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Abstract: Different realistic attitudes towards wavefunctions and quantum states are 

as old as quantum theory itself. Recently Pusey, Barret and Rudolph (PBR) on the 

one hand, and Auletta and Tarozzi (AT) on the other, have proposed new interesting 

arguments in favor of a broad realistic interpretation of quantum mechanics that can 

be considered the modern heir to some views held by the fathers of quantum theory. 

In this paper we give a new and detailed presentation of such arguments, propose a 

new taxonomy of different realistic positions in the foundations of quantum 

mechanics and assess the scope, within this new taxonomy, of these realistic 

arguments.  
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1 Introduction 

In a recent paper Pusey, Barret and Rudolph
1
 (2011) propose a new and strong 

argument against a statistical interpretation of quantum states. They claim that if 

quantum mechanical predictions are correct then distinct quantum states must 

correspond to distinct physical states of reality. This result has been hailed as a 

seismic
2
 result in the foundations of quantum mechanics and probably the most 

important result since Bell’s theorem. It is indeed the single most popular result in the 

foundations of quantum mechanics in recent years. However, whether it actually has 

the scope it has been claimed to have, still needs to be assessed. In this paper we 

explore such a question. In particular we argue that PBR offers a (probably) decisive 

argument against a particular interpretation of quantum mechanics that is broadly 

realistic in spirit. However we argue that not only are broadly anti-realistic 

interpretations left untouched by the argument but also that other realistic options 

remain open. We then present a new and significantly different version of a neglected 

argument, first proposed by Auletta and Tarozzi
3
, which, if sound, would be able to 

rule out many more realistic interpretations than PBR. Thus we conclude that this 

argument, even if weaker, is wider in scope than PBR. The plan of the paper is as 

follows. In section 2 we give a somewhat detailed reconstruction of the PBR result. 

In section 3 we give a new formulation of the original AT argument. We contend that 

both PBR and AT are broadly realistic arguments. We then propose in section 4 a 
                                                        
1
 Hereafter PBR. 

2
 Nature, 17th November 2011: http://www.nature.com/news/quantum-theorem-shakes-foundations-1.9392.  

3 AT from now on. 



taxonomy of realistic positions in the interpretation of quantum mechanics. We arrive 

at a simple tree-model that allows us to assess, at least prima facie, the scope of 

different arguments in the foundations of quantum mechanics. To put it roughly the 

scope of an argument is related to its position in this simple tree-model. We contend 

that PBR and AT arguments occupy different places in our tree-model and thus, have 

different scopes. As is clear even from this brief introduction we are interested not in 

the technical details of the arguments but rather in their scope and logical position 

within the foundations of quantum mechanics. Section 5 is dedicated to a brief 

conclusion. 

2 The PBR argument 

The core of the PBR result is nicely summed up in the abstract of the paper. Let us 

quote it at length: 

“There are at least two opposing schools of thought [on the interpretation of quantum 

states]. […] One is that a pure state is a physical property of the system, much like 

position and momentum in classical mechanics. Another is that even a pure state has 

only a statistical significance, akin to a probability distribution in statistical 

mechanics. Here we show that, given only very mild assumptions, the statistical 

interpretation of the quantum state is inconsistent with the predictions of quantum 

theory” (Pusey et al. 2011: 1) 

They however devote just a few lines in the paper to spelling out rigorously and 

clearly the distinction between a statistical and a non statistical interpretation of a 

quantum state
4
. It is of crucial importance to understand clearly such a distinction in 

order to appreciate the scope of the argument. We will therefore firstly provide some 

simple definitions of statistical and non statistical quantum states. These definitions 

are driven by the analogies Pusey et al. themselves point out in the abstract and are in 

line with Harrigan and Spekkens (2007: 4-5) to which they refer. 

 Let λ be a complete specification of the properties of a system. We will refer to λ as 

the ontological
5
 state of a system. Let Λ stand for the ontological state space. 

Suppose a particular state is prepared via preparation P. Then with every preparation 

we can associate a probability distribution p(λ/P) over Λ. We do not require this 

distribution to be sharp. We refer to p(λ/P) as the epistemic state, for it encodes the 

observer’s knowledge about the system.  

It is maybe worth recalling here the distinction between epistemic probabilities, i.e. 

probabilities understood as degrees of belief, and objective probabilities, such as 

relative frequencies. The probability p(λ/P) is an example of the first kind of 

                                                        
4
 Using a particular example of flipping a coin.  

5 The term “ontic” was introduced into modern philosophical language by Martin Heidegger, in order to grasp the 

notion of something before any contact with the knowing subject. Harrigan and Spekkens (2007) refer to λ as the “ontic 

state”. On a more careful analysis it seems to us that the λ they introduce is a hypothesis of the subject, so we beileve 
the term “ontological” to be more appropriate. 



probabilities, since it encodes our hypothesis about the properties of a system given a 

certain preparation method. 

Pusey et al. claim that in a non statistical interpretation of a quantum state the 

ontological state is very much like the position and momentum of classical 

mechanics, i.e. a physical property of the system under consideration. Let y be a point 

particle of classical mechanics. Then its ontological state space is the set of all 

possible pairs (x, p) where x is the position and p the momentum of the particle. In 

classical mechanics the situation is fairly simple. Let S be the set of all classical 

states, i.e. the classical state space and let Si denote the classical state of the particle y 

at time ti. Then we simply have that Si = λi = (xi, pi), i.e. the classical state is simply 

identical to the ontological state. Also, we will have that the ontological state space is 

simply the particle’s phase space. Therefore the classical state determines the 

ontological state. Moreover in this case then we trivially have that different classical 

states pick out distinct and disjoint regions of Λ. These consequences will guide us in 

formulating different yet equivalent definitions of what PBR calls a “physical 

quantum state”, i.e. a non statistical state. 

All is in order to provide different equivalent definitions of quantum states that are 

not statistical.  

Let P1 and P2 be two preparations for a quantum system QS that assign to QS two 

different pure states |ϕ1〉 and |ϕ2〉 respectively. Then let us say that: 

(1.1) (Physical Quantum State) |ϕi〉 is a physical quantum state iff |ϕi〉 uniquely 

determines λ, i.e. either λ = (|ϕ1〉, ω1) or λ = (|ϕ2〉, ω2), where ωi represents 

possible supplementary hidden variables 
6
;  

(1.2) (Physical Quantum State) |ϕi〉 is a physical quantum state iff for all λ, 
p(λ/P1) p (λ/P2) = 0. 

Definition (1.2) informally says that the epistemic states associated with different 

preparation procedures, and hence with different pure states are non overlapping. In 

fact, if the joint probability = 0, it follows that at least one of them must have 

probability = 0. We have argued that these definitions are equivalent in the classical 

case. This equivalence carries over into the quantum domain. Note that both our 

terminology and our definition are consistent with PBR’s use. They write in fact: “If 

the quantum state is a physical property of the system […] the quantum state is 

uniquely determined by λ” (Pusey et al. 2011: 1). We too have explicitly made an 

analogy with classical mechanics. Let us now turn to the statistical view then. 

Here the analogy is, naturally enough, with statistical mechanics. Suppose S is a 

complex system, such as a gas, constituted by a collection of particles. The 

description of the state in terms of phase space trajectories is in principle possible. 

However it is usually the case that we cannot know the ontological states of all the 
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particles that constitute the gas at a given time. Hence we cannot know which point 

of the phase space the system S exactly occupies at a given time. Usually we know 

only some of the thermodynamical properties of S, such as pressure and temperature. 

It is well known that this thermodynamical state is compatible with many different 

microscopic states, i.e. it is compatible with different λi ∈ Λ7
. Then we assign a 

probability distribution over phase space which represents our ignorance about which 

point of the phase space is exactly occupied by S. Such a probability distribution is 

simply what we called an epistemic state. We have already pointed out that the 

probability distribution does not uniquely determine the ontological state of the 

system, that is to say a thermodynamical description fails to determine the complete 

list of the particles positions and momenta. Analogously to the previous case these 

facts taken together imply that the statistical state fails to determine uniquely the 

epistemic state, therefore two different statistical states do not pick out disjoint 

regions of the ontological space. Hence the joint probability of two distinct epistemic 

states ≠ 0. This suggests the following definitions (2.1)-(2.2) that mirror definitions 

(1.1)-(1.2) above: 

Let P1 and P2 be two preparations for a quantum system QS that assign to QS two 

different pure states |ϕ1〉 and |ϕ2〉 respectively. Then: 

(2.1) (Statistical Quantum State) |ϕi〉 is a statistical quantum state iff |ϕi〉 does 

not uniquely determine λ; 

(2.2) (Statistical Quantum State) |ϕi〉 is a statistical quantum state iff for some 

λ, p(λ/P1) p (λ/P2) ≠ 0 

In this case, as Harrigan and Spekkens write, the quantum state “is not a variable in 

the ontic [ontological] state space at all, but rather encodes a probability distribution 

over the ontic [ontological] state space” (Harrigan and Spekkens, 2007: 4). In other 

words the quantum state is not a physical property of the quantum system but rather a 

description of the observer’s knowledge of the system. Again, these definitions are 

perfectly consistent with Pusey et al. for they write: “If the quantum state is statistical 

in nature […] then a full specification of λ need not determine the quantum state 

uniquely” (Pusey et al. 2011: 2). Note that also these definitions show clearly that 

physical states and statistical states are clearly exclusive notions 
8
.  

Note that this kind of statistical interpretation is essentially different from the one 

proposed, for example, in Ballentine (1998). Ballentine (1998) argues that 

probabilities p(k/λ,M) must be interpreted as relative frequencies concerning an 

                                                        
7
 For a philosophically illuminating introduction to statistical mechanics and its relation to thermodynamics that 

highlights different points that are relevant to the present discussion see Albert (2003: 35-70), in particular pp. 38- 40. 

In Albert’s words “any full specification of the thermodynamic situation of a gas necessarily falls very short of being a 

full specification of its physical situation, […] thermodynamic situations invariably correspond to enormous collections 

of distinct microsituations” (Albert, 2003: 39, italics in the original) Note that by substituting epistemic state for 

thermodynamic situation and ontological state for physical situation/microsituation we arrive precisely at our 

characterization. 
8 Whether they are exhaustive notions as well is a substantive question. 



ensemble of similar measurements, where k is the result of measurement M. Thus 

Ballentine (1998) is concerned not with the epistemic probabilities p(λ/P), but rather 

with objective ones. It is noteworthy that Harrigan and Spekkens (2007), after a 

careful investigation, maintain that Einstein’s interpretation of quantum mechanics, 

had an epistemic, rather than an objective character.  

Let us sum up what is at stake here. Assume that a quantum isolated system QS 

exemplifies a well defined set of physical properties
9
 λ = (O1…On). A measurement 

is supposedly a procedure that reveals some of the Os. The question is: can QS be in 

different pure states? Or equivalently: could the system QS be prepared via two 

different preparation methods? If the quantum state is a statistical state the answer is 

yes to both, whereas if it is a physical state it is no. Here is another way to put it. 

Suppose two quantum isolated systems QS1 and QS2 are prepared via two different 

preparations that assign quantum pure states |�1〉 and |�2〉 respectively. QS1 and QS2 

exemplifies the set of properties λ1 and λ2 respectively. Could it be that λ1 = λ2? If 

|�1〉 and |�2〉 are statistical states the answer is yes, whereas if they are physical states 

the answer is no.  

Let us be even clearer and let us consider a more realistic example. Suppose an 

isolated quantum system QS exemplifies the following set of properties λ = (↑x , O2, 

O3…On). What is QS pure quantum state?  

If the statistical interpretation is right, i.e. quantum states are statistical states, it can 

be both
10 |�1〉 = |↑x〉 and |�2〉 = |↑x〉 + |↓x〉 = |↑y〉. This shows clearly that statistical 

states are not properties of QS since the very same set of properties is compatible 

with different pure states. Suppose now that |�1〉, |�2〉 are associated with the two 

preparation methods P1 and P2 respectively. It follows that the probability that QS 

exemplifies λ when prepared via P1, i.e. p(λ/P1), ≠ 0. The same goes for p(λ/P2), so 

that the conjoint probability p(λ/P1) p(λ/P2) ≠ 0. 

On the other hand, if the physical interpretation is right, i.e. quantum states are 

physical states, then every set of properties is compatible with only one pure quantum 

state, in our case |�1〉 = |↑x〉. This shows that physical states are properties of QS. 

Moreover it follows that p(λ/P2) = 0 so that the conjoint probability p(λ/P1) p(λ/P2) = 

0. 

The PBR result aims to prove that all quantum states are physical states. The 

argument is rather straightforward. They envisage a particular measurement and they 

show that it is impossible to recover the predictions of the quantum theory for the 

outcomes of that measurement if the particular quantum states involved are statistical 

states. Hence, either Quantum Mechanics is false or quantum states are physical 

properties of quantum systems. They explicitly admit that the argument rests upon the 

following assumptions, which we state almost verbatim: 

                                                        
9
 O stands for observables. 

10 We neglect normalization constants. 



(3) (Pure State-Well Defined Properties Link): If a quantum system QS is 

prepared in a pure state then it has a well defined set of physical properties; 

(4) (Possible Uncorrelated Systems) It is possible to prepare different physical 

systems such that their physical properties are uncorrelated; 

(5) (Very Weak Locality) If two quantum systems are such that their physical 

properties are uncorrelated, then the measuring devices respond solely to the 

physical properties of the systems they measure. 

Note that (4) and (5) jointly claim that it is possible to prepare different non entangled 

quantum systems and that measurements on such systems depend solely on the 

system that is measured.  

Now to the argument.  

Let QS1 be a quantum system that could be prepared in two different ways P1 and P2 

such that quantum theory assigns to S1 the two non orthogonal pure states |�1〉1 and 

|�2〉1 respectively. Suppose that actually 〈�1|�2〉 = 1 / √ 2 and choose a basis for the 

two dimensional Hilbert space ℋ1 such that |�1〉1 = |0〉1 and |�2〉1 = |+〉1 = | (|0〉 + |1〉) / 

√2 . By assumption (3) QS1 exemplifies a well defined set of physical properties, let 

us call it λ1. Now suppose that every quantum state is a statistical state. Hence, by 

definition (2.1) the quantum state does not uniquely determine λ1, and λ1 is 

compatible with both |0〉1 and |+〉1. Let us say that the probability of that happening is 

p0(1), p+(1) respectively. Hence it follows
11

:  

(6) p0(1) ≠ 0, p+(1) ≠ 0  

The argument in favor of 6 is straightforward. If either these probabilities are = 0 the 

joint probability will be 0 as well, i.e.:  

(7) p0 (λ1/P1) p+(λ1/P2) = 0 

And |0〉1 and |+〉1 will fail to meet definition (2.2). 

 Now, prepare a quantum system QS2 in exactly the same way as QS1 was prepared 

and such that these two systems are uncorrelated. This possibility is granted by 

assumption (4). QS2 will exemplify the set of properties λ2. Then repeat then the 

argument above to obtain: 

    (8) p0(2) ≠ 0, p+(2) ≠ 0  

Claims (6) and (8) simply say that λ1 is compatible with both |0〉1 and |+〉1 and that λ2 

is compatible with both |0〉2 and |+〉2. Consider now the joint system QS1 and QS2. 

Since each system is compatible with two quantum states, the joint system is 

compatible with any of the four tensor product states:  

                                                        
11 We do not require that either p0(1) = p+(1) or that p0(1) ≠ p+ (1). 



(9) (Joint System 1) |J1〉 = |0〉1 ⨂ |0〉2 

(Joint System 2) |J2〉 = |0〉1 ⨂ | +〉2 

(Joint System 3) | J3〉 = |+〉1 ⨂ |0〉2 

(Joint System 4) |J4〉 = |+〉1 ⨂ |+〉2 

By the same argument it follows that the probabilities of these occurrences are again 

all non zero, i.e.: 

(10) p1(J1) ≠ 0 p2(J2) ≠ 0 p3(J3) ≠ 0 p4(J4) ≠ 0 

Now, QS1 and QS2 are brought together and measured. The joint state lives in a four-

dimensional Hilbert space onto which such measurement projects and that can be 

spanned by the four orthogonal states: 

(11) |ξ1〉=1/√2(|0〉1 ⊗ |1〉2 + |1〉1 ⊗ |0〉2) 

|ξ2〉=1/√2(|0〉1 ⊗ |-〉2 + |1〉1 ⊗ |+〉2) 

|ξ3〉=1/√2(|+〉1 ⊗ |1〉2 + |-〉1⊗ |0〉2) 

|ξ4〉=1/√2(|+〉1 ⊗ |-〉2+ |-〉1 ⊗ |+〉2) 

Where |-〉=(|0〉1 - |1〉2)/√2. Now we measure the compound system QS1-QS2 on the 

directions |ξ1〉-|ξ4〉. Given (5) the results of the measurement on the two systems are 

uncorrelated. It is easy to see that: 

(12) 〈 J1| |ξ1〉 = 0 〈 J2 |ξ2〉 = 0 〈 J3|ξ3〉 = 0 〈 J4| ξ4〉 = 0, 

i.e. that for every possible measurement parameter there is a state of the joint system 

that is orthogonal to it. In this case quantum theory predicts that: 

(13) p1(J1) = 0 p2(J2) = 0 p3(J3) = 0 p4(J4) = 0  

If the first, second, third or fourth measurement, an outcome is found, that clearly 

contradicts (10). That is for each |ξi〉 there is a parameter |Ji〉 such that at least one of 

the pi is = 0. We have derived a contradiction assuming that the quantum states in 

question were statistical states according to definition (2.1)
12

. Hence we arrive at the 

following conclusion: either quantum predictions are falsified or “no physical state λ 

of the system can be compatible with both of the quantum states |0〉 and |+〉” (Pusey et 

al, 2011: 2)
13

. That is to say quantum states uniquely determine λ and thus physical 

                                                        
12

 Strictly speaking in order to yield the desired conclusion the argument has to be generalized for any pair of quantum 

states. Pusey et al. show that this is possible only if we allow, given assumption (4), n uncorrelated systems to be 

prepared (Pusey et al. 2011: 3). They also go on to give a version of the argument that is robust against small amounts 

of experimental noise. 
13 We will arrive at a similar conclusion when dealing with AT argument. 



properties of the system, very much like position and momentum in classical 

mechanics. 

A brief discussion of the relevance of the result is in order. We believe it is most 

easily appreciated if one considers the measurement problem. The statistical 

interpretation does not face such a problem. Consider the following argument. 

Suppose a quantum system is in the superposition state |�1〉 = |↑x〉 + |↓x〉. If a spin 

measurement is performed the state collapses in one of the terms of the superposition, 

let us say |�2〉 = |↑x〉. If |�1〉 is a statistical state, it is not a property of the system. 

Hence the measurement has not changed its properties. The statistical state 

supposedly encodes our knowledge of the properties of the system. Thus a 

measurement represents simply a Bayesian updating of our knowledge. On the other 

hand if the physical interpretation is right, then quantum states |�1〉 and |�2〉 do 

represent different physical situations and the measurement is a physical process that 

does change the properties of the measured system and the measurement problem is a 

serious problem indeed. The PBR result forces us to face the full strength of such a 

problem.  

It is worth noting that Pusey et al. consider their argument as an argument in favor of 

a broadly realistic stance in the foundation of quantum mechanics. It is then not mere 

coincidence that the paper opens with a brief discussion of different realistic and anti-

realistic interpretations of quantum mechanics. The authors mention that the 

“quantum wave function was originally conceived by Schrödinger as a tangible, 

physical wave” (Pusey et al., 2011: 1), that many “have suggested that the quantum 

state should properly be viewed as something less than real” (Pusey et al., 2011: 1) 

and that some have gone as far as to “hold that quantum systems do not have physical 

properties or that the existence of quantum systems at all is a convenient fiction. In 

this case, the state vector is a mere calculational device” (Pusey et al., 2011: 1). And 

we have already pointed out that the PBR result is intended to show that the quantum 

state is a real physical property of a quantum system. Even from these few remarks it 

is possible to see that we are dealing with different antirealistic and realistic 

intimations. In the realistic camp, for example, Pusey et al. seem to understand the 

quantum state as a property of a quantum system, whereas Schrödinger’s original 

position was rather that the wavefunction is an individual. We will attempt to provide 

a simple tree model to classify different realtistic and antirealistic interpretations of 

quantum mechanics in section 4. Before that let us present another broadly realistic 

argument, which, if sound, is closer to Schrödinger’s original position. 

3 The AT argument    

In this section we present another broadly realistic argument. It is a significant 

variation and a development of the original argument in Auletta and Tarozzi (2004). 

Consider the following experimental set up (Fig. 1): 

 



 

 

  

 

 

 

 

 

Fig. 1: The experimental set up of the AT argument 

 

Two photonic pumps PPA and PPB pump two photons A, B in the same state, which 

we dub |A〉 and |B〉 respectively. Then the two beam splitters BS1 and BS3 split each 

photon into the “vertical components” |Av〉, |Bv〉 and the “horizontal components” |Ah〉, 

|Bh〉 depending on the path taken by each component. These components are then 

recombined at the other two beam splitters BS2 and BS4. Behind these beam splitters 

there are four detectors labeled D1-D4. We will use the notation |1A〉 to indicate the 

following state: “detector 1 has clicked because of the arrival of photon A”. Thus in 

general such a state is indicated with |nK〉 where n =1,…,4 and K = A,B. Different 

reflecting mirrors are placed in such a way as to accommodate the length of different 

paths as in Fig.1
14

, detectors D1,..., D4 are perfect recording devices and beam 

splitters are taken to be symmetric. 

Let us trace down the evolution of the system. At time t1, before the two photons 

enter the beam splitters BS1 and BS3, the system will be simply in state Ψ1 given by: 

(14) Ψ1=|A〉|B〉 

Then photons A and B enter the two beam splitters BS3 and BS1 respectively. After 

passing these beamsplitters, at t2 their state will be respectively: 

(15) |A〉|→
�

√�
(�|Av〉+|Ah〉)   ;   |B〉→

�

√�
(i|Bv〉+|Bh〉) 

Where the imaginary coefficient i multiplies the quantum state whenever there is a 

reflection. Substituting (15) into (14) we have the total state Ψ2 at t2, i.e.: 

(16) Ψ2 = 
�

√�
(−|Av〉|Bv〉+i|Av〉|Bh〉+i|Ah〉|Bv〉-|Ah〉|Bh〉) 
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 The two paths from PPA to BS4 and from PPB to BS4 have the same length, even if it is not clear from the figure. This 

is done to allow interference.  
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Now, the vertical component of photon A and the horizontal component of photon B 

enter the beamsplitter BS2. This will have an effect analogous to the one described by 

equation (15). It will yield: 

(17) |Av〉→
�

√�
(|2A〉+i|1A〉)  ;  |Bh〉→

�

√�
(i|2B〉+|1B〉) 

Then the horizontal component of A and the vertical component of B enter the 

beamsplitter BS4, determining a similar evolution: 

(18) |Ah〉→
�

√�
(|3A〉+i|4A〉) ; |Bv〉→−

�

√�
(i|3B〉+|4B〉) 

Equations (17) and (18) give us the state for both the vertical and horizontal 

components of photons A and B. We can then substitute them into equation (16) to 

obtain the final state Ψ4 at t4, where t4 is the time in which one of detectors D3, D4 

clicks, whereas t3 indicates the time in which either D1 or D2 clicks. This final state is 

given by: 

(19)Ψ4= 
�

�√�
(|3A〉|3B〉-|4A〉|4B〉-|2A〉|2B〉-

|1A〉|1B〉+i(|2A〉|3B〉+|2B〉|3A〉+|1A〉|4B〉+|1B〉|4A〉)) 

Equation (19) gives us the first important information about the quantum evolution of 

the system. It in fact tells us that it is completely symmetric in the indices A and B, 

for in each term of (19) they both appear. Hence we can never distinguish which 

photon has arrived in which detector. Now, if we perform an adequate post-selection 

to discard the cases in which both photons are detected by the same detector, i.e.: the 

states |n〉|n〉 with n =1,…4, and after normalization we end up with: 

(20) Ψ4ps = 
�

√�
 (|2〉|3〉+|1〉|4〉), 

where ps stands for post-selection state and we have discarded indices A and B for 

the symmetry reasons mentioned above. Now, state (20) is clearly reminiscent of the 

EPR state: 

(21) |EPR〉 = 
�

√�
 (�|↑�〉�|↓�〉 − �|↓�〉�|↑�〉) 

This analogy suggests a similar interpretation. In the EPR case we know that the total 

state spin of the system = 0 but, since the state is not separable we do not know which 

particle has either spin up or spin down. All we know is that they are perfectly anti-

correlated, i.e. if a measurement yields spin up for the first particle we will find spin 

down for the other. The same holds for state (20). It is a non separable state. We have 

already argued that we do not know which detector has detected which photon but we 

do know that if the D1 clicks then D4 must as well. The same goes for D2 and D3.  

Now, since we cannot establish which photon has been detected by which detector it 

is clear that we cannot reconstruct their path. If we take, as is usually the case, the 



possibility of reconstructing spacetime trajectories as a necessary condition to display 

a particle-like behavior
15

 we can conclude that this argument establishes the 

following conditional: 

(22) Wavelike Behavior → Entanglement  

Moreover it is possible to argue that in the case of a certain type of particle-like 

behavior there will be no detectors correlation, i.e. there is an argument for the 

opposite direction of the conditional. We argue by contraposition, i.e. we show that in 

the case of particle-like behavior you will not have detectors correlation. The first 

thing to do is to find a case in which photons entering the measurement set up of 

Fig.1 display such a behavior. We first show that there is a case in which it is possible 

to know which detector has detected which photon and that is possible to reconstruct 

their path. This should be evidence enough of particle-like behavior. Suppose you 

remove beamsplitter BS4. Hence the horizontal component of A will surely end up in 

D3 and the vertical component of B will surely end up in D4, i.e. we will have the 

following quantum evolution: 

(23) |Ah〉→|3A〉   ;  |Bv〉→|4B〉  

Now equations (17) and (23) give us each component of each photon. Substituting 

them in equation (16) we get the state Ψ3ps at time t3, where we have already post-

selected the runs in which different detectors detect the photons: 

(24) Ψ3s=
�

�√�
(|3A〉|1B〉+i|3A〉|2B〉-|2A〉|4B〉-i|1A〉|4B〉)  

Equation (24) tells us that if at time t4 A clicks D3 it is photon B that is detected at t3 

by either D1 or D2. The same goes if photon B clicks D4 at t4
16

. Note that A can never 

click D4 nor B can click D3. In this case then we can know which photon has been 

detected by which detector thus allowing us to reconstruct their path. Hence we have 

an example of particle-like behavior. It remains to be shown that in such a case there 

is no detector correlation. And this is immediately clear from equation (24) itself. 

Suppose D1 clicks at t3. We should then consider those terms of equation (24) in 

which |1〉 appears. These two terms contain both |3A〉 and |4B〉. This means that D3 and 

D4 have the same probability to click. The same goes if it is D2 that clicks at t3. And 

this in turn implies that in this case there is no detector correlation. Together with the 

argument in favor of (22) we are led to the following conclusion: wavelike behavior 

is both a necessary and sufficient condition for detectors correlation, i.e.: 

(25) Wavelike Behavior ↔ Entanglement 

                                                        
15

 Note that this seems to presuppose that “particle-like behavior” and “wave-like behavior” are mutually exclusive. We 

know however that the contraposition is gradual and not dichotomic. Since this complication does not affect the overall 

argument we will stick to this simpler version.  
16

 Note that we could in principle insert BS4 after t3 but before t4, as in Wheeler’s (1978) “delayed choice” argument 

thus transforming the post-selected state (24) into (20). In this case we would create the entanglement after D1 or D2 

have already clicked. 



Now we have to evaluate the consequences of claim (25). In order to do so let us first 

consider a traditional Mach-Zender interferometer (Fig. 2) first. 

PP produce photons at such a rate that a single photon passes through the 

interferometer at a time. As in the previous experimental set up M1 and M2 are two 

reflecting mirrors, BS1 and BS2 are two symmetric beamsplitters and D1 and D2 are 

perfect recording devices. There is indeed something new in the apparatus, namely 

the phase shifter PS. The first beamsplitter splits the photon into its vertical and 

horizontal components. The phase shifter PS is set in such a way that the angle 

between these two components = 0.  

 

                                                             D1 

                                         M1                 PS         BS2                D2                        

                           
              

 

                  

 

                         PP              BS1                                       M2 

 

Fig. 2 The Mach-Zender Interfermoter 

 

If so it turns out that there is interference in BS2 and all of the photons are actually 

detected in D1. Interference is indeed evidence of wavelike behavior. Moreover, as it 

is well known, any attempt to establish what happens between BS1 and BS2 cancels 

the interference phenomenon and half of the photons will be detected in D1, the other 

half in D2, as we would expect in the case that they were classical particles. This last 

argument has the same logical structure as the AT argument we have put forward. It 

allows a similar conclusion, i.e.: 

(26) Wavelike Behavior ↔ Interference 

So, the Mach-Zender apparatus shows that wavelike behavior is both a sufficient and 

necessary condition for interference. AT suggests instead that wavelike behavior is 

necessary and sufficient for entanglement. Now, whereas interference is not a typical 

quantum phenomenon, entanglement is. We will return to this important point later 

on.  

Consider now a general case of such a typical quantum phenomenon, namely 

entanglement. Let QS1 and QS2 be two quantum systems and consider a general 

observable O with two possible eigenfunctions A, B. In general the states of QS1, QS2 

will be given by: 



(27) |1〉 = f1|A〉1+f2|B〉1  ;  |2〉 = g1|A〉2+g2|B〉2 

In general the composite system QS12 is in a state described by a vector in the four-

dimensional tensor product space ℋ12 = ℋ1 ⨂ ℋ2, i.e.: 

(28) |12〉 = c1|A〉1|A〉2+ c2|A〉1|B〉2+ c3|B〉1|A〉2+ c4|B〉1|B〉2 

Entangled states are such that c1-c4 are not functions of the fs and gs. Suppose now 

we take QS1 and QS2 far apart in space so that they will have both a definite spatial 

position and path. This is usually taken to be indicative of the fact that the systems in 

question can be interpreted as particles. This in turns implies that, in general, 

entanglement does not imply wavelike behavior. 

Now, everything is in order, to give an accurate evaluation of claim (25) and of the 

scope of the AT argument in general.  

The AT argument and its conclusion (25) shows that there are particular physical 

situations in which wavelike behavior plays a crucial role in accounting for a 

phenomenon such as entanglement that (i) is a typical quantum phenomenon and (ii) 

was previously thought to have no connection with wavelike behavior. Thus it 

acknowledges wavelike behaviors of micro-objects that had not been yet noticed. 

The conclusion of the argument just proposed can be rephrased in a similar fashion to 

the PBR argument of section 2: either quantum mechanical predictions are false and 

we will have no correlations between detectors clicking when BS4 is in place or we 

should attribute some sort of “ontological reality to the wave” (Auletta and Tarozzi, 

2004: 89).  

Auletta and Tarozzi give yet another argument in favor of a realistic interpretation, an 

argument that seems by parity of reasoning. They write: “it seems to us that there is 

no reason to attribute reality only to the particle and not to the wave, since both 

aspects give rise to different and complementary predictions” (Auletta and Tarozzi, 

2004: 93). 

At this point it is useful then to consider an objection to our main argument that 

mimics the classic objection raised against the violation of the Heisenberg’s 

uncertainty principle in the case of a single slit experiment, as presented for example 

in Feynman (1964: I, 38-3, 38-4) and Popper (1982: 54). Recall our argument for the 

particle-like behavior of photons when beamsplitter BS4 is removed. We were able to 

tell which photons clicked detectors D1 or D2 at t3 only because we already knew 

which photon was detected by D3 or D4 at t4, that is, we were able only to “retrodict” 

the identity of different photons. But cases of “retrodiction” could be considered 

physically irrelevant. This objection as it stands is quite controversial for it seems to 

suggest that scientific theories are just predictive instruments without descriptive 

power. In other words it seems to commit to some version of instrumentalist anti-

realism. We could then in principle reply to the objection on this very general ground. 

It is worth noting that in this very case another reply can be advanced against the 



objection presented. This reply has nothing to do with the general charge of 

instrumentalism. It is rather a very specific reply. Suppose we remove beamsplitter 

BS2 and we position beamsplitter BS4 back in its original place. Then the state at t4, 

after the usual post-selection will end up being: 

(29) Ψ4ps* = 
�

�√�
(|3A〉|1B〉+i|4A〉|1B〉-|2A〉|4B〉-i|2A〉|3B〉)   

In this case we will be able to predict which photon will be detected in D3-D4 at t4 

after D1 or D2 has clicked at t3, that is we will be able to reconstruct the path of the 

photons using predictions rather than retrodictions, thus facing the objection.  

So, we seem to have two broadly realistic arguments. Do they favor the same variants 

of realism? Do they rule out the same variants of realism and anti-realism? If not, 

what then is the scope of each argument? It is to these questions that we now turn. 

4 A Tree Model for Realisms 

Realist claims about a specific target domain are usually intended as claims about the 

(i) existence of the objects of such a domain and (ii) its mind independence
17

. 

Nonetheless target domains for realist and anti-realist positions can be the most 

varied. There are realist or anti-realist positions about composite objects, 

unobservable entities, possible worlds, properties, numbers, sets, events, temporal 

parts, boundaries, holes, particles, fields, waves, space, time, spacetime, shadows and 

the list could go on almost forever. We are naturally interested about realistic and non 

realistic interpretations of a very specific target domain, i.e. wavefunctions and 

quantum states Ψs, which are a typical example of a theoretical entity of a scientific 

theory. Thus the realism we are interested in here is an example of so called 

“scientific realism”. Taken at face value the realist claims (i) and (ii) about the target 

domains we have listed are ontological claims.  

So it seems that the very first, general distinction is the usual one between scientific 

realists and anti-realists. In loose terms we can label the following thesis as Quantum 

Realism (QR): 

(30) (Quantum Realism QR) The entity to which Ψ refers, whatever that entity 

is, exists (in some sense)
18

. 

Van Frassen (1980) famously argues that we will never have reasons enough to 

warrant and support our beliefs in unobservable entities of scientific theories. Van 

Frassen (1991) puts forward the same point in the particular case of quantum 

mechanics. His constructive empiricism would then count as anti-realist in this sense.  

                                                        
17

 We are deliberately vague at this stage of the argument. 
18

 It is not our purpose here to enter into the subtle distinctions and complications of the realism-anti-realism debate, but 

rather to put forward a simple, yet not perfect, classification of different varieties of realisms in the foundations of 

quantum mechanics. Also note that this formulation seems to be a variant of what has been called “entity realism”. It 

should be noted that it is not possible to maintain entity realism without endorsing an at least partial “theory realism”, 

since theoretical terms are backed in a given theoretical language.  



Claim (30) is indeed general. For example it does not specify whether the entity to 

which Ψ possibly refers is an individual or a property, and if it does refer to a 

property it does not specify which property of which individual. It is to these 

distinctions that we now turn. There are at least two candidates on the market for 

being the reference of Ψ, i.e. an individual and a property of some quantum system 

respectively. We can give a general formulation of Individual Quantum Realism as 

follows: 

(31) (Individual Quantum Realism IQR) Ψ refers to a physical individual 

Different versions of IQR are indeed possible depending on what kind of individual 

Ψ is taken to refer to. Schrödinger originally thought of the wavefunction as 

representing a tangible, physical almost classical wave. De Broglie (1958), Selleri 

(1969 and 1982) envisage the possibility of it referring to a particular kind of non 

classical wave, called empty or quantum wave. A different and radical contemporary 

version of IQR is known in the debate as Wavefunction Realism. The clearest and 

most compelling defense can probably be found in Albert (1996) and Lewis (2004)
19

. 

We quote from the latter: “the quantum mechanical wavefunction is not just a 

convenient predictive tool, but is a real entity figuring in physical explanations of our 

measurement results […] that exists in a many-dimensional configuration space” 

(Lewis, 2004: 713). It is clear from the last part that Lewis is suggesting that the 

wavefunction represents an individual rather than a property. Moreover there are 

several passages in the article in which he talks of the distribution of the 

wavefunction stuff. Everett (1957) can probably be considered yet another variant of 

Wavefunction Realism. These three proposals, despite their being variants of IQR, are 

profoundly different. This difference is particularly striking in the case of 

Wavefunction Realism. This is because this last variant is committed to Configuration 

Space Realism, i.e. to the claim that though the world appears three (or four) 

dimensional to us, it is really in the n-dimensional configuration space that we live in. 

A standard argument from Wavefunction Realism to Configuration Space Realism is 

a separability argument (Lewis, 2004: 715).  

Consider two indistinguishable particles 1 and 2 constrained to move along one 

dimension. The wavefunction determines, via the Born rule, the chance to find the 

particles in regions A, B. Consider now the configuration space of the composite 

system, where the y axis represent the positions of particle 1, whereas the x axis that 

of particle 2. The following two cases are possible:  

(i) The wavefunction intensity is large at regions (A, A); (B,B). 

(ii) The wavefunction intensity is large at regions (A, B); (B, A). 

 

 

                                                        
19 These last two works are discussed and criticized at length in Monton (2006). 
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Fig. 3: the Separability Argument 

 

The corresponding wavefunctions to states (i) and (ii) are: 

 

(i) 
�

√�
 (|A〉1|A〉2 + |B〉1|B〉2) 

(ii) 
�

√�
 (|A〉1|B〉2 + |B〉1|A〉2) 

According to Wavefunction Realism wavefunction (i) is a different individual with 

respect to wavefunction (ii). But when projected into the coordinates of individual 

particles (i) and (ii) generate the very same individual wavefunctions. Yet states (i) 

and (ii) represent for the wavefunction realists different distributions of the 

“wavefunction stuff” that actually explains why the particles positions are (i) 

perfectly correlated and (ii) perfectly anti-correlated. Hence configuration space 

cannot be simply a useful mathematical tool to represent physical situations, for the 

differences between configuration space representation (i) and (ii) do not represent 

differences in our knowledge of the particles’ positions, but rather different physical 

situations. As Lewis (2004: 716) puts it: “Wavefunction realism commits us to the 

existence of a configurations space entity as a basic physical ingredient of the world”.  

On the other hand Schrödinger’s, De Broglie’s and Selleri’s Wave Realism does not 

commit to the reality of the configuration space
20

. So, we have argued that different 

versions of IQR can have different ontological commitments
21

. 

Note that it seems that also the AT argument of section 3, insofar as it compels a 

realist interpretation, can be read as an argument in favor of IQR
22

. This is perhaps 

what the authors have in mind when they write that there is no reason not to attribute 

reality to the wave (Auletta and Tarozzi, 2004: 93). However it seems to us that AT 

does not favor the last variant of IQR, Wavefunction Realism, but rather can be seen 

as a contemporary heir to De Broglie’s and Selleri’s quantum waves. 

                                                        
20

 Even though Schrödinger was never able to provide a purely wave interpretation for many bodies, that is when 

physical space does not coincide with configuration space. Note moreover that in Schrödinger’s ontology there are only 

waves, whereas for De Broglie and Selleri waves are supported by particles. 
21

 There is also an IQR concerning individuals as particles. 
22 AT could also support InPSQR, of which we are going to speak. 



On the other hand Ψ can refer to a property or a set of properties, rather than an 

individual. We can label this State Quantum Realism (SQR): 

(32) (SQR) Ψ refers to, or describes, a state of a given individual or system. 

It is worth noting that this distinction does indeed make sense. If wavefunctions are 

individuals it follows that two different individuals cannot be, strictly speaking, 

represented by the same wavefunction, whereas it is possible that if wavefunctions 

represent states, i.e. properties of given systems, the same wavefunction can be 

attributed to numerically distinct ones. This is actually crucial in the PBR argument, 

as we have seen in section 2, for the argument depends on the possibility of 

duplicating the quantum system at hand via the same procedure, and hence in the 

same pure quantum state. This highlights an important trait in the ontological 

commitments of the PBR argument. Let us now move on to some further distinctions.  

If the wavefunction gives a complete description of the system in question then we 

talk about Complete State Quantum Realism (CSQR). We probably need a more 

rigorous characterization of this completeness requirement. Here we draw again on 

Harrigan and Spekkens (2007). As in section 2 let a quantum system QS prepared via 

procedure P be in the pure state |ϕ〉. Then its associated ontological state is given by a 

point λ in the ontological state space Λ. We say that |ϕ〉 is a complete description of 

QS if the projective Hilbert space Pℋ of QS and the ontological state space of QS are 

isomorphic, i.e.: 

(33) (Complete Quantum State) The state |ϕ〉 of a quantum system QS is 

complete if there exists an isomorphism f: Pℋ ↔Λ. 

Naturally enough |ϕ〉 does not give a complete description of the system if it is not 

complete. Thus we can distinguish between Complete State Quantum Realism 

(CSQR) and Incomplete State Quantum Realism (InSQR):  

(34) (CSQR) Ψ refers to a complete state.  

(35) (InSQR) Ψ does not exhaust the ontological state. 

Despite the fact that definition (33) is cast in terms of states, i.e. properties of a 

system, it could easily be amended to refer to individuals as well. This would help to 

classify wavefunction realism and wave realism even better, since the first would 

count as a variant of Complete Individual Quantum Realism (CIQR), whereas the 

second as a variant of Incomplete Individual Quantum Realism (InIQR). 

Now, let us go back to section 2 for the distinction between physical quantum state 

and statistical quantum states. It follows from (33) and definition (1.1) of physical 

state that all complete states are physical, whereas it follows from (33) and definition 



(2.1) of a statistical state that all statistical states are incomplete, i.e. the two 

following conditional hold
23

: 

(36) Complete Ψ → Physical Ψ 

(37) Statistical Ψ → Incomplete Ψ 

Thus, if we define the following thesis Physical State Quantum Realism (PSQR) and 

Statistical State Quantum Realism (StSQR) respectively: 

(39) (PSQR) Ψ refers to a physical state 

(40) (StSQR) Ψ refers to a statistical state, 

it follows that Complete State Quantum Realism is committed to Physical State 

Quantum Realism and that Statistical State Quantum Realism is committed to 

Incomplete State Quantum Realism. This naturally suggests the questions of whether 

the converses hold as well. It is evident that the answer is in both cases “no”. For, if 

the state is physical it could be incomplete, as in the case of hidden variables 

deterministic theories, and if the state is incomplete it could be non statistical, again 

as in the case of hidden variable deterministic theories.  

All these considerations suggest the straightforward definitions of Complete Physical 

State Quantum Realism and Incomplete Physical State Quantum Realism: 

(41) (CPSQR) Ψ refers to a complete physical state. 

(42) (InPSQR) Ψ, though it does not refer to a statistical state, does not exhaust 

the ontological state.  

On the contrary, if the state is statistical it must be incomplete. So we have the 

following obvious definition: 

(43) (InStSQR) Ψ refers to an incomplete and statistical state.  

Harrigans and Spekkens (2007) mentions Beltrametti’s and Bugajski’s (1996) model 

as a prominent example of CPSQR. Here we can safely add Pusey, Barret and 

Rudolph (2011), which claim to have shown that InStSQR is incompatible with the 

predictions of quantum mechanics. Most hidden variables proposals, such as Bell 

(1966) and Mermin (1993) fall under InPSQR. Bohm (1957) also falls under InPSQR. 

He is actually particularly explicit in denying Wavefunction Realism. He writes: 

“While our theory can be extended formally in a logical consistent way by 

introducing the concept of a wave in a 3N-dimensional space, it is evident that this 

procedure is not really acceptable in a physical theory” (Bohm, 1957: 117). Harrigans 

and Spekkens (2007) lean towards InStSQR, but it is unclear whether they are fully 

committed to it. They mention however as significant examples a two-dimensional 

                                                        
23 See Harrigans and Spekkens (2007: 5). 



model proposed by Kocken and Specker (1967) and also Albert Einstein attitude 

toward quantum mechanics: “I incline to the opinion that the wave function does not 

(completely) describe what is real, but only a (to us) empirically accessible maximal 

knowledge regarding to which [sic!] really exists” (Einstein Archive, 10-583; quoted 

in Howard, 1990: 103). However Einstein’s position was probably more complex 

than these words actually depict.  

There is moreover, as far as we can see, a further distinction, that is probably a very 

general methodological distinction that cuts across the board in the realistic field. It is 

the distinction between what can be labeled Conservative and Progressive Realism. 

Though precise definitions of such attitudes may be difficult to pin down we can try 

to provide some general characterization. These are our proposed formulations: 

(44) (Conservative Realism) A quantum realistic perspective is conservative if 

it maintains the completeness of the quantum wavefunction, that is, it 

maintains that for each quantum system there is an isomorphism between the 

projective Hilbert space of the system and the ontological space.  

On the other hand we have: 

(45) (Progressive Realism) A quantum realistic perspective is progressive if it 

is not conservative, i.e. if it maintains that there are quantum systems such that 

their ontological space is either different or richer than projective Hilbert space. 

Both the exceeding part of the ontological space and its completely new 

structure must be described in a rigorous metaphysical language. 

To have an historically infamous example of what we label Progressive Realism 

think of the Reality Principle in the original EPR paper (Einstein, Podolski, Rosen, 

1935: 777). This principle, roughly states, that if the value of a particular observable 

can be predicted with probability =1, then there is an element of reality corresponding 

to it. This has been labeled (mistakenly) Einstein’s realism. We actually know it can 

instead be attributed to Podolsky (Fine, 1986, p. 35). So we can affirm that Podolsky 

Realism
24

 is a prominent example of Progressive Realism. The Reality Principle is in 

fact a rigorous metaphysical hypothesis formulated outside the framework of 

quantum theory that enriches the ontological space of quantum theory itself. 

Even with these loose characterizations we can appreciate some important 

consequences. The first is that in general Complete forms of Quantum Realism are 

conservative, whereas Incomplete are progressive. The second is, we contend, that a 

progressive attitude is, methodologically, preferable overall. This is because it leaves 

open a great deal of options for future scientific investigations to explore. This 

openness is of paramount importance, since we cannot consider quantum mechanics a 

completely satisfying physical theory. 

                                                        
24

 According to Fine, “Einstein’s realism” is Podolsky’s formulation of an idea that Einstein’s endorsed during the 

discussion of the paper, but was not his definitive opinion. 



Going back to our proposed classification of different quantum realisms it is now 

meaningful to ask whether they are an example of Conservative or Progressive 

Realism. There may be room for disagreement here. Some proposals however seem 

less contentious than others. It seems for example that Wavefunction Realism is 

conservative. On the other hand De Broglie’s and Selleri’s suggestion to introduce a 

new kind of individual, a quantum wave, to account for some quantum behaviors 

seems progressive
25

. All hidden variables interpretations count as progressive for the 

very same reason. On the other hand what we label Complete Physical State 

Quantum Realism can probably be counted as conservative. The results of this section 

can be represented by a very simple tree model (Fig. 4).  

 

QR                ∼QR 

 

IQR                                       SQR 

 

 CIQR     AT       InIQR                            InSQR                             CSQR 

 

Wavefunction Realism   Wave Realism    InStSQR   PBR     InPSQR         CPSQR 

 

                        Harrigan and Spekkens           Deterministic hidden variables                        Pusey et Al. 

Fig. 4 Tree Model for Realism(s) 

 

Shaded areas indicate that this kind of realism is progressive, otherwise it is 

conservative. Moreover note that the AT argument makes possible to decide between 

contemporary wavefunction realism (Everett, Lewis etc.) and classic wave realism 

(Schrödinger, De Broglie and Selleri), whereas the PBR argument acts a level lower 

in the tree model, since it allows us to decide between statistical and physical 

quantum realism. 

As is usually the case with simple models such as this, it should not be expected that 

every possible position is represented and accommodated with perfect adequacy 

within the model. It has however the virtue of giving us a fairly simple model that (i) 

seems to capture most of the influential views held by the fathers of quantum theory 

and their modern heirs and (ii) enables us to assess in a fairly simple, yet naturally not 

decisive, way the scope of a realist or anti-realist argument in the foundations of 

quantum mechanics. The scope of an argument can in fact be taken as a function of 
                                                        
25 Since we are inclined to read the AT argument in the same spirit, they count as progressive too. 



the logical place it occupies within the simple tree model. Let us clarify what we 

mean by “the logical place of an argument within the tree model”. The model has a 

root and different branches. It has also knots that are where different branches do or 

do not depart. The logical place for an argument is the furthest knot from the root 

from where there are no two different departing branches. This also shows which 

branches are “cut off”, so to speak, by the argument in question. In other words it 

shows which options the argument rules out as non viable. 

It immediately follows that the closer to the root the logical place of an argument is 

the wider its scope. And, conversely, the more options it is able to rule out. “Stay 

closer to the root and you will cut off more branches” is the moral. And from this 

analysis it follows that the PBR and AT arguments have different scopes. The first 

might be stronger but the second is wider. 

5 Conclusion 

Let us sum up what we have done in this paper. We have reviewed and extensively 

discussed two recent arguments that could be read as realistic arguments within the 

foundations of quantum mechanics. We have then presented a possible classification 

of different realist positions and suggested that the arguments favor two different 

variants of realism. If so, we have contended, the argument for the particular variant 

of realism which we labeled “wave realism”, is wider in scope. Also, the arguments 

we have used throughout the paper make it clear that both of the arguments can be 

resisted by appealing to general anti-realistic strategies such as endorsing either 

semantic or epistemic antirealism. There are several things that we have not 

discussed. We have not discussed some major philosophical implications of the 

arguments. The PBR argument seems to imply that different quantum pure states 

represent different states of reality. Now, superposition states can be pure states. It 

follows that we should develop a theory of property instantiation that is adequate to 

provide a positive account of such a situation. In other words we are now driven with 

more force to say something positive about what it is to be in a superposition state, 

rather than confining ourselves to negative statements such as “if the quantum system 

is in a superposition of spin up and spin down it is not definitely spin up, is not 

definitely spin down, and it is neither definitely spin up and spin down nor spin up or 

spin down”. On the other hand if the AT argument is sound and quantum waves have 

some sort of ontological reality we are left wondering whether they depend 

ontologically on the existence of particles, or whether they do not. Or more generally 

we are left wondering about the relation between a particle-like ontology and a wave-

like ontology. Not to mention other well known difficulties concerning Wavefunction 

Realism
26

. So, there is a lot more to talk about. But another time.  

References 

                                                        
26 See again Monton (2006). 



Albert, D. 1996. Elementary Quantum Metaphysics. In Cushing, J., Fine, A., 

Goldstein, S. (Eds). Bohmian Mechanics and Quantum Theory: An Appraisal. 

Dordrecht: Kluwer, 277-284. 

Auletta, G., Tarozzi, G. 2004. Wavelike Correlations Versus Path Detection: Another 

Form of Complementarity. Foundations of Physics Letters, 17: 89-95. 

Ballentine L.E. 1998. Quantum mechanics. A Modern Development. Singapore: 

World Scientific. 

Bell, J. 1966. On the Problem of Hidden Variables in Quantum Mechanics. Review of 

Modern Physics, 38: 447 

Beltrametti, E. G., Bugajski, S. 1996. The Bell Phenomenon in Classical 

Frameworks. Journal of Physics A: Mathematical and General, 29: 247.  

Bohm, D. 1957. Causality and Chance in Modern Physics. London: Routledge and 

Kegan Paul. 

De Broglie, L. 1956. Une Tentative d’Interpretation Causale et Non-Lineaire de la 

Mecanique Ondulatoire. Paris: Gauthier-Villars. 

Einstein A., Podolski B., Rosen N (1935), Can Quantum-Mechanical Description of 

Physical Reality Be Considered Complete?, Phys. Rev. 47, 777–780. 

Everett, H. 1957. Relative State Interpretation of Quantum Mechanics. Review of 

Modern Physics, 29: 454-462. 

Fine A. 1986, The Shaky Game. Einstein Realism and the Quantum Theory, 

University of Chicago Press, Chicago. 

Feynman R.P., Leighton R.B., Sands M. 1964. The Feynman Physics. Boston: 

Addison Wesley. 

Harrigan, N., Spekkens, R.W. 2007. Einstein, Incompleteness and the Epistemic 

View of Quantum States. At:  

http://xxx.lanl.gov/PS_cache/arxiv/pdf/1111/1111.3328v1.pdf.  

Howard, D. 1990. ‘Nicht sein kann was nicht sein darf’ or the Prehistory of EPR, 

1909-1935: Einstein’s early Worries about the Quantum Mechanics of Composite 

Systems, in ed. A.I. Miller, Sixty two Years of Uncertainty: Historical, Philosophical 

and Physical Inquires Into the Foundations of Quantum Mechanics. New York: 

Plenum, pp. 61-111. 

Kocken, S., Specker, E. 1967. The Problem of Hidden Variables in Quantum 

Mechanics. Journal of Mathematics and Mechanics, 17: 59-87. 

Mermin, N. D. 1993. Hidden Variables and the Two Theorems of John Bell. Review 

of Modern Physics, 65: 803-815. 



Monton. B. 2006. Quantum Mechanics and 3N-Dimensional Space. Philosophy of 

Science, 78: 778-789. 

Lewis, P. 2004. Life in Configuration Space. British Journal for the Philosophy of 

Science, 55: 713-729. 

Popper K.R. 1982. Quantum Theory and the Schism in Physics. London: Hutchison. 

Pusey, M., Barrett, J., Rudolph, T. 2011. The Quantum State Cannot Be Interpreted 

Statistically. At: http://xxx.lanl.gov/PS_cache/arxiv/pdf/1111/1111.3328v1.pdf.  

Selleri, F. 1969. On the Wavefunction of Quantum Mechanics. Lett. Nuovo Cimento, 

1: 908-910. 

Selleri, F. 1982. On the Direct Observability of Quantum Waves. Foundations of 

Physics, 12: 1087-112. 

Van Frassen, B. 1980. The Scientific Image. Oxford: Clarendon. 

Van Frassen, B. 1991. Quantum Mechanics. An Empiricist View. Oxford: Clarendon. 

 


