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Abstract. Bruno de Finetti is one of the founding fathers of the subjectivist school of 
probability, where probabilities are interpreted as rational degrees of belief. His work on the 
relation between the theorems of probability and rationality is among the corner stones of 
modern subjective probability theory. De Finetti maintained that rationality requires that degrees 
of belief be coherent, and he argued that the whole of probability theory could be derived from 
these coherence conditions. De Finetti’s interpretation of probability has been highly influential 
in science. This paper focuses on the application of this interpretation to quantum mechanics. 
We argue that de Finetti held that the coherence conditions of degrees of belief in events depend 
on their verifiability. Accordingly, the standard coherence conditions of degrees of belief that 
are familiar from the literature on subjective probability only apply to degrees of belief in events 
which could (in principle) be jointly verified; and the coherence conditions of degrees of belief 
in events that cannot be jointly verified are weaker. While the most obvious explanation of de 
Finetti’s verificationism is the influence of positivism, we argue that it could be motivated by 
the radical subjectivist and instrumental nature of probability in his interpretation; for as it turns 
out, in this interpretation it is difficult to make sense of the idea of coherent degrees of belief in, 
and accordingly probabilities of unverifiable events. We then consider the application of this 
interpretation to quantum mechanics, concentrating on the Einstein-Podolsky-Rosen experiment 
and Bell’s theorem.    
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16.1 The background and motivation 
 

The foundations of this paper were laid in 1988/1989, when I worked on a seminar paper for 
Itamar Pitowsky’s course in the philosophy of probability.1 The question that motivated the 
paper was whether subjective probability, and more specifically de Finetti’s subjectivist 
interpretation, could successfully be applied in quantum mechanics (QM). This question, which 
was raised by Itamar, may seem a bit anachronistic now that the subjective interpretation of 
quantum probabilities is gaining popularity. But back then this interpretation was undeveloped.2  
 
In de Finetti’s interpretation, probabilities have no objective reality. They are the expressions of 
the uncertainties of individuals. Itamar’s question was not whether such a radical subjective 
interpretation could constitute an adequate interpretation of probabilities in quantum mechanics. 
Rather, it was the question whether de Finetti’s interpretation could be reconciled with the 
apparent non-classical character of these probabilities. We explain this concern in Sect. 16.1.3, 
and discuss it in more detail in Sect. 16.2. To prepare the ground for this discussion, we now 
turn to present Bell’s theorem and two different interpretations of it. In Sects. 16.3 and 16.4, we 
introduce the main ideas of de Finetti’s theory of probability, and in Sects. 16.5-16.7 we discuss 
the application of this theory to the quantum realm. 

 
16.1.1 Bell’s theorem and its common interpretation  
 

Recall the Einstein-Podolsky-Rosen (EPR) experiment. Pairs of particles are emitted from the 
source in opposite directions. When the particles are spacelike separated, they each encounter a 
measurement apparatus that can measure their position or momentum. The distant measurement 
outcomes are curiously correlated. Einstein, Podolsky and Rosen [7] thought that this kind of 
correlation reflects the incompleteness of QM rather than non-local influences. They argued that 
the QM state-description is incomplete, and they believed that a more complete description 
would render the distant measurement outcomes probabilistically independent. The idea is that 
the correlations between such distant outcomes could be explained away by a local common 
cause: the complete pair-state at the emission. Given this state, the joint probability of the 
outcomes would factorize into their single probabilities (see Factorizability below), and so the 
correlations between them would not entail the existence of non-locality. 
 
In his celebrated theorem, Bell [8-12] considers models of the kind EPR may have had in mind, 
but he focuses on Bohm’s [13] version of the experiment (henceforth, the EPR/B experiment), 
where the measured quantities are spins in various directions. These models postulate the 
existence of ‘hidden variables’ that are supposed to constitute a (more) complete pair’s state, 
and this state is supposed to determine the measurement outcomes or their probabilities in a 
perfectly local way. Bell’s theorem demonstrates that such models are committed to certain 
inequalities concerning the probabilities of measurement outcomes, the so-called “Bell’s 
inequalities,” which are violated by the predictions of QM and (granted very plausible 
                                                
1See Berkovitz [1,2].  
2For applications of the subjective interpretation to QM, see for example, Caves, Fuchs and Schack [3-5] 
and Pitowsky [6]. While these applications appeal to de Finetti’s subjective theory of probability, both 
the interpretation of de Finetti and the focus of its application are substantially different from the ones 
offered below. 
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assumptions) actual experimental results. In Clauser & Horne’s [14] version, the inequalities are 
concerned with the probabilities of measurement outcomes of spins in two different directions in 
each wing of the EPR/B experiment, henceforth the ‘Bell/CH inequalities’ (for details, see Sect. 
16.2).  
 
The common view is that Bell’s theorem demonstrates that local hidden-variables models 
cannot reproduce the predictions of QM [8-12 and 14-17].  On this view, the derivation of 
Bell/CH inequalities involves the following premises.  
 
(i)  The distribution of the complete pair-state is determined by the QM pair-state, and is  

independent of the settings of the measurement apparatuses. That is, for any QM pair-state 
ψ , complete pair-states λ , and setting of the L- and R-apparatus to measure spins in the 
directions x  and y , respectively, we have: 

 
        (λ-independence)   ρψ xy (λ) = ρψ (λ) ; 
 
        where ρψ (λ)  and ρψ xy (λ)  are the probability distributions of λ  given ψ  and given 

ψ & x& y , respectively. Note that in our notation for conditional probabilities, we place the 
conditioning events in the subscript rather than after the conditionalization stroke. Unlike 
Kolmogorov’s [18] axiomatization, in this approach conditional probability is not defined as 
a ratio of unconditional probabilities. Rather, conditional probability may be thought of as a 
conditional, which does not necessarily entail the corresponding conditional probability a la 
Kolmogorov (for more details, see Sect. 16.3.7). In this concept of conditional probability, 
the conditioning events ψ  and ψ & x& y  are not part of the probability spaces referred by 
ρψ ( )  and ρψ xy ( ) , respectively. To highlight this fact, we place them in the subscripts. As 
we shall see later, this alternative concept of conditional probability is in line with de 
Finetti’s theory of probability. Arguably, it is also a more appropriate representation of the 
basic idea of conditional probability in other interpretations of probability. [19, 20] Yet, 
while this representation is important for pedagogical reasons, it is not essential for our 
analysis of Bell’s theorem and the feasibility of interpreting probabilities in the quantum 
realm along de Finetti’s theory.  

 
(ii) For each complete pair-state λ  and apparatus settings x  and y , the model prescribes 

probabilities of single and joint measurement outcomes: Pλx (Ox ), Pλy (Oy )  and 
Pλxy(Ox &Oy ),  where Ox  is the outcome ‘up’ in x -spin measurement on the L-particle; and 
similarly, mutatis mutandis, for the outcome Oy  in the R-wing.  

 
(iii) The joint probability of distant outcomes given the complete pair-state and apparatus 

settings factorizes into the single probabilities of the outcomes. The idea here is that the 
correlation between the distant outcomes are explained by a common cause, i.e. the 
complete pair-state, so that conditionalization on the common cause renders the outcomes 
probabilistically independent. More precisely, for any λ, x, y,Ox  and Oy : 
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   (Factorizability)      Pλxy (Ox &Oy ) = Pλx (Ox ) ⋅Pλy (Oy ) . 
 
(iv) The QM probabilities of outcomes are reproduced as statistical averages over the model 

probabilities of outcomes – namely, as sum-averages over the model probabilities 
according to the distribution of the complete pair-state. That is, granted λ-independence, for 
any ψ , x  and y , we have: 

 

     
Pψ x (Ox ) = Pλx (Ox ) dρ(λ)λ∫ ,  Pψ y (Oy ) = Pλy (Oy ) dρ(λ)λ∫ ,    

 

   
Pψ xy (Ox &Oy ) = Pλxy (Ox &Oy ) dρ(λ)λ∫ . 

 
        Bell’s theorem demonstrates that in any model that satisfies (i)-(iv), the probabilities of 

measurement outcomes in the EPR/B experiment are constrained by the Bell/CH inequalities 
(see Sect. 2). Thus, granted the plausibility of λ-independence and the overwhelming 
evidence for the empirical adequacy of QM (in its intended domain of application), the 
consensus has it that Factorizability fails in this experiment. The failure of this condition is 
commonly thought of as indicating some type of non-locality (for a recent review of 
quantum non-locality, see [21] and references therein).  

 
16.1.2 Fine’s interpretation of Bell’s theorem 
 

Following Bell [11], the above analysis of Bell’s theorem relies on a principle of causal 
inference which is similar to Reichenbach’s [22] principle of the common cause. That is, it is 
assumed that non-accidental correlations have causal explanation, and the kind of explanation is 
as spelled out in (iii) and (iv) above. While this kind of inference is common, there are 
dissenting views. Fine [23-25] denies that non-accidental correlations must have causal 
explanation, and he argues that the correlations between the distant measurement outcomes in 
the EPR/B experiment do not call for causal explanation; and Cartwright [26, Chaps. 3 and 6] 
and Chang & Cartwright [27] challenge the assumption that common causes must render their 
joint effects probabilistically independent.  
 
More important to our consideration, Fine [28, p. 294] argues that  
 

(F) What hidden variables and the Bell/CH inequalities are all about are the requirements 
that make “well defined precisely those probability distributions for non-commuting 
observables whose rejection is the very essence of quantum mechanics.”  

 
The idea is that Bell’s theorem focuses on models that presuppose the existence of joint 
probability over non-commuting spin observables in the EPR/B experiment – a distribution that 
does not exist according to standard QM. In more detail, Fine [28] argues that:  
 

(I) (Corresponding to ‘Proposition 1’) “The existence of a deterministic hidden-variables 
model is strictly equivalent to the existence of a joint distribution probability function 
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P(AA 'BB ')  for the four observables of the experiment, one that returns the probabilities of 
the experiment as marginals.” [28, p. 291]  
 
(II) (‘Proposition 2’) “Necessary and also sufficient for the existence of a deterministic 
hidden-variables model is that Bell/CH inequalities hold for the probabilities of the 
experiment.” [28, p. 293] 
 
(III) (‘Proposition 3’) “There exists a factorizable stochastic hidden-variables model for a 
correlation experiment if and only if there exists a deterministic hidden-variables model for 
the experiment.” [28, p. 293] 

  
Fine believes that (I)-(III) entails (F), and this suggests that the common interpretation of Bell’s 
theorem – namely, that (granted the very plausible assumption of λ-independence) the violation 
of Bell/CH inequalities entails quantum non-locality – is misguided.  

 
16.1.3 Subjective probability, joint distributions and verifiability  
 

De Finetti held that for degrees of belief to be coherent they have to be probabilities, i.e. they 
have to satisfy the probability axioms. It is commonly presupposed, albeit implicitly, that a 
person’s coherent degrees of belief concerning all the propositions she considers are to be 
represented by a joint probability distribution, which returns these degrees of belief as 
marginals; for notable examples, see Lewis’s [29] ‘A Subjectivist’s Guide to Objective Chance’ 
and Carnap’s [30] ‘On Inductive Logic.’ If the subjectivist interpretation were committed to 
such an assumption, and the view that the Bell/CH inequalities follow from the assumption of a 
joint distribution over non-commuting observables in the EPR/B experiment were correct, 
followers of this interpretation would be bound to have probabilities that are constrained by 
Bell/CH inequalities, and accordingly incompatible with the predictions of QM.  
 
Indeed, followers of the subjectivist interpretation may agree with Fine’s analysis of Bell’s 
theorem, yet reject the view that a person’s degrees of belief are to be represented by a single 
probability distribution. The question is whether they have non-ad hoc reasons to reject this 
view. Based on a reconstruction of de Finetti’s probability theory in Sects. 16.3 and 16.4, we 
shall argue in Sect. 16.5 that followers of de Finetti have such reasons in the context of the 
EPR/B experiment and Bell’s theorem. That is, we shall argue in Sect. 16.4 that de Finetti’s 
notion of coherent degrees of belief embodies a certain verifiability condition. Consequently: (a) 
Degrees of belief in events that are not verifiable have no definite coherence conditions, and 
accordingly have no probability. (b) There are no joint probability distributions over events that 
are not jointly verifiable. (c) The coherence conditions of degrees of belief in events that are not 
jointly verifiable are weaker than they would have been had the events been jointly verifiable. 
Thus, the coherence conditions of degrees of belief in events that are not jointly verifiable are 
weaker than the familiar coherence conditions discussed in the literature on subjective 
probability. Accordingly, the inequalities that constrain the probabilities of such events are 
weaker than those that constrain the probabilities of events that are jointly verifiable.  
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In Sects. 16.5 and 16.7, we shall consider the implications of these consequences for the 
structure of probabilities in models of the EPR/B experiment in which probabilities are 
interpreted along de Finetti’s theory of probability. These sections reflect the implications of de 
Finetti’s theory, as reconstructed in Sects. 16.3 and 16.4. De Finetti himself struggled to 
understand the nature of the QM probabilities and their relation to ‘classical’ probabilities. In 
Sect. 16.6, we shall briefly look at de Finetti’s own analysis of the QM probabilities. But first 
we turn to present the Bell/CH inequalities and to consider Fine’s claim that these inequalities 
follow from, and are equivalent to the assumption of a joint distribution over non-commuting 
observables in the EPR/B experiment.  

 
16.2 Joint distributions, probabilistic inequalities and Bell’s theorem 
 

The term ‘Bell/CH inequalities’ is ambiguous. It refers to different kinds of inequalities. The 
first kind is a theorem of probability theory:     
 
          (Bell/CH – prob) 
  

−1≤ Pλ (X&Y )+ Pλ (X '&Y )+ Pλ (X&Y ')− Pλ (X '&Y ')− Pλ (X)− Pλ (Y ) ≤ 0 . 
 
Indeed, this inequality obtains for any joint probability distribution over any four events 
X, X ',Y ,Y '  (or propositions about them). In the context of the hidden-variables models of the 
EPR/B experiment, it is natural to think about λ  as the complete pair-state, and X (Y )  and 
X ' (Y ')  as referring to spin properties of the particles, or properties that determine their 
dispositions to spin in measurements. For example, X (Y )  may be the event of the L- (R-) 
particle spinning ‘up’ in the direction x (y) , or some other property that determines the 
disposition of the L- (R-) particle to spin ‘up’ along the direction x (y)  in a spin measurement 
along this direction.  
 
The second and third kinds of Bell/CH inequalities are not theorems of probability theory:  
 

(Bell/CH – phys – λ)        
−1≤ Pλxy(Ox &Oy )+ Pλx 'y(Ox ' &Oy )+ Pλxy ' (Ox &Oy ' )−

− Pλx 'y ' (Ox ' &Oy ' )− Pλx (Ox )− Pλy(Oy ) ≤ 0
    

   

(Bell/CH – phys – ψ)      
−1≤ Pψ xy(Ox &Oy )+ Pψ x 'y(Ox ' &Oy )+ Pψ xy ' (Ox &Oy ' )−

− Pψ x 'y ' (Ox ' &Oy ' )− Pψ x (Ox )− Pψ y(Oy ) ≤ 0
 

 
where, as before, ψ  is the QM pair-state, x  ( y ) is the setting of the L- (R-) apparatus to 
measure spin in the direction x  ( y ), and Ox  (Oy ) is the outcome ‘up’ in x - ( y -) spin 
measurement on the L- (R-) particle; and similarly, mutatis mutandis, for x '  ( y ' ) and Ox '  (Oy ' ). 
(Bell/CH – physics – λ) is an inequality of probabilities of the hidden-variables model, whereas 
(Bell/CH – physics – ψ) is an inequality of QM probabilities. The latter inequality is derived 
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from the former by integrating over all the complete pair-states λ  while assuming λ-
independence.  
 
In (Bell/CH – prob) all the probabilities belong to the same probability space, whereas in 
(Bell/CH – phys – λ) and (Bell/CH – phys – ψ) each of the probabilities belongs to a different 
probability space.  This should be clear from the fact that each of the probabilities in these latter 
inequalities has a different subscript. Thus, unlike the former inequality, these inequalities 
cannot be derived purely on the basis of considerations of coherence or consistency.  
 
Indeed, (Bell/CH – phys – λ) and (Bell/CH – phys – ψ) are sometimes represented in terms of 
conditional probabilities a la Kolmogorov with the conditioning events placed after the 
conditionalization stroke rather than in the subscript, where in each inequality all the 
probabilities are embedded in one ‘big’ probability space:  
 
            (Bell/CH –phys – λ – big)  
 

−1≤ P(Ox &Oy / λ& x& y)+ P(Ox ' &Oy / λ& x '& y)+ P(Ox &Oy ' / λ& x& y ')−
− P(Ox ' &Oy ' / λ& x '& y ')− P(Ox / λ& x)− P(Oy / λ& y) ≤ 0

 

 
(Bell/CH – phys – ψ – big) 
  

−1≤ P(Ox &Oy /ψ & x& y)+ P(Ox ' &Oy /ψ & x '& y)+ P(Ox &Oy ' /ψ & x& y ')−
− P(Ox ' &Oy ' /ψ & x '& y ')− P(Ox /ψ & x)− P(Oy /ψ & y) ≤ 0

 
 
Yet, these inequalities are not theorems of probability theory. Unlike (Bell/CH – prob), they 
cannot be derived from the assumption of a joint distribution over the measurement outcomes, 
the (QM or complete) pair-state and apparatus settings. We shall discuss the relationships 
between (Bell/CH – prob) and (Bell/CH – phys – λ) below and in Sect. 16.3.7.   
 
In hidden-variables models of the EPR/B experiment that postulate the existence of definite 
values for all the four spin quantities that are involved in the Bell/CH inequalities, it is natural 
(though not necessary) to suppose a joint probability over these probabilities.3 Thus, in such 
models, it is plausible to expect (Bell/CH – prob). But (Bell/CH – prob) is neither necessary nor 
sufficient for (Bell/CH – phys – ψ) or (Bell/CH – phys – ψ  – big). Indeed, unless we make 
some assumptions about the relationships between the probabilities of the spin quantities in 
(Bell/CH – prob) and the probabilities of their measurement outcomes, the assumption of joint 
probability over these quantities will do little to constrain the probabilities of their measurement 
outcomes. Two natural assumptions are λ-independence and the assumption that the 
probabilities of spin-measurement outcomes ‘mirror’ the probabilities that the particles’ spins 

                                                
3Svetlichny et al. [31] argue that if probabilities are interpreted as infinitely long-run frequencies in 
random sequences, such a joint probability distribution need not exist.  
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have before the measurements: for any spin properties X  and Y , apparatus settings x  and y  to 
measure these properties, and the corresponding measurement outcomes Ox  and Oy , 
 

(Mirror)    Pλx (Ox ) = Pλ (X), Pλy (Oy ) = Pλ (Y ), Pλxy (Ox &Oy ) = Pλ (X &Y ) . 
 
Although these assumptions may seem natural, models of the EPR/B experiment that postulate 
joint probability over the values of the particles’ spin in various directions violate at least one of 
these assumptions; and their violation bears directly on the question whether the quantum realm 
involves some kind of non-locality. λ-independence fails in models of the experiment that 
postulate retro-causal influences from the measurement events to the source at the emission, so 
that the distribution of the complete pair-state depends on the measured quantities (for recent 
discussions of such models, see [32-36], and references therein). In such models, the QM 
statistics may be accounted for by such retro-causal influences rather than non-locality. 
 
Mirror may be violated in various ‘hidden-variables’ theories. For example, it is violated in 
Bohmian mechanics, if X  and X '  (Y  and Y ' ) are respectively the positions of the L- (R-) 
particle relative to planes aligned along the directions x  and x '  ( y  and y ' ) at the emission. In 
Bell’s [37] ‘minimal’ Bohmian mechanics spins are not intrinsic properties of the particles, and 
the positions of the particles at the emission influence their spin dispositions, i.e. their behavior 
in spin measurements: X (Y )  determines the spin disposition of the L- (R-) particle in the 
direction x  ( y ) in a measurement of spin x  ( y ), if the L- (R-) measurement occurs first; and 
similarly for X ' (Y ')  and x ' y '( ) . Yet, due to non-local influences, the distribution of these 
dispositions is different from the distribution of the outcomes of the corresponding spin 
measurements. If, for example, at the emission both particles are disposed to spin ‘up’ in a z-
spin measurement, and the L-measurement occurs first, this measurement will change the z-spin 
disposition of the R-particle: after the L-measurement, it will be disposed to spin ‘down’ on z-
spin measurement ([37], [38, Chap. 7], [21, Sect. 5.3.1]).  
 
While the joint distribution over the spin quantities of the particle-pair in the EPR/B experiment 
(the ‘hidden variables’) is neither necessary nor sufficient condition for (Bell/CH – physics – ψ) 
or (Bell/CH – physics – ψ – big), the question arises whether some other joint distributions are. 
The most comprehensive, relevant joint probability distribution in the context of these 
inequalities is a distribution over the QM and complete pair-state, the various relevant apparatus 
settings and the corresponding measurement outcomes,4 and such distribution is neither 
necessary nor sufficient for these inequalities. (Bell/CH – phys – ψ) follows from 
Factorizability and λ-independence [14],5 and as it is not difficult to see these conditions do not 

                                                
4In fact, one may also add to this list the complete states (the ‘hidden variables’) of the apparatus 
settings. While such a distribution will be even more comprehensive, it will not change the conclusion of 
the analysis below. 
5The derivation of (Bell/CH – phys – ψ) from Factorizability and λ-independence is straightforward. 
−1≤ a ⋅b + a '⋅b + a ⋅b '− a '⋅b '− a − b ≤ 0  obtains for any real numbers 0 ≤ a,a ',b,b ' ≤1 . Substituting 
a = Pλx (Ox ), a ' = Pλx ' (Ox ' ), b = Pλy (Oy ), b ' = Pλy ' (Oy ' )  and applying Factorizability we have (Bell/CH – 

phys – λ), and integrating over λ  while assuming λ-independence we obtain (Bell/CH – physics – ψ).  
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presuppose a joint distribution over the pair-state, apparatus settings and measurement 
outcomes. Similarly, (Bell/CH – phys – ψ - big) follows from factorizability and λ-
independence expressed in terms of conditional probabilities a la Kolmogorov – for any QM 
and complete pair-states, λ  and ψ , apparatus settings x  and y  to measure the particles’ spins 
along the directions x  and y , and the corresponding measurement outcomes Ox  and Oy , 
 
          (Factorizability*)   P(Ox &Oy / λ& x& y) = P(Ox / λ& x) ⋅P(Oy / λ& y)   
 

          (λ-independence*)       ρ(λ /ψ & x& y) = ρ(ψ )  
 
– and these conditions do not presuppose such a joint distribution. Indeed, each particular case 
of Factorizability* presupposes a joint distribution over the complete pair-state, two 
measurement outcomes (Ox  and Oy ) and two apparatus settings ( x  and y ), and each particular 
case of λ-independence* presupposes a distribution over the QM and complete pair-state and 
two apparatus settings. But these conditions do not presuppose a joint distribution over the QM 
and the complete pair-state and all the four apparatus settings and four corresponding 
measurement outcomes that are involved in (Bell/CH – phys – ψ  – big). Thus, a joint 
probability over the QM and complete pair-state, apparatus settings and measurement outcomes 
is not a necessary condition for (Bell/CH – phys – ψ  – big). It is also not sufficient for (Bell/CH 
– phys – ψ  – big), as it is easy to construct such a distribution that violates the inequality.6 
 
Fine [28] discusses a fourth kind of Bell/CH inequality, where the probabilities are supposed to 
be “the observed distributions for each of the four observables involved in the EPR/B 
experiment plus the joint observed distributions for each of the four compatible pairs” of these 
observables. (Fine [28], p. 291)    
 
  (Bell/CH – Fine) 
  

   

−1≤ P(Ox &Oy )+ P(Ox ' &Oy )+ P(Ox &Oy ' )−
− P(Ox ' &Oy ' )− P(Ox )− P(Oy ) ≤ 0

; 

 
where, presumably, P  is a probability function that depends on the QM pair-state ψ . (Bell/CH 
- Fine) follows from the assumption of a joint probability over the measurement outcomes. The 
question is what could motivate such an assumption. Surely, the probabilities in this inequality 
need to depend on the apparatus settings, so that they either belong to different spaces (each 
                                                
6For example, (Bell/CH – phys – ψ – big) fails for any joint distribution that returns the following 
probabilities as marginals for apparatus settings that satisfy  | x − y | = | x '− y | = | x − y ' | = 60

  and 

 | x '− y ' | = 180
 : P(ψ & x& y) = P(ψ & x '& y) = P(ψ & x& y ') = P(ψ & x '& y ') = 1 4 , 

P(ψ & x) = P(ψ & y) = 1 2 , 
P(Ox &Oy &ψ & x& y) = P(Ox ' &Oy &ψ & x '& y) = P(Ox &Oy ' &ψ & x& y ') = 1 32 , 
P(Ox ' &Oy ' &ψ & x '& y ') = 1 8 , P(Ox &ψ & x) = P(Oy &ψ & y) = 1 4 .  
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characterized by different apparatus settings), as in (Bell/CH – phys - ψ), or are in the same 
probability space but are conditional on the QM pair-state and apparatus settings, as in (Bell/CH 
– phys - ψ - big). In the first case, the motivation for (Bell/CH – Fine) should probably include 
assumptions like Mirror and λ-independence, and as we have seen the violation of such 
assumptions is relevant to the question whether the quantum realm involves non-locality. In the 
second case, one may assume a joint distribution for the QM pair-state, apparatus settings and 
measurement outcomes, but as we argued above such a distribution would not entail (Bell/CH – 
phys - ψ - big). So in either case, (Bell/CH – Fine) has to be motivated by assumptions about the 
physical nature of the systems involved in the EPR/B experiment – in particular, assumptions 
about the state of the particles at the source, the causal relations between this state and the state 
of the measurement apparatuses during the measurements, and the causal relations between 
measurements in the two distant wings of the experiment. And granted such assumptions, the 
violation of (Bell/CH – Fine) will have bearings on the causal relations in the EPR/B experiment 
in general, and the question of quantum non-locality in particular.  
 
It is also noteworthy that in the derivation of the Bell/CH inequalities, or more precisely 
(Bell/CH – Fine), Fine [28] in fact presupposes λ-independence and some factorizability 
conditions. That he presupposes λ-independence is clear from the fact that he takes the 
distribution of λ to be the same for all spin measurements; and as it is not difficult to see from 
equations (2) and (11) in his paper, his characterization of hidden-variables models embody 
factorizability conditions. Recalling footnote 5, it is not difficult to show that λ-independence 
and these factorizability conditions are sufficient for the derivation of Bell/CH inequalities. So 
the question arises as to the role that the assumption of joint distribution plays in Fine’s 
derivation of these inequalities. It may be tempting to argue that such an assumption is 
necessary for the physical plausibility of the hidden-variables models. But, first, this argument is 
not open to Fine, who holds that the rejection of such an assumption is the very essence of QM. 
Second, even if we suppose that the assumption of joint distribution were important for the 
ontological status of the hidden-variables models (an assumption that Bell, Clauser and Horne 
and many others reject), the violation of this assumption per se is not sufficient to vindicate 
Fine’s claim that “what the hidden-variables models and the Bell/CH inequalities are all about 
are the requirements that make well defined precisely those probability distributions for non-
commuting observables.” [28, p. 291] Since factorizability fails in the EPR/B experiment, Fine 
has to appeal to the view that the violation of this condition has no implications for the question 
of non-locality. [23-25] For if we suppose that the failure of factorizability involves some kind 
of non-locality, as a broad consensus has it, then the fact that factorizability fails in standard 
QM as well as in any alternative interpretation or hidden-variables model in which λ-
independence obtains, will entail that the common interpretation of Bell’s theorem is on the 
right track.  
 
In any case, as we shall see in Sect. 16.5, if probabilities are interpreted along de Finetti’s 
probability theory, (Bell/CH – Fine) cannot be derived from the assumption of joint probability 
distribution over the measurement outcomes since such distribution does not exist. Similarly, λ-
independence and Mirror do not entail (Bell/CH – phys – ψ) since (Bell/CH – prob) does not 
hold; for the joint probability distribution over the spin quantities in this latter inequality does 
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not exist. But before turning to discuss the application of de Finetti’s theory to the quantum 
probabilities, we introduce the highlights of this theory in Sects 16.3 and 16.4.  

 
16.3 De Finetti’s theory of probability 
 

Our aim here is to offer a new reading of de Finetti’s theory of probability and, assuming that 
quantum probabilities are interpreted along this theory, to study their logical structure – i.e. the 
inequalities that constrain them. Thus, for lack of space, the presentation of de Finetti’s theory 
will be uncritical.  

 
16.3.1 The probability axioms are not merely formal conventions  
 

De Finetti held that “probability theory is not merely a formal, merely arbitrary construction, 
and its axioms cannot be chosen freely as conventions justified only by mathematical elegance 
or convenience. They should express all that is necessarily inherent in the notion of probability 
and nothing more.” [39, pp. xiii-xiv] He thought of probability as a guide of life under 
uncertainty. Having been influenced by positivism, he held that probability, like other notions of 
great practical importance, should have an operational definition, namely “a definition based on 
criterion which allows us to measure it.” [40, p. 76] Also, being a guide of life under 
uncertainty, de Finetti maintained that probability should be closely related to rational decisions 
under uncertainty. ([39], pp. xiii-xiv and Chaps. 1-2; [40], pp 76-89) The decision framework 
that he had in mind is Bayesian, where a person’s degrees of belief reflect her uncertainty 
concerning the things she cares about, her utilities reflect her subjective preferences, and the 
outcomes of rational decisions are actions that maximize her expected utility.7 De Finetti 
thought of probability as reflecting rational degrees of belief, and of coherence as a necessary 
condition for degrees of belief being rational, and he argued that all the theorems of probability 
theory could be derived from the coherence conditions of degrees of belief. ([40], pp. x, 72-75, 
87-89; [39], Chaps. 1-2)  
 
 
16.3.2 The domain of probability is the domain of uncertainty 
 

De Finetti made a distinction between the domain of certainty, i.e. that which one takes as 
certain or impossible, and the domain of uncertainty, i.e. the range over which one’s uncertainty 
extends. The distinction between these domains is very important and fundamental to de 
Finetti’s philosophy of probability, as his long and detailed discussion of this topic 
demonstrates. [40, Chap. 2] The domain of uncertainty depends on one’s (actual and/or 
hypothetical) background knowledge and one’s reasoning [40, pp. 27 and 47], and thus it may 
include events that are logically impossible or certain, e.g. complicated contradictions or 
tautologies that one fails to recognize. The domain of probability is the domain of uncertainty. 
This domain is supposed to include all the atomic uncertain events (or the propositions that such 
events occur) and their logical combinations, which may be certain (for example, if A  is an 
uncertain event, the domain of uncertainty will also include the certain event A  or not- A ). 
                                                
7It is noteworthy that unlike Frank Ramsey [41], another founding father of the modern school of 
subjective probability, de Finetti held that probability is not strictly related to rational preferences.  
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Whether an event is atomic is a pragmatic matter, which does not depend on metaphysical 
questions. It is noteworthy that for de Finetti, there is a sharp distinction between being certain 
about an atomic event, and having a degree of belief one in it. The former belongs to the domain 
of certainty, whereas the latter belongs to the domain of uncertainty.  

 
16.3.3 Probabilities are subjective and instrumental 
 

Many friends of the subjective interpretation of probability think that coherence is a necessary 
but not sufficient condition for the rationality of degrees of belief. They hold that for degrees of 
belief to be rational, they also have to be constrained by knowledge of objective facts about the 
world. In particular, it is frequently maintained that when objective probabilities are available, 
they should constrain the corresponding subjective probabilities. Thus, many hold that 
rationality requires that a person’s subjective probability of E given that the objective 
probability of E  is p , and she assumes, believes or knows nothing else about the prospects of 
E , should be p . An influential expression of this idea is Lewis’s [29] ‘principal principle.’ 
 
De Finetti rejected the idea that subjective probabilities are supposed to be guesses, predictions 
or hypotheses about the corresponding objective probabilities, or based on such probabilities or 
any other objective facts. Indeed, he argued that probabilities are inherently subjective, and that 
none of the objective interpretations of probability makes sense. He held that objective 
probability does not exist, and that recognition of its inexistence would constitute a progress in 
scientific thinking. “The abandonment of superstitious beliefs about the existence of Phlogiston, 
the Cosmic Ether, Absolute Space and Time, … , or Fairies and Witches, was an essential step 
along the road to scientific thinking. Probability, too, if regarded as something endowed with 
some kind of objective existence, is no less misleading misconception, an illusory attempt to 
exteriorize or materialize our true [i.e. actual] probabilistic beliefs.” [40, p. x]8  
 
De Finetti [40, pp. x-xi] argued that probability and probabilistic reasoning should always be 
understood as subjective. Probability only reflects uncertainty, and accordingly no fact could 
prove or disprove a degree of belief. He did not deny, however, the psychological influence that 
facts may have on degrees of belief. “I find no difficultly in admitting that any form of 
comparison between probability evaluations (of myself, or of other people) and actual events 
may be an element influencing my further judgment, of the same status as any other kind of 
information … But, as with any other experience, these modifications would not be governed by 
a mechanical rule; it is, in each case, my personal judgment that is responsible for giving a 
weight to the facts (for instance, according to my feelings about the success of the other person 
being due to his skill and competence or merely due to a meaningless chance).” [39, p. 21]  
 
The source of uncertainty is immaterial. “It makes no difference whether the uncertainty relates 
to unforeseeable future, or to an unnoticed past, or to a past doubtfully reported or forgotten; it 
may even relate to something more or less knowable (by means of a computation, a logical 
deduction, etc.) but for which we are not willing or able to make the effort; and so on. … The 
                                                
8The addition of the word ‘actual’ in the square brackets is mine, as the translation from Italian seems 
incorrect. The word ‘vero’ could be translated as ‘actual’ or ‘true’, and it is clear that in this context it 
should be translated as ‘actual.’ 
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only relevant thing is uncertainty – the extent of our knowledge and ignorance. The actual fact 
of whether or not the events considered are in some sense determined, or known by other 
people, and so on, is of no consequence.” [40, pp. x-xi] The important thing for de Finetti is that 
in all these different states of uncertainty, subjective probability could be useful as a guide. The 
role of probability is purely instrumental, and its value should be determined solely on the basis 
of its potential to serve as a guide in everyday and science. De Finetti went to great pains in his 
attempt to show that his subjective theory of probability could serve as such a guide.  
 
As de Finetti’s Philosophical Lectures on Probability suggest, he was instrumentalist about 
probabilistic theories [42, pp. 53-54], interpreting their probabilities as subjective, representing 
nothing but degrees of expectations. [42, p. 52] And he held that distributions brought to us by 
probabilistic theories, such as Statistical Mechanics and Quantum Mechanics, “provide more 
solid grounds for subjective opinions.” [42, p. 52]  
 
Like other instrumental views, de Finetti thought that subjective probability could play its role 
as a guide, independently of our metaphysical assumptions about the world. “[P]robabilistic 
reasoning is completely unrelated to general philosophical controversies, such as Determinism 
versus Indeterminism, Realism versus Solipsism – including the question of whether the world 
‘exists,’ or is simply the scenery of ‘my’ solipsistic dream.” [40, p. xi] 

 
16.3.4 Intuition, prudence and learning from experience 
 

It is common to portray probability in de Finetti’s radical subjective interpretation as 
unconstrained, too permissive and possibly whimsical (see, for example, [43], Sect. 3.5.4). On 
the other hand, de Finetti held that assigning or ‘evaluating’ probabilities is an inductive 
reasoning, and as such it is based on learning from experience; and “to speak about inductive 
‘reasoning’ means, however, to attribute a certain validity to that mode of learning, to consider 
it not as a result of a capricious psychological reaction, but as a mental process susceptible of an 
analysis, interpretation and justification.” [39, p. 147] Indeed, he warned against superficiality in 
assigning probabilities, which is frequently associated with subjective probability. In particular, 
he warns against two common patterns of superficiality. “On the one hand You may think that 
the choice, being subjective, and therefore arbitrary, does not require too much of an effort in 
pinpointing one particular value rather than a different one; on the other hand, it might be 
thought that no mental effort is required, since it can be avoided by the mechanical application 
of some standardized procedure.” [39, p. 179] He recommended various features that must 
underlie each probability evaluation, like for example to “think about every aspect of the 
problem…try to imagine how things might go…encompass all conceivable possibilities; and 
also take into account that some might have escaped attention…identify those elements which, 
compared to others, might clarify or obscure certain issues…enlarge one’s view by comparing a 
given situation with others…attempt to discover the possible reasons lying behind those 
evaluations of other people…” [40, pp. 183-4] This is not surprising given that de Finetti held 
that the subjectivist theory of probability “is a normative theory, not a descriptive one,” and the 
value of probability theory is “precisely as an aid to the avoidance of plausible and frequently 
serious shortcomings and errors.” [39, p. 151] 
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De Finetti’s philosophy of probability presupposes that people have the intuitive faculty to form 
reasonable opinions about uncertain events and, with the aid of probability theory, the capacity 
to form reasonable probabilistic opinions. De Finetti held that people need to develop and refine 
this faculty, and apply reason to learn to guard it against the tendency to form superficial 
probabilistic opinions. Yet, he cautioned against the misunderstanding of the role of reason. In 
particular, he warned that “the tendency to overestimate reason – often in an exclusive spirit – is 
particularly harmful. Reason, to my mind, is invaluable as a supplement to the other psycho-
intuitive faculties, but never a substitute for them. Figuratively, reason is a pole that may keep 
the plant of intuitive thought from growing crooked, but it is not itself either a plant or a valid 
substitute for a plant.” [39, pp. 147-148]  
 
Learning from experience is important for assigning both ‘prior’ and posterior’ probabilities. De 
Finetti held that every probability is conditional “not only on the mentality or the psychology of 
the individual involved, at the time in question, but also, and essentially, on the state of 
information in which he finds himself at the moment,” though in many cases there is no need to 
mention explicitly the background information, and accordingly it is suppressed. [40, p. 134] So 
both prior and posterior probabilities are conditional probabilities. The prior probabilities are 
conditional on some prior background information, and they are updated according to the 
increase or change in background knowledge/beliefs/assumptions. De Finetti makes a 
distinction between updating and changing opinions. When one conditionalizes on new 
information, one keeps the same opinion yet updates it to a new situation. [42, p. 35] And when 
one revises one’s probability function, one changes one’s opinion. Change of opinion could 
result from reconsideration of neglected, inaccurate or ambiguous information, or change of 
mind about the relevance of information, or superficial or careless evaluations, etc. Thus, de 
Finetti held that realistically the evolution of one’s subjective probabilities involves both 
updating and changing opinions. [42, pp. 39-40]  
 
Due to the disparity in subjective evaluations, prior probabilities are expected to vary 
significantly. Yet, de Finetti held that the effects of “the disparity between the initial judgments 
of people or of vagueness in the initial judgments of one person are often largely eliminated,” if 
the additional information gathered between the prior and the posterior evaluations is 
sufficiently revealing and the prior probabilities are “sufficiently gentle or diffuse,” i.e. not too 
opinionated. [39, p. 145] 

 
16.3.5 Probabilities are coherent degrees of belief 
 

Probabilities are not just any degrees of belief. They are coherent degrees of belief in 
(propositions about) events that belong to the (agent’s) domain of uncertainty. The notion of 
coherent degrees of belief is commonly understood in terms of Dutch books, i.e. bets that results 
in loss come what may. The idea is that incoherent degrees of beliefs are subjected to Dutch 
books. ([41], [40], Chaps. 3-4, [44]) Coherence is thus characterized in a betting framework, 
where a person is subjected by a clever bookie to series of bets. The person assigns certain odds 
to these bets according to her degrees of belief, and the bookie prescribes the possible gains and 
losses according to these odds.  
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In his later work, de Finetti preferred a different decision-theoretic framework (for the 
motivation, see Subsection 16.3.6). ([39], Chaps. 1-2; [40], Chaps. 3-4) In this alternative 
framework, there is no bookie. Individuals express their degrees of belief, and they are subjected 
to fixed gains and variable monetary losses, the so-called ‘loss functions,’ which are functions 
of their degrees of belief about events and the occurrence of these events. That is, letting E  
being any verifiable event, d  a degree of belief in E , and E  an indicator function denoting 
whether E  occurs ( E=1  if E  occurs, and E=0  otherwise), the loss L that the individual is 
subjected to is: 
 

(L1) L = (E − d)2

k
; 

 
where k  is an arbitrary constant which is fixed in advance and which may differ from one case 
to another. In the case of multiple degrees of belief, the total loss is the sum of the losses 
incurred by each degree of belief. For example, the loss function for the degrees of belief 
d1, d2 , d3  in the events E1, E2 , E3 , respectively, is: 
 

   (L2)    L =
(E1 − d1)

2

k1
+
(E2 − d2 )

2

k2
+
(E3 − d3)

2

k3
. 

 
In this alternative decision-theoretic scheme, coherent degrees of belief are explicated in terms 
of admissible decisions. The ‘decisions’ are the individual’s degrees of belief in various events, 
and they are admissible if they are not dominated by any other decisions, i.e. by any other 
degrees of belief in the same events; where a set of degrees of belief in events is dominated by 
another set of degrees of belief in the same events, if it leads to higher losses come what may. A 
set of degrees of beliefs is coherent just in case it is not dominated by any other set of degrees of 
belief in the same events.  

 
16.3.6 Measurements of degrees of belief 
 

De Finetti assigned a great importance to the measurement of degrees of belief. He thought that 
since probability is supposed to be a guide of life, it should have a meaning that renders it 
effective as such. Being influenced by positivism, he held that “in order to give an effective 
meaning to a notion – and not only an appearance of such in a metaphysical-verbalistic sense – 
an operational definition is required.” By operational definition, he meant “a definition based on 
a criterion which allows us to measure it.” [40, p. 76] His inspiration came from early 20th 
century physics. “The notion of probability, like other notions of practical significance, ought to 
be operationally defined (in the way that has been particularly stressed in physics following 
Mach, Einstein, and Bridgman), that is, with reference to observations, in experiments that are at 
least conceptually feasible. In our case, the experiments concern the behavior of an individual 
(real or hypothetical) facing uncertainty.” [39, p. xiv] 
 
The main reason why de Finetti preferred the loss-functions decision-theoretic scheme is that 
the Dutch-book framework involves a bookie, an ‘opponent,’ the presence of whom may intrude 
with the measurement of degrees of belief. In particular, de Finetti mentioned the possibility that 
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the bookie or the individual take advantage of differences of information, competence or 
shrewdness. [40, p. 93] The presuppositions of this scheme are that individuals strive to 
maximize their expected utility, and that utility is linear with money, where k  is supposed to 
warrant this linearity. Granted these assumptions, it is not difficult to show that it is in the best 
interest of individuals to express their actual degrees of belief; for any other degrees of belief 
will lower their (subjective) expected utility.  
 
Since de Finetti defines probability in terms of betting or measurement contexts, it may be 
tempting to interpret him as behaviorist about degrees of belief, holding that degrees of belief, 
and accordingly probabilities, do not exist outside these contexts. [45, pp. 185-189] This 
interpretation is particularly suggestive given the inspiration that de Finetti took from 
Bridgman’s [46] operationalism, where theoretical terms are defined in terms of the operational 
procedures of their measurements. Yet, de Finetti did not intend the betting and the loss-
function decision-theoretic frameworks as Bridgman-like operational definitions of degrees of 
belief. Indeed, he held that degrees of belief exist independently of the contexts of their 
measurement. “The criterion, the operative part of the definition which enables us to measure it, 
consists in this case of testing, through the decisions of individual (which are observable), his 
opinions (previsions, probabilities), which are not directly observable.” [40, p. 76] Moreover, as 
Eriksson and Hájek [45, p. 190] point out, de Finetti’s worries about the relation between utility 
and money and about agents who care too much or too little about their bets, do not make sense 
if degrees of beliefs are interpreted along Bridgman's operationalism. The operational procedure 
is supposed to provide a reliable measurement of degrees of belief, not a definition of them. Yet, 
as we shall see in Sect. 16.4, the operational procedure plays an important role in explicating the 
coherence conditions of degrees of belief and to that extent it plays an important role in defining 
subjective probabilities. 

 
16.3.7 Conditional probability 
 

Following Kolmogorov’s [18] influential axiomatization of probability, it is common to define 
conditional probability in terms of unconditional probabilities: P(B / A) ≡ P(B& A) / P(A) . De 
Finetti rejected this axiomatic approach. He thought that probability theory should be derived 
from the analysis of the meaning of probability. He held that every probability is conditional 
“not only on the mentality or the psychology of the individual involved, at the time in question, 
but also, and essentially, on the state of information in which he finds himself at the moment,” 
though in many cases there is no need to mention explicitly the background information, and 
accordingly it is suppressed. [40, p. 134] Thus, he maintained that conditional probability is the 
fundamental object of probability theory, and unconditional probability does not make sense 
(except when it is a conditional probability in disguise).9  
 
In introducing the concept of conditional probability, de Finetti says that “we shall write 
P(E | H )  for the probability ‘of the event E  conditional on the event H ’ (or even the 
probability ‘of the conditional event E |H ’), which is the probability that You attribute to E  if 

                                                
9In fact, the idea that conditional probability is the fundamental object of probability theory could also be 
defended in other interpretations of probability. ([19], [20], [47]) 
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You think that in addition to your present information, i.e. the H0  which we understand 
implicitly, it will become known to You that H  is true (and nothing else).” [40, p. 134] This 
characterization is ambiguous. On the one hand, conditional probability is characterized as a 
conditional with a probabilistic consequent, whereas on the other it is likened to unconditional 
probability of a ‘conditional event.’  
 
The association of conditional probability with a ‘called-off’ bet in the betting decision-theoretic 
framework, and the loss function for conditional probability in the loss-function decision-
theoretic framework both suggest the first interpretation. The loss function for the probability of 
E  given H  and the background knowledge H0  is:  
 

(L3) L =
H0H(E − d)2

k  
 
where d is a degree of belief in E, E  and H  are indicator functions, denoting respectively the 
truth value of E  and H , and H0  is an indicator function denoting the truth value ofH0 . Based 
on (L3), the proposition that the conditional probability of E  given H  and H0  equals d  may 
be characterized by the following conditional: 
 
(CP1) If you have the background knowledge H0  and you come to know H  (and nothing else), 

then your degree of belief in E  will be d . 
 
The idea is that a person with such a conditional probability is subjected to a loss of E − d( )2 k  
on the condition that she has the background knowledge/beliefs H0  and she comes to know H  
and nothing else; and the loss is zero, if she does not have the knowledge/beliefs H0  or does not 
come to know H . This is very similar to the idea of a called-off bet, where the probability of E  
given H & H0  being d  is explicated by a bet in which a person pays dS  dollars on the 
condition that she knows H & H0  for the opportunity to earn S  dollars if E  occurs and zero 
otherwise, and the bet is called off if she does not know H & H0 . 
 
The notion of conditional probability applies not only to cases where one knows H0  and H , 
but also to cases where one assumes or believes H0  and H . We may thus extend the meaning 
of conditional probability as follows:  
 
(CP2) If you know, believe or assume H0  and you come to know, believe or assumeH  (and 

nothing else), then your degree of belief in E  will be d . 
 
Further, the conditioning event and the background knowledge may be counterfactual rather 
than actual. In such cases, conditional probability may be characterized by the following 
counterfactual conditional:  
 



18 
 

(CP3) If you had the background knowledge or beliefs H0  and you had come to know, 
believe or assume H (and nothing else), then your degree of belief in E  would have 
been d . 

 
Beware! (CP2) is neither the material nor the strict conditional. It is true if one knows, believes 
or assumes H  and nothing else beside one’s background knowledge H0 , and one’s degree of 
belief in E  is p ; it is false when one has the background H0  and comes to know, believe or 
assume H  but one’s degree of belief in E  is not d ; and it is indeterminate when one does not 
have the background H0  or does not come to know, believe or assume H . (CP3) is not the 
Stalnaker–Lewis counterfactual conditional, though it may be interpreted as being true in case 
one’s degree of belief in E  is d  in the most similar relevant worlds or scenarios in which one 
holds H0  and H . For a more detailed discussion of these conditionals, see Berkovitz [47].  
 
In order to distinguish the above notion of conditional probability from that of Kolmogorov, we 
shall place the conditional event in the subscript: PH0H (E)  will denote the conditional 
probability of E  given H  and the background knowledge H0 . De Finetti ([39], Chap. 2, [40], 
Chap. 4) demonstrates that coherence entails that: 
 

    (C1) PH0H (E) ⋅PH0 (H ) = PH0 (E& H ) ; 
 
where PH0 (H )  and PH0 (E&H )  are respectively the probability of E  given H0  and the 
probability of E&H  given H0 . When PH0 (H )  is definite and non-zero, we obtain 
Kolmogorov’s definition of conditional probability as a coherence condition on degrees of 
belief.  
 
Recall (Sect. 16.2) the two different ways of representing the Bell/CH inequalities: in terms of 
conditional probabilities with the conditions (namely, the pair-state and the apparatus settings) 
in the subscript, as in (Bell/CH – phys – ψ); and in terms of conditional probabilities a la 
Kolmogorov, where the conditions are placed after the conditionalization stroke, as in (Bell/CH 
– phys – ψ – big). (C1) suggests a way to relate these different representations.  
 
De Finetti’s proposal that the probability of E  given H  may be seen as the probability of the 
‘conditional event’ E | H  suggests another interpretation of conditional probability. Conditional 
events (or ‘tri-events’) are in effect three-valued propositions about events, the truth-value of 
which depends on the condition. ([40], p. 139; [48], Appendix, pp. 307-11) In particular, E | H  
is the proposition that E  occurs, but its truth-value depends on whether H  occurs. If H  
occurs, then E | H  is true if E  occurs and false if E  does not occur; and if H  does not occur, 
then E |H  has indeterminate truth-value. The idea is then to assign probabilities only to 
conditional events that are true or false, so that indeterminate conditional events have no 
probabilities.  
 
We shall return to consider the implications of the two different interpretations of de Finetti’s 
concept of conditional probability in our discussion of his verificationism in Sect. 16.4, and in 
the application of his theory of probability to QM in Sect. 16.5. 
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16.3.8 Symmetry and exchangeability  
 

Judgments of equally probable events, and accordingly of symmetries, are central to all 
interpretations of probability. In objective interpretations of probability, the symmetries concern 
the way things are. For de Finetti, the relevant symmetries concern one’s opinions and 
judgments. De Finetti held that any evaluation of equally probable events is based on subjective 
judgments, and that the notion of exchangeability is central to such judgments. A collection of 
events is said to be exchangeable if the probability ph  that h  of them occur depends only on h  
and is independent of their order of appearance. [39, p. 229] Followers of de Finetti’s 
interpretation and friends of the Bayesian interpretation of quantum probabilities attribute a 
great importance to exchangeability. Indeed, the notion of exchangeability, and the related 
notion of partial exchangeability are bound to play a central role in the interpretation of the 
quantum probabilities along de Finetti’s probability theory. For example, Caves, Fuchs and 
Schack [4] apply de Finetti’s work on exchangeability to the interpretation of the notion 
‘unknown quantum states’ and the related notion of ‘unknown quantum probabilities’ from a 
subjectivist Bayesian perspective. Yet, as the notion of exchangeability is not central to our 
main focus – the study of the coherence conditions of degrees of belief in the context of QM – 
we postpone its discussion to another opportunity. 

 
16.4 Verifiability, coherence and contextuality 
 

De Finetti [40, p. 34] held that the events in probability assignments have to be verifiable. “In 
general terms, it will always be a question of examining, if, and in which sense, a statement 
really constitutes an ‘event,’ permitting in a more or less realistic acceptable form, and in unique 
way, the ‘verification’ of whether it is ‘true’ or ‘false’… A  and B  are events (observables), but 
it is not possible to observe both of them, and, therefore, it is not possible to call the product 
AB  an event (observable).” An important implication of this view is that the constraints on 
probabilities of events that are not jointly verifiable are weaker. For example, if A  and B  are 
jointly verifiable, their probabilities are subjected to the inequality  
 

P(A)+ P(B)− P(A& B) ≤1.  
 
But if A  and B  are not jointly verifiable, they have no joint probability, and accordingly their 
probabilities are not subjected to this inequality. 
 
De Finetti [48, p. 260] acknowledged that verifiability is “a notion that is often vague and 
illusive” and thought that it is necessary “to recognize that there are various degrees and shades 
of meaning attached to [it].” He took a pragmatic attitude toward the kind and degree of 
verifiability that is actually required for events to have a definite probability. [48, Appendix] To 
simplify things, we shall focus on verifiability in principle, and by ‘verifiable events’ we shall 
mean events that are verifiable in theory according to one’s beliefs.  
 
Unlike probabilities, de Finetti was not antirealist about events. Yet, he held that notions of 
great practical importance should have ‘operational definitions,’ namely definitions based on 
criteria that render them measurable. If events are not verifiable, they cannot have such an 
operational definition. Further, the prospects of adequate measurements of degrees of belief in 
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such events are dim, thus undermining the idea that probability should also have an operational 
definition. The most obvious explanation for de Finetti’s verificationism is the influence of 
positivism. De Finetti [40, p. 76] was worried that events that are not verifiable may appear to 
be sensical but in fact be meaningless, and accordingly degrees of belief in such events will be 
useless.  
 
In the context of de Finetti’s philosophy of probability, there is a different reason to motivate his 
verificationism. It is difficult to make sense of the idea of coherent degrees of belief in, and 
accordingly probabilities of unverifiable events. This is clear in the betting decision-theoretic 
framework. Bets on events that are in principle unverifiable could never be concluded. 
Accordingly, no Dutch book could be based on such bets, and the idea that Dutch book could be 
used to explicate the notion of ‘coherent degrees of belief’ collapses. Things are not so obvious 
in the loss-function decision-theoretic framework, as this framework appears to provide a way 
to explicate this notion even in the case of unverifiable events; for the notion of ‘admissible 
decision,’ which is used to explicate coherence in this framework, seems applicable even in the 
case of unverifiable events. But a little reflection on the nature of probabilities in de Finetti’s 
theory suggests that this appearance is deceptive. In this theory, there are no objectively correct 
probability assignments. Probabilities are subjective opinions that only reflect uncertainty about 
things. The value of probabilities reside solely in their instrumental role as a guide for decisions 
under uncertainty, and this role could only be measured in terms of verifiable ‘gains’ and 
‘losses,’ or more generally verifiable consequences. In the case of unverifiable events, the 
instrumental value of probabilities vanishes because the consequences of probability 
assignments are in principle unverifiable. This lack of instrumental value reflects on the 
prospects of explicating the notion of coherent degrees of belief. Incoherent degrees of belief in 
unverifiable events have no verifiable harmful consequences, and so radical subjectivists about 
degrees of belief, like de Finetti, who deny the existence of objective probabilities, have no 
incentive to have coherent degrees of belief in such events. Accordingly, like in the betting 
decision-theoretic framework, the idea that the loss-function decision-theoretic framework could 
be used to explicate the notion of coherent degrees of belief collapses in the case of unverifiable 
events. 
 
De Finetti proposes to make the verifiable nature of events explicit by assigning probabilities to 
‘conditional events’ E |H  (see Sect. 16.3.6) rather than to the events themselves; where H  is an 
observation that enables to verify the event E . [48, pp. 266-7 and 307-313] The idea is to assign 
probabilities only to conditional events E | H  with determinate truth-values, so that unverifiable 
events E  have no probabilities. This idea is easily generalized to complex ‘conditional events,’ 
i.e. logical combinations of conditional events. Consider, for instance, E12 | H12 , the conjunction 
of the conditional events E1 | H1  and E2 | H2 ; where Hi  is an observation that enables to verify 
whether Ei  is true, and E12  is the event that denotes the conjunction of the events E1  and E2 . 
E12 | H12  is true if H12  and E12  are both true, false if H12  is true and E12  false, and has 
indeterminate truth-value if H12  is false. By restricting probabilities to conditional events, 
‘complex’ conditional events (like E12 ) may fail to have definite probabilities, even when the 
‘atomic’ events that constitute them (E1  and E2 ) do. In this approach, a person’s probabilities are 
represented by a ‘big’ probability space with ‘gaps’ in the place of some complex events 
(henceforth, DF-big-space). The logic and probability of conditional events seem to require some 
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kind of three-valued logic, and indeed de Finetti discussed various three-valued logics that could 
serve as a basis for such probability theory. [48, pp. 302-313] For de Finetti’s early thoughts 
about conditional events and their logic, see De Finetti [49] and Mura [50].   
 
De Finetti also entertained the idea of representing probabilities of verifiable events in terms of 
classical, two-valued logic. In fact, as we shall see in Sect. 16.6, he preferred such an approach. 
This alternative approach is in line with our proposal in Sect. 16.3.7 that conditional probability a 
la de Finetti may be characterized as a conditional with a probabilistic consequent. Indeed, this 
interpretation of de Finetti suggests a natural way of representing probabilities of verifiable 
events in terms of two-valued events. The main idea is to suppose that the ‘unconditional’ 
probability of an event E  being p  has in effect a logical structure of a conditional with a 
probabilistic consequent: if an observation H  that enables to verify E  occurs (occurred), the 
probability of E  is (would be) p . Recall (Sect. 16.3.7) that in our suggested notation, this 
conditional is represented as PH (E) = p , i.e. as a conditional probability with the conditioning 
event in the subscript; and probabilities with different subscripts, i.e. conditionals with different 
antecedents, correspond to different probability spaces. That is, we could represent de Finetti’s 
verificationism by supposing that a person’s subjective probabilities are represented by multiple 
probability spaces, in each of which probabilities of events are conditional (implicitly) on an 
observation that enables to jointly verify all the events in the space. On this view, a person’s 
coherent degrees of belief are represented by many ‘smaller’ probability spaces (henceforth, DF-
many-spaces), each contains events that could be jointly verified.  
 
Although the two approaches are different, in de Finetti’s philosophy of probability they are 
closely related. In both approaches, probabilities of events are conditional on observations that 
enable to verify them. This is not obvious in the DF-big-space, where probabilities appear to be 
unconditional. But recall (Sect. 16.3.7) that for de Finetti probabilities of ‘conditional events’ 
are closely connected, if not equivalent, to the corresponding conditional probabilities. The 
similarity between conditional probability, represented as a conditional with probabilistic 
consequent, and the corresponding probability of conditional event is hindered by de Finetti’s 
formal notation, which is similar to the common notation for conditional probability a la 
Kolmogorov. Yet, in both cases only verifiable events E  have probabilities, and the 
observations H  that enable their verification have no probability, as they are not events in the 
probability space. To highlight this feature, in our representation of conditional probability as a 
conditional with a probabilistic consequent, we have placed the conditioning events H  in the 
subscript rather than after the conditionalization stroke, PH (E) ; and, as de Finetti [39, p. 104] 
remarks, the conditional event E | H  “must be considered as a whole,” and accordingly H  is 
not part of the probability space. Indeed, the inclusion of H  in the probability space while 
maintaining de Finetti’s verificationism would lead to an infinite regress, where H  would have 
to be a conditional event, the condition of which would have to be represented by a conditional 
event, and so forth.  
 
Finally, as represented above de Finetti’s verificationism is very stringent. Conditionalizing 
probabilities of events on observations that enable to verify them would severely restrict the 
range of events that have probabilities. First, this brand of verificationism restricts probabilities 
to observational contexts. Second, in various cases the required observations are actually 
impossible to carry out. Third, it threatens to render de Finetti’s philosophy of probability 
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extremely operationalist, as the probability of an event may vary according to the kind of 
observation that enables to verify it. Yet, it is possible to sustain the main thrust of de Finetti’s 
verificationism while avoiding the above undesired consequences by conditionalizing 
probabilities of events on the proposition that the events are verifiable in principle, rather than 
on the proposition that observations that enable to verify them have been performed. In fact, this 
weaker version of verificationism is what de Finetti seemed to have in mind. We shall discuss 
the implications of the weaker and the stronger versions of verificationism in the next section.  

 
16.5 Coherent degrees of belief for the EPR/Bohm experiment 
 

The most important implication of de Finetti’s verificationism is that the coherence conditions 
on degrees of belief in events that are not jointly verifiable are weaker than they would have 
been had the events been jointly verifiable. Let’s consider again (Bell/CH - prob) (see Sect. 
16.2). In de Finetti’s theory, (Bell/CH - prob) is a necessary condition for coherent degrees of 
belief in, and accordingly for probabilities of X, Y , X &Y , X '&Y , X &Y '  and X '&Y '  only 
when these events (propositions) are jointly verifiable. But in various hidden-variables models 
of the EPR/B experiment, X  and X '  (Y  and Y ' ) are values of non-commuting spin 
observables, which are not jointly verifiable. Similarly, the measurement outcomes in (Bell/CH 
– Fine) are not jointly verifiable, and so they are not necessary conditions for coherent degrees 
of belief, and accordingly for probabilities of the measurement outcomes involved in this 
inequality. Thus, if probabilities are interpreted along de Finetti’s theory, (Bell/CH – prob) and 
(Bell/CH – Fine) do not apply to the EPR/B experiment.  
 
Recalling (Sect. 16.4) that de Finetti formalizes his verificationism in terms of conditional 
probabilities, the failure of these inequalities can be manifested in two different ways, 
corresponding to the two different interpretations of de Finetti’s concept of conditional 
probability. Consider, for example, (Bell/CH - prob). In the DF-big-space approach, 
probabilities are assigned only to conditional events. In our case, the relevant conditional events 
are X / HX , Y / HY , X '/ HX ' , Y '/ HY ' , X &Y / HXY , X '&Y / HX 'Y , X &Y '/ HXY ' , 
X '&Y '/ HX 'Y ' , X & X '/ HXX '  and Y &Y '/ HYY ' ; where, as before, Hi  is either a measurement 
that enables to verify the event i , or the proposition that the event i  is verifiable (we shall 
consider below the differences between these two interpretations of Hi ). Since it is impossible 
in principle to jointly observe X  and X '  (Y  and Y ' ), individuals who are familiar with this 
feature of the quantum realm will not assign a determinate truth-value to 
X & X '/ HXX ' (Y &Y '/ HYY ' ) , and so X & X '/ HXX ' (Y &Y '/ HYY ' )  and any conjunction that 
includes it has no probability. Consequently, a (Bell/CH - prob)-like inequality is not a 
necessary condition for the probabilities of the conditional events X / HX , Y / HY , X &Y / HXY , 
X '&Y / HX 'Y , X &Y '/ HXY '  and X '&Y '/ HX 'Y ' . In the DF-many-spaces approach, the 
assumption that X  and X '  (Y  and Y ' ) are not jointly verifiable entails that the events X , X ' , 
Y  and Y '  are not in the same probability space. There are four smaller probability spaces, each 
contains two of these events: {X,Y}, {X ',Y}, {X,Y '}  and {X ',Y '} . So (Bell/CH - prob) is not 
a necessary condition for coherent degrees of belief in, and accordingly for the probabilities of 
the events X, Y , X &Y , X '&Y , X &Y '  and X '&Y ' . The upshot is that followers of de Finetti, 
who assume that the spins of a particle in different directions are not jointly verifiable, are not 
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committed to (Bell/CH – prob). Thus, they may assume Mirror (e.g. that the probability 
distribution of spin-measurement outcomes reflects the probability distribution of the particles’ 
spins before the measurements) and λ-independence (e.g. that the distribution of the particles’ 
spins is independent of the measurements), yet assign probabilities that are not constrained by 
(Bell/CH – phys – ψ). Similarly, followers of de Finetti will not see (Bell/CH – Fine) as a 
necessary constraint on the probabilities of the four spin-measurement outcomes involved in 
each of the Bell/CH inequalities. 
 
Two challenges may be posed for de Finetti’s verificationism. The first is for the DF-many-
spaces approach. In this approach, the same event may have different probabilities in different 
spaces: e.g. event X  may have the probability p1  in the probability space S1  that is constituted 
by the ‘atomic’ events X  and Y , and p2 , p2 < p1 , in the space S2  that is constituted by the 
‘atomic’ events X  and Y ' . For recall that the probabilities in S1  are conditionalized on a 
measurement HXY  that enables to verify whether X  and Y  occur, and the probabilities in S2  
are conditionalized on a measurement HXY '  that enables to verify whether X  and Y '  occur. If 
HXY  and HXY '  are incompatible measurements, there is no Dutch-book argument to dictate that 
the probability of X  should be the same in both probability spaces.  
 
Things are different, however, in our suggested interpretation of de Finetti’s verificationism, 
where events are conditionalized on their verifiability rather than on measurements that enable 
their verification (see Sect. 16.4). In this version, the probability of X  has to be the same in S1  
and in S2  on pain of a Dutch book, where a bookie offers to sell a bet on X  for $p1  and buy it 
back for $p2 , thus ‘pumping’ money out of any individual who holds that the probability of X  
in S1  is different from the probability of X  in S2 . The reasoning is as follows. An individual 
who holds the above probabilities should consider as fair a bookie’s offer to (i) sell a conditional 
bet on X  given that X  and Y  are jointly verifiable at the price of $p1 , and (ii) buy a 
conditional bet on X  given that X  and Y '  are jointly verifiable at the price of $p2 . Since in 
each of these cases the bet is conditional on the relevant events being verifiable, rather than on 
actually being verified by measurements, the two bets could be jointly realized. Thus, if the 
individual accepts both bets as fair, she is destined to lose money come what may.   
 
The second challenge is for both approaches, and it is related to the Kochen & Specker’s [51]’s 
no-go theorem. Due to its verificationism, de Finetti’s theory of probability prescribes weaker 
constraints on probabilities in the EPR/B experiment. This provides followers of de Finetti’s 
theory with some flexibility that is lacking in other interpretations of probability. Thus, for 
example, hidden-variables models of this experiment in which probabilities are interpreted 
along de Finetti’s theory may postulate the existence of definite values for non-commuting spin 
observables, i.e. values of spins in various directions, even if they assume Mirror and λ-
independence. Yet, Kochen & Specker’s theorem and other similar theorems impose heavy 
constraints on assignments of definite values to such non-commuting observables (for a review 
of these theorems, see [52]), which substantially limit the scope of such flexibility. The 
reasoning is as follows.  
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In their theorem, Kochen and Specker consider a spin-1 particle and triples of the square values 
of spins in 3 orthogonal directions, Sx

2 ,Sy
2 ,Sz

2 . The observables Sx
2 ,Sy

2 ,Sz
2  commute and 

accordingly their values are jointly verifiable (though the observables Sx ,Sy ,Sz  do not commute 
and so their values are not jointly verifiable). Kochen and Specker demonstrate that granted the 
following assumptions, there is no coherent way of distributing the values of spins in 117 
directions.  
 

Values: All physical quantities of a quantum system, i.e. all the observables that pertain to 
it, have definite values at all times. 

 
Non-contextuality: Properties that a system possesses, i.e. the values of the observables 
that pertain to it, are non-relational to other properties or the measurement context.  

 
More recently proofs involving less observables have been given (for references, see [52]). The 
upshot is that any ‘hidden-variables’ model that satisfies these assumptions cannot provide a 
coherent assignment to a particle’s spins in more than a limited number of directions. Indeed, 
the challenge that Kochen & Specker’s theorem raises is not particular to the interpretation of 
probabilities along de Finetti’s theory; it is posed for any interpretation of the probabilities of 
‘hidden-variables’ models. Yet, these theorems substantially restrict the advantages that de 
Finetti’s interpretation provides.  
 
De Finetti was also verificationist about events (see Sect. 16.4), and his verificationism may 
provide a way around Kochen & Specker’s theorem. The proof of the theorem requires a truth-
value assignment to propositions about events that are not jointly verifiable, and given de 
Finetti’s verificationism about events the assignment of truth values to propositions about events 
that are not jointly verifiable may be more flexible, so as to avoid a Kochen & Specker-like 
contradiction; for such an assignment may violate Non-contextuality. Recall (Sect. 16.4) that de 
Finetti argued for verificationism on the grounds that the instrumental value of notions depends 
on their verifiability, and that this reasoning relies heavily on a positivist philosophy. Recall also 
that in the case of probabilities of events, de Finetti’s verificationism can be motivated on 
different grounds – namely, by the radical subjectivist and instrumental nature of probability in 
his theory; for due to this nature, it is difficult to make sense of the notion of coherent degrees 
of belief, and accordingly of probabilities of unverifiable events. Such a motivation does not 
seem to exist in the case of events per se, as Finetti was not antirealist about events.  
 
Followers of de Finetti’s interpretation of probability who do not wish to adhere to de Finetti’s 
positivism may circumvent Kochen & Specker’s theorem by rejecting Values. They may for 
example follow the orthodox interpretation and accordingly reject Values; for recall that in this 
interpretation, the particles in the EPR/B experiment have no definite spins before the 
measurements. While the rejection of Values does not entail the failure of Mirror, it is more 
difficult to motivate the later premise when the former fails. Alternatively, followers of de 
Finetti may hold Values but reject Non-contextuality. For instance, they may hold that the values 
of spin quantities are relational to the values of other spin quantities,10 so that the value of the 
                                                
10For an example of interpretation of QM that postulates such relationalism, see Berkovitz and Hemmo 
[53]’s relational modal interpretation.  
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particle’s spin along the direction x  relative to the values of its spins in the (mutually) 
orthogonal directions y  and z  is different from its value relative to the values of its spins in 
different (mutually) orthogonal directions y '  and z ' . Given such contextuality, there exist 
coherent assignments for the values of all the spin quantities that are involved in the Kochen & 
Specker theorem. The question whether such contextuality is compatible with Mirror is rather 
delicate and go beyond the scope of our current discussion. But, in any case, the above 
reasoning seems to suggest that the challenges that the Kochen & Specker theorem poses limit 
the advantage that de Finetti’s interpretation of probability may have over other interpretations 
of probabilities. 

 
16.6 De Finetti on the nature of quantum probabilities 
 

De Finetti found QM both fascinating and challenging. He dedicated a substantial part of the 
long appendix of his Theory of Probability to the analysis of QM probabilities. [48, pp. 302-
333] Unlike his analysis of the foundations of probability, the discussion of the nature of QM 
probabilities lacks incisiveness and clarity. De Finetti refers frequently to von Nenumann’s [54] 
Mathematical Foundations of Quantum Mechanics, Bodieu’s [55] Theorie dialectique des 
probabilities and Reichenbach’s [56] Philosophical Foundations of Quantum Mechanics. He 
models his analysis as a simplified version of Bodieu’s and Reichenbach’s. Like Bodieu, de 
Finetti believes that quantum probabilities are a special case of a general calculus of probability. 
Yet, he thinks that Reichenbach presents “the questions most lucidly from the logical and 
philosophical point of view,” and he thus uses Reichenbach’s comments as guidelines for 
developing his own analysis of the QM probabilities. The aim of the analysis is “finding the 
logical constructions which will prove suitable for resolving the difficulties we find ourselves” 
in trying to interpret QM. He believes that “the correct path is straightforward and simple” and 
“it is obscured precisely by preconceived ideas about what it is that constitutes a necessary 
prerequisite for any logic,” and the key for resolving the difficulties is to recognize that the logic 
of events should be three-valued. [48, pp. 303 and 305-308] 
 
Reichenbach presented the three truth-values in reference to observations: E  is true if the 
observation H  has given the result E ; E  is false if the observation H  has given the result not-
E ; and E  is indeterminate or meaningless if the observation H  has not been made. De Finetti 
thinks that Reichenbach’s presentation corresponds to his conditional three-valued events, the 
only difference being that in his framework the third value is called ‘void.’ Following 
Reichenbach, he seems to favor the view that the third truth value lies between true and false; 
for “[t]his is, in fact, the requirement that must be satisfied if something is to be called a 
mathematical structure or, in particular, a logical structure.” [48, p. 307] Yet, later, in his 
philosophical lectures on probability, he explicitly rejects this view when he says that denoting 
the third truth-value by ‘1 2 ’ instead of ‘∅ ’ “is not appropriate because it somewhat suggests 
that it is an intermediate value between true and false.” [42, p. 169] This later view of the 
indeterminate truth-value is more in line with our interpretation of de Finetti, where 
indeterminate conditional events have no determinate truth-value and accordingly have no 
probability.  
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In any case, de Finetti thinks that all the logical construction of Reichenbach’s three-valued 
logic “could be expressed in terms of two-valued logic,” so as to avoid “creating a number of 
symbols and names of operations and consequent rules (which are difficult to remember and 
sort out, and difficult to use without confusion arising). Above all, one avoids creating the 
tiresome and misleading impression that one deals with mysterious concepts which transcend 
ordinary logic.” [48, p. 308] De Finetti thinks that the conceptual scheme of the three-valued 
event, expressed in ordinary binary logic, could account for the quantum puzzles. In particular, 
he argues that this framework could serve as the basis for understanding the problem of 
complementarity in QM. He characterizes complementarity in terms of indeterminate three-
valued events – two events are complementary if at least one of them “remains certainly 
indeterminate (but it is not known which…)” [48, p. 311] – and then proceeds to argue that 
complementary events also arise in classical phenomena though “the most celebrated example is 
undoubtedly that of complementarity in quantum mechanics.” [48, p. 312]  
 
We argued above that de Finetti’s theory of probability could serve as a basis for interpretation 
of the quantum probabilities. Yet, we believe that de Finetti’s discussion of QM probabilities 
and their relationships to classical probabilities does not do justice to the difficulties that are 
involved in such an endeavor. In particular, de Finetti seems to be unaware of Bell’s and 
Kochen & Specker’s theorems and the heavy constraints they impose on assignments of 
probabilities in the quantum realm.  

 
16.7 Conclusions 
 

De Finetti held that a theory of probability has to express what is inherent in the notion of 
probability and nothing more. Probability is a rational guide of life under uncertainty. 
Probabilities are coherent degrees of belief in verifiable events, and the theorems of probability 
are supposed to follow from the coherence conditions of degrees of belief. Unlike other 
subjective interpretations, probability is not supposed to be ignorance about objective 
probabilities. Probability reflects only subjective uncertainty, and its value is purely 
instrumental. We argued that in de Finetti’s instrumental philosophy of probability, coherence 
embodies a certain kind of verificationism, and accordingly the coherence conditions of degrees 
of belief in events depend on their verifiability. Indeed, in the context of this philosophy it is 
difficult to make sense of coherent degrees of beliefs in events that are unverifiable.  
 
We argued that de Finetti’s verificationist conception of coherence has important implications. 
A common view has it that in the subjective interpretation, probabilities are coherent degrees of 
belief and in principle every event (or proposition about it) may have a probability. In de 
Finetti’s theory, there are many degrees of belief that have no corresponding probability; for 
degrees of belief in unverifiable events have no coherence conditions, and accordingly no 
probabilities. The restriction of probabilities to verifiable events also entails that the coherence 
conditions of degrees of belief in events that are not jointly verifiable are weaker than the 
(familiar) coherence conditions that such events would have had, had they been jointly 
verifiable.  
 
The idea that verifiability is relevant for probability was also highlighted in Pitwosky’s [57, 58] 
discussion of George Boole’s [59] ‘conditions of possible experience.’ Boole thought of 
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probabilities as relative frequencies in a finite sample, and of the conditions of possible 
experience as inequalities concerning such probabilities. Pitowsky notes that “none of Boole's 
conditions of possible experience can ever be violated when all the relative frequencies involved 
have been measured in a single sample. The reason is that such a violation entails a logical 
contradiction … But sometimes, for various reasons, we may choose or be forced to measure the 
relative frequencies of (logically connected) events, in several distinct samples. In this case a 
violation of Boole’s conditions may occur.” [58, p. 105] 
 
We proposed that the restriction of probabilities to verifiable events in de Finetti’s theory entails 
that the probability space of these events is ‘non-classical’ (see de Finetti’s big-space approach 
in Sect. 16.4), or that probabilities are represented by multiple, smaller probability spaces, each 
of which contains events that are jointly verifiable (see de Finetti’s many-spaces approach in 
Sect. 16.4). In either case, the implication is that the inequalities that constrain the probabilities 
of the values of spin observables in the EPR/B experiment are different from the inequalities 
that would have obtained had these events been jointly verifiable; and similarly, mutatis 
mutandis, for spin-measurement outcomes. This different probability structure provides 
followers of de Finetti’s theory with some extra flexibility. Thus, for example, their probability 
assignments for the values of spin observables in ‘hidden-variables’ models for the EPR/B 
experiment will not be constrained by (Bell/CH – prob) (see Section 2). Accordingly, they may 
suppose that the probabilities of spin-measurement outcomes in the EPR/B experiment ‘mirror’ 
the probabilities of the corresponding spin observables before any measurement occur (Mirror) 
and that the distribution of the values of these spin observables is independent of the 
measurement settings (λ-independence) (see Sect. 16.2), yet their probabilities of spin-
measurement outcomes will not be subjected to the (Bell/CH – phys - ψ) or (Bell/CH – phys - ψ 
- big) (see Sects. 16.2 and 16.5). However, the heavy constrains that Kochen & Specker’s and 
similar theorems impose substantially limit the scope of such advantages (see Sect. 16.5). 
 
Finally, it is noteworthy that in the context of de Finetti’s theory of probability it is more 
difficult to reconstruct Bell’s argument for non-locality. First, in this context it is more difficult 
to relate probabilities to causality, and accordingly it is hard to motivate the violation of 
Factorizability (see Sect. 16.1.1) as a locality condition. Second, it may be impossible to 
formulate λ-independence, another main premise of Bell’s theorem; for if probability is 
interpreted along de Finetti’s theory, in some hidden-variables theories the probability of the 
complete pair-state in the EPR/B experiment will not exist because this state is unverifiable. 
Whether this is the case will depend on both the nature of the complete pair-state, which varies 
from one hidden-variables theory to another, and the concept of verifiability one has in mind. 
Yet, that it is more difficult to reconstruct Bell’s argument in the context of such radical 
subjective theory of probability should not be surprising, as probabilities in this theory are 
purely subjective and instrumental and accordingly are not supposed to reflect objective facts 
about the world. In de Finetti’s interpretation, quantum probabilities are not supposed to reflect 
the ontological nature of the quantum realm; they only serve as a guide for policing uncertainty 
and forming anticipations about events in this realm.   
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