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1 Introduction

From Aristotle onwards, epistemic justification has been conceived as a form of inference. If a
proposition En is epistemically justified by a proposition En+1, then according to the traditional
view En is somehow inferred from En+1.

It took twenty-three centuries to modify this outlook. Today, many epistemologists construe
epistemic justification in terms of probabilistic support rather than of inferential relations. In
the modern view, En is epistemically justified by En+1 if two requirements are fulfilled. First,
En+1 should probabilistically support En. By this we mean that the conditional probability of
En, given En+1, exceeds the conditional probability of En, given not-En+1:

P (En|En+1) > P (En|¬En+1) . (1)

Second, the unconditional probability of P (En) should not fall below some agreed threshold of
acceptance.

This ‘probabilistic turn’ in epistemology opened the door to pluralism in epistemic justifi-
cation. Imagine a sequence of propositions E0, E1, E2 . . ., such that E0 is epistemically justified
by E1, which is epistemically justified by E2, and so on. In 1956, when the probabilistic turn
had not yet been fully made, Wilfrid Sellars still saw no more options than to construct this
sequence as either a finite chain or a finite loop:

“One seems forced to choose between the picture of an elephant which rests on
a tortoise (What supports the tortoise?) and the picture of a great Hegelian
serpent of knowledge with its tail in its mouth (Where does it begin?). Neither
will do.”1

Present-day epistemologists, however, are not confined to these two possibilities. Thanks to
the interpretation of epistemic justification as probabilistic support, they have at their disposal
many different ways of reconstructing justificationary processes. A target proposition, E0, can
be probabilistically justified by a chain or by a loop, and both the chain and the loop can be
finite or infinite.2 Moreover, in each of these four cases the conditional probabilities might be
uniform, taking on the same values, or they might be nonuniform, differing throughout the
chain or loop. This yields already eight different varieties of epistemic justification. In earlier
papers we have discussed the four most intriguing ones — involving chains and loops of infinite
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size.3 We showed there that infinite chains and infinite loops can converge, yielding a unique
and well-defined probability value for the target proposition E0.

In the present paper we contribute to a pluralistic outlook by introducing even more possi-
bilities for probabilistic justification. In contrast to the eight varieties above, all of which are
one-dimensional, we will investigate probabilistic justification in more than one dimension. We
shall concentrate again on structures of infinite size, and we show that many-dimensional net-
works can converge, too. Thus it makes sense to say that a target proposition, E0, can be epis-
temically justified not only by an infinite one-dimensional chain or an infinite one-dimensional
loop, but also by an infinite network of many dimensions.

We start, in Section 2, by recalling some facts about infinite, one-dimensional chains, where
for convenience sake we restrict ourselves to chains that are uniform. In Section 3 we explain
what happens when we go from a one-dimensional uniform chain to a two-dimensional uniform
network. In Section 4, we contrast the properties of one-dimensional chains with those of two-
dimensional networks. As we will see, there exists an intriguing difference between the two,
which poses difficulties at an intuitive level. In Section 5 we indicate the relevance of this paper
for disciplines outside epistemology and philosophy in general, by explaining an application of
our analysis to genetics.

2 Infinite, uniform chains

Earlier we have shown that probabilistic epistemic chains of infinite length always converge. In
the present section we summarize our findings, restricting ourselves for simplicity to uniform
chains. However, the demonstration we give of convergence is different from earlier proofs, since
we will now use fixed-point methods.4

The unconditional probabilities P (En) and P (En+1) are related by the rule of total proba-
bility,

P (En) = P (En|En+1)P (En+1) + P (En|¬En+1)P (¬En+1) . (2)

As we have already indicated, we assume in this paper that the conditional probabilities are
uniform, i.e. they are the same throughout the chain. However, it is important to keep in mind
that the assumption of uniformity is not essential: the whole argument goes through without
assuming uniformity, albeit in a somewhat more complicated form.

Under the assumption of uniformity, Eq.(2) may be rewritten in the form

P (En) = β + (α− β)P (En+1) , (3)

where
α = P (En|En+1) and β = P (En|¬En+1) . (4)

Clearly α > β is equivalent to the condition of probabilistic support as expressed in (1).
Does the iteration (3) converge, giving a well-defined value for P (E0), P (E1), P (E2) and

so on? If it does, then P (En) and P (En+1) will have to be equal in the limit. Let us call this
limiting value, if it exists, P ∗1 . It is a fixed point of the iteration Eq.(3), i.e. it satisfies

P ∗1 = β + (α− β)P ∗1 ,
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and this linear equation has the unique solution

P ∗1 =
β

1− α+ β
, (5)

where we exclude α = 1 (the case in which En+1 entails En).
To show that the iteration (3) does indeed converge, we write P (En−1) = β+(α−β)P (En),

which is (3) with n− 1 in place of n. Subtracting this from Eq.(3), we obtain

P (En)− P (En−1) = (α− β) [P (En+1)− P (En)] .

Hence, by iteration,

P (En)− P (En−1) = (α− β)2 [P (En+2)− P (En+1)] = . . .

= (α− β)s [P (En+s)− P (En+s−1)] . (6)

We may take s to infinity on the right-hand side of (6), and since (α − β)s tends to zero in
this limit, it is clear that P (En) − P (En−1) = 0, i.e. P (En) = P (En−1) for all finite n. This
shows that the iteration (3) converges. Indeed all the unconditional probabilities are equal to
one another, and they are all equal to the fixed point, P ∗1 .

3 Infinite, uniform networks

In this section we shall consider a two-dimensional probabilistic network, where a ‘child’ propo-
sition is probabilistically justified by two ‘parent’ propositions, each of which is in turn prob-
abilistically justified by two ‘(grand)parent’ propositions, etc. So the network has a tree-like
structure:
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Figure 1: Justification in two dimensions

In the sequel, we shall often use ‘child’ and ‘parent’ for ‘child proposition’ and ‘parent
proposition’. We will talk about ‘the probability that the child (parent) is true’, or alternatively
about ‘the probability of the child (parent)’.

Much as in our treatment of the one-dimensional chain, we take it that a child proposition
is justified by its parent propositions if two requirements are fulfilled. First, the parents must
probabilistically support the child. By this we mean: the probability that the child is true,
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given that both its parents are true, is larger than the probability that the child is true, given
that both parent propositions are false.5 In symbols:

P (En|En+1&E′n+1) > P (En|¬En+1&¬E′n+1) , (7)

where En stands for the child, En+1 for the one parent, and E′n+1 for the other. We will refer to
the conditional probability in which both parents are true by α and that in which both parents
are false by β, so (7) becomes:

α > β.

The second requirement for justification is that the unconditional probability of the child
proposition may not lie below a certain threshold of acceptance. The threshold could be 0.5,
or 0.9, or even higher, dependent on the context of the case.

For simplicity, we make three further assumptions. To begin with, we assume that the
parents are independent of one another, so the probability that both parents are true equals
the probability that one of them is true times the probability that the other one is also true:

P (En+1&E′n+1) = P (En+1)P (E′n+1) . (8)

Moreover, we explicitly assume gender symmetry, i.e. both parent propositions have the same
probability of being true, so P (En+1) = P (E′n+1). Finally, we suppose that the conditional
probabilities are the same throughout the whole two-dimensional structure. In other words, just
like the linear chain in the previous section, our quadratic two-parent network in the present
section is uniform. However, as was the case for the one-dimensional chain, the uniformity
assumption is not essential. Nor do we need the assumptions of independence or of gender
symmetry. Our argument can be made without these three assumptions, although we shall not
show that here.

The unconditional probability that the child is true, P (En), can be written in terms of the
triple joint probabilities associated with two parent propositions as follows:

P (En) = P (En&En+1&E′n+1) + P (En&En+1&¬E′n+1) + P (En&¬En+1&E′n+1) +

P (En&¬En+1&¬E′n+1) . (9)

The first term on the right-hand side is the joint probability that the child proposition and
both parent propositions are all true. This term can be written as

P (En&En+1&E′n+1) = αP (En+1&E′n+1) , (10)

where α, as we said, is now the conditional probability that En is true, given that both parents
are true. Since the parents are independent of one another, see (8), and since we supposed that
each parent has the same probability of being true, Eq.(10) can be written as:

P (En&En+1&E′n+1) = αP 2(En+1) . (11)

The last term on the right-hand side of (9) is the joint probability that the child proposition is
true, and both parent propositions are false. It can be written as

P (En&¬En+1&¬E′n+1) = βP (¬En+1&¬E′n+1)

= βP (¬En+1)P (¬E′n+1) = β [1− P (En+1)]2 , (12)
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where β is the conditional probability that En is true, given that both parents are false.
The second and third terms on the right-hand side of (9) are the joint probabilities that the

child proposition is true, when one parent is true, and one is false. The terms can be written as

P (En&En+1&¬E′n+1) = γP (En+1&¬E′n+1)

= γP (En+1)P (¬E′n+1) = γP (En+1)[1− P (En+1)] , (13)

P (En&¬En+1&E′n+1) = δP (¬En+1&E′n+1)

= δP (¬En+1)P (E′n+1) = δP (En+1)[1− P (En+1)] , (14)

where γ is the conditional probability that the child is true, given that only the first parent is
true, and δ is the conditional probability that it is true, given that only the second parent is
true.

On inserting the expressions (10),(12),(13), and (14) into (9), we find, after rearrangement,

P (En) = β + 2(ε− β)P (En+1) + (α+ β − 2ε)P 2(En+1) , (15)

where ε is the average of the conditional probabilities that only one parent is true:

ε = 1
2
(γ + δ) .

In the special case that
α+ β = 2ε , (16)

this relation takes on the linear form

P (En) = β + (α− β)P (En+1) ,

just like the one-dimensional chain (3). We know from Eq.(6) that this sequence converges if
α > β (we exclude the case α = 1).

When the special equality (16) does not hold, Eq.(15) has two fixed points, namely the two
solutions of the quadratic equation

P ∗2 = β + 2(ε− β)P ∗2 + (α+ β − 2ε)P ∗22 .

We show in the appendix that only one of these fixed points is attracting, namely

P ∗2 =
β + 1

2
− ε−

√
β(1− α) + (ε− 1

2
)2

α+ β − 2ε
. (17)

As in the one-dimensional case, all the unconditional probabilities are the same, being equal to
the fixed point, P ∗2 .

4 Contrasting Chains and Networks

It is interesting to compare the properties of the linear one-parent chain of Section 2 with those
of the quadratic two-parent net of Section 3. In the present section we will discuss first a
similarity between the two structures, and then an intriguing difference.
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The similarity concerns sufficient conditions for convergence in the two cases. As we have
seen, the requirement of probabilistic support for the chain is P (En|En+1) > P (En|¬En+1),
i.e. the child En is supported by its parent En+1. For the net, on the other hand, the condition
is P (En|En+1&E′n+1) > P (En|¬En+1&¬E′n+1), i.e. the child En is supported by both of its
parents En+1 and E′n+1. In both cases, the condition turns out to be sufficient for convergence:
it ensures convergence of not only the one-dimensional infinite iteration, but also of the two-
dimensional infinite net. Note that, for the net, the conditional probability that the child is
true, given that only one parent is true, has no relevance to convergence. The iteration has an
attracting fixed point if α > β; in the two-dimensional case, it does not matter how large or
small ε is.

There is, however, a crucial difference between the chain and the net. This difference pertains
to the situation in which β is zero. For the chain, as we have seen, β = P (En|¬En+1); and the
infinite, uniform chain leads to the fixed point (5):

P ∗1 =
β

1− α+ β
,

which clearly vanishes if β = 0 (assuming α < 1). Thus if the child of a parent proposition
that is false is never true then, after an infinite number of generations, the child proposition
will certainly be false. This should not come as a surprise. After all, here the probabilistic
justification of the target proposition E0 by an infinite chain E1, E2 . . ., and so on, is such
that only the conditional probability α = P (En|En+1) is positive, the conditional probability
β = P (En|¬En+1) being zero. Consequently, Eq.(2) becomes P (En) = P (En|En+1)P (En+1),
and so each link of the infinite chain contributes to the monotonic diminution of the value of
P (E0), resulting finally in zero.6

The situation in two dimensions is entirely different. Now β = P (En|¬En+1&¬E′n+1); and
the infinite, uniform net leads to the fixed point (17):

P ∗2 =
β + 1

2
− ε−

√
β(1− α) + (ε− 1

2
)2

α+ β − 2ε
.

In the case that β is zero, this formula reduces to

P ∗2 =
1
2
− ε− | 1

2
− ε|

α− 2ε
. (18)

Notice that this is zero only in the case that ε ≤ 1
2
. When ε > 1

2
, the expression (18) becomes

P ∗2 =
2ε− 1

2ε− α
. (19)

The interesting thing is that, if a child is false when both parents are false, then the un-
conditional probabilities P (En) in the infinite net may, or may not be zero. It all depends on
how probable it is that a child is true when only one of its parents is true. If this conditional
probability is more than one half (that is, if the child is more likely to be true than false given
that only one of the parents is true), then the unconditional probabilities P (En) do not vanish.
This is quite different from the one-dimensional situation, where β = 0 does imply that P (En)
vanishes. However, in order for the child to be justified, not only must ε be greater than one-half
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when β = 0, but also α must be large enough to ensure that the unconditional probability that
the child proposition is true does not lie below the threshold of acceptance. Precisely why ε = 1

2

marks the boundary between a zero and a nonzero unconditional probability is intuitively still
unclear to us.

5 Relevance and Applications

Do the above exercises have any applications? Are the formalisms that we have developed of
any philosophical relevance or utility in the outside world?

As far as the relevance to philosophy is concerned, we can be brief. In the introduction we
already alluded to the venerable tradition concerning justification in epistemology; in particular
justification related to an infinite regress is a subject that has been much discussed.7 Most
philosophers in the tradition took the view that argumentation to infinite regress shows that
a certain position is absurd. Philosophers ranging from Zeno, Plato and Aristotle to Aquinas,
Descartes, Leibniz, Hume and Kant have all used a regressus ad infinitum as a regressus ad
absurdum: in their view, any argument that leads to an infinite regress is thereby vitiated. In
our paper we show that this view is mistaken if an infinite regress is probabilistic in nature.
We have explained this first for a one-dimensional chain of propositions, and then for a two-
dimensional network.

As to the applications in the outside world, they are numerous, especially in view of the fact
that our simplifying assumptions (namely uniformity, and, in two dimensions, gender symmetry
and independence) can be relaxed without affecting the essential findings. Here we will restrict
ourselves to one application, taken from the genetics of a population in which background
conditions remain stable over time.

Consider the inheritance of a gender-specific genetic disorder in a human population, such as
the tendency to prostate cancer in the male, or to breast cancer in the female. The probability
that a child will develop the condition at some time in its life is different if the parent of the
same gender has the complaint, or if that parent does not. If the relevant external conditions
remain the same over time, the two conditional probabilities, α and β, will be uniform, that
is, the same from generation to generation. The one-dimensional formalism of Sect. 2 is then
applicable, and we conclude that the probability of disease, which we can equate to the relative
frequency of its incidence in a large population, after any transient effects have died out, is
given by the fixed point (5):

P ∗1 =
β

1− α+ β
.

The values of α and β could be inferred from the statistics of two generations only, and one
can then deduce the above relative frequency of incidence, which will be stable throughout the
generations.

Our analysis of the two-dimensional case can be applied, for example, to the inheritance
in a human population of albinism. The three conditional probabilities that a child will be
normally coloured, namely α (if both parents are normally coloured), β (if neither parent is
normally coloured, i.e. both are albinos), and ε (if one parent is normal and one is albino),
can be estimated from the statistics of a large population. The relative frequency of normally

7



coloured individuals in a large population is then given by the fixed point (17):

P ∗2 =
β + 1

2
− ε−

√
β(1− α) + (ε− 1

2
)2

α+ β − 2ε
.

However, there is more to be said in this case.
To begin with, when two albinos mate, their children are nearly always albinos, i.e. they are

almost never normally coloured, so β = 0 to a good approximation. Thus the situation obtains
that we mentioned in Sect. 4.

Furthermore, our analysis of the two-dimensional case can be seen as a generalization of the
famous Hardy-Weinberg rule in genetics.8 The genetic fingerprint of every individual is given
by his or her DNA, i.e. the double helix consisting of two strings of molecules called nucleotides.
Sequences of nucleotides are grouped together to form genes. Many of these genes are such that
they come in two possible forms or alleles, one of which stems from the father and one from
the mother. Let us denote the one allele by the letter A, the other by a. So an individual’s
genetic make-up, as far as these particular genes are concerned, will be one of the following:
AA, Aa, aA, aa. Now albinism arises from an allele, a, that is recessive: this indicates that
only an individual with allele a in both strands of his or her DNA will be an albino. The allele
A is called dominant because individuals carrying Aa, or aA are healthy, just like individuals
carrying AA.

In a large population, suppose that the fraction of the recessive allele is q, and the fraction
of the dominant allele is p = 1− q. Then the albino fraction of the population, carrying aa, is
q2, while the healthy fraction that carries AA is p2, and the healthy fraction that carries Aa or
aA is 2pq. Moreover, these fractions remain the same from generation to generation. This is
the essence of the Hardy-Weinberg rule: it is based on the assumption of a theoretically infinite
population and random mating.

In the Hardy-Weinberg model, it is possible to calculate the conditional probabilities in
terms of q, the fraction of the recessive allele. We find

α = 1−
(

q

1 + q

)2

ε =
1

1 + q
β = 0 , (20)

where we suppress the details of the rather tedious calculation. The first thing to notice is that,
if 0 < q < 1, then ε is necessarily greater than one-half, and since β = 0 the formula (19) is
applicable:

P ∗2 =
2ε− 1

2ε− α
.

With the values (20) we find P ∗2 = 1− q2, which is clearly correct, since the albino fraction of
the population, carrying two recessive alleles, aa, is q2, and P ∗2 is the complement of that.

When we take account of the fact that mutations from the recessive to the dominant allele
are actually possible (very rarely), so that β is not quite zero, the general fixed-point formula
(17) must be used instead of (19). This constitutes a modification of the Hardy-Weinberg model
that can be readily handled by our methods.
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Appendix

When the special equality (16) does not hold, the quadratic iteration (15) can be put into
canonical form by means of the substitution

qn = (α+ β − 2ε)P (En)− β + ε . (21)

With this transformation, (15) becomes9

qn = c+ q2n+1 , (22)

where
c = ε(1− ε)− β(1− α) .

The conditional probabilities, α, β and ε are all real numbers in the unit interval, so it follows
that c ≤ ε(1 − ε) = 1

4
− (ε − 1

2
)2 ≤ 1

4
. Further, since β < α (the condition of probabilistic

support), c ≥ −β(1− α) > −α(1− α) = − 1
4

+ ( 1
2
− α)2 ≥ − 1

4
. That is,

− 1
4
< c ≤ 1

4
. (23)

Consider the fixed point,

q∗ = 1
2
−
√

1
4
− c ,

of the iteration (22). Via the inverse of the transformation Eq.(21), one can show that q∗

corresponds to the fixed point P ∗2 of Eq.(17).
To demonstrate that q∗ is attracting, we change the variable from qn to sn = qn − q∗, so

that (22) becomes
sn = sn+1

[
1−
√

1− 4c+ sn+1

]
. (24)

If ∣∣1−√1− 4c
∣∣ < 1 (25)

and sn+1 is very small, we conclude that c∗ is attracting. Indeed, since

sn − sn+1 = (sn+1 − sn+2)
[
1−
√

1− 4c+ sn+1 + sn+2

]
the mapping (24) is a contraction if |sn| ≤ ρ and

∣∣1−√1− 4c+ 2ρ
∣∣ < 1. Hence if |sN | ≤ ρ

for very large N , and ρ satisfies the above contraction constraint, the iteration backwards to
s0 will be attracted to zero, that is to say q0 will be attracted to q∗. The domain of attraction
of the fixed point, q∗, is − 3

4
< c < 1

4
. Attraction is trivially guaranteed also when c = 1

4
. So

absolute convergence is assured if |c| ≤ 1
4
; and we see from the inequalities (23) that this is

consistent with the requirements 0 ≤ β < α < 1 and 0 ≤ ε ≤ 1.
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