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Abstract

Scientific theories are hard to find, and once scientists have found a

theory H, they often believe that there are not many distinct alternatives

to H. But is this belief justified? What should scientists believe about the

number of alternatives to H, and how should they change these beliefs

in the light of new evidence? These are some of the questions that we

will address in this paper. We also ask under which conditions failure

to find an alternative to H confirms the theory in question. This kind

of reasoning (which we call the No Alternatives Argument) is frequently

used in science and therefore deserves a careful philosophical analysis.

1 Introduction

We typically confirm or disconfirm a scientific hypothesis with a piece of em-

pirical evidence. For example, the observation of a black raven confirms the

hypothesis that all ravens are black, and certain clicks in a particle detector

confirm the existence of the top quark. However, there are situations where em-

pirical evidence is unattainable over long periods of time. Such situations arise

with particular force in contemporary high energy physics, where the charac-

teristic empirical signatures of theories like Grand Unified Theories or string

theory must be expected to lie many orders of magnitude beyond the reach of

present day experimental technology. They are entirely common also in scien-

tific fields such as palaeontology or anthropology, where scientists must rely on
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the scarce and haphazard empirical evidence they happen to find in the ground.

Interestingly, scientists are at times quite confident regarding the adequacy of

their theories even when empirical evidence is largely or entirely absent. Trust

in a theory H in such cases must be based on what we want to call non-empirical

evidence for H, that is, evidence that is neither deductively nor probabilistically

implied by H.

From an empiricist point of view, arguments relying on non-empirical evi-

dence may be regarded as mere speculation: they netiher contribute to actual

theory confirmation nor do they have objective scientific weight. We challenge

this claim by focusing on the case where scientists develop a considerable degree

of trust in a theory H based on the observation that no alternatives to H have

been found, despite considerable efforts to do so. We call this argument the No

Alternatives Argument (NAA).

In order to formalize this argument, we introduce the concept of the number

of alternative theories to H (Sect. 2) and study how our beliefs about the number

of alternatives respond to empirical evidence (Sect. 3). On that basis, we con-

struct a probabilistic model of NAA and prove the possibility of non-empirical

theory confirmation (Sect. 4). Next, we show that the significance of NAA in

scientific reasoning depends on the scientists’ subjective judgments. An agree-

ment on these judgments might be achieved by what we call the Meta-Inductive

Argument (MIA), which we tentatively explore in Sect. 5. Finally, we put our

findings into a broader context and briefly look at applications in epistemology

and philosophy of science (Sect. 6). Throughout this paper, we operate in the

framework of Bayesian epistemology.1

2 The conceptual framework

In order to understand the problem of non-empirical theory confirmation, we

contrast it with its empirical counterpart. We call some evidence E empirical

evidence for H if and only if (i) H predicts E and (ii) E is observed. The evidence

E can be observed perceptually or by means of measurement instruments, as

common in modern science. If T denotes the statement that hypothesis H

is empirically adequate, then this amounts to P (E|T) > P (E), or in a more

familiar form, P (T|E) > P (T). Bayesian epistemologists use this inequality as

a criterion for whether E confirms T.
1Recent surveys of Bayesian epistemology are Hájek and Hartmann (2010) and Hartmann

and Sprenger (2010). Applications of Bayesian epistemology to scientific reasoning are given

in Howson and Urbach (2006).
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Non-empirical evidence F for a theory H is evidence that is neither deduc-

tively nor probabilistically implied by H. In other words, F exemplifies evidence

that does not fall into the intended domain of H or a related scientific theory.

Then, how is it possible at all that F is evidence for H? Does F qualify as evi-

dence in an argument from ignorance (Walton 1995, Hahn and Oaksford 2007,

Sober 2009), such as: if H were not empirically adequate, then we would have

disproved it?

The most plausible way to solve this problem is to deploy a two step process.

First, we find a statement that does predict evidence of the type F. Then, we

show that this statement is probabilistically relevant to the empirical adequacy

of H. In the case of NAA, our non-empirical evidence FA consists in the fact

that scientists have not found any alternatives to a specific solution of a research

problem, despite looking for them with considerable energy and for a long time.

Then it is straightforward to identify a natural candidate for a statement that

predicts FA, namely that the number of alternative theories to H is small. If

there were only very few alternatives to H, then this would render FA more

likely than a scenario where a huge number of possible alternative theories can

be constructed: in the latter case, one might expect that scientists would have

found one of them already.

The number k of possible scientific theories which can account for a certain

set of data is in turn relevant for the probability of the empirical adequacy of

H. We assume that scientists who develop a theory in accordance with available

data do not have a perfectly reliable method to select the true theory if false

theories can be constructed which also reproduce the available data. This as-

sumption seems to be fairly plausible in science: scientists often come up with

an incorrect, but fruitful theory when they begin to investigate a new field.

Bohr’s model of the atom is a good example for this claim.

Based on the above reasoning, we introduce a random variable Y measuring

the number of alternatives to H, and the set of propositions Yk := {Y = k}
expressing that there are k adequate and distinct alternatives which can account

for the available data E. We will later show that, via its effect on the Yk, the

non-empirical evidence FA confirms H under plausible conditions.2

Note that any inference about the number of alternatives to a theory H

requires an account of what counts as an alternative to a given theory and how

scientific theories are individuated. Such an account will depend on the specific
2Throughout this paper we follow the convention that propositional variables are printed

in italic script, and that the instantiations of these variables are printed in roman script. See

Bovens and Hartmann (2003).
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scientific context, and scientists typically have a good grip on what counts as

a distinct theory. There are, however, two conditions that are worth stressing

and that are important for the following discussion.

First, different theories make different predictions. If two theories make

exactly the same predictions, then we consider them to be identical. For ex-

ample, we consider the De Broglie-Bohm version and the Copenhagen version

of quantum mechanics as representing the same theory (Cushing 1994). As a

consequence, we are only interested in arriving at empirically adequate theories,

and not in the more ambitious goal of finding true theories (cf. van Fraassen

1980).

Second, different theories provide different solutions to a given scientific

problem. That is, theories which only differ in a detail, say in the value of

a parameter, or the existence of a physically meaningless dummy variable, do

not count as different theories. For example, the Higgs model in particle physics

is treated as one theory, although the hypothesized (and perhaps finally discov-

ered) Higgs particle could have different mass values. What is at stake here is

the general adequacy of the Higgs model as a theoretical mechanism that can

explain particle masses with the help of a scalar field.

This condition makes it plausible that the number of alternatives to a given

theory is finite. If it were enough to slightly modify the value of a certain pa-

rameter in order to arrive at a new theory, then coming up with new theories

would be an easy and not very creative task. However, inventing a novel mech-

anism, or telling a new story of why a certain phenomenon came about is much

harder. It is not so plausible that there is an infinite number of such distinct

stories. This brings us to the next question: what can empirical evidence tell

us about the (probable) number of alternatives to a given theory H?

3 Assessing the number of alternative theories

Let us assume that an agent is convinced that the number of alternatives Y to

a theory H is finite. Then a particularly interesting belief structure may arise,

namely when she also asserts that the expected number of alternatives to H is

infinite. Formally, we can express this tension as follows (proof in appendix A):

Proposition 1. For any N ∈ N and any ε > 0, an agent’s belief function

P may jointly satisfy (i) P (Y = ∞) = 0, (ii) P (Y ≤ N) ≥ 1 − ε, and (iii)

〈Y 〉 =
∑∞
k=0 k P (Yk) =∞.

In this notation, 〈Y 〉 denotes the expectation value of Y . In other words, an

agent might rule out an infinite number of alternatives to H, be strongly con-
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vinced that there are few alternatives to H, and yet retain the belief that our best

guess regarding the number of alternatives to H is “infinitely many” or “greater

than any number that we can imagine”. This phenomenon is well-known from

paradoxes of decision theory, such as the valuation of the St. Petersburg Game,

but to our knowledge, its epistemic counterparts have not been explored before.

In other words, Proposition 1 points out the possibility of a strong epistemic

tension within a single agent regarding the number of alternatives to a theory H.

This tension transfers to the agent’s assessment of the problem of theoretical un-

derdetermination: she might believe that H is fundamentally underdetermined

by evidence (because our best guess for the number of alternatives is infinity),

but at the same time be strongly convinced that elimination of a small set of

alternatives eventually leads us to the empirically adequate theory.

Let us now study whether such a belief structure is responsive to evidence E,

be it empirical or non-empirical. First, we ask under which circumstances evi-

dence E lowers the expected number of alternatives. In answer to this question,

we can demonstrate the following theorem (proof in appendix A):

Theorem 1. Let Y+
k denote the proposition that there are at least k alternatives

to theory H, and let Y−k denote the proposition that there are at most k − 1

alternatives to H. Then, if P (E|Y+
k ) ≤ P (E|Y−k ) for all k ∈ N and P (E|Y+

k ) <

P (E|Y−k ) for at least one k > 0, it will also be the case that 〈Y 〉 > 〈Y 〉E, the

latter expression denoting the expectation value of Y under P (·|E).

In other words, if evidence E is more likely given a small rather than a large

number of alternatives to H, then the expected number of alternatives will be

smaller a posteriori than it was a priori.

The condition of the theorem can be satisfied by empirical as well as non-

empirical evidence. For non-empirical evidence such as FA := “the scientists

have not yet found an alternative to H”, it is easy to see that this evidence

is the more likely the less alternatives there are. (See condition A3 in the

next section.) Also, the required condition seems very plausible with respect to

contrastive empirical evidence E predicted by theory H. The more alternative

theories exist, the less likely it is that the observed data are correctly predicted

by H, but not by its competitors.

Second, we ask the following question: Can an agent who believes that

〈Y 〉 = ∞ come to the belief that 〈Y 〉E < ∞? Indeed, she can. The following

theorem characterizes that case by stating four different sufficient conditions for

such a belief change (proof in appendix A).

Theorem 2. Assume that 〈Y 〉 = ∞. Then any of the following conditions on

evidence E with P (E) 6= 0 is sufficient for 〈Y 〉E <∞.
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1. The sequence (k · P (E|Yk))k∈N is bounded.

2. There are α, β > 0 be such that α+ β > 2, and that (kαP (E|Yk))k∈N and

(kβP (Yk))k∈N are bounded.

3.
∑∞
k=0 P (E|Yk) < ∞ and there is a N0 ∈ N such that (P (Yk))k∈N is, for

all k ≥ N0, monotonically decreasing.

4. P (E|Yk)→ 0 and there is an α > 0 such that

lim sup
k→∞

k2+α |P (E|Yk)− P (E|Yk−1)| <∞. (1)

These four conditions have different rationales, but all of them constrain the

rate of decline of P (E|Yk) as k increases. That is, the more alternatives there

are, the less likely is E. The first and second condition could also be expressed

as P (E|Yk) ∈ O(1/kα) for a suitable exponent α > 0. The third condition

makes a similar constraint by demanding that
∑∞
k=0 P (E|Yk) converges, and

the fourth condition controls the differences between the values of P (E|Yk) for

neighboring values of k.

Note that only the second condition makes an assumption about the rate of

decline of P (Yk). This is in line with the idea that we have little grip on the

rational beliefs about the number of empirically adequate alternatives, whereas

we are in a better position to assess how our evidence E is affected by the

number of alternatives.

As already stated, the punch line of all four conditions is that P (E|Yk) con-

verges fast enough to zero. For evidence E that is related to an empirical test of

H, this assumption is reasonable: if there are more and more alternatives, why

should H, instead of an unconceived alternative (Stanford 2006), survive empir-

ical tests? Thus, if large values of Y make little difference regarding our trust in

the predictions of H, then we will abandon the belief that the expected number

of alternatives is infinite. This is exactly what we would expect intuitively.

Conversely, we may also ask the question: can an agent who believes that Y

takes finite values only (i.e., that 〈Y 〉 < ∞) come to the belief that 〈Y 〉E = ∞
for some evidence E? The answer to this question is a no. No empirical evidence

is able to overturn the verdict that the expected number of alternatives to H is

finite (proof in appendix A):

Proposition 2. If 〈Y 〉 < ∞, then for any evidence E (empirical or non-

empirical) with P (E) 6= 0, 〈Y 〉E <∞.

This means that the belief that the expected number of alternatives is finite

is not responsive to empirical evidence: once you believe it, you will always
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believe it, independently of which evidence you receive. This points to an in-

teresting asymmetry: evidence can change the belief that there are infinitely

many alternatives, but it cannot change the belief that there are finitely many

alternatives. The asymmetry between Theorem 2 and Proposition 2 confirms

a suspicion that Theorem 1 has already prompted, namely that empirical evi-

dence usually lowers the expected number of alternatives. This finding might

help to explain the convergence (rather than divergence) of scientific inquiry.

In the following section, we investigate whether non-empirical evidence can

lower the expected number of alternatives and indirectly confirm the currently

best theory.

4 The No Alternatives Argument

Having investigated the belief dynamics for the number of alternatives to a

theory H, we now proceed to a formal analysis of the No Alternatives Argument

(NAA). In this case, the non-empirical evidence consists in the observation that

scientists have not yet found an alternative to H. In accordance with our previous

analysis, this observation is taken to indicate that, in some sense, there are

actually not too many alternatives to H. Focusing on the case of string theory,

Dawid (2006, 2009) calls this the argument of no choice.

Following this line of reasoning, we will reconstruct NAA based on the notion

that there exists a specific but unknown number k of possible scientific theories.

These theories have to be compatible with a set of constraints C – whose nature

is left to the scientific community, cf. Sect. 2 –, to be consistent with the existing

data D, and to give distinguishable predictions for the outcome of some set E
of future experiments. We will then show that failure to find an alternative to

H raises the probability of H being empirically adequate and thus confirms H.

To do so, we introduce the binary propositional variables T and FA, already

briefly encountered in Sect. 2. T has the values: T: “The hypothesis H is

empirically adequate”, and ¬T: “The hypothesis H is not empirically adequate”.

The propositional variable FA has the values: FA: “The scientific community

has not yet found an alternative to H that fulfills C, explains D and predicts the

outcomes of E”, and ¬FA: “The scientific community has found an alternative

to H that fulfills C, explains D and predicts the outcomes of E”.

We would like to explore under which conditions FA confirms H, that is,

when

P (T|FA) > P (T) . (2)

This equation suggests a direct influence of T on FA. See Figure 1 for a Bayesian
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T FA

Figure 1: The Bayesian Network representation of the two-propositions scenario.

Network representation of this scenario. But since such a direct influence is

blocked by the non-empirical nature of FA, we introduce a third variable Y

which mediates the connection between T and FA. Like in the previous section,

Y has values in the natural numbers, and Yk corresponds to the proposition

that there are exactly k hypotheses that fulfill C, explain D and predict the

outcomes of E .

We should also note that the value of FA – that scientists find/do not find an

alternative to H – does not only depend on the number of available alternatives,

but also on the the complexity of the problem, the cleverness of the scientists,

or the available computational, experimental, and mathematical resources. Call

the variable that models the difficulty of the problem D, and let it take values

in the natural numbers, with Dj := {D = j} and dj := P (Dj). The higher the

values of D, the more difficult the problem. It is clear that D has no direct

influence on Y and T (or vice versa), but that it matters for FA and that this

influence has to be represented in our Bayesian Network.

We now list five plausible assumptions that we need for showing the validity

of the No Alternatives Argument.

A1. The variable T is conditionally independent of FA given Y :

T ⊥⊥ FA|Y (3)

Hence, learning that the scientific community has not yet found an alter-

native to H does not alter our belief in the empirical adequacy of H if we

already know that there are exactly k viable alternatives to H.

This is our the most important assumption, and we consider it to be emi-

nently sensible. Figure 2 shows the corresponding Bayesian Network. To com-

plete it, we have to specify the prior distribution over Y and the conditional

distributions over FA and T , given the values of their parents. This is done in

the following four assumptions.

A2. The prior probabilities

yk := P (Yk) (4)

are smaller than 1, that is, 0 ≤ yk < 1.
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Y

TFA

D

Figure 2: The Bayesian Network representation of the four-propositions sce-

nario.

This assumption reflects the fact that we do not know the number of viable

alternatives a priori.

A3. The conditional probabilities

fkj := P (FA|Yk,Dj) (5)

are monotonically decreasing in k for all j ∈ N and monotonically increas-

ing in j for all k ∈ N.

The decrease in the first argument reflects the intuition that the more

alternative theories there are, the more likely it is that the scientists find

at least one of them, given a certain level of difficulty. The increase in the

second argument reflects the intuition that the more difficult a problem

gets, the less likely it is that scientists find an alternative to H, provided

that the number of alternatives to H is fixed.

A4. The conditional probabilities

tk := P (T|Yk) (6)

are monotonically decreasing in k.

This assumption reflects the intuition that the more alternative theories

there are, the less likely it is that scientists have identified the right one.

A5. There is at least one pair (i, k) with i < k for which (i) yi yk > 0, (ii)

fij > fkj for some j ∈ N, and (iii) ti > tk.

Note that this assumption follows from A2, A3 and A4 if we replace

“monotonically decreasing” by “strictly monotonically decreasing” in A3

and A4. However, to prove the following theorem, the weaker formulation

suffices.

With these five assumptions, we can show that (proof in appendix B):
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Theorem 3. If assumptions A1 to A5 hold, then FA confirms T, that is,

P (T|FA) > P (T).

We have therefore shown that FA confirms the empirical adequacy of H

under rather weak and plausible assumptions. Note that FA does not confirm T

if we believe, for example, with probability one that the number of alternatives

has a certain value (e.g., infinity). Moreover, the degree of confirmation depends

on the specific values of the parameters that occur in A2-A5 (for details, see

appendix B).

5 The significance of NAA

We have seen that NAA can be used in support of a proposed theory. The ques-

tion remains, however, whether the resulting support is of significant strength

and whether using NAA in a specific situation is justified.

The Bayesian Network representation of NAA in Figure 2 suggests that such

significance is difficult to attain by NAA on its own without further supportive

reasoning. According to Figure 2, FA may confirm an instance of D (limitations

to the scientists’ abilities to solve difficult problems) as well as an instance of

Y (limitations to the number of possible theories). From the Bayesian Network

depicted in Figure 2, it is easy to see that for all l ∈ N,

P (Dl|FA) =
P (Dl,FA)
P (FA)

=
dl ·
∑
k yk fkl∑

j,k dj yk fkj
. (7)

Hence the ratio measure of confirmation is given by

r(Dl,FA) :=
P (Dl|FA)
P (Dl)

=
∑
k yk fkl∑

j,k dj yk fkj
. (8)

We cannot provide fully general conditions for when this expression is greater

than 1. However, we observe that the expression on the right hand side of

equation (8) is monotonically increasing in l since the fkl are monotonically in-

creasing in l for fixed k (see assumption A3). That is, the degree of confirmation

that FA lends to Dl, as expressed by the ratio measure, increases with l. Thus,

FA typically confirms the claim that the problem at hand is rather complicated

(i.e., that it has a high rank l) and typically disconfirms the claim that it is not

particularly complicated (i.e., that it has a low rank l). The turning point l∗

depends on the precise values of the parameters in question.

To accentuate the resulting problem, note that the situation could be such

that D∗ := {D ≥ l∗} – the proposition that the problem has difficulty rank l∗ or

higher – receives more confirmation than T. While failure to find an alternative
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confirms the empirical adequacy of H, this failure would also confirm, and to a

larger degree, the hypothesis that the problem is too complicated for our current

science. This alternative explanation of FA weakens the significance of NAA.

To successfully apply NAA, one has to show that FA confirms T more than D∗,

but such a claim is sensitive to the specific parameter assignments and therefore

hard to prove in general.

So far we have left the parameters dk, fkj , tk and yk largely unrestricted

and assumed that they reflect the subjective degrees of belief of a scientist.

Hence, different scientists may assign different values to these parameters, which

implies that the significance of NAA will differ from scientist to scientist. In

the absence of any further rational constraints, different scientists may come

to radically different conclusions. Given that science aspires for objectivity,

this is an unfortunate situation. In the remainder of this section, we sketch a

reasoning procedure, called the Meta-Inductive Argument (MIA), that ensures

agreement on the prior probabilities yk, that is, on the distribution of the number

of alternative theories.

The gist of MIA is best illustrated by a special case. It is notoriously dif-

ficult to find a theory that makes the correct predictions, rather than just ac-

commodating existing data (Kahn et al. 1992, Hitchcock and Sober 1994). But

remarkably, scientists have often succeeded at identifying that theory. Now, if

there are a lot of alternative solutions to a given problem, then there is no reason

to assume that the scientists identified the one theory which will prevail in the

future. Thus, repeated predictive success within a particular scientific research

program seems to justify the assumption that there may be few alternative

theories in the given theoretical context.

Now, assume that a novel theory H shows similarities to theories H1, H2, etc.,

in the same scientific research program. The joint feature of these theories may

be a certain theoretical approach, a shared assumption, or any other relevant

characteristic. Let us assume that a substantial share of the theories to which

H is similar have been empirically confirmed. Assume further that for those

theories, we have empirically grounded posterior beliefs about the number of

alternatives. Then, it seems reasonable to use these posteriors as priors for

the number of alternatives to H. After all, H is quite similar to H1, H2, etc.

Statisticians routinely use this way of determining “objective” prior beliefs and

refer to it as the empirical Bayes method (Carlin and Louis 2000).

If this move is accepted, then one is in a much better position to appreciate

the significance of NAA, due to agreement on the prior probabilities of the

Yk. Admittedly, this account of MIA remains informal and provides at best a
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partial justification for the practical significance of NAA. On the other hand,

formalizing MIA and strengthening the link between both arguments strikes us

as a promising route for further research.

6 Conclusions

In this paper, we have completed three tasks: (i) we have studied the prob-

lem of theoretical underdetermination from the angle of how beliefs about the

number of alternatives to a theory change in the light of evidence; (ii) we have

formalized the No Alternatives Argument and explored under which conditions

non-empirical evidence confirms a scientific theory H; and (iii) we have sketched

the Meta-Inductive Argument that allows us to assess the number of alternatives

to H before empirical evidence in favor or against H is found.

In future work, we plan to relate the formal account given in this paper

more closely to case studies from science. Here we are particularly interested

in the case of string theory and the reasoning strategies employed in fields such

as palaeontology and anthropology where contingent evolutionary details have

to be reconstructed based on scarce and highly incomplete evidence. We will

explore what role NAA plays in these fields, and how good the argument actually

is.

There are also two philosophical applications which we would like to point

out. First, Inference to the Best Explanation (Douven 2011, Lipton 2004) can, to

a certain extent, be explicated in terms of NAA. In as much as the notion “best

explanation” is understood as “the only genuinely satisfactory explanation”,

the fact that no other genuinely satisfactory explanation has been found can

play the role of the claim of no alternatives in our argument, supporting the

empirical adequacy of the currently best explanation.

Second, one may ask whether NAA could also play a role in confirming

general philosophical theories. The reputation of a philosophical theory is often

based on the understanding that no other consistent answer has been found or

is perhaps not even conceivable. Can reasoning of this kind be supported by

NAA? In principle, the answer to this question is yes, but there is a problem:

philosophical theories do not have a record of empirical testing. Thus, we will

be unable to quantify the significance of NAA with empirical data. Philosophy

thus provides us with a neat example of the promises and limits of non-empirical

theory confirmation beyond scientific contexts.
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A Proof of the results in Section 3

Proof of Proposition 1: The proof proceeds by construction. For instance,

let P (Y ≤ N) = 1 − ε, let P (Yk) = C/k2 ∀k > N, and choose C such that∑
k>N P (Yk) = ε is satisfied. (The series

∑
k 1/k2 converges.) Then, it is easy

to check that

〈Y 〉 ≥
∞∑

k=N+1

k P (Yk) ≥ C

∞∑
k=N+1

1
k

= ∞.

Proof of Theorem 1: Let us define

Y+
k := {Y ≥ k} Y−k := {Y < k}

We have assumed that P (E|Y+
k ) ≤ P (E|Y−k )∀k ∈ N, with inequality for at least

one k > 0. Since Y+
k and Y−k are an exhaustive partition of the probability

space, this entails that Y +
k and E are negatively relevant to each other, and

that

P (Y+
k |E) ≤ P (Y+

k ) ∀k ∈ N, (9)

with inequality for at least one k > 0. Since P (Yk) = P (Y+
k ) − P (Y+

k+1), we

obtain by a simple diagonalization trick

〈Y 〉 =
∞∑
k=0

k P (Yk)

=
∞∑
k=0

(
k P (Y+

k )− k P (Y+
k+1)

)
= 0 · P (Y+

0 ) +
∞∑
k=1

(
kP (Y+

k )− (k − 1)P (Y+
k )
)

=
∞∑
k=1

P (Y+
k ), (10)

and similarly

〈Y 〉E =
∞∑
k=1

P (Y+
k |E). (11)

Combining (10) and (11), we conclude

〈Y 〉E =
∞∑
k=1

P (Y+
k |E) <

∞∑
k=1

P (Y+
k ) = 〈Y 〉

because of P (Y+
k |E) ≤ P (Y+

k )∀k ∈ N (see (9)), and because we have assumed

inequality for at least one k > 0.
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Proof of Theorem 2: Proof of the first statement. Assume that the expression

(k ·P (E|Yk))k∈N is bounded, that is, there is a B > 0 such that k ·P (E|Yk) < B.

Then it will be the case that

〈Y〉E =
1

P (E)

∞∑
k=1

k P (Yk)P (E|Yk)

≤ B · 1
P (E)

∞∑
k=1

P (Yk)

< ∞,

proving the sufficiency of the first condition.

Related to this is the case that kα · P (E|Yk) ≤ Aα and kβ · P (Yk) ≤ Aβ

for all k ∈ N and some constants Aα, Aβ > 0, with the additional constraints

α, β > 0 and α+ β > 2. Then we have

〈Y 〉E =
1

P (E)

∞∑
k=1

k1−α−β (kα P (E|Yk))
(
kβ P (Yk)

)
≤ 1

P (E)
AαAβ

∞∑
k=1

k1−(α+β)

< ∞

because by assumption, 1−(α+β) < −1, ensuring the convergence of the series.

In the remainder of the proof we will focus on the properties of the series

∞∑
k=1

k P (Yk)P (E|Yk) (12)

which is sufficient for examining the convergence properties of 〈Y 〉E.

We now proceed to proving the sufficiency of the third condition. We

assume that
∑∞
k=1 P (E|Yk) < ∞ and that there is a N0 ∈ N such that

P (Yk) ≥ P (Yk+1) for all k ≥ N0. By Dirichlet’s criterion (Knopp 1964,

324),
∑∞
k=1 k P (Yk)P (E|Yk) converges if (i)

∑∞
k=1 P (E|Yk) < ∞ and (ii)

k P (Yk) → 0 monotonically. The first condition is fulfilled by assumption.

The second clause of the criterion can, without loss of generality, be replaced

by demanding that for N0 ∈ R, (k P (Yk))k∈N be monotonically decreasing for

all k ≥ N0.

Assume that the second clause of the criterion is not satisfied, and that there

is a sequence of natural numbers nk such that

nkP (Ynk) < nk+1P (Ynk+1). (13)

Then the (sub)sequence (nk P (Ynk))k would not converge to zero, and conse-

quently, (k P (Yk))k would not converge to zero. However, for some k ≥ N0,
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P (Yk) is by assumption a monotonically decreasing sequence. Furthermore,

for such sequences, if
∑
k P (Yk) exists (which is the case here), then also

k P (Yk) → 0 (Knopp 1964, 125). Hence, a subsequence (nk P (Ynk))k with

property (13) cannot exist and the second part of the Dirichlet criterion is sat-

isfied. Thus, the third condition of Theorem 2 is indeed sufficient.

Finally, we demonstrate the joint sufficiency of (i) P (E|Yk) → 0 and (ii)

there is an α > 0 such that

lim sup
k→∞

k2+α |P (E|Yk)− P (E|Yk−1)| <∞.

In particular, there exists a C > 0 such that k2+α |P (E|Yk)− P (E|Yk−1)| ≤ C.

Moreover, let C ′ := 2C
∑∞
k=1 1/k1+α.

By Abel’s formula (Knopp 1964, 322), we can rewrite the partial sums of

the series
∑∞
k=1 k P (Yk)P (E|Yk) in the following way:

N∑
k=1

k P (Yk)P (E|Yk) =
N∑
k=1

 k∑
j=1

j P (Yj)

 (P (E|Yk)− P (E|Yk+1))

+

 N∑
j=1

j P (Yj)

P (E|YN+1).

Note that the re-ordering of the terms does not affect the convergence properties

since (12) has only positive members. It is now sufficient to show that both

summands on the right side are uniformly bounded in N since this would mean

that (12) has bounded partial sums and is thus convergent.

We begin by showing that the first summand is uniformly bounded:∣∣∣∣∣∣
N∑
k=1

 k∑
j=1

j P (Yj)

 (P (E|Yk)− P (E|Yk+1))

∣∣∣∣∣∣
≤

N∑
k=1

 k∑
j=1

j

k
P (Yj)

 1
k1+α

k2+α|P (E|Yk)− P (E|Yk+1)|

≤ C

N∑
k=1

 k∑
j=1

P (Yj)

 1
k1+α

≤ C

∞∑
k=1

1
k1+α

≤ C ′,

and the resulting bound is independent of N .

For the second term, because of P (E|Yk) → 0, there is, for any k ∈ N, a
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N0(k) such that  k∑
j=1

j P (Yj)

P (E|YN0(k)) ≤ C ′/2. (14)

Then we can calculate k∑
j=1

j P (Yj)

P (E|Yk+1)

≤

 k∑
j=1

j P (Yj)

 |P (E|Yk)− P (E|Yk+1)|+

 k∑
j=1

j P (Yj)

P (E|Yk+1)

≤ . . .

≤

 k∑
j=1

j P (Yj)

N0(k)−1∑
l=k

|P (E|Yl)− P (E|Yl+1)|

+

 k∑
j=1

j P (Yj)

P (E|YN0(k))

≤

 k∑
j=1

j

k
P (Yj)

N0(k)−1∑
l=k

k

l2+α
l2+α |P (E|Yl)− P (E|Yl+1)|

+ C ′/2

≤

 k∑
j=1

P (Yj)

N0(k)−1∑
l=k

C

l1+α

+ C ′/2

≤ C

( ∞∑
l=1

1
l1+α

)
+ C ′/2

≤ C ′,

proving the uniform boundedness of the second summand and thereby the suf-

ficiency of the fourth and last condition for 〈Y 〉E <∞.

Proof of Proposition 2: By a straightforward application of Bayes’ Theorem:

〈Y 〉E =
∞∑
k=1

k P (Yk|E) =
1

P (E)

∞∑
k=0

k P (Yk)P (E|Yk)

≤ 1
P (E)

∞∑
k=0

k P (Yk) =
1

P (E)
〈Y 〉

< ∞.

B Proof of Theorem 3 in Section 4

FA confirms T if and only if P (T|FA)− P (T) > 0, that is, if and only if

∆ := P (T,FA)− P (T)P (FA) > 0.
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We now apply the theory of Bayesian Networks to the structure depicted in

Figure 2, using assumption A1 (T ⊥⊥ FA|Y ):

P (FA) =
∞∑
i=0

∞∑
j=0

P (FA|Yi,Dj)P (Yi,Dj) =
∞∑
i=0

∞∑
j=0

dj yi fij

P (T) =
∞∑
k=0

P (T|Yk)P (Yk) =
∞∑
k=0

tk yk

P (T,FA) =
∞∑
i=0

P (FA,T|Yi)P (Yi) =
∞∑
i=0

yi P (FA|Yi)P (T|Yi)

=
∞∑
i=0

yi ti

 ∞∑
j=0

P (FA|Yi,Dj)P (Dj|Yi)


=

∞∑
i=0

∞∑
j=0

dj yi ti fij

Hence, we obtain, using
∑
k∈N yk = 1,

∆ =

 ∞∑
i=0

∞∑
j=0

dj yi ti fij

−
 ∞∑
i=0

∞∑
j=0

dj yi fij

 ( ∞∑
k=0

yk tk

)

=

 ∞∑
i=0

∞∑
j=0

dj yi ti fij

( ∞∑
k=0

yk

)
−

 ∞∑
i=0

∞∑
j=0

dj yi fij

  ∞∑
j=0

tk yk


=

∞∑
i=0

∞∑
j=0

∞∑
k=0

(dj yi yk ti fij − dj yi yk tk fij)

=
∞∑
j=0

dj

∞∑
i=0

∞∑
k 6=i=0

yi yk fij (ti − tk)

=
∞∑
j=0

dj

∞∑
i=0

∑
k>i

(yi yk fij (ti − tk) + yk yi fkj (tk − ti))

=
∞∑
j=0

dj

∞∑
i=0

1
2

∞∑
k 6=i=0

yi yk (fij (ti − tk) + fkj (tk − ti))

=
1
2

∞∑
i=0

∞∑
j=0

∞∑
k 6=i=0

dj yi yk (ti − tk) (fij − fkj)

> 0

because of A2-A5 taken together.
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