Refutation of Richard Gill’s Argument Against my Disproof of Bell’s Theorem

Joy Christian

Wolfson College, University of Oxford, Oxford OX2 6UD, United Kingdom

I identify a number of errors in Richard Gill’s purported refutation of my disproof of Bell’s theorem. In particular, I point out that his central argument is based, not only on a rather trivial misreading of my counterexample to Bell’s theorem, but also on a simple oversight of a freedom of choice in the orientation of a Clifford algebra. What is innovative and original in my counterexample is thus mistaken for an error, at the expense of the professed universality and generality of Bell’s theorem.

I. INTRODUCTION

In a recent preprint [1] Richard Gill has suggested that there is an algebraic error in my disproof of Bell’s theorem [2][3][4][5][6][7][8][9][10][11][12]. In what follows I show that it is in fact Gill’s argument that is in error, stemming from a rather trivial misreading of my disproof, as well as from a misconstrual of a basic freedom in geometric algebra. For example, in the abstract of both versions of his preprint he refers to the quantity $-a \cdot b - a \wedge b$ as a “bivector.” Moreover, by his own admission Gill has not read any of my papers on the subject beyond the minimalist one-page paper [3]. This is unfortunate. For had he read my papers carefully he would have recognized his errors himself.

Considering these facts, let me set the stage by recalling some of the background to my counterexample on which Gill’s argument relies [1]. Although based on geometric algebra [13], my counterexample is in fact a hidden variable model, with the hidden variable being the initial orientation of a parallelized 3-sphere [2][3]. In other words, the initial orientation of the physical space itself is taken as a hidden variable in the model [6]. With this in mind, consider a right-handed frame of ordered basis bivectors, $\{\beta_x, \beta_y, \beta_z\}$, and the corresponding bivector (or “even”) subalgebra

$$\beta_j \beta_k = -\delta_{jk} - \epsilon_{jkl} \beta_l$$

(1)

of the Clifford algebra $Cl_{3,0}$ [4]. The latter is a linear vector space \mathbb{R}^8 spanned by the orthonormal basis

$$\{1, e_x, e_y, e_z, e_x \wedge e_y, e_y \wedge e_z, e_z \wedge e_x, e_x \wedge e_y \wedge e_z\},$$

(2)

where δ_{jk} is the Kronecker delta, ϵ_{jkl} is the Levi-Civita symbol, the indices $j, k, l = x, y, z$ are cyclic indices, and

$$\beta_j = e_k \wedge e_l = I \cdot e_j.$$

(3)

Eq. (1) is a conventional expression of bivector subalgebra, routinely used in the literature employing geometric algebra for computations [12]. From equation (1) it is easy to verify the familiar properties of the basis bivectors, such as

$$(\beta_x)^2 = (\beta_y)^2 = (\beta_z)^2 = -1$$

(4)

and $\beta_x \beta_y = -\beta_y \beta_x$, etc.

(5)

Moreover, it is easy to verify that the bivectors satisfying the subalgebra (1) form a right-handed frame of basis bivectors. To this end, right-multiply both sides of Eq. (1) by β_j, and then use the fact that $(\beta_j)^2 = -1$ to arrive at

$$\beta_j \beta_k \beta_j = 1.$$

(6)

The fact that this ordered product yields a positive value confirms that $\{\beta_x, \beta_y, \beta_z\}$ indeed forms a right-handed frame of basis bivectors. This is a universally accepted convention, found in any textbook on geometric algebra [13].

Suppose now $a = a_j e_j$ and $b = b_k e_k$ are two unit vectors in \mathbb{R}^3, where the repeated indices are summed over $x, y,$ and z. Then the right-handed basis defined in Eq. (1) leads to

$$\{ a_j \beta_j \} \{ b_k \beta_k \} = -a_j b_k \delta_{jk} - \epsilon_{jkl} a_j b_k \beta_l,$$

(7)

*Electronic address: joy.christian@wolfson.ox.ac.uk
which, together with (3), is equivalent to
\[(I \cdot a)(I \cdot b) = -a \cdot b - I \cdot (a \times b), \]
where \(I = e_x e_y e_z \) is the standard trivector. Geometrically this identity describes all points of a parallelized 3-sphere.

Let us now consider a left-handed frame of ordered basis bivectors, which we also denote by \(\{ \beta_x, \beta_y, \beta_z \} \). It is important to recognize, however, that there is no a priori way of knowing that this new basis frame is in fact left-handed. To ensure that it is indeed left-handed we must first make sure that it is an ordered frame by requiring that its basis elements satisfy the bivector properties delineated in Eqs. (4) and (5). Next, to distinguish this frame from the right-handed frame defined by equation (6), we must require that its basis elements satisfy the property
\[\beta_j \beta_k \beta_l = -1. \]
(9)

One way to ensure this is to multiply every non-scalar element in (2) by a minus sign. Then, instead of (3), we have
\[\beta_j = -e_k \wedge e_l = (-I) \cdot (-e_j) = I \cdot e_j, \]
(10)and the condition (9) is automatically satisfied. As is well known, this was the condition imposed by Hamilton on his unit quaternions, which we now know are nothing but a left-handed set of basis bivectors [13]. Indeed, it can be easily checked that the basis bivectors satisfying the properties (4), (5), (9), and (11) compose the subalgebra
\[\beta_j \beta_k = -\delta_{jk} + \epsilon_{jkl} \beta_l. \]
(11)

Conversely, it is easy to check that the basis bivectors defined by this subalgebra do indeed form a left-handed frame. To this end, right-multiply both sides of Eq. (11) by \(\beta_l \), and then use the property \((\beta_j)^2 = -1 \) to verify Eq. (9). As is well known, this subalgebra is generated by the unit quaternions originally proposed by Hamilton [13]. It is routinely used in the textbook treatments of angular momenta, but without mentioning the fact that it defines nothing but a left-handed set of basis bivectors. It may look more familiar if we temporarily change notation and rewrite Eq. (11) as
\[J_j J_k = -\delta_{jk} + \epsilon_{jkl} J_l. \]
(12)

More importantly (and especially since Richard Gill seems to have missed this point), I stress once again that there is no way to set apart the left-handed frame of basis bivectors from the right-handed frame without appealing to the intrinsically defined distinguishing conditions (6) and (9), or equivalently to the corresponding subalgebras (4) and (11). Note also that at no time within my framework the two subalgebras (4) and (11) are mixed in any way, either physically or mathematically. They merely play the role of two distinct and alternative hidden variable possibilities.

Suppose now \(a = a_j e_j \) and \(b = b_k e_k \) are two unit vectors in \(\mathbb{R}^3 \), where the repeated indices are summed over \(x, y, \) and \(z \). Then the left-handed basis equation (11) leads to
\[\{ a_j \beta_j \} \{ b_k \beta_k \} = -a_j b_k \delta_{jk} + \epsilon_{jkl} a_j b_k \beta_l \]
(13)which, together with (10), is equivalent to
\[(I \cdot a)(I \cdot b) = -a \cdot b + I \cdot (a \times b), \]
(14)where \(I \) is the standard trivector. Once again, geometrically this identity describes all points of a parallelized 3-sphere.

It is important to note, however, that there is a sign difference in the second term on the RHS of the identities (8) and (14). The algebraic meaning of this sign difference is of course clear from the above discussion, and it has been discussed extensively in most of my papers [4][5][6][8][12], with citations to prior literature [14]. But from the perspective of my model a more important question is: What does this sign difference mean geometrically? To bring out its geometric meaning, let us rewrite the identities (8) and (14) as
\[(+I \cdot a)(+I \cdot b) = -a \cdot b - (+I) \cdot (a \times b) \]
(15)and
\[(-I \cdot a)(-I \cdot b) = -a \cdot b - (-I) \cdot (a \times b), \]
(16)respectively. The geometrical meaning of the two identities is now transparent if we recall that the bivector \((+I \cdot a) \) represents a counterclockwise rotation about the \(a \)-axis, whereas the bivector \((-I \cdot a) \) represents a clockwise rotation.
about the a-axis. Accordingly, both identities interrelate the points of a unit parallelized 3-sphere, but the identity \(\beta \) interrelates points of a positively oriented 3-sphere whereas the identity \(\beta \) interrelates points of a negatively oriented 3-sphere. In other words, the 3-sphere represented by the identity \(\beta \) is oriented in the counterclockwise sense, whereas the 3-sphere represented by the identity \(\beta \) is oriented in the clockwise sense. These two alternative orientations of the 3-sphere is then the random hidden variable \(\lambda = \pm 1 \) (or the initial state \(\lambda = \pm 1 \)) within my model.

Given this geometrical picture, it is now easy to appreciate that identity \(\beta \) corresponds to the physical space characterized by the trivector \(+I \), whereas identity \(\beta \) corresponds to the physical space characterized by the trivector \(-I \). This is further supported by the evident fact that, apart from the choice of a trivector, the identities \(\beta \) and \(\beta \) represent one and the same subalgebra. Moreover, there is clearly no \textit{a priori} reason for Nature to choose \(+I \) as a fundamental trivector over \(-I \). Either choice provides a perfectly legitimate representation of the physical space, and neither is favored by Nature. Consequently, instead of characterizing the physical space by fixed basis \(\beta \), we can start out with two alternatively possible characterizations of the physical space by the \textit{hidden} basis

\[
\{1, e_x, e_y, e_z, e_x \wedge e_y, e_y \wedge e_z, e_z \wedge e_x, \lambda (e_x \wedge e_y \wedge e_z)\},
\]

where \(\lambda = \pm 1 \). Although these considerations and the physical motivations behind them have been the starting point of my program (see, for example, discussions in Refs. [1, 3], and [11]), Gill seems to have overlooked them completely.

Exploiting the natural freedom of choice in characterizing \(S^3 \) by either \(+I\) or \(-I\), we can now combine the identities \(\beta \) and \(\beta \) into a single hidden variable equation (at least for the computational purposes):

\[
(\lambda I \cdot a)(\lambda I \cdot b) = -a \cdot b - (\lambda I \cdot (a \times b)),
\]

where \(\lambda = \pm 1 \) now specifies the orientation of the 3-sphere. It is important to recognize that the difference between the trivectors \(+I\) and \(-I\) in this equation primarily reflects the difference in the handedness of the bivector basis \(\{\beta_x, \beta_y, \beta_z\} \), and not in the handedness of the vector basis \(\{e_x, e_y, e_z\} \). This should be evident from the foregone arguments, but let us bring this point home by considering the following change in the handedness of the vector basis:

\[
+I = e_x e_y e_z \rightarrow (+e_x)(-e_y)(+e_z) = -(e_x e_y e_z) = -I.
\]

Such a change does not induce a change in the handedness of the bivector basis, since it leaves the product \(\beta_x \beta_y \beta_z \) unchanged. This can be easily verified by recalling that \(\beta_x \equiv I \cdot e_x, \beta_y \equiv I \cdot e_y, \) and \(\beta_z \equiv I \cdot e_z \), and consequently

\[
+1 = \beta_x \beta_y \beta_z \rightarrow (-I) \cdot (+e_x)(-I) \cdot (-e_y) = +1.
\]

Conversely, a change in the handedness of bivector basis does not necessarily affect a change in the handedness of vector basis, but leads instead to

\[
+1 = \beta_x \beta_y \beta_z \rightarrow (-\beta_x)(-\beta_y)(-\beta_z) = -1,
\]

which in turn leads us back to equation \(\beta \) via equations \(\beta \) and \(\beta \). Thus the sign difference between the trivectors \(+I\) and \(-I\) captured in equation \(\beta \) arises from the sign difference in the product \(\beta_x \beta_y \beta_z \) and not from that in the product \(e_x e_y e_z \). It is therefore of very different geometrical significance \(\beta \). It corresponds to the difference between two possible orientations of the 3-sphere mentioned above. It is also important to keep in mind that the combined equation \(\beta \) is simply a convenient shortcut for representing two completely independent initial states of the system, one corresponding to the clockwise orientation of the 3-sphere and the other corresponding to the counterclockwise orientation of the 3-sphere. Moreover, at no time these two alternative possibilities are mixed during the course of an experiment. They represent two independent physical scenarios, corresponding to two independent runs of the experiment. If we now use the notation \(\mu = \lambda I \), then the combined identity \(\beta \) takes the convenient form

\[
(\mu \cdot a)(\mu \cdot b) = -a \cdot b - \mu \cdot (a \times b).
\]

If one remains uncomfortable about using this unconventional identity, then there is always the option of working directly with the bivector basis themselves, and that is what I do in my one-page paper \(\beta \). Accordingly, let us return to equations \(\beta \) and \(\beta \) and start afresh by writing the basic hidden variable equation of the model as

\[
\beta_j(\lambda) \beta_k(\lambda) = -\delta_{jk} - \epsilon_{jkl} \beta_l(\lambda),
\]

with \(\beta_j(\lambda) = \lambda \beta_j \) and \(\lambda = \pm 1 \) as a fair coin representing the two possible orientations of the 3-sphere. Note that upon substituting \(\beta_j(\lambda) = \lambda \beta_j \) and using \(\lambda^2 = +1 \) the above equation can also be written as

\[
\beta_j \beta_k = -\delta_{jk} - \lambda \epsilon_{jkl} \beta_l,
\]
which in turn, for \(\lambda = +1 \), specializes to
\[
\beta_j \beta_k = - \delta_{jk} - \epsilon_{jkl} \beta_l. \tag{25}
\]

As elementary as they are, the last three equations are a major source of confusion in Gill’s preprint.

To see the equivalence of these equations with the hidden variable identity \((22) \), let \(\mathbf{a} = a_j \mathbf{e}_j \) and \(\mathbf{b} = b_k \mathbf{e}_k \) be two unit vectors in \(\mathbb{R}^3 \). Using either equation (24) or (23) and \(\beta_j(\lambda) = \lambda \beta_j \) we then have
\[
\{ a_j \beta_j(\lambda) \} \{ b_k \beta_k(\lambda) \} = \{ \lambda a_j \beta_j \} \{ \lambda b_k \beta_k \} = - a_j b_k \delta_{jk} - \lambda \epsilon_{jkl} a_j b_k \beta_l, \tag{26}
\]
which is equivalent to the identity \((22) \) with \((\mu \cdot \mathbf{a}) \equiv \{ a_j \beta_j \} \), \((\mu \cdot (\mathbf{a} \times \mathbf{b})) \equiv \{ \lambda \epsilon_{jkl} a_j b_k \beta_l \} \), etc.

Next, let us define the measurement results observed by Alice and Bob within \(S^3 \) as
\[
S^3 \ni \mathcal{A}(\mathbf{a}, \lambda) = \{ - a_j \beta_j \} \{ a_k \beta_k(\lambda) \} = (-I \cdot \mathbf{a})(\mu \cdot \mathbf{a}) = \begin{cases} +1 & \text{if } \lambda = +1 \\ -1 & \text{if } \lambda = -1 \end{cases}
\tag{27}
\]
and
\[
S^3 \ni \mathcal{B}(\mathbf{b}, \lambda) = \{ b_j \beta_j(\lambda) \} \{ + b_k \beta_k \} = (\mu \cdot \mathbf{b})(+I \cdot \mathbf{b}) = \begin{cases} -1 & \text{if } \lambda = +1 \\ +1 & \text{if } \lambda = -1 \end{cases}.
\tag{28}
\]

It is important to note that these measurement results are generated as products of two numbers, the fixed bivectors \((I \cdot \mathbf{n})\) times the random bivectors \((\mu \cdot \mathbf{n})\). In other words, as discussed in greater detail in Refs. 2 and 3, they are generated with different bivectorial scales of dispersion for each measurement directions \(\mathbf{a} \) and \(\mathbf{b} \). Consequently, as discovered by Galton and Pearson [15] over a century ago, the correct correlation between the raw numbers \(\mathcal{A} \) and \(\mathcal{B} \) (as observed and manipulated by experimentalists) can only be inferred – theoretically – by calculating the covariance of the corresponding standardized variables \(\mu \cdot \mathbf{a} \) and \(\mu \cdot \mathbf{b} \):
\[
\mathcal{E}(\mathbf{a}, \mathbf{b}) = \lim_{n \to \infty} \left[\frac{1}{n} \sum_{i=1}^{n} \mathcal{A}(\mathbf{a}, \mu^i) \mathcal{B}(\mathbf{b}, \mu^i) \right] = \lim_{n \to \infty} \left[\frac{1}{n} \sum_{i=1}^{n} (\mu^i \cdot \mathbf{a})(\mu^i \cdot \mathbf{b}) \right] = - \mathbf{a} \cdot \mathbf{b}. \tag{29}
\]

Here the last equality immediately follows from the identity \((22) \) and the standardized variables are calculated as
\[
A(\mathbf{a}, \mu) = \frac{\mathcal{A}(\mathbf{a}, \mu) - \mathcal{A}(\mathbf{a}, \mu)}{\sigma(\mathcal{A})} = \frac{\mathcal{A}(\mathbf{a}, \mu) - 0}{(-I \cdot \mathbf{a})} = (+\mu \cdot \mathbf{a}), \tag{30}
\]
and
\[
B(\mathbf{b}, \mu) = \frac{\mathcal{B}(\mathbf{b}, \mu) - \mathcal{B}(\mathbf{b}, \mu)}{\sigma(\mathcal{B})} = \frac{\mathcal{B}(\mathbf{b}, \mu) - 0}{(+I \cdot \mathbf{b})} = (+\mu \cdot \mathbf{b}), \tag{31}
\]
with \(\sigma(\mathcal{A}) = (-I \cdot \mathbf{a}) \) and \(\sigma(\mathcal{B}) = (+I \cdot \mathbf{b}) \), respectively, being the standard deviations in the results \(\mathcal{A} \) and \(\mathcal{B} \). The above result may be seen more transparently by recalling that \((\mu \cdot \mathbf{a}) \equiv \{ \lambda a_j \beta_j \} \) and \((\mu \cdot \mathbf{b}) \equiv \{ \lambda b_k \beta_k \} \), so that
\[
\lim_{n \to \infty} \left[\frac{1}{n} \sum_{i=1}^{n} \{ \lambda^i a_j \beta_j \} \{ \lambda^i b_k \beta_k \} \right] = - a_j b_j - \lim_{n \to \infty} \left[\frac{1}{n} \sum_{i=1}^{n} \{ \lambda^i \epsilon_{jkl} a_j b_k \beta_l \} \right] = - a_j b_j + 0 = - \mathbf{a} \cdot \mathbf{b}. \tag{32}
\]

and
\[
\lim_{n \to \infty} \left[\frac{1}{n} \sum_{i=1}^{n} \{ \lambda^i a_j \beta_j \} \right] = 0 = \lim_{n \to \infty} \left[\frac{1}{n} \sum_{i=1}^{n} \{ \lambda^i b_k \beta_k \} \right]. \tag{33}
\]

It is important to remember that what is being summed over here are points of a parallelized 3-sphere representing the outcomes of completely independent experimental runs in an EPR-Bohm experiment. In statistical terms what these results are then showing is that correlation between the raw numbers \(\mathcal{A}(\mathbf{a}, \mu) = (-I \cdot \mathbf{a})(+\mu \cdot \mathbf{a}) = \pm 1 \in S^3 \) and \(\mathcal{B}(\mathbf{b}, \mu) = (+I \cdot \mathbf{b})(+\mu \cdot \mathbf{b}) = \pm 1 \in S^3 \) is \(- \mathbf{a} \cdot \mathbf{b}\). According to Bell’s theorem this is mathematically impossible. Further physical, mathematical, and statistical details of this “impossible” result can be found in Refs. 3 and 5.
II. A FALLACY OF MISPLACED CONCRETENESS

With this background, we are now in a position to appreciate where the confusion in Gill’s argument stems from. To begin with, he has failed to understand what the hidden variable λ is in my model. He does not seem to realize that rejecting the λ described above as a hidden variable (for that is what his argument boils down to) is equivalent to rejecting the professed universality and generality of Bell’s theorem. This is, however, not so easy to see if one insists on neglecting my substantive papers on the subject and concentrates solely on the minimalist one-page paper.

Secondly, Gill has missed the reciprocal relation between the two sets of basis defined in equations (23) and (25):

$$\beta_j(\lambda) = \lambda \beta_j \iff \beta_j = \lambda \beta_j(\lambda).$$ \hspace{1cm} (34)

This relation holds simply because $\lambda = \pm 1$ implies $\lambda^2 = +1$. Just as the relation $\beta_j(\lambda) = \lambda \beta_j$ encapsulates the randomness of the basis $\{\beta_j(\lambda)\}$ with respect to the basis $\{\beta_j\}$, the reciprocal relation $\beta_j = \lambda \beta_j(\lambda)$ encapsulates the randomness of the basis $\{\beta_j\}$ with respect to the basis $\{\beta_j(\lambda)\}$. As we shall soon see, oversight of this very simple reciprocal relationship between the bases $\{\beta_j\}$ and $\{\beta_j(\lambda)\}$ invalidates the central contention of Gill rather trivially.

The third source of confusion in Gill’s preprint is the equation (23) defined above, namely

$$\beta_j(\lambda) \beta_k(\lambda) = -\delta_{jk} - \epsilon_{jkl} \beta_l(\lambda).$$ \hspace{1cm} (35)

This equation, which purportedly appears as equation (2) in his preprint, is incorrectly presented therein as

$$\beta_j(\lambda) \beta_k(\lambda) = -\delta_{jk} - \lambda \epsilon_{jkl} \beta_l(\lambda).$$ \hspace{1cm} (36)

He attributes this equation to me, but it has nothing to do with my model. Gill’s mistake here is not as innocuous as it may seem at first sight. What he has failed to recognize is that in the former equation λ represents a hidden variable (i.e., the initial orientation of a parallelized 3-sphere), whereas in the latter equation it represents a mere convention. This reveals that Gill has fundamentally misunderstood my model \[4\]. Thus, mistaken reading of (34), neglect of the significance of \[4\], neglect of all my substantive papers but the one-page summary paper, and unfamiliarity with elementary Clifford algebra seems to have led Gill to erroneously conclude that there is an error in my paper.

There is yet another reason why Gill has been led to this fallacious conclusion. Deviating from the explicit physical model described above, he insists on unnaturally identifying the actually observed variables \mathcal{A} and \mathcal{B} with the hidden variable λ by illegally treating $\mathcal{A}(a, \lambda)$ and $\mathcal{B}(b, \lambda)$ as purely algebraic variables rather than statistical variables. But such an identification is anathema, not only from the physically point of view, but also from the statistical point of view. $\mathcal{A}(a, \lambda)$ and $\mathcal{B}(b, \lambda)$ are two different functions of the random variable λ. What is more, they necessarily describe two statistically independent events occurring within a parallelized 3-sphere. Therefore the joint probability of their occurrence is given by $P(\mathcal{A} \wedge \mathcal{B}) = P(\mathcal{A}) \times P(\mathcal{B}) \leq \frac{1}{2}$. And their product, $\mathcal{A} \mathcal{B}(a, b, \lambda)$, which itself is necessarily a different random variable, is guaranteed to be equal to −1 only for the case $a = b$. For all other a and b, $\mathcal{A} \mathcal{B}$ will inevitably alternate between the values -1 and $+1$, since the numbers \mathcal{A} and \mathcal{B} are being generated with different bivectorial scales of dispersion. This is evidently confirmed by the correlation $-a \cdot b$ derived in Eq. (32).

Notwithstanding, let us play along Gill’s illegal game to see where it leads. Let us unnaturally and unphysically set

$$\mathcal{A}(a, \lambda) = +\lambda \quad \text{and} \quad \mathcal{B}(b, \lambda) = -\lambda$$ \hspace{1cm} (37)

so that $\mathcal{A} \mathcal{B} = -1$ for all a and b. Now, to begin with, this immediately leads to $\sigma(\mathcal{A}) = \sigma(\mathcal{B}) = +1$. This is yet another indication that the above identification is not only illegal, but has also nothing to do with my model. What is more, since the unnatural identification inevitably leads to the conclusion that $\mathcal{A} \mathcal{B} = -1$ for all a and b, it is at variance, not only with the basic rules of statistical inference, but also with the basic topological properties of the 3-sphere $\mathbb{R}^2 \mathbb{P}^1$. More specifically, what Gill has failed to recognize is that, as noted above, $\mathcal{A}(a, \lambda)$ and $\mathcal{B}(b, \lambda)$ are generated within my model with different bivectorial scales of dispersion, and hence the correct correlation between them can be inferred only by calculating the corresponding standardized variables $\mu \cdot a$ and $\mu \cdot b$:

$$\mathcal{E}(a, b) = \lim_{n \to 1} \left[\frac{1}{n} \sum_{i=1}^n \mathcal{A}(a, \mu^i) \mathcal{B}(b, \mu^i) \right] = \lim_{n \to 1} \left[\frac{1}{n} \sum_{i=1}^n (\mu^i \cdot a)(\mu^i \cdot b) \right] = -a \cdot b.$$ \hspace{1cm} (38)

1 A fallacy of neglecting the degree of abstraction involved in a thought that leads to an unwarranted conclusion about a concrete entity.
I have explained the relationship between raw scores and standard scores in greater detail in Ref. [5], with explicit calculations for the optical EPR correlations observed in both Orsay and Innsbruck experiments [16].

But I am digressing. Let us continue to play along Gill’s unnatural game and recalculate the correlation between \(\mathcal{A} \) and \(\mathcal{B} \). For completeness, let us first rewrite how this correlation has been calculated in my one-page paper [3]:

\[
\mathcal{E}(\mathbf{a}, \mathbf{b}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ \mathcal{A}(\mathbf{a}, \lambda^i) \mathcal{B}(\mathbf{b}, \lambda^i) \right\} = \frac{1}{n} \sum_{i=1}^{n} \left\{ -a_j \beta_j \{ b_k \beta_k \} \right\} = \frac{1}{n} \sum_{i=1}^{n} \left\{ a_j \beta_j (\lambda^i) \{ b_k \beta_k (\lambda^i) \} \right\}
\]

where I have used Eq. (23) and \(\beta_j (\lambda) = \lambda \beta_j \) from Eq. (34) in the last two lines of derivation.

Now, complying with Gill’s spurious demand, if we set \(\mathcal{A} \mathcal{B} = -1 \) for all \(\mathbf{a} \) and \(\mathbf{b} \), then instead of the above derivation we have the following:

\[
\mathcal{E}(\mathbf{a}, \mathbf{b}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ \mathcal{A}(\mathbf{a}, \lambda^i) \mathcal{B}(\mathbf{b}, \lambda^i) \right\} = \frac{1}{n} \sum_{i=1}^{n} \left\{ -1 \right\} = \frac{1}{n} \sum_{i=1}^{n} \left\{ a_j \beta_j \{ b_k \beta_k \} \right\} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \lambda^i \epsilon_{jkl} a_j b_k \beta_l (\lambda) \right\} = -a_j b_j + 0 = -\mathbf{a} \cdot \mathbf{b},
\]

where I have used Eq. (23) and \(\beta_j (\lambda) = \lambda \beta_j \) from Eq. (34) in the last two lines of derivation, which is equivalent to using Eq. (24). Evidently, the correlation between \(\mathcal{A} \) and \(\mathcal{B} \) does not change, even from this unnatural perspective.

One may wonder, however, about my use of the relation \(\beta_j = \lambda \beta_j (\lambda) \) in this derivation in addition to using Eq. (23). After all, are not the basis \(\{ \beta_x, \beta_y, \beta_z \} \) supposed to be the “fixed” bivector basis and the basis \(\{ \beta_x (\lambda), \beta_y (\lambda), \beta_z (\lambda) \} \) dependent on the hidden variable \(\lambda \)? We must not forget what we did, however, in the first line of the derivation, in order to arrive at the last two lines. Complying with Gill's spurious demand, we artificially treated the statistical variables \(\mathcal{A}(\mathbf{a}, \lambda) \) and \(\mathcal{B}(\mathbf{b}, \lambda) \) as if they were purely algebraic variables, and forced the value of their product \(\mathcal{A} \mathcal{B}(\mathbf{a}, \mathbf{b}, \lambda) \) to be equal to \(-1\) for all \(\mathbf{a} \) and \(\mathbf{b} \). In other words, we surreptitiously assumed that the numbers \(\mathcal{A} \) and \(\mathcal{B} \) are completely dispersion-free. But how can that be? Given their definitions (27) and (28), it is clear that \(\mathcal{A} \) and \(\mathcal{B} \) are not generated as dispersion-free numbers, at least from the perspectives of the detectors \((-I \cdot \mathbf{a})\) and \((+I \cdot \mathbf{b})\):

\[
\mathcal{A} = (-I \cdot \mathbf{a})(\mu \cdot \mathbf{a})
\]

and

\[
\mathcal{B} = (\mu \cdot \mathbf{b})(+I \cdot \mathbf{b}).
\]

The scalar \(\mathcal{A} \) is generated with a bivectorial scale of dispersion \((-I \cdot \mathbf{a})\) due to randomness within \((\mu \cdot \mathbf{a})\), and the scalar \(\mathcal{B} \) is generated with a bivectorial scale of dispersion \((+I \cdot \mathbf{b})\) due to randomness within \((\mu \cdot \mathbf{b})\). Thus, clearly, \(\mathcal{A} \) and \(\mathcal{B} \) can be treated as dispersion-free only from the perspectives of the spins \((\mu \cdot \mathbf{a})\) and \((\mu \cdot \mathbf{b})\) themselves rather than from those of the detectors \((-I \cdot \mathbf{a})\) and \((+I \cdot \mathbf{b})\). In other words, fixing the value of the product \(\mathcal{A} \mathcal{B} \) amounts to viewing the correlation between \(\mathcal{A} \) and \(\mathcal{B} \) from the perspectives of the spins rather than those of the detectors [2]. But from the perspectives of the spins the detectors are not fixed but alternate their handedness between left and right, precisely as dictated by the relation \(\beta_j = \lambda \beta_j (\lambda) \) we have used in deriving the correlation (34). And as we discussed above, this relation encapsulates the randomness within \((-I \cdot \mathbf{a})\) relative to the spin \((\mu \cdot \mathbf{a})\).

Moreover, within my model the scalars \(\mathcal{A} \), \(\mathcal{B} \), and \(\mathcal{A} \mathcal{B} \) and the bivectors \((-I \cdot \mathbf{a})\), \((+I \cdot \mathbf{b})\), \((\mu \cdot \mathbf{a})\), and \((\mu \cdot \mathbf{b})\) are all supposed to be different points of a parallelized 3-sphere. Thus the above derivation once again reinforces the central view of my program that EPR correlations are nothing but correlations among the points of a parallelized 3-sphere, regardless of its algebraic representation. Consequently, it is not at all surprising that algebraic consistency continues to hold between the natural perspective advocated in Refs. [2] and [3] and the unnatural perspective insisted upon by Gill.
Acknowledgments

I wish to thank Richard Gill for nearly a month-long correspondence about my one-page paper, building up to his critique. I regret not having persuaded him so far, but hope to do better with this formal response to his critique. I also wish to thank the Foundational Questions Institute (FQXi) for supporting this work through a Mini-Grant.

References