w.r.t. to a relation of independence

Rind if all pairs of correlated events independent in the sense of Rind possess a

proper statistical common cause or a proper statistical common cause system

of size at most n.

If the space is causally up-to-2-closed, we also say that it is causally closed

or common cause closed.

6.1.3 Summary of the results of this chapter

〈S, P 〉 is
up-to-3-closed

w.r.t.

Lind L+
ind

P is uniform ⇒ (9) ⇒ (9)

⇐ (10)
P+ is uniform ⇒∗ (11) ⇔ (10,11)

Table 6.1: The main results of the chapter. The numbers in parentheses

correspond to lemmas below.

Theorem 3 will be our main tool in proving the lemmas featured in table

6.1.

Theorem 3 Let 〈S, P 〉 be a �nite classical probability space with S+ having

at least 4 atoms of non-zero probability. Then P+ is uniform if and only if

〈S+, P+〉 is causally up-to-3-closed w.r.t. L+
ind.

Lemmas 9-11 tie uniformity of P and P+ with causal up-to-3-closedness

of 〈S, P 〉 with respect to the two notions of independence introduced above.
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Lemma 9 Let 〈S, P 〉 be a �nite classical probability space with S having at

least 4 atoms. If P is uniform, then 〈S, P 〉 is causally up-to-3-closed w.r.t.

Lind and L
+
ind.

Lemma 10 Let 〈S, P 〉 be a �nite classical probability space with S+ having

at least 4 atoms. If P+ is not uniform, then 〈S, P 〉 is not causally up-to-3-

closed w.r.t. either Lind or L
+
ind.

Lemma 11 Let 〈S, P 〉 be a �nite classical probability space with S+ having

at least 4 atoms. If P+ is uniform, then 〈S, P 〉 is causally up-to-3-closed

w.r.t. L+
ind. All correlated pairs from Lind \ L+

ind have statistical common

causes, but some only have improper ones.

6.2 Proofs

6.2.1 Some useful parameters

For expository reasons, we will not prove theorem 3 directly, but rather show

its equivalent, theorem 4 (p. 115). Before proceeding with the proof, we shall

introduce a few useful parameters one may associate with a pair of events A,

B in a �nite classical probability space 〈S, P 〉.
Let n be the number of atoms in the Boolean algebra S. The size of

the set of atoms lying below A in the lattice ordering of S will from now

on be referred to as a, and likewise for B and b. The analogous parameter

associated with the conjunction of events A and B is just the size of the

intersection of the relevant sets of atoms and will be called k.

It will soon become apparent that while a and b have some utility in the

discussion to follow, the more convenient parameters describe A and B in

terms of the number of atoms belonging to one, but not the other. Thus we

let a′ = a − k and b′ = b − k. In fact, if we set z = n − (a′ + k + b′), we
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obtain a set of four numbers precisely describing the blocks of the partition

of the set of atoms of S into the four classes which need to be non-empty for

A and B to be logically independent. It is clear that in the case of logically

independent events a′, b′, k and z are all non-zero.

Lastly, before we begin the proof of the main result of this chapter, let

us recall corollary 4, p. 59: when searching for statistical common causes,

screening o� is enough. If both an event and its complement screen o� a

correlation, then one of them is a statistical common cause for the correlation.

6.2.2 Proof of theorem 3

In this section we will provide a proof of the main tool in this chapter�

theorem 3, formulated in section 6.1.3. The form in which it was stated in

that section is dictated by its use in the proofs of lemmas 9-11. However,

when treated in isolation, it is better versed in the following way:

Theorem 4 (Marczyk & Wro«ski (2010), equivalent to theorem 3)

Let 〈S, P 〉 be a �nite classical probability space with no atoms of probability

0. Suppose S has at least 4 atoms.4 The following conditions are equivalent:

Measure uniformity: P is the uniform probability measure on S;

Causal up-to-3-closedness w.r.t. Lind: 〈S, P 〉 is causally up-to-3-closed

w.r.t. the relation of logical independence.

Before proceeding with the proof we will provide a sketch of the con-

struction and some requisite de�nitions. Instead of focusing on a particular

n-atom algebra, we will show how the problem presents itself while we `move'

4 It is easy to verify that if S has 3 atoms or less, then 〈S, P 〉 contains no correlations

between logically independent events.
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from smaller to bigger algebras. We assume without loss of generality that

the set of atoms of an n-atom Boolean algebra is {0, 1, · · · , n− 1} and that

each event is a set of atoms. Consider the sequence of all �nite classical prob-

ability spaces with the uniform probability measure, in which the number of

atoms of the underlying Boolean algebra of the space increases by 1 at each

step, beginning with the algebra with a single atom. We use the shorthand

expression �at stage n� to mean �in the probability space with uniform dis-

tribution whose underlying Boolean algebra has n atoms�. Observe that due

to our convention whereby events are identi�ed with sets of atoms, an event

present at stage m (one found in the algebra from that stage) is also present

at all further stages. In other words, a set of atoms de�ning an event at

stage m can also be interpreted as de�ning an event at any stage m′, with

m′ > m. Thus we can naturally say that a certain event belongs to many

di�erent probability spaces; e.g. the event {1, 2, 11} is present at stages 12,

13, and so on. Similarly, pairs of events can be present at many stages�and

be correlated at some, but not at others. If they are correlated at stage m,

they are correlated at all stages n, for n > m (see below). The same is true of

logical independence: a pair may not consist of logically independent events

at stage n, because their union is the whole set of n atoms, but may become

a pair of logically independent events at stage n+1, when an additional atom

is introduced, which does not belong to either of the events in question.

Some remarks on the shape of events considered are in order. We will al-

ways be talking about pairs of eventsA,B, with numbers a, a′, b, b′, k, z and n

de�ned as above (see section 6.2.1). We assume a > b. Also, since we are deal-

ing with the uniform measure, all relevant characteristics of a pair of events

A,B are determined by the numbers a′, b′, k, and z; therefore, for any combi-

nation of these numbers it is su�cient only to consider a single example of a

pair displaying them. The rest is just a matter of renaming the atoms. For ex-

ample, if we are looking for an explanation for the pair {{8, 7, 3, 5}, {2, 8, 7}}
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at stage 10, or the pair {{1, 3, 5, 6}, {1, 6, 4}} at the same stage, we shall

search for an explanation for the pair {{0, 1, 2, 3}, {2, 3, 4}} at stage 10 and

then just appropriately `translate' the result (explicit examples of this follow

in section 6.2.2). In general: the convention we adopt is for A to be a set

of consecutive atoms beginning with 0, and B a set of consecutive atoms

beginning with a− k.

For illustrative purposes we propose to examine the situation at the early

stages. The proof proper begins with de�nition 20 below. For the remainder

of section 6.2.2, by �common cause� we will always mean �proper common

cause�; similarly with �common cause system�.

There are no correlated pairs of logically independent events at stage 1;

similarly for stages 2, 3 and 4. (Remember the measure is uniform and so at

stage 4 e.g. the pair {{0, 1}, {1, 2}}, while composed of logically independent

events, is not correlated.)

First correlated pairs of logically independent events appear at stage 5.

These are of one of the two following types: either a′ = b′ = k = 1, or

a′ = b′ = 1 and k = 2. Proposition 3 from Gyenis & Rédei (2004) says that

all pairs of these types have statistical common causes at stage 5. As noted

above, we can without loss of generality consider just two tokens of these

types�the pairs {{0, 1}, {1, 2}} and {{0, 1, 2}, {1, 2, 3}}. In the �rst case,

the events already formed a logically independent pair at stage 4, but were

not correlated�we will say that the pair appears from below at stage 5 (see

de�nition 20 below). In the second case, stage 5 is the �rst stage where the

events form a logically independent pair, and they are already correlated at

that stage. We will say that the pair {{0, 1, 2}, {1, 2, 3}} appears from above

at stage 5. There are no other correlated pairs of logically independent events

at stage 5. It will turn out that we can always �nd statistical common causes

for pairs which appear from above or from below at a given stage.
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Let us move to stage 6. A new (type of) pair appears from above�

{{0, 1, 2, 3}, {1, 2, 3, 4}}. No pairs appear from below, but both pairs which

appeared at stage 5 are still correlated and logically independent at stage 6

(as well as at all later stages), so they are again in need of an explanation at

this higher stage. It turns out that if a correlated pair of logically independent

events at stage n is `inherited' from the earlier stages, i.e. it appears neither

from above nor from below at stage n, we can modify the common cause

which we know how to supply for it at the stage where it originally appeared

to provide it with an explanation adequate at stage n. This takes the form

of a statistical common cause or, in some cases, an SCCS of size 3.

De�nition 20 [Appearing from above or below] A pair {A,B} of events
appears from above at stage n if it is (1) logically independent at stage n, (2)

not logically independent at stage n− 1 and (3) correlated at stage n.

A pair {A,B} of events appears from below at stage n if it is (1) logically

independent at stage n, (2) logically independent at stage n − 1 and (3)

correlated at stage n, but (4) not correlated at stage n− 1.

We will divide common causes into types depending on whether the occur-

rence of a given common cause makes the occurrence of at least one member

of the correlation it explains necessary, impossible or possible with probabil-

ity less then 1.5

De�nition 21 [1-, 0-, and #-type statistical common causes] A proper

statistical common cause C for a correlated pair of logically independent

events A,B is said to be:

• 1-type i� P (A | C) = 1 or P (B | C) = 1;

• 0-type i� P (A | C⊥) = 0 or P (B | C⊥) = 0;

5 Since the context of theorem 4 is that of �nite spaces, the di�erence between necessity

and probability 1 can be dismissed.
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• #-type i� it is neither 1-type nor 0-type.

Notice that no statistical common cause C for some two logically inde-

pendent, correlated events A and B can be both 1-type and 0-type at the

same time.

De�nition 22 [0-type statistical common cause system] A proper sta-

tistical common cause system of size n {Ci}i∈{0,...,n−1} is a 0-type statistical

common cause system (0-type SCCS ) for the correlation i� P (A | Cn−1) = 0

or P (B | Cn−1) = 0.

We do not need to worry about the fact that rearranging the elements

of a 0-type SCCS necessarily make it lose the 0-type status, because during

the proof the SCCSs will be explicitly construed so that their �last� element

gives conditional probability 0 to both correlated events to be explained.

Were this notion to be used in general, its de�nition should be rephrased as

an existential condition: �there exists m 6 n − 1 such that P (A | Cm) = 0

and P (B | Cm) = 0�.

We will prove the following:

• if a pair appears from above at stage n, it has a statistical common

cause at that stage (lemma 13);

• if a pair appears from below at stage n, it has a statistical common

cause at that stage (lemma 14);

• if a pair of logically independent events is correlated at stage n and has

a statistical common cause or a 0-type SCCS of size 3 at that stage,

it has a statistical common cause or a 0-type SCCS of size 3 at stage

n+ 1 (lemma 15).
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It should be straightforward to see that this is enough to prove theorem

4 (p. 115) in its `downward' direction. Consider a correlated pair of logically

independent events A,B at stage n. If it appears from above, we produce

a common cause using the technique described in lemma 13. If it appears

from below, we use the method from lemma 14. If it appears neither from

above nor from below, it means that it was logically independent at stage

n− 1 and was correlated at that stage, and we repeat the question at stage

n − 1. This descent terminates at the stage where our pair �rst appeared,

which clearly must have been either from below or from above. This allows

us to apply either lemma 13 or lemma 14, as appropriate, followed by lemma

15 to move back up to stage n, where we will now be able to supply the pair

with an SCC or an SCCS of size 3. As said before, the SCCs and SCCSs we

will construct will always be proper SCCs and SCCSs.

Put Corr(A,B) := P (AB) − P (A)P (B). Corr(A,B) can always be

expressed as a fraction with the denominator being n2. Of special inter-

est to us will be the numerator of this fraction. Let us call this number

SCn(A,B). (For example, if A = {0, 1, 2} and B = {2, 3}, SC5(A,B) = −1.)

If SCn(A,B) 6 0, the events are not correlated at stage n. If SCn(A,B) > 0,

A and B are correlated at stage n and we need to �nd either a common cause

or a common cause system of size 3 for them. The following lemma will aid

us in our endeavour (remember the de�nitions from section 6.2.1):

Lemma 12 Let 〈Sn, P 〉 be a �nite classical probability space, Sn being the

Boolean algebra with n atoms and P the uniform measure on Sn. Let A,B ∈
Sn. Then SCn(A,B) = kz − a′b′.

Proof: Corr(A,B) = P (AB) − P (A)P (B) = k
n
− k+a′

n
k+b′

n
=

= k(n−k−a′−b′)−a′b′
n2 = kz−a′b′

n2 . Therefore SCn(A,B) = kz − a′b′. �
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An immediate consequence of this lemma is that any pair of logically in-

dependent events will eventually (at a high enough stage) be correlated � it is

just a matter of injecting enough atoms into z. For example, consider events

A = {0, 1, 2, 3, 4, 5, 6}, B = {6, 7, 8, 9, 10, 11}. At any stage n, SCn(A,B) is

equal to z− 30. This means that the pair is correlated at all stages in which

z > 30; in other words, at stages 43 and up. At some earlier stages (from

13 to 42) the pair is logically independent but not correlated; at stage 12 it

is not logically independent; and the events constituting it do not �t in the

algebras from stages lower than that.

Notice that since for any A,B: SCn+1(A,B) = SCn(A,B) + k, it follows

that at the stage m where the pair �rst appears (either from above or from

below) SCm(A,B) is positive but less than or equal to k.

We now have all tools we need to prove theorem 4.

Proof: (of theorem 4)

Measure uniformity⇒ Causal up-to-3-closedness w.r.t. Lind

Lemma 13 Suppose a pair A,B appears from above at stage n. Then there

exists a 1-type common cause for the correlation at that stage.

Proof: We are at stage n. Since the pair A,B appears from above

at this stage, z = 1 and so (by lemma 12) SCn(A,B) = k − a′b′. (If

z was equal to 0, the events would not be logically independent at stage

n; if it was greater than 1, the events would be logically independent at

stage n − 1 too, and so the pair would not appear from above at stage

n.) Notice that since A,B are logically independent (so both a′ and b′ are

non-zero) but correlated at stage n, 0 < SCn(A,B) = k − a′b′ < k. Let

C consist of exactly SCn(A,B) atoms from the intersection A ∩ B. Such

a C will be a screener-o� for the correlation, since P (AB | C) = 1 =
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P (A | C)P (B | C). What remains is to show that C⊥ is a screener-o� as

well. This follows from the observation that P (AB | C⊥) = k−(k−a′b′)
n−(k−a′b′) =

a′b′

n−k+a′b′
= a′b′(n−k+a′b′)

(n−k+a′b′)2
= a′b′(1+a′+b′+k)−a′b′k+a′2b′2

(n−k+a′b′)2
= a′b′+a′b′2+a′2b′+a′2b′2

(n−k+a′b′)2
=

a′+a′b′

n−k+a′b′
· b′+a′b′

n−k+a′b′
= k+a′−(k−a′b′)

n−k+a′b′
· k+b′−(k−a′b′)

n−k+a′b′
= k+a′−SCn(A,B)

n−k+a′b′
· k+b′−SCn(A,B)

n−k+a′b′
=

P (A | C⊥)P (B | C⊥). �

Lemma 14 Suppose a pair A,B appears from below at stage n. Then there

exists a 1-type common cause or a 0-type common cause for the correlation

at that stage.

Proof:

Case 1: k > b′ and a′ > z.

In this case we will construct a 1-type common cause. Let C consist of

k−b′ atoms from A∩B and a′−z atoms from A\B. Since C ⊂ A, it screens o�

the correlation: P (AB | C) = P (B | C) = 1 ·P (B | C) = P (A | C)P (B | C).

We need to show that C⊥ screens o� the correlation as well. This follows from

the fact that P (AB | C⊥) = b′

n−(k−b′)−(a′−z) = b′

2b′+2z
= 2b′2+2zb′

(2b′+2z)2
= (b′+z)2b′

(2b′+2z)2
=

b′+z
2b′+2z

· 2b′

2b′+2z
= b′+z

n−(k−b′)−(a′−z) ·
2b′

n−(k−b′)−(a′−z) = P (A | C⊥)P (B | C⊥).

Case 2: z > b′ and a′ > k.

In this case we will construct a 0-type common cause. Let C⊥ consist of

a′ − k atoms from A \ B and z − b′ atoms from (A ∪ B)⊥. Since C⊥ ⊂ B⊥,

it screens o� the correlation: P (AB | C⊥) = 0 = P (A | C⊥) · 0 = P (A |
C⊥)P (B | C⊥). We need to show that C too screens o� the correlation. This

follows from the fact that P (AB | C) = k
n−(a′−k)−(z−b′) = k

2k+2b′
= 2k2+2kb′

(2k+2b′)2
=

2k(k+b′)
(2k+2b′)2

= 2k
2k+2b′

· k+b′

2k+2b′
= 2k

n−(a′−k)−(z−b′) ·
k+b′

n−(a′−k)−(z−b′) = P (A | C)P (B | C).

Case 3a: z > a′, k > a′ and a′ > b′.

As can be veri�ed easily, in this case k = z = a′ and b′ = a′ − 1. We

can construct both a 0-type common cause and a 1-type common cause.

Suppose we choose to produce the former. An appropriate C⊥ would consist
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of just a single atom from (A ∪ B)⊥; C⊥ screens o� the correlation because

P (AB | C⊥) = 0 = P (A | C⊥)P (B | C⊥). That C is also a screener-

o� is guaranteed by the fact that P (AB | C) − P (A | C)P (B | C) =
k

k+a′+b′+z−1
− k+a′

k+a′+b′+z−1
· k+b′

k+a′+b′+z−1
= k

4k−2
− 2k

2(2k−1)
· 2k−1

4k−2
= 0.

To produce a 1-type common cause instead, let C consist of just a single

atom from (A ∩ B); C screens o� the correlation because P (AB | C) =

1 = P (A | C)P (B | C). That C⊥ is also a screener-o� follows from the

fact that P (AB | C⊥) = k−1
k−1+a′+b′+z

= b′

2b′+2a′
= 2b′2+2a′b′

(2b′+2a′)2
= (a′+b′)2b′

(2b′+2a′)2
=

a′+b′

2b′+2a′
· 2b′

2b′+2a′
= k−1+a′

2b′+2a′
· k−1+b′

2b′+2a′
= P (A | C⊥)P (B | C⊥).

Case 3b: z = a′ + 1 and k = a′ = b′.

In this case we will construct a 0-type common cause. Let C⊥ consist

of just a single atom from (A ∪ B)⊥; C⊥ screens o� the correlation because

P (AB | C⊥) = 0 = P (A | C⊥)P (B | C⊥). C screens o� the correlation

because P (AB | C) = k
4k

= 4k2

16k2
= 2k

4k
· 2k

4k
= k+a′

k+a′+b′+z−1
· k+b′

k+a′+b′+z−1
= P (A |

C)P (B | C).

Case 3c: k = a′ + 1 and z = a′ = b′.

In this case we will construct a 1-type common cause. Let C consist of

just a single atom from (A ∩B); as in case 3a, C screens o� the correlation.

That C⊥ is also a screener-o� follows from P (AB | C⊥) = a′

4a′
= 4a′2

16a′2
=

2a′

4a′
· 2a′

4a′
= k−1+a′

k−1+a′+b′+z
· k−1+b′

k−1+a′+b′+z
= P (A | C⊥)P (B | C⊥). �

Notice that the �ve cases used in the proof above are exhaustive. For

example (due to lemma 12), if k = a′, then z = b′ + 1. (Were z 6 b′,

SCn(A,B) would not be positive, meaning that the events would not be

correlated at stage n; were z > b′ + 1, it would follow that SCn(A,B) > k,

which would mean the pair was already correlated at stage n− 1.) Similarly,

if z = a′, then k = a′+ 1. Remember than by our convention we always have

a′ > b′. Finally, notice that if a′ > k and b′ > z, then SCn(A,B) is negative

and so there is no correlation; and similarly if b′ > k and a′ > z.
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Lemma 15 Suppose A,B form a pair of logically independent events corre-

lated at stage n. Suppose further that they have a common cause or a 0-type

SCCS of size 3 at that stage. Then they have a common cause or a 0-type

SCCS of size 3 at stage n+ 1.

Proof: (Note that the cases are not exclusive; they are, however, ex-

haustive, which is enough for the present purpose.)

Case 1: A,B have a 0-type common cause at stage n.

Let C be a 0-type common cause for the correlation. When moving from

stage n to n + 1, a new atom (n + 1) is added. Let C ′⊥ = C⊥ ∪ {n + 1}.
Notice that C and C ′⊥ form a partition of unity of the algebra at stage n+1.

C contains exclusively atoms from the algebra at stage n and so continues to

be a screener o�. Notice that since C was a 0-type common cause at stage

n, at that stage P (A | C⊥) = 0 or P (B | C⊥) = 0. Since the atom n + 1

lies outside the events A and B, at stage n + 1 we have P (A | C ′⊥) = 0 or

P (B | C ′⊥) = 0, and so C ′⊥ is a screener-o� too. Thus C and C ′⊥ are both

screener-o�s and compose a partition of unity at stage n+ 1. By corollary 4

(p. 59), this is enough to conclude that A,B have a 0-type common cause at

stage n+ 1.

Case 2: A,B have a common cause which is not a 0-type common

cause at stage n.

Let C be a non-0-type common cause for the correlation at stage n.

Notice that both P (AB | C) and P (AB | C⊥) are non-zero. In this case the

`new' atom cannot be added to C or C⊥ without breaking the corresponding

screening-o� condition. However�as we remarked in the previous case�the

atom n+1 lies outside the events A and B, so the singleton {n+1} is trivially
a screener-o� for the pair. Since conditioning on {n+ 1} gives probability 0

for both A and B, the statistical relevance condition is satis�ed. Therefore

our explanation of the correlation at stage n + 1 will be a 0-type SCCS of
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size 3: C ′ = {C,C⊥, {n+ 1}}.6

Case 3: A,B have a 0-type SCCS of size 3 at stage n.

Let the partition C = {Ci}i∈{0,1,2} be a 0-type SCCS of size 3 at stage n

for the correlation, with C2 being the zero element (that is P (A | C2) = 0 or

P (B | C2) = 0 (or possibly both), with the conditional probabilities involving

C0 and C1 being positive). Let C ′ = {C0, C1, C2 ∪ {n+ 1}}. Appending the

additional atom to C2 does not change any conditional probabilities involved,

so the statistical relevance condition is satis�ed. Since n + 1 /∈ A ∪ B,
C2 ∪ {n + 1} screens o� the correlation at stage n + 1 and C ′ is a 0-type

SCCS of size 3 at stage n+ 1 for the correlation. �

As mentioned above, lemmas 13�15 complete the proof of this direction

of the theorem since a method is given for obtaining a statistical common

cause or an SCCS of size 3 for any correlation between logically independent

events in any �nite probability space with uniform distribution.

We proceed with the proof of the `upward' direction of theorem 4.

Causal up-to-3-closedness w.r.t. Lind ⇒Measure uniformity

In fact, we will prove the contrapositive: if in a �nite probability space

with no 0-probability atoms the measure is not uniform, then there exist

logically independent, correlated events A,B possessing neither a common

cause nor an SCCS of size 3.7 In the remainder of the proof we extend the

reasoning from case 2 of proposition 4 of Gyenis & Rédei (2004), which covers

the case of common causes.

Consider the space with n atoms; arrange the atoms in the order of de-

creasing probability and label them as numbers 0, 1, . . . , n − 1. Let A =

6The fact that a correlation has an SCCS of size 3 does not necessarily mean it has no

common causes.
7 Recall that by assumption the probability space under consideration has at least 4

atoms.
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{0, n− 1} and B = {0, n− 2}. Gyenis and Rédei (2004) prove that A,B are

correlated and do not have a common cause. We will now show that they do

not have an SCCS of size 3 either.

Suppose C = {Ci}i∈{0,1,2} is an SCCS of size 3 for the pair A, B. If for

some i ∈ {0, 1, 2} A ⊆ Ci, C violates the statistical relevance condition, since

for the remaining j, k ∈ {0, 1, 2}, j 6= k, i 6= j, i 6= k, P (A | Cj) = 0 = P (A |
Ck). Similarly if B is substituted for A in the above reasoning. It follows

that none of the elements of C can contain the whole event A or B. Notice

also that no Ci can contain the atoms n − 1 and n − 2, but not the atom

0, as then it would not be a screener-o�. This is because in such a case

P (AB | Ci) = 0 despite the fact that P (A | Ci) 6= 0 and P (B | Ci) 6= 0. But

since C is a partition of unity of the space, each of the three atoms forming

A∪B has to belong to an element of C, and so each Ci contains exactly one

atom from A ∪B. Therefore for some j, k ∈ {0, 1, 2} P (A | Cj) > P (A | Ck)
but P (B | Cj) < P (B | Ck), which means that C violates the statistical

relevance condition. All options exhausted, we conclude that the pair A,B

does not have an SCCS of size 3; thus the probability space is not causally

up-to-3-closed. �

The reasoning from the `upward' direction of the theorem can be extended

to show that if a probability space with no 0-probability atoms has a non-

uniform probability measure, it is not causally up-to-n-closed for any n > 2.

The union of the two events A and B described above only contains 3 atoms;

it follows that the pair cannot have an SCCS of size greater than 3, since

it would have to violate the statistical relevance condition (two or more of

its elements would, when conditioned upon, give probability 0 to event A or

B). This, together with proposition 3 of Gyenis & Rédei (2004) justi�es the

following claims:

Theorem 5 No �nite probability space with a non-uniform measure and
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without 0-probability atoms is causally up-to-n-closed w.r.t. Lind for any

n > 2.

Corollary 16 No �nite probability space with a non-uniform measure and

without 0-probability atoms is causally n-closed w.r.t. Lind for any n > 2.

The proofs of lemmas 10 and 11 in section 6.2.3 will make it clear how

to generalize both theorem 5 and corollary 16 to arbitrary �nite spaces (also

those possessing some 0-probability atoms) with a non-uniform measure. We

omit the tedious details.

Examples

We will now present a few examples of how our method of �nding explana-

tions for correlations works in practice, analyzing a few cases of correlated

logically independent events in probability spaces of various sizes (with uni-

form probability distribution).

Example 3 n = 7, A = {0, 2, 3, 5, 6}, B = {1, 2, 5, 6}.
We see that a′ = 2, b′ = 1 and k = 3, so we will analyze the pair

A1 = {0, 1, 2, 3, 4}, B1 = {2, 3, 4, 5}. We now check whether A1 and B1 were

independent at stage 6, and since at that stage A⊥1 ∩ B⊥1 = ∅ we conclude

that they were not. Therefore the pair A1, B1 appears from above at stage

7. Notice that SC7(A1, B1) = 1. By construction from lemma 13 we know

that an event consisting of just a single atom from the intersection of the two

events satis�es the requirements for being a common cause of the correlation.

Therefore C = {2} is a common cause of the correlation between A and B

at stage 7.

Example 4 n = 10, A = {2, 3, 8}, B = {2, 8, 9}.
We see that a′ = 1, b′ = 1 and k = 2, so we will analyze the pair

A1 = {0, 1, 2}, B1 = {1, 2, 3}. Since SC10(A1, B1) = 11, we conclude that
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the lowest stage at which the pair is correlated is 5 (as remarked earlier, SC

changes by k from stage to stage). A1 and B1 are logically independent at

that stage, but not at stage 4, which means that the pair appears from above

at stage 5. We employ the same method as in the previous example to come

up with a 1-type common cause of the correlation at that stage�let it be the

event {1}. Now the reasoning from case 2 of lemma 15 is used to `translate'

the explanation to stage 6, where it becomes the following 0-type SCCS:

{{1}, {0, 2, 3, 4}, {5}}. Case 3 of the same lemma allows us to arrive at an

SCCS for A1,B1 at stage 10: {{1}, {0, 2, 3, 4}, {5, 6, 7, 8, 9}}. Its structure is
as follows: one element contains a single atom from the intersection of the two

events, another the remainder of A1 ∪B1 as well as one atom not belonging

to any of the two events, while the third element of the SCCS contains the

rest of the atoms of the algebra at stage 10. We can therefore produce a

0-type SCCS for A and B at stage 10: {{2}, {0, 3, 8, 9}, {1, 4, 5, 6, 7}}.

Example 5 n = 12, A = {2, 4, 6, 8, 9, 10, 11}, B = {1, 3, 6, 10, 11}.
We see that a′ = 4, b′ = 2 and k = 3, so we will analyze the pair

A1 = {0, 1, 2, 3, 4, 5, 6}, B1 = {4, 5, 6, 7, 8}. We also see that A1 and B1

were logically independent at stage 11, but were not correlated at that stage.

Therefore the pair A1, B1 appears from below at stage 12. Notice that z = 3.

Therefore we see that z > b′ and a′ > k, which means we can use the method

from case 2 of lemma 14 to construct a 0-type common cause, whose comple-

ment consists of 1 atom from A1\B1 and 1 atom from (A1∪B1)⊥. Going back

to A and B, we see that the role of the complement of our common cause

can be ful�lled by C⊥ = {0, 2}. Therefore C = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11} is
a 0-type common cause of the correlation between A and B at stage 12.8

8 Incidentally, if we wanted to �nd a 1-type common cause for A and B at stage 12,

we could put C = {2, 11}, in which case P (A | C) = 1. However, this is not always

possible and there are cases in which only 0-type common causes (or only 1-type common
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6.2.3 Proofs of lemmas 9-11

Proof: [of lemma 9] If P is uniform, then 〈S, P 〉 has no 0-probability

atoms, which means that S = S+ and P = P+. Therefore P+ is uniform,

so (by theorem 3) 〈S+, P+〉 (and, consequently, 〈S, P 〉) is causally up-to-3-

closed w.r.t. L+
ind. But in a space with no 0-probability atoms Lind = L+

ind,

therefore 〈S, P 〉 is also causally up-to-3-closed w.r.t. Lind. �

The next two proofs will require �jumping� from 〈S+, P+〉 to 〈S, P 〉 and
vice versa. We will now have to be careful about the distiction between

proper and improper SCC(S)s. Some preliminary remarks are in order.

Let A ∈ S. As before, we can think of A as a set of atoms of S. Let A+

be the set of non-zero probability atoms in A:

A+ := A \ {a | a is an atom of S and P (a) = 0}.

Notice that

P (A) =
∑
a∈A

P (a) =
∑
a∈A+

P (a) = P (A+) = P+(A+). (6.1)

Suppose A,B,C ∈ S. From (6.1) it follows that if A,B are correlated in

〈S, P 〉, A+, B+ are correlated in 〈S+, P+〉. Similarly, for any D ∈ S, P (D |
C) = P+(D+ | C+). So, if C screens o� the correlated events A,B in 〈S, P 〉,
then C+ screens o� the correlated events A+, B+ in 〈S+, P+〉. Also, if a

family C = {Ci}i∈I satis�es the statistical relevance condition w.r.t. A,B

in 〈S, P 〉, then the family C+ = {C+
i }i∈I satis�es the statistical relevance

condition w.r.t. A+, B+ in 〈S+, P+〉. If C = {Ci}i∈{0,...,n−1} is a proper

SCCS of size n for the correlation between events A,B in 〈S, P 〉, then all its

elements di�er from both A and B by more than a measure zero event. It

causes) are possible. For a concrete example, take the pair {{0, 1, 2, 3, 4}, {4, 5}}, which
appears from below at stage 11 and has only 0-type common causes at that stage (we used

a computer program to verify this).
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follows that in such a case C+ = {C+
i }i∈{0,...,n−1} is a proper SCCS of size n

for the correlation between events A+, B+ in 〈S+, P+〉.
Proof: [of lemma 10] Since P+ is not uniform, by theorem 3 〈S+, P+〉

is not causally up-to-3-closed w.r.t. L+
ind (and, consequently, Lind). Then

there exist logically independent, correlated events A+, B+ in S+ which do

not have a proper SCCS of size at most 3 in 〈S+, P+〉. The two events are

also logically independent and correlated in 〈S, P 〉; it is easy to show that

in 〈S, P 〉 the pair 〈A+, B+〉 also belongs both to L+
ind and to Lind. We will

show that 〈S, P 〉 also contains no proper SCCS of size at most 3 for these

events. For suppose that for some m ∈ {2, 3}, C = {Ci}i∈N,i<m was a proper

SCCS of size m for the correlation between A+ and B+ in 〈S, P 〉. Then

C+ := {C+
i }i∈N,i<m would be a proper SCCS of size m for the correlation

between A+ and B+ in 〈S+, P+〉, but by our assumption no such SCCSs

exist. We infer that the correlated events A+, B+ have no proper SCCS of

size up to 3 in 〈S, P 〉, so the space 〈S, P 〉 is not causally up-to-3-closed w.r.t.

either Lind or L
+
ind. �

Proof: [of lemma 11] Since P+ is uniform, by theorem 3 〈S+, P+〉
is causally up-to-3-closed w.r.t. L+

ind. We will �rst show that also 〈S, P 〉 is
causally up-to-3-closed w.r.t. L+

ind. Notice that if A,B ∈ S are correlated

in 〈S, P 〉 and 〈A,B〉 ∈ L+
ind, then A

+, B+ ∈ S+ are correlated in 〈S+, P+〉
and 〈A+, B+〉 ∈ L+

ind. We know that in that case there exists in 〈S+, P+〉 a
proper SCCS of size 2 or 3 for A+ and B+. If we add the 0-probability atoms

of S to one of the elements of the SCCS, we arrive at a proper SCCS of size

2 or 3 for A,B ∈ S.
It remains to consider correlated events A,B ∈ S such that 〈A,B〉 ∈ Lind

but 〈A,B〉 /∈ L+
ind. In such a case at least one of the probabilities from

de�nition 17 has to be equal to 0. It is easy to show that, since we know

the two events are correlated, it can only be the case that P (A ∩ B⊥) = 0

or P (B ∩ A⊥) = 0; equivalently, A+ ⊆ B+ or B+ ⊆ A+. It may happen
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that A+ = B+. Let us �rst deal with the case of a strict inclusion; suppose

without loss of generality that A+ ⊂ B+. If |B+ \ A+| > 1, take an event

C such that A+ ⊂ C ⊂ B+. Since both inclusions in the last formula are

strict, in such a case C is a proper statistical common cause for A and B.

Notice that since 〈A,B〉 ∈ Lind, from the fact that A+ ⊂ B+ it follows that

A 6= A+. Therefore, if |B+ \A+| = 1, put C = A+. Such a C is an improper

statistical common cause of A and B.

The last case is that in which A+ = B+. From the fact that A and B are

logically independent it follows that A \B+ 6= ∅ and B \ A+ 6= ∅. Therefore
A 6= A+ and B 6= B+. We can thus put C = A+ or C = B+ to arrive at an

improper statistical common cause of A and B.

When A+ ⊆ B+, it is also impossible to �nd (even improper) SCCSs of

size 3 for A and B. For suppose C = {Ci}i∈{0,1,2} was an SCCS for A and

B. If for some j 6= l; j, l ∈ {0, 1, 2} it is true that Cj ∩ A+ = Cl ∩ A+ = ∅,
then P (A|Cj) = 0 = P (A|Cl) and so C cannot be an SCCS of A and B

due to the statistical relevance condition being violated. Thus at least two

elements of C have to have a nonempty intersection with A+. Every such

element Cj screens o� A from B. Since by our assumption A+ ⊆ B+, it

follows that P (AB|Cj) = P (A|Cj). Therefore the screening o� condition

takes the form of P (A|Cj) = P (A|Cj)P (B|Cj); and so P (B|Cj) = 1. Since

we already established that C contains at least two elements which can play

the role of Cj in the last reasoning, it follows that in this case the statistical

relevance condition is violated too; all options exhausted, we conclude that

no SCCSs of size 3 exist for A and B when A+ ⊆ B+. The argument from this

paragraph can also be applied to show that if A+ ⊆ B+ and |B+ \ A+| 6 1,

no proper statistical common causes for the two events exist. �
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6.3 The �proper� / �improper� common cause

distinction and the relations of logical in-

dependence

A motivating intuition for the distinction between proper and improper com-

mon causes is that a correlation between two events should be explained by

a di�erent event. The di�erence between an event A and a cause C can

manifest itself on two levels: the algebraical (A and C being not identical as

elements of the event space) and the probabilistic (P (A∩C⊥) or P (C ∩A⊥)

being not equal to 0). As per de�nition 18, in the case of improper common

causes the di�erence between them and at least one of the correlated events

(say, A) is only algebraical. For some this is intuitively enough to dismiss C

as an explanation for any correlation involving A.

One could, however, have intuitions to the contrary. First, events which

di�er by a measure zero event can be conceptually distinct. Second, atoms

with probability 0 should perhaps be irrelevant when it comes to causal

features of the particular probability space, especially when the independence

relation considered is de�ned without any reference to probability. If the

space is causally up-to-n-closed w.r.t. Lind, adding 0-probability atoms should

not change its status. But consider what happens when we add a single 0-

probability atom to a space which is up-to-2-closed (common cause closed)

w.r.t. Lind by Proposition 3 from Gyenis & Rédei (2004): the space 〈S5, Pu〉,
where S5 is the Boolean algebra with 5 atoms {0, 1, . . . , 4} and Pu is the

uniform measure on S5. Label the added 0-probability atom as the number

5. It is easy to check that the pair 〈{3, 4}, {4, 5}〉 belongs to Lind, is correlated
and has no proper common cause. The only common cause for these events,

{4}, is improper. Therefore the space is not common cause closed w.r.t. Lind

in the sense of Gyenis & Rédei (2004) and our de�nition 19; this change
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in the space's status has been accomplished by adding a single atom with

probability 0.

It should be observed that the pair of events belongs to Lind, but not to

L+
ind; and that the bigger space is still common cause closed, but with respect

to L+
ind, not Lind.

In general, suppose 〈S, P 〉 is a space without any 0 probability atoms,

causally up-to-n-closed w.r.t. Lind, and suppose some �extra� atoms were

added, so that a new space 〈S ′, P ′〉 is obtained, where for any atom a of S ′,

P ′(a) =

P (a) for a ∈ S

0 for a ∈ S ′ − S

It is easy to prove, using the techniques employed in the proof of lemma 11,

that all �new� correlated pairs in 〈S ′, P ′〉 belonging to Lind have (sometimes

only improper) SCCSs of size up to n. This is also true in the special case of

〈S5, Pu〉 augmented with some 0 probability atoms. Perhaps, then, we should

omit the word �proper� from the requirements for a probability space to be

causally up-to-n-closed (de�nition 19)?

This, however, is only one half of the story. Suppose the de�nition of

causal up-to-n-closedness were relaxed in the above way, so that explaining

correlations by means of improper SCC(S)s would be admissible. Consider a

space 〈S+, P+〉,9 in which S+ has at least 4 atoms and P+ is not the uniform

measure on S+. This space, as we know, is not causally up-to-3 closed in the

sense of de�nition 19, but it is also not causally up-to-3 closed in the �relaxed�

sense, since the di�erence between proper and improper common causes can

only manifest itself in spaces with 0 probability atoms.10 When a new 0

probability atom m is added, every hitherto unexplained correlation between

9 Remember that by our convention such a space has no 0 probability atoms.
10 This is because the spaces we are dealing with are �nite�so that we can be sure the

Boolean algebras considered have atoms at all�and we already require an SCC for two

events A and B to be distinct from both A and B, see de�nition 9, p. 9.
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some events A and B gains an SCC by means of the event C := A ∪ {m}.
All such SCCs are, of course, improper.

In short, the situation is this: if proper SCC(S)s are required, this leads

to somewhat unintuitive consequences regarding causal up-to-n-closedness

w.r.t. Lind. Omitting the requirement results, however, in unfortunate ef-

fects regarding causal up-to-n-closedness no matter whether Lind or L
+
ind is

considered. We think the natural solution is to keep the requirement of

proper SCC(S)s in the de�nition of causal up-to-n-closedness, but, of the

two independence relations, regard L+
ind as more interesting. It is the right-

most column of table 6.1 that contains the most important results of this

chapter, then; this is fortunate, since they are a �pure� implication and an

equivalence, without any special disclaimers.

6.4 Other independence relations

So far, the relation of independence under consideration�determining which

correlations between two events require explanation�was the relation of log-

ical independence and its derivative L+
ind. Let us consider using a `broader'

relation Rind ⊃ Lind, which apart from all pairs of logically independent

events would also include some pairs of logically dependent events. (The

spaces under consideration are still �nite.) For clarity, assume the space

does not have any 0-probability atoms (so that e.g. Lind = L+
ind), but make

no assumptions regarding the uniformity of the measure. Will we have more

correlations to explain? If so, will they have common causes?

First, observe that if A or B equals 1S, and so P (A) or P (B) equals 1,

there is no correlation. In the sequel assume that neither A nor B equals 1S.

Second, note that if A ∩ B = ∅, then P (AB) = 0 and no (positive)

correlation arises.

Third, if A⊥ ∩B⊥ = ∅, there is again no positive correlation. This is be-

134



cause in such a case P (AB)+P (AB⊥)+P (A⊥B) = 1, and since P (A)P (B) =

P (AB)[P (AB) + P (AB⊥) + P (A⊥B)] + P (AB⊥)P (A⊥B) > P (AB), the

events are not correlated.

Consider the last possible con�guration in which the events A,B are

logically dependent: namely, that one is a subset of the other. Suppose

A ⊆ B. Since by our assumption both P (A) and P (B) are strictly less than

1, the events will be correlated. It can easily be checked11 that when A ⊆ B

but B 6= 1S, any C which screens o� the correlation and has a non-empty

intersection with A (and so P (A | C) 6= 0) has to be a subset of B (because

P (B | C) = 1). And since it cannot be that both C and C⊥ are subsets of

B, then if C is a common cause, it is necessary that C⊥ ∩ A = ∅. In the

other direction, it is evident that if A ⊆ C ⊆ B, both C and C⊥ screen o�

the correlation and the statistical relevance condition is satis�ed. The only

pitfall is that the de�nition of a common cause requires it be distinct from

both A and B, and so none exist when b′ = 1.

To summarize, the only correlated pairs of logically dependent events

A,B are these in which one of the events is included in the other. Assume

A ⊆ B. Then:

• if b′ = 1, there is no common cause of the correlation;

• otherwise the common causes of the correlation are precisely all the

events C such that A ⊂ C ⊂ B.

Lastly, notice that in a space 〈Sn, Pu〉 (Sn being the Boolean algebra

with n atoms and Pu being the uniform measure) we could proceed in the

opposite direction and restrict rather than broaden the relation Lind. If we

take the independence relation Rind to be the relation of logical independence

restricted to the pairs which appear from above or below at stage n, then

our probability space is common cause closed w.r.t. Rind.

11 See the last paragraph of the proof of lemma 11, p. 131.
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6.5 A slight generalization

In this section we will show that the results of this chapter, which have only

concerned classical probability spaces so far, are also meaningful for �nite

non-classical spaces. We go back to our former practice: by �common cause�

we will always mean �proper common cause�; similarly with �common cause

system�.

De�nition 23 [Non-classical probability space] A lattice L is orthomo-

dular if ∀a,b∈L a 6 b⇒ b = a ∨ (a⊥ ∧ b).
Two elements a and b of L are orthogonal i� a 6 b⊥.

An additive state on an orthomodular lattice (OML) L is a map P from

L to [0, 1] such that P (1L) = 1 and for any A ⊆ L such that A consists of

mutually orthogonal elements, if
∨
A exists, then P (

∨
A) =

∑
a∈A P (a).12

A non-classical probability space is a pair 〈L, P 〉, where L is a non-

distributive OML and P is an additive state on L.13

A relation of compatibility needs to be introduced. Only compatible

events may be correlated; and a common cause needs to be compatible with

12 Of course, in the �nite case�since a lattice always contains all suprema of doubletons

by virtue of being a lattice�it would su�ce to say that for any two orthogonal elements

a and b, P (a ∨ b) = P (a) + P (b). However, in�nite lattices can be incomplete: they can

lack the suprema of certain subsets.
13 A di�erent direction could be taken in presenting the de�nitions of classical and non-

classical probability spaces: �rst, a probability space could be de�ned as a measure on

an OML; then, classical and non-classical spaces could be distinguished on the basis of

whether the OML in question is distributive (in which case it is by de�nition a Boolean

algebra) or not. However, throughout the biggest part of this essay we have been in the

sphere of classical probability and so the term �probability space� was e�ectively short for

�classical probability space�. We do not want to change this more than halfway through

the work. However, for clari�catory reasons, this will result in some de�nitions containing

the phrase �classical or non-classical�, perhaps redundant at �rst sight�see e.g. de�nitions

25 and 26 below.
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both e�ects. We use the word �compatibility� because it was the one used in

(Hofer-Szabó, Rédei & Szabó (2000)); sometimes �commutativity� is used in

its place (see e.g. Kalmbach (1983)).

De�nition 24 [Compatibility, correlation, SCC(S) in non-classical

spaces] Let L be an OML and a, b ∈ L. Event a is said to be compatible

with b (aCb) if a = (a ∧ b) ∨ (a ∧ b⊥).

Events a, b are said to be correlated if aCb and the events are correlated

in the sense of de�nition 3.

The event x ∈ L is a proper statistical common cause of a and b if it

ful�lls the four requirements from de�nition 9 (p. 53), di�ers from both a

and b by more than a measure zero event, and is compatible both with a and

with b (of course, c⊥ will be compatible, too).

A partition {Ci}i∈I of 1L is a proper statistical common cause system of

size n of a and b if it satis�es the requirements of de�nition 10 (p. 53), all its

elements di�er from both a and b by more than a measure zero event, and

all its elements are compatible both with a and b.

The notion of causal up-to-n-closedness is then immediately transferred to

the context of non-classical probability spaces by substituting �non-classical�

for �classical� in de�nition 19 (p. 113).

A block of an OML is its maximal Boolean subalgebra. We are interested

in pairs of correlated events in L; since events are compatible i� they lie in a

block (Kalmbach (1983), p. 39), it turns out that they can only be correlated

if they belong to the same block.

This leads us to the result of this section, which can be colloquially

phrased in this way: a �nite non-classical probability space is causally up-

to-n closed if and only if all its blocks are causally up-to-n-closed.

Theorem 6 Suppose 〈L, P 〉 is a �nite non-classical probability space. Sup-

pose all blocks of L have at least 4 atoms a such that P (a) > 0. Then 〈L, P 〉
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is causally up-to-n-closed w.r.t Lind if and only if for any block B of L, the

classical probability space 〈B,P |B〉 is causally up-to-n-closed w.r.t. Lind.

Proof: Suppose 〈L, P 〉 is causally up-to-n-closed w.r.t. Lind. Let B be a

block of L; let a, b be correlated and logically independent events in 〈B,P |B〉.
Then a, b are correlated and logically independent events in 〈L, P 〉, and so

have an SCCS of size up to n in 〈L, P 〉. But since all elements of the SCCS

have to be compatible with a and b, they also have to belong to B. And so

the pair has an SCCS of size up to-n in 〈B,P |B〉.
For the other direction, suppose that for any block B of L, the space

〈B,P |B〉 is causally up-to-n-closed w.r.t. Lind. Let a, b be correlated and

logically independent events in 〈L, P 〉. Being correlated entails being com-

patible; and so a and b belong to a block B. Since the ordering on L is

induced by the orderings of the elements of B, a and b are also logically

independent in B. Therefore by our assumption they have an SCCS of size

up to n in 〈B,P |B〉. This SCCS is a partition of unity of L, and so satis�es

de�nition 24. Thus a and b have an SCCS of size up to n in 〈L, P 〉. �

6.5.1 Examples

We will now present a few examples of causal closedness and up-to-3-closedness

of non-classical probability spaces. Figure 1 depicts two non-classical prob-

ability spaces causally closed w.r.t. L+
ind. Notice that all blocks have exactly

5 atoms of non-zero probability and each such atom receives probability 1
5
,

and so each block is causally closed w.r.t. L+
ind. The left space is also causally

closed w.r.t. Lind.

The left OML in �gure 2 has two blocks and the measure of the space is

uniform on both of them, therefore the space is causally up-to-3-closed w.r.t.

Lind. This however is not the case with the right one: its measure is not

uniform on the block with four atoms, and so there is a correlation among
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Figure 6.1: Greechie diagrams of two OMLs which, if supplied with the state

which assigns number 1
5
to all �white� atoms and 0 to both �black� atoms,

form non-classical probability spaces which are causally up-to-2-closed (or

simply �causally closed�, to use the term of Gyenis & Rédei (2004)) w.r.t.

L+
ind.

some two logically independent events from that block which has neither a

common cause nor an SCCS of size 3. (One of these events will contain one

�dotted� atom and the single �white� atom of the block; the other will contain

two �dotted� atoms.) Therefore the space is not causally up-to-3-closed w.r.t.

Lind.

6.6 Application for constructing Bayesian net-

works�a negative opinion

One could entertain the thought that the algorithm outlined above, which

describes the construction of SCCs and SCCSs for pairs of logically inde-

pendent, correlated events in �nite classical probability spaces with the uni-

form measure could be useful in the process of constructing a Bayesian net-

work; the prospect seems to be encouraging since the networks consist of
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Figure 6.2: In these OMLs �white� atoms have probability 1
7
and the �dotted�

ones 2
7
. The space depicted on the left is causally up-to-3-closed, but the one

on the right is not.

a �nite number of variables with each having a �nite set of possible values

(Williamson (2005)). Suppose we have a �xed population on which we are

doing our research, but we are not sure what variables should belong to the

causal structure, apart from some we are certain of. Suppose two correlated

variables, X and Y , belong to the group of which we are certain that it has

a rightful place in the structure, but no other variable we are similarly sure

of can be a common ancestor of X and Y in our projected DAG, since no set

of variables under consideration (di�erent from X and Y ) makes X and Y

independent when conditioned upon. Could the algorithm presented above

allow us to construct an additional node for our Bayesian network, repre-

senting a variable we were not aware of when initially considering the causal

structure in question; which, when conditioned on, would render the corre-

lated variables independent? Unfortunately, the answer is �no�; it will bring

us back to the topic of common and common common screener systems.

The reason for the negative conclusion is the fact that a correlation be-

tween variables typically entails numerous correlations between events. The

argument above provides an explanation for any single correlation between

logically independent events, but there is no guarantee that a way exists of

somehow �combining� the events (= common causes), or three element par-
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titions of the population (= SCCSs), in order to create a random variable,

which is what we need if we want to put a new node in our DAG.

A few simple abstract examples will clarify this. First, a �fortunate� case.

Consider an 8-element universe Ω = {0, 1, . . . , 7} and two correlated random

variables A and B, de�ned in this way:

A(x) =


1, x ∈ {0, 1};

2, x ∈ {2, 3};

3, x ∈ {4, 5, 6, 7};

B(x) =


1, x ∈ {0, 3};

2, x ∈ {1, 2};

3, x ∈ {4, 5, 6, 7}.

There are some cases of correlated events (assume the uniform measure on Ω),

e.g. P (A = 1∧B = 2) > P (A = 1)P (B = 2) and P (A = 2∧B = 2) > P (A =

2)P (B = 2). If we run our procedure outlined in the preceding sections, we

arrive at the event C = {0, 1, 2, 3}, which happens to be a common statistical

common cause for all correlations. Therefore we can de�ne it as a random

variable:

C(x) =

1, x ∈ {0, 1, 2, 3};

2, x ∈ {4, 5, 6, 7}

which may be a candidate for a node in our DAG, since it satis�es the re-

quirement for a common ancestor of A and B, making them independent

when conditioned upon.14 In fact, being an SCC is overkill here; it is evi-

dent that being a common common screener system su�ces. Of course, as

noted in chapter 3 trivial systems of this kind always exist, but one could be

hopeful that our procedure may generate non-trivial systems for subsequent

consideration.

Unfortunately, in general this is not the case. Consider a smaller, 7-ele-

ment universe Ω = {0, 1, . . . , 6} and two correlated random variables A and

14 More precisely, the requirement is that the set of all common ancestors should make

the correlated variables independent when conditioned upon. By assumption, we do not

have other common ancestors of the events in question in our graph.
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B, de�ned in this way:

A(x) =


1, x ∈ {0, 1};

2, x ∈ {2, 3, 4};

3, x ∈ {5, 6};

B(x) =


1, x ∈ {0, 3, 4};

2, x ∈ {1, 2};

3, x ∈ {5, 6}.

The SCC C suggested by our procedure for the correlation between events

A = 1 and B = 2 consists of 0, 1, 2 and one element from {3, 4}. Unfortu-

nately, the SCC D suggested by our procedure for the correlation between

events A = 2 and B = 1 consists just of a single element from {3, 4}. Neither
of the two SCCs is a common SCC for the two pairs of correlated events;

a 4 element partition of Ω consisting of all Boolean combinations of C and

D also fails to be a common SCCS, and even a common common screener

system for the two correlated pairs. In cases like that, which we conjecture

are more frequent than the �fortunate� ones from the previous paragraph,

our procedure unfortunately does not yield the information needed to de�ne

a random variable which could be a candidate for a node in the DAG to be

constructed.

6.7 The existence of deductive explanantes

We will now prove a theorem concerning the existence of deductive explanan-

tes, a notion introduced in section 3.4.2, for all correlations between logically

independent events in �nite classical probability spaces with the uniform

measure.

Theorem 7 Let 〈S, P 〉 be a �nite classical probability space with the uniform
measure. Suppose A and B are correlated, logically independent events. Then

there exists an event C ∈ S which is a deductive explanans for A and B.
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Proof: Again, without loss of generality we can consider S as an n-atom

Boolean algebra of all subsets of the set {0, . . . , n−1}; in other words, as the

probability space we would refer to as �stage n� in the preceding sections.

The deductive explanans for A and B will be the common cause C for them

at the (possibly lower) stage at which they appear, either from above or from

below.

Suppose that at stage m 6 n, where A and B appear, the method de-

scribed in the proofs of lemmas 13 and 14 ascribes them a statistical common

cause C. This C of course also screens o� A in B at stage n. However, at

stage n C⊥ may be bigger then C⊥ at stage m: the di�erence is n − m

atoms. C⊥ screens o� A from B at stage m. The addition of even a single

atom to C⊥ has to break the condition, since the atom has non-zero prob-

ability (due to the measure being uniform) and belongs to neither A nor

B. It will make A and B correlated conditional on C⊥; at stage m + 1,

P (AB|C⊥) > P (A|C⊥)P (B|C⊥).

To see this, recall lemma 12: if two events are independent at some stage,

they are correlated at every later stage. Now consider a probability space

where the event space is the Boolean algebra with the set of atoms consisting

of the set of atoms of B restricted to C⊥ at stage m, and the measure is the

corresponding restriction of P . This algebra is isomorphic to the space at

stage k, where k is the cardinality of C⊥. Events A and B are independent

at stage k, but due to lemma 12 are correlated at stage k + 1. Thus, when

an additional atom is appended to C⊥, events A and B become correlated

conditional on C⊥. By the above argument, adding more atoms to C⊥ does

not change the fact that A and B are correlated conditional on it. And so,

at stage n it has to be the case that P (AB|C⊥) > P (A|C⊥)P (B|C⊥).

Since C is a common cause of A and B at stagem, at that stage P (A|C) >

P (A|C⊥) and P (B|C) > P (B|C⊥). When we move to higher stages, it

is evident P (A|C) and P (B|C) stay the same, while both P (A|C⊥) and
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P (B|C⊥) decrease. Therefore STAT (A,C) and STAT (B,C) are true at

stage n, too.

Lastly, it is just a matter of consulting inequality 3.3 on page 70 to see that

C is a deductive explanans for A and B: the left-hand side of the inequality

is positive, while the right-hand side is negative. �

So far, nothing has been established regarding the existence�or nonexi-

stence�of deductive explanantes for events in �nite spaces with non-uniform

measures, or in in�nite spaces.

6.8 Conclusions and problems

The main result of this chapter is that in �nite classical probability spaces

with the uniform probability measure (and so no atoms with probability 0)

all correlations between logically independent events have an explanation by

means of a common cause or a common cause system of size 3. A few remarks

are in order.

First, notice that the only SCCSs employed in our method described

in section 6.2.2 are 0-type SCCSs, and that they are required only when

`translating' the explanation from a smaller space to a bigger one. Sometimes

(if the common cause we found in the smaller space is 0-type; see example 5

above) such a translation can succeed without invoking the notion of SCCS

at all.

Second, #-type common causes, which some would view as `genuinely

indeterministic', are never required to explain a correlation � that is, a corre-

lation can always be explained by means of a 0-type SCCS, a 0-type statis-

tical common cause, or a 1-type statistical common cause15. Therefore one

15 But #-type common causes do exist: e.g. in the space with 12 atoms and the uniform

measure the pair of events {A, B}, where A = {0, 1, 2, 3, 4, 5, 6}, B = {4, 5, 6, 7, 8} (the
same we dealt with in example 5, p. 128) has, apart from both 0- and 1-type common
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direction of the equivalence in theorem 4 can be strengthened:

Theorem 8 Let 〈S, P 〉 be a �nite classical probability space. Let S+ be the

subalgebra of S containing all and only the non-zero probability atoms of S

and P+ be the restriction of P to S+. Suppose S+ has at least 4 atoms.

If P+ is the uniform probability measure on S+, then any pair of correlated

and logically independent events in 〈S, P 〉 has a 1-type statistical common

cause, a 0-type statistical common cause or a 0-type statistical common cause

system of size 3 in 〈S, P 〉.

6.9 Causal closedness of atomless spaces

Let us recall an important theorem from Gyenis & Rédei (2004) which we

will use in the next chapter. We move to the general context of possibly

in�nite probability spaces.

De�nition 25 [Atomless probability space] A (classical or non-classical)

probability space 〈F , µ〉 is atomless if for any C ∈ F , if µ(C) > 0, then there

exists D ∈ F such that D ⊆ C and 0 < µ(D) < µ(C).

Of course, an atomless space may consist of a measure de�ned on an

atomic algebra (take the example of all Borel subsets of [0, 1] ⊆ R with the

Lebesgue measure).

We will �rst focus on the classical case. It is obvious from the above

de�nition that in any classical atomless space, for any non-zero measure

event C there is an in�nite sequence of events with positive measure which

are its subsets. It could be contemplated, though, that some real numbers

less than µ(C) are not exhibited as probabilities of events being subsets of

causes, a #-type common cause of shape C = {1, 2, 4, 5, 7, 9}, C⊥ = {0, 3, 6, 8, 10, 11};
P (A | C) = 2

3 , P (B | C) =
1
2 , P (A | C

⊥) = 1
2 , P (B | C

⊥) = 1
3 .
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C. This is impossible! Gyenis & Rédei (2004) use a fact concerning classical

atomless spaces (see e.g. p. 46 of Fremlin (2001)), according to which, if for

some C µ(C) > 0, then for any real number r such that 0 < r < µ(C) there

exists a D ∈ F such that D ⊆ C and µ(D) = r. This allows the authors to

prove the following fact:

Fact 17 (Gyenis & Rédei (2004)) All atomless classical probability spa-

ces are causally closed.

Kitajima (2008) extended Gyenis' and Rédei's result to a special class

of non-classical spaces: these in which the OML on which the measure is

de�ned is atomless and complete (has suprema of all its subsets). Kitajima

proves that in such a case the non-classical probability space is atomless, too,

and that all such spaces contain SCCs for each pair of logically independent,

correlated events. We state Kitajima's result in the following form:

Fact 18 (Kitajima (2008)) If in a non-classical probability space 〈L, P 〉
L is an atomless and complete OML, then 〈L, P 〉 is causally closed w.r.t. the

relation of logical independence.
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Chapter 7

Causal completability

This chapter concerns the formulation of PCC we have dubbed �PCC 4� (p.

19). The published results concerning causal completability (see e.g. Hofer-

Szabó et al. (1999)) are always formulated in the �pair�-style of thinking

about probability spaces: the one used in the previous chapter, according to

which a probability space is an algebra-measure pair with no mention of a

sample space. However, the main theorem of this chapter, theorem 10, due

to its very nature has to be phrased in a way which uses sample spaces. We

will therefore be switching from one way of writing to the other. In sections

7.1 and 7.2 we will write in the �pair�-style, while in section 7.3 we will use

the traditional, �triadic� notation.

The notion of an extension of a probability space was de�ned for proba-

bility spaces thought of as 3-tuples (de�nition 8, p. 19). We now repeat it in

the �pair�-style, omitting the sample space, which allows us to switch to the

more general formulation which is also applicable to non-classical spaces:

De�nition 26 [Extension] A (classical or non-classical) probability space

〈S ′, µ′〉 is called an extension of the probability space 〈S, µ〉 i� there exists

an orthomodular lattice embedding h of S into S ′ such that for any E ∈ S,
µ(E) = µ′(E ′).
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The idea of PCC 4 is that, even though there are some unexplained

correlations in a given space, an extension of it might exist which would

contain the required explanations. Such a case may represent a situation

in which, initially, not all important factors are taken into account�and a

more ��ne-grained� probability space contains elements which do the job of

explaining the correlations.

7.1 Known results (the classical case)

In Hofer-Szabó, Rédei & Szabó (1999) the authors discuss causal completabil-

ity with regard to a family of correlated pairs of events. Their main result

regarding classical probability spaces follows, in a bit di�erent formulation.

De�nition 27 [Causal completability] Suppose 〈S, P 〉 is a probability

space and F is a family of pairs of correlated events which do not have

an SCC in 〈S, P 〉. The space 〈S, P 〉 is causally completable with regard to

the family F if there exists an extension 〈S ′, P ′〉 of 〈S, P 〉 by means of a

homomorphism h which contains an SCC for 〈h(A), h(B)〉 for every pair

〈A,B〉 ∈ F .

Fact 19 (Propos. 2 fromHofer-Szabó, Rédei & Szabó (1999)) Every

classical probability space is causally completable with regard to any �nite

family of correlated events.

Hofer-Szabó et al. (1999) pose the problem whether classical probability

spaces are causally completable with regard to in�nite families of correlated

events. This we answer in the positive in section 7.3.

Of course, an extension of a given space which provides explanations

for some correlations may very well introduce new unexplained correlations.

The extension constructed by Hofer-Szabó et al. (1999) is not expected to
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be causally closed, or causally up-to-n-closed, for any natural number n. For

a single unexplained correlation, the extension is made from two copies of

the initial space (for details, see p. 391-392 of Hofer-Szabó et al. (1999)). In

the next section we will present a simple method of extending probability

spaces to spaces which are causally up-to-3-closed. The method will however

be restricted to �nite spaces with rational probabilities on the atoms.

7.2 Causal completability the easy way��split-

ting the atom�

If in a �nite probability space with some non-uniform measure the atoms have

rational probabilities, we can �split� them into pieces in order to arrive at a

space with the uniform measure which will be an obvious, intuitive extension

of the initial space. Consider the following illustration:

Here, we have a space with non-uniform measure on two atoms on the

left, and its uniform-measure extension on the right. The image of one of the
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atoms of the left space through the homomorphism h is still an atom, but

the other atom (the one with probability 2
3
) loses this status; it is above two

atoms in the extension.

Now, consider an example in which the initial space displays a correlated

pair of events without an SCC (it is the same space which Hofer-Szabó et al.

(2000) present as not causally closed):

Events A and B are correlated in the left space, but lack an SCC in that

space. Their images in the space on the right, however, possess an SCC

(the event C), the construction of which was possible due to the fact that

the atom with probability 2
5
has been split into two atoms with probability

1
5
. This is the most fortunate case possible, since the space on the right

is (as we know from the results by Gyenis & Rédei (2004)) the only �nite

causally closed space. In general, the product of the procedure of �splitting

the atoms� will be a �nite space with uniform measure. But, explanation-

wise, it is not a worse thing, since (as we know from the results of the
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preceding chapter), all such spaces are causally up-to-3-closed (w.r.t. the

relation of logical independence).

Let us put together the above considerations in form of a theorem.

Theorem 9 Any �nite probability space 〈S, P 〉 with rational probabilities on

the atoms of S has an extension which is causally up-to-3-closed w.r.t. the

relation of logical independence.

A sketch of the proof. The probabilities of the atoms {a0, . . . , am} of S
constitute a �nite list 〈p0, . . . , pm〉 of fractions. Calculate the lowest common

denominator D of these fractions. Let S ′ be the Boolean algebra with D

atoms {b1, . . . , bD} and let P ′ be the uniform measure on S ′. Transform all

the fractions 〈p0, . . . , pm〉 so that their denominator is D. Let 〈n0, . . . , nm〉
be the list of numerators of the corresponding fractions from 〈p0, . . . , pm〉. Of
course,

∑m
i=0 ni = D. Let h : S → S ′ be a homomorphism which assigns any

atom ai of S the supremum of ni atoms of S ′ in the following way:

h(a0) = {b1, . . . , bn0};

h(a1) = {bn0+1, bn0+n1};

· · ·

It is evident that 〈S ′, P ′〉 is an extension of 〈S, P 〉 by means of the homo-

morphism h. And by theorem 4 (p. 115), this extension is causally up-to-3

closed w.r.t. the relation of logical independence.

7.3 Causal completability of classical probabi-

lity spaces�the general case

A way of solving the general problem of causal completability with regard to

any family of correlated events would be to show that any space possesses
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a causally closed extension. A result of Gyenis & Rédei (2004), reproduced

above as fact 17, states that all atomless spaces are causally closed. We

simply need to �nd a way of extending an arbitrary space to an atomless

space. This is done in the proof of theorem 10. Let us state the initial

problem formally; it was posed in Hofer-Szabó et al. (1999) and Hofer-Szabó

et al. (2000):

Problem 2 (Causal completability of classical probability spaces)

Let 〈S, µ〉 be a probability space and W ⊆ S2 be the (possibly in�nite) family

of all pairs of correlated logically independent events for which no common

cause in 〈S, µ〉 exists. Is there an extension 〈S ′, µ′〉 (given by the embedding

h) of 〈S, µ〉 such that for any 〈D,E〉 ∈ W, there exists in 〈S ′, µ′〉 a common

cause for the pair 〈h(D), h(E)〉?

In view of fact 17, we can answer this problem by showing that any

classical probability space is extendable to an atomless space. We will use

the following lemma:

Lemma 20 Let 〈S,F , p〉 be a probability space and let 〈[0, 1],B, L〉 be the

space of all Borel subsets of the [0, 1] segment, L being the Lebesgue measure.

Then the product space 〈S × [0, 1],Σ, µ〉 of the two above spaces is atomless.

The proof uses the technique from chapter 211M of Fremlin (2001). For

the details on the construction of Σ, the event σ-algebra of the product space,

see e.g. chapter IV.6 of Feller (1968), vol. 2.

Proof: Let E ∈ Σ, µ(E) > 0. Let f be a function from [0, 1
2
] to [0, 1]

given by the formula f(a) = µ
(
E ∩ (1F × [1

2
− a, 1

2
+ a])

)
. Observe that if

a, b ∈ [0, 1
2
] and a 6 b, then f(a) 6 f(b) 6 f(a) + µ(1F × [1

2
− b, 1

2
+ b]) −

µ(1F×[1
2
−a, 1

2
+a]) = f(a)+p(1F)·L([1

2
−b, 1

2
+b])−p(1F)·L([1

2
−a, 1

2
+a]) =

f(a)+2b−2a. Therefore, f is continuous (as b approaches a, f(b) approaches

f(a)).
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Notice that f(0) = 0 and limn→ 1
2
f(n) = µ(E) > 0. Since we know that

f is continuous, we can apply the intermediate value theorem and conclude

that for some a ∈ (0, 1
2
), 0 < f(a) < µ(E). That is,

0 < µ

(
E ∩

(
1F × [

1

2
− a, 1

2
+ a]

))
< µ(E).

The event E ∩ (1F × [1
2
− a, 1

2
+ a]) is a subset of E and has a strictly lower

measure. Since E was arbitrary, 〈S × [0, 1],Σ, µ〉 is atomless. �

The following theorem gives a positive answer to problem 2.

Theorem 10 Every probability space can be extended to a probability space

which is causally closed.

Proof: Let 〈S,F , p〉 be a probability space. From lemma 20 we know

that 〈S × [0, 1],Σ, µ〉, which is the product of 〈S,F , p〉 with the space of all

Borel subsets of the [0, 1] segment with the Lebesgue measure, is atomless.

Let h : F → Σ be de�ned as h(D) = D × [0, 1]. It is immediate that h

is a Boolean algebra embedding of F into Σ, and so 〈S × [0, 1],Σ, µ〉 is an
extension of 〈S,F , p〉. Moreover, from fact 17 we infer that it is a causally

closed extension of 〈S,F , p〉. �

Therefore, PCC 4 is a true principle. Of course, it is not very practical. To

make a brief foray into decidedly non-formal matters, perhaps a god or some

other vastly knowledgeable entity could envisage an uncountable probability

space which takes into account every possible factor and contains SCCs for

all possible correlations of logically independent events. The role of PCC 4

would be that of reassurance of us puny humans.
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7.4 Causal completability of non-classical pro-

bability spaces�some known results and

prospects

Another result from Hofer-Szabó et al. (1999) says that every nonclassical

space with an additive state µ has an extension containing SCCs for every

pair correlated in µ:

Fact 21 (Proposition 3 from Hofer-Szabó et al. (1999)) Let 〈S, µ〉 be
a non-classical probability space. Let F be the family of all pairs of events

correlated in µ. Then 〈S, µ〉 is causally completable w.r.t. the family F .

However, one could ask the question similar to the one answered in

the previous section: is any non-classical probability space extendable to

a causally closed non-classical probability space? So far, the answer to this

question is not known.

One way of approaching the problem would be to try to use Kitajima's

result presented above as fact 18. The task would then boil down to the

following: given a non-classical space 〈L, P 〉, �nd its extension 〈L′, P ′〉 with
an atomless L′. The extension would have to be an atomless non-classical

probability space and would be, by fact 18, causally closed w.r.t. Lind.

Unfortunately, it seems we should not count on using a method similar

to the one outlined in the previous section. The strategy was this: take

a Boolean algebra and construct a product of it and an (atomic) Boolean

algebra being the event space of an atomless probability space. The crucial

point is that there is a subalgebra in the product which is isomorphic to

the original algebra. Thus we can �nd a homomorphism due to which the

product can serve as the event space for an extension of the original space.

Algebraically speaking, the above fact can be phrased as �for any Boolean

algebras A and B, A is a retract of A×B� (see p. 90 of Koppelberg (1989)).
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However, once we switch to non-distributive lattices, we can no longer count

on this. If A is a non-distributive OML and B is a Boolean algebra, it may

happen that the product A×B does not contain a subalgebra isomorphic to

A. Thus such a product in general does not seem to be a good candidate for

the OML on which an additive state could be de�ned so that the resulting

non-classical probability space would be an extension of the initial space.

To see this, take the product of the so called �Chinese lantern� (on the

left) and the two-element Boolean algebra:

which is the following orthomodular lattice:
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The orthocomplement function has not been displayed on the pictures,

but it can be easily checked that the above lattice does not have a subalgebra

isomorphic to the Chinese lantern for any proper ascription of orthocomple-

ments.1

Therefore, when trying to construct for a given OML L an OML L′ which

would contain a subalgebra isomorphic to L, taking a product of L and some

other OML may be a bad move.2 This is even before we take into account

the fact that we would like to require that L′ be atomless and complete. In

fact, the general issue whether every OML can be embedded into a complete

OML is a long-standing open problem (see e.g. chapter 8 in Bruns & Harding

(2000)).

1 The point could perhaps be made clearer if we restricted our attention just to the two

lattice operations ∨ and ∧: the last OML represented not only does not have a subalgebra

isomorphic to the Chinese lantern taken as an algebra with three operations, but (which

is immediately seen) does not even have a sublattice isomorphic to the Chinese lantern

taken as a lattice.
2 Of course, our example presented a quite special case, since the �other� OML in it

was Boolean.
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Chapter 8

Statistical ε-common causes

We have seen in section 3.4.1 that weakening the requirement of perfect

screening o� to even a minuscule degree results in the concept of SCC losing

the deductive explanatory feature. But let us put an epistemic twist on the

argument. Suppose we are investigating a population in which seemingly

causally unrelated attributes A and B are correlated; our goal is to �nd

a common cause for the two attributes. Of course, our carefully chosen

sample�just like the population�is �nite; suppose we discover an attribute

C such that the frequencies of A, B and C in the sample are very close to

screening o�:
∣∣∣fr(ABC)

fr(C)
− fr(AC)

fr(C)
fr(BC)
fr(C)

∣∣∣ < ε for some small ε (e.g. 0.01); we will

say that the screening o� condition is �violated to the degree of ε�. We would

of course be inclined to infer that we found a screener o� for A and B, an

event which stands in the appropriate probabilistic relation to them, even if

this relation is not ideally represented by the sample frequencies (and perhaps

the whole population frequencies). But the experimental results are also fully

consistent with a di�erent situation, in which C is not a perfect screener for

A and B�for example, the screening o� condition may be violated to the

degree of ε, with the sample frequencies giving a good illustration of the

�real� probabilistic picture. We, however, would be fully oblivious of this,
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and would consider C a screener for the correlation between A and B.

Suppose, for example, that we are examining a population of 20000 units,

investigating a correlation between two attributes A and B such that fr(A) =

4997, fr(B) = 5001 and fr(AB) = 2498. Suppose further that we �nd an

attribute C such that fr(C) = 10004, and that it turns out that A and B are

both necessary conditions for C. In such a case,
∣∣∣fr(ABC)

fr(C)
− fr(AC)

fr(C)
fr(BC)
fr(C)

∣∣∣ =

0.00000005. Does C screen o� A from B? It may very well happen that it

does not, that in fact it does violate the screening o� condition to a minuscule

degree, and thus does not possess the deductive explanatory feature�and we

do not have any way to �nd this out! Without any further information, we

are tempted to judge that the attribute C is a �perfect� screener o� for A

and B, and in this case is their statistical common cause.

This shows that, even though we already know that �nite spaces with

non-uniform distributions are not causally up-to-n closed for any n ∈ N, it
will be worthwhile to study such spaces with a di�erent idea in mind: that

of �nding for a given correlation an �approximate� statistical common cause

(system), which could be experimentally indistinguishable from a �perfect�

SCC(S).

De�nition 28 [Statistical ε-common cause, statistical ε-common cau-

se system] Let 〈Ω,F , P 〉 be a probability space. Let A,B ∈ F and ε be a

positive real number lower than 0.25. If there exists C ∈ F di�erent from

both A and B such that∣∣∣P (AB | C) = P (A | C)P (B | C)
∣∣∣ 6 ε;∣∣∣P (AB | C⊥) = P (A | C⊥)P (B | C⊥)
∣∣∣ 6 ε;

P (A | C) > P (A | C⊥);

P (B | C) > P (B | C⊥),

then C is called a statistical ε-common cause (ε-SCC) of A and B.
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A partition of unity of F is said to be a statistical ε-common cause system

(ε-SCCS) for A and B if it satis�es the statistical relevance condition w.r.t. A

and B, all its members are di�erent from both A and B, and all its members

C satisfy the condition∣∣∣P (AB | C) = P (A | C)P (B | C)
∣∣∣ 6 ε.

The cardinality of the partition is called the size of the statistical ε-common

cause system.

A point similar to the experimental non-detectability of perfect screening

o� could be made regarding the conditions of statistical relevance. Perhaps

an event C is statistically relevant for A and B when probabilities are con-

cerned, but the relevance is so weak that it is typically not displayed in

the observed frequencies? It is evident how the above de�nition could be

amended to take this into account; however�since the conditions of sta-

tistical relevance are in general less frequently used than the screening o�

conditions, e.g. in the Bayesian networks approach�we will only note that,

paraphrasing a sentence from chapter 3, �in search for statistical ε-common

causes, (weakened) screening o� is not enough�. The statistical relevance

conditions have to be explicitly checked. Tests conducted using the statis-

tical software �R� show, however, that this additional requirement does not

add to the di�culty of �nding ε-SCC(S)s in practice; weakened screening o�

�fails to be enough� only very rarely.

In general, data gathered in the conducted tests show that the task of

�nding ε-SCCSs for correlated events is surprisingly easy, even for a very

small ε. We begin with a systematic study of searching for SCCs only (i.e.

not for SCCSs of size bigger than 2) in probability spaces with binomial

distribution. We then present three cases of searches for 2- and 3-element

SCCSs in spaces with distributions skewed in di�erent ways.
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The testing procedure was similar in all cases. A probability distribution

in a �nite probability space, the event space of which has n atoms, can be

represented as a vector consisting of n real numbers from the [0, 1] segment

which together give 1 as their sum. An event in an n-atomic event space,

thought of as a set of atoms, can be represented as an n-element 0-1 sequence:

a 1 in position k means that the atom number k belongs to the event, a 0

means that it does not. To choose an event at random means, then, to

randomly choose a 0-1 sequence; the uniform distribution has been assumed

here (in contrast to the distributions of the spaces under consideration) so

that the process can be thought of as consisting of n tosses of a fair coin.

For any space, a certain number of randomly determined pairs of logically

independent events was tested. For any pair a search for an ε-SCC was

conducted. Since it would in general be not reasonable to set to check all

events in the given space (an n-atomic space has 2n events), a maximum of

n2 randomly chosen events were checked for each pair; in the case of binomial

distribution, presented in the next section, the even more stringent restriction

to (n − 1)2 was used. The check consisted of straightforward examination

whether the conditions from de�nition 28 are true in the given case. If yes,

next pair of correlated events was considered. All output was being logged.

The program returned the �success ratio�: the number of pairs for which an

ε-SCCS was found divided by the number of checked pairs.

8.1 Binomial distributions

A binomial distribution represents the odds of arriving at a given number

of successes in m trials with the chance of success s. The probability space

for m trials has n = m + 1 atoms (since it might happen that there are no

successes at all). Let {a0 . . . am} be all the atoms in the event space. The

chance for getting exactly k successes in m trials with the chance of success
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s is given by the following formula:

P ({ak}) =

(
m

k

)
sk(1− s)m−k.

Since any event can be thought of as a set of atoms, calculating its probability

means simply summing the above expression for various values of k.

Nine probabilities of success were considered: from 0.9 to 0.1 with 0.1

decrement. Five �degrees of approximation� were used: from 0.05 to 0.01

with 0.01 decrement. We will present the results for the numbers of trials

ranging from 11 to 50; for example, the space for 11 trials has 12 atoms, but

in that particular case for each correlated pair 121 candidates for an ε-SCC

are checked. In a space for m trials, 4 · m2 pairs of logically independent,

correlated events were considered. The above parameters give us 1800 spaces;

however, the table depicting the results will be quite small. This is because,

with the success ratio rounded in the standard way, it turns out that even

for ε = 0.01, for the overwhelming majority of pairs of logically correlated

events it is possible to �nd an SCCS just by checking a randomly chosen very

small portion of the whole event space.

Table 8.1 would be even simpler if we started with spaces with 13 atoms;

notice also that it is plausible that some of the lines, e.g. the one with the

strange behaviour of the space for s = 0.7 and 29 trials with ε = 0.01, can

be expected to disappear on repeated experiments. The picture is clear: in

spaces with the binomial distribution it is very easy to �nd ε-SCCs empirically

indistinguishable from �perfect� SCCs.

8.2 A few contrastive examples

What about other non-uniform distributions? Our conjecture is that the

situation is similar and, while it might in general be impossible to �nd (for

a given correlated pair) an event which would satisfy the requirements for
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s ε # of trials Success ratio

0.1 - 0.9 0.03 - 0.05 11 - 50 1

0.3 - 0.7 0.02 11 0.9

0.3, 0.6, 0.7 0.02 12 - 50 1

0.5 0.02 12 - 14 0.9

0.5 0.02 15 - 50 1

0.4 0.02 13 0.9

0.4 0.02 12, 14 - 50 1

0.1, 0.2, 0.8, 0.9 0.01 11 - 50 1

0.3 - 0.6 0.01 13 - 50 0.9

0.7 0.01 13 - 28, 30 - 50 0.9

0.7 0.01 29 1

0.3, 0.6, 0.7 0.01 12 0.9

0.4, 0.5 0.01 12 0.8

0.3, 0.5 - 0.7 0.01 11 0.9

0.4 0.01 11 0.8

Table 8.1: Success ratios for �nding ε-SCCs for correlated pairs of logically

independent events in spaces with the binomial distribution.

an SCC, it is relatively easy to �nd an ε-SCC (or an ε-SCCS of size 3) for a

small value of ε. We have no general theorem; however, many di�erent spaces

with variously skewed distributions have been checked and the conjecture,

informal as it may be, still stands. We will now present a few examples. In all

of the spaces considered 100 pairs of logically independent correlated events

were checked and the same values of ε were considered as above. However,

the search for explanation consisted of two phases. Suppose the space had n

atoms. First n2 candidates for ε-SCCs were considered. If no SCC was found,

then additional n2 candidates for ε-SCCSs of size 3 were investigated (each
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candidate being represented by a randomly chosen n-element sequence of 0s,

1s and 2s). Usually, if for a given pair no ε-SCC was found, then no ε-SCCS

of size 3 was found, either�but there were exceptions. The numerator of the

success ratio consisted of pairs for which either an SCC or an SCCS of size

3 was found.

Example 6 The space consisted of 11 atoms, one with probability 0.9, the

remaining all with probability 0.01. The success ratio was 1 regardless of the

ε used.

Example 7 The space consisted of 22 atoms, two with probability 0.4, the re-

maining all with probability 0.01. The success ratio was 1 for ε ∈ {0.04, 0.05},
0.99 for ε = 0.03, 0.97 for ε = 0.02, and 0.8 for ε = 0.01.

Example 8 The space consisted of 15 atoms, �ve with probability 0.10,

and the remaining all with probability 0.05. The success ratio was 0.97 for

ε = 0.05, 0.96 for ε = 0.03, 0.95 for ε = 0.03, 0.89 for ε = 0.02, and 0.74 for

ε = 0.01.

Many other distributions have been tested; in all of them the success ratio

for ε = 0.01 was 0.74 or more. For a bit greater values of ε, the success ratio

is in general very close to 1. Remember that only a portion of the events

(or partitions, in case of SCCSs) in the given space served as candidates for

explanations during the tests! The high success ratio means that in general,

in an n-atomic space, searching through just n2 events (out of all 2n events)

and, if this fails, n2 3-element partitions of the unity of the space su�ces for

�nding an ε-SCC or ε-SCCS for small values of ε.

While of course only a general mathematical argument could be ulti-

mately persuasive, the lesson should be clear, we think: even though �nite

probability spaces with non-uniform measures are in general not causally up-

to-n closed for any natural n > 2, a vast majority of the correlated pairs of
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logically correlated events can be expected to possess an ε-SCC or ε-SCCS

of size 3, which is experimentally indistinguishable from its �perfect� coun-

terpart.
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Chapter 9

Conclusion

The main results of this study are included in chapters 6 and 7. Among them

are positive determinations concerning the prospects of explaining correla-

tions via statistical common cause systems. Perhaps of the biggest intuitive

force is theorem 10: every probability space can be extended to a probability

space which is causally closed. If we do not see a statistical common cause

for two correlated events, it is only because we have directed our attention

to the �wrong� probability space; there is an extension of it which leaves no

correlations unexplained. However, as foreshadowed in the introduction to

this essay, this can be interpreted in two ways. On the one hand, it is al-

ways nice to have a general positive theorem about the applicability of some

interesting notion. On the other hand, in this case the applicability may be

strictly mathematical. It is by no means evident that the statistical common

causes present in the �extended� spaces will have much to do with what we

would naturally accept as causes.

Consider again the example of particle decay from section 2.4.1. The

momentum of one part of the particle is determined in accordance with the

principle of conservation of total momentum by the momentum of the other

particle. Suppose the experimental setup is described by a probability space
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S. The state of the particle before the decay event is, in this space, not a

screener o� for the values of momentum after the split. Consider then the

causally closed space S ′, which is an extension of S, and which has to exist

by theorem 10. In this space the momenta of the two parts of the decayed

particle possess a statistical common cause which screens o� one from the

other. But do we really expect such a screener to have anything to do with

the true causal picture? Are we not fully satis�ed with the explanation

consisting of the principle of conservation of total momentum coupled with

the information on the genesis of the two particle parts?

Due to the generality of theorem 10 it is true that the �big space� used

in the eponymous approach to the Bell inequalities can also be extended to

a causally closed space�in which all correlations have common causes. This

may be surprising for those who think that this should lead to the empirically

falsi�ed inequalities. This is, however, not the case, since�as already noted�

in the �big space� approach the EPR-type correlations are in fact conditional

correlations and so do not fall under the scope of theorem 10. And if we move

to the �many spaces� approach, then each of the �small� spaces will have

their own causally closed extension. However, it is by no means evident that

parameter independence, outcome independence and non-conspiracy should

hold for the �extended� spaces.

In conclusion, we should better be skeptical towards a general application

of explaining correlations by means of purely probabilistic de�ned notions.

Those employed in this essay, from Reichenbach's common cause as the mid-

dle element of a conjunctive fork, through statistical common cause systems,

to deductive explanantes, share (apart from screening o�) the deductive ex-

planatory feature described in section 3.1. This is a pleasing fact which

strengthens the case for such notions playing a role in explanation, but it is

clearly not enough, e.g. since the correlation itself�as well as many other

more or less trivially equivalent (sets of) conditions�also has that particular
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feature. There is more to causal explanation than pure statistics. However,

mathematical methods like the algorithm of constructing SCCs and SCCSs

used in the proof of theorem 4 may provide candidates for explanations�for

example, they may suggest searching for traits possessed by certain subsets

of the examined population�which can subsequently be studied by applying

other methods: using the previous knowledge of mechanisms operating in

the given context.
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