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The media spectacle surrounding Alan Sokal’s bogus article “Transgressing
the Boundaries”[1] was a poignant reminder of C. P. Snow’s concern about
the gulf of mutual incomprehension and hostility that exists between cultural
intellectuals and scientists, particularly physicists [2]. What drove Snow’s
concern was not academic infighting, but the consequent lack of deep reflec-
tion on the cultural and societal impact of scientific ideas. Snow’s vision was
that we ought to promote vigorously the cultivation of an education in which
people are brought up

. . . to understand what technology, applied science, science itself
is like, and what it can and cannot do. ([2], p. 10)

This is a perfect expression of the goals of research in the philosophy of
science. Disagreements about how to understand the scientific enterprise
will arise, but they should never be allowed to overtake the pursuit of Snow’s
vision.

A more dangerous distraction from this pursuit is the distinctly twentieth
century myth that there is a sharp boundary that philosophers and others
must transgress in order to engage with the scientific enterprise. Descartes,
Newton, Leibniz, Maxwell, Mach and Poincaré, to name only the most promi-
nent classical physicists, all couched their ideas about the physical world in
philosophical— not just mathematical—terms. And the intermingling of phi-
losophy with physics has become even more apparent with the emergence of
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the kind of abstract theories that have come to dominate physics this century.
For example, as a prelude to establishing in his special theory of relativity
that simultaneity is not an invariant concept independent of an observer’s
state of motion, Einstein needed to clear the way by giving an epistemolog-
ical critique of the methods observers can use to establish whether spatially
separated events are simultaneous. And Einstein cleared the way for his gen-
eral theory of relativity by arguing, from the way that gravity effects objects
independent of their size or make up, that an object’s motion under gravity
is indistinguishable from the motion it would be seen to have, in the absence
of gravity, from the perspective of an observer accelerating past the object.
Similar epistemological critiques, such as Heisenberg’s examination of the
procedures by which we can determine both the position and momentum of
a particle, were formative in the early development of quantum theory.

In his commentary on the Sokal affair, Steven Weinberg [3] is only willing
to grant the ‘jurisdictional point’ that time, space and matter, things which
had been thought to be proper subjects for philosophical argument, actually
belong in the province of ordinary science. But, if I may appropriate Snow
once more, limiting the interaction between physics and philosophy in this
way surely means that

...at the heart of thought and creation we are letting some of our
best chances go by default. The clashing point of two subjects, two
disciplines, two cultures—of two galaxies, so far as that goes—
ought to produce creative chances. In the history of mental activ-
ity that has been where some of the break-throughs came. ([2], p.
23)

The clash Snow wrote about was a clash between two radically different
ways of seeing the world, two rival sentiments of rationality. And I think
it’s fair to say that the clashing point was, and still is, scientific explanation,
which has been historically vital, not just to the progress of science, but to
society’s view of itself. In this essay, I want to explore the novel problems for
our scientific understanding of the world raised by modern physics. My chief
concern will be with the seemingly intractable problems of quantum theory,
a theory that was initially designed to account for atomic and sub-atomic
processes but is now hailed by many to be universally valid.
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Scientific Explanation

Even if we embrace the virtues of interdisciplinarity, there is no royal road
towards an appreciation of the way in which modern physics understands
the world. This is not just because modern physics makes extensive use of
abstract mathematics, but because there is no consensus even among experts
about how to characterize scientific explanation generally.

For some time the leading light on the issue was Carl Hempel [4] who held
that scientific explanations come in the form of arguments to conclusions.
These arguments were supposed to invoke general laws of some theory, and
their conclusions were supposed to yield specific predictions of the theory.
For example, suppose a cannonball falls from a tower. The relevant law is
that the combination of the ball’s kinetic energy of motion and its potential
energy, due to its height in Earth’s gravitational field, must remain constant
throughout the ball’s flight. Using this law, and ignoring air friction, one
calculates that the ball’s speed upon hitting the ground will be a function
only of the height from which it fell and the constant acceleration imposed
on all objects near the Earth due to gravity. So if we ask why the ball’s speed
at impact was such and such, the answer comes in the form of a deductive
argument with the law of conservation of energy as one premise and the fact
that the ball fell from such and such a height as the other premise.

Of course, Hempel recognized that not all good scientific explanations
terminate, as with this example, in predictions made with absolute certainty.
Nor need good explanations be based on deductive as opposed to inductive
reasoning. Thus I am surely right to explain my recovery from poison ivy
by citing the facts that I took the appropriate steroids and that most people
who take them recover as I have. Still, there are many reasons to reject
Hempel’s identification of explanations with arguments from general laws. I
shall only mention two.

First, Hempel’s identification forces us to call certain arguments explana-
tory when intuitively they are not. For example, it appears to follow from
our best cosmological theories that the initial expansion rate of the universe
needed to fall within extremely narrow limits for it to have been hospitable
for life. At first, some cosmologists sought to turn the explanation of the
initial expansion rate around by deducing—in sound Hempelian fashion—
the initial expansion rate from the fact of our existence in the universe! But
of course our existence can at best provide evidence for the initial expan-
sion rate, not explain it. If there is any scientific explanation forthcoming
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(and many have denied that there could or even should be), then one would
expect it to come from detailed considerations of the mechanisms operative
following the big bang. The upshot is that arguing from general laws to a
specific prediction does not in itself suffice for explanation—some attention
to the causes of events seems called for.

Second, Hempel’s account of statistical explanation appears to be too
weak. Consider the fact that in order to produce certain particles in the
laboratory, high energy physicists need to build supercolliders that feed one
beam of particles into another, and even then the events producing the par-
ticles of interest occur with very low probability. What, then, explains the
occurrence of one of these rare events? An inductive statistical argument
will not suffice, since most of the time the beams collide without producing
the event in question. And simply deducing its low probability from the sta-
tistical laws of quantum theory doesn’t capture the sense in which the rare
event was caused by the colliding beams; for had the collision not occurred,
the event could not have either.

These points suggest that one ought to try and put the ‘cause’ back into
the ‘because’ in scientific explanations, even if it means entertaining funda-
mentally indeterministic causes that merely raise or lower the probabilities
of their effects without making them certain. Probably the most ardent de-
fender of the idea that causes are critical to scientific explanation is Wesley
Salmon [5]. For Salmon, scientific explanations appeal to possibly unob-
servable and often indeterministic causal processes that underpin observed
regularities in nature. But while Salmon’s account of causal explanation
arguably captures most classical physical explanations, can it capture the
abstract explanations of modern physics?

Consider an example of the geometric explanations so distinctive of mod-
ern spacetime theories. In Einstein’s special theory of relativity, if an observer
moves past a metre stick at constant velocity she will find its length to be
shorter (< 1m) than if it were simply at rest relative to her—the infamous
effect of Lorentz contraction. In Figure 1 below the shaded strip marks the
history, or ‘worldtube’, of the stick as it moves through spacetime, the t′ axis
marks the history, or ‘worldline’, of an observer moving towards the metre
stick, and the t axis is the worldline she would follow were she at rest relative
to the stick. To determine its length, each observer needs to take a snapshot
of the stick at some fixed instant. Events simultaneous for an observer are
picked out by lines perpendicular to her worldline. Thus events on the x axis
are simultaneous for the t observer. More surprisingly, events on the x′ axis
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Figure 1. Sketch of the geometrical explanation of Lorentz contraction

are simultaneous for the t′ observer to which the x′ axis is indeed perpen-
dicular, since special relativity operates within a nonstandard Minkowski
geometry not reflected by the distance and angle relations we normally take
to hold of points on the printed page.

Now each observer’s line of simultaneity intersects the worldtube of the
metre stick in a line segment. The length of that segment thus represents
the observer’s judgment about the stick’s length. But it is a theorem of
Minkowski geometry that the line segment ab is shorter than cd, thus the
observer moving towards the metre stick finds its length to be shorter than
normal. This too is not faithfully reflected by the relative lengths of ab and
cd on the page, which suggest ab > cd. However, the claim is not that we
have at hand a pictorial explanation of Lorentz contraction, but an abstract
(!) geometric one. Similar geometric stories can be told for all manner of
relativistic phenomena (time dilation, the Doppler effect, E = mc2, etc.)

Are these stories explanatory in themselves, or do they just summarize
in convenient geometric language the answer to any question one might ask
in a relativistic world? This is a major point of dispute among philoso-
phers of space and time. Those who hold that the ascription of geometrical
structure to spacetime is genuinely explanatory have also tended to invest
reality in that structure. Those for whom that makes little sense have tried
to show that references to geometrical relations in spacetime explanations
can in principle be reduced to, and therefore replaced by, complex asser-
tions about causal relations between events. Although the success of this
reduction is still in dispute, particularly for the spacetimes entertained by
general relativity, we can see something of its flavour by noticing how the
above geometric account of Lorentz contraction suppresses the details of how
the observers take their snapshots of the metre stick’s length. If we pursue
those details, and the differing judgments of simultaneity on which they are
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based, we will be led back to considering the causal processes an observer
has available to make determinations of simultaneity. And, as I noted earlier,
that was precisely Einstein’s starting point in setting up the theory.

As one might expect, Salmon places himself squarely within the causal re-
ductionist approach to spacetime theories ([5], pp. 140-1). But the method of
letting abstract mathematical models do nontrivial work in our understand-
ing of the physical is not just an annoying habit of spacetime realists, but
pervades all of modern physics. Generalizing from the example of Minkowski
spacetime, the physicist Robert Geroch remarks

To answer a physical question, one first translates that question
into various objects (including only objects which are relevant
to the question) in the mathematics, with various properties de-
scribing the physical setup. Then one manipulates these objects
within the mathematics and translates the results back into phys-
ical terms. ([6], p. 86)

More recently, Salmon has written that “an adequate characterization
of quantum-mechanical explanation is a premier challenge for contemporary
philosophy of science”, yet he confesses to the feeling that explanations in
the quantum realm will ultimately boil down to mechanisms, albeit of a
different sort than we’re used to ([7], p. xii). I want to suggest in the rest
of this essay that if we are to understand quantum theory, in which even
talk of indeterministic causal processes breaks down, we will have to take
seriously the idea that locating phenomena within a coherent and unified
mathematical model is explanatory in itself.

In fact, the idea is not completely new. Michael Friedman has forcefully
urged that to explain a body of phenomena is just to supply a theoretical
unification of it [8]. For Friedman, science increases our understanding of the
world precisely because it reduces the total number of independent phenom-
ena that we have to accept as brute facts. Unfortunately, his view became
bogged down almost immediately in technical difficulties (cf. [7], Sec. 3.5),
at which point Philip Kitcher picked up the baton, emphasizing that a theory
unifies a large body of phenomena when it exploits the same small number
of argument patterns over and over again [9].

Kitcher’s conception of a general argument pattern allows the geometric
derivations in spacetime theories to count as such, as well as arguments
employed in genetics and evolutionary biology. I think the same is true of
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many of the patterns of argument employed in quantum theory. But I don’t
want to get side-tracked spelling out what should count as an instantiation of
an argument pattern, or what considerations are relevant to assessing when
a collection of argument patterns unify. Rather, my primary focus will be
to see what light can be thrown by ideas such as these on the notorious
interpretive problems of quantum theory—particularly the quantum theory
of relativistic particles and fields.

For this purpose, I’ll appropriate (with minor modifications) a definition
of explanation given by R. I. G. Hughes [10], which will be recognized sim-
ply as a rough-and-ready expression of the intuition behind the remarks of
Geroch cited above.

We explain some feature B of the physical world by displaying a
mathematical model of part of the world and demonstrating that
there is a feature A of the model that corresponds to B, and is
not explicit in the definition of the model.

It is natural to call explanations based on this maxim structural to emphasize
that they need not be underpinned by causal stories and may make essen-
tial reference to purely mathematical structures that display the similarities
and connections between phenomena. The informal requirement that B not
already be built explicitly into the model carries some of the burden of the
Friedman-Kitcher requirement that explanations unify, since it prevents spu-
rious unifications based on models that simply catalogue all the phenomena
to be explained without in any way ‘organizing’ it. And the spirit of Kitcher’s
requirement that good explanation consists of exploiting a small number of
argument patterns is reflected in the fact that the rules of discourse about
phenomena will be circumscribed, more or less rigidly, by the mathematical
model itself.

Structural Explanation in Quantum Theory

One often hears philosophers say that they are not ready to take lessons
from quantum theory until its interpretation is sorted out. The illusion that
issues of explanation can be held at bay while a quantum metaphysics is
developed was to some extent in the background of my early interpretive
work on the nonrelativistic version of the theory. What initially attracted
me to quantum theory was that one could start with some intuitive idea
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about what the quantum world could be like, some idea about causation
or locality or identity, then make it mathematically precise, and finally see
whether the idea was compatible with the structure of the theory. But why
should this method be compelling if one doesn’t already take that structure
seriously as delimiting the possibilities for explaining quantum phenomena?
And if it does, why not use the structure itself as one’s point of departure,
rather than forever seeking ways to reconcile various views of the world to
it?

Well, there is a problem. In the first instance, quantum theory is a theory
about the probabilities for measurement outcomes, but it leaves the outcomes
themselves unanalyzed. And when we attempt to model the operation of
measurement devices within the theory, not even a structural explanation of
their outcomes seems possible.

Consider the physical magnitudes one might wish to measure on a par-
ticle, its position, momentum, energy, etc. For any one of these, let’s focus
on position, and any possible measurement outcome, say ‘the particle is in
the box’, there is a state |in the box 〉 of the theory that the particle could
occupy in which a measurement of its position will yield the answer ‘the
particle is in the box’ with certainty. In such a situation, one attributes a
definite confinement to the particle—it is in the box—quite independently
of the act of measurement. Probabilities arise because other position states
of the particle are possible, like |in the lab〉, |on the moon〉, etc., and these
states are represented by vectors in the theory. Being vectors, they can be
added together yielding other vectors that are also legitimate states, like

1√
2
|in the box 〉+

1√
2
|elsewhere〉. (1)

In this ‘superposition’ of states, the probability of finding the particle in the
box is no longer one, but given by the square of the coefficient that sits in
front of the |in the box 〉 term, which is 1/2. The same goes for the probability
of finding the particle ‘elsewhere’ (i.e. outside the box), it too is 1/2. Given
these probabilities, it is no longer automatic that the particle can be thought
of as having a definite confinement, either to the box or elsewhere. In fact, to
say that the particle does have a definite confinement is standardly taken to
be incompatible with the particle occupying the superposition state (1). For
if we take into account all measurements we could perform on the particle
(not just measurements of its position), the measurement statistics dictated
by state (1) turn out not to be identical to those we would get by saying that
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the particle actually occupies one of the two states |in the box 〉 or |elsewhere〉
with equal probability of being in either state.

Now let’s try and bring measurement devices themselves within the the-
ory. We need a device sensitive to detecting the particle in the box if it’s
really in there, and elsewhere if it is not. So the device must have two possible
recording states, |‘in the box’ 〉 and |‘elsewhere’ 〉 (the quotes distinguishing
detector from particle states). And the device must interact with the parti-
cle so that if it is initially in the state |in the box 〉 the detector will go into
the state |‘in the box’ 〉, and likewise if the particle initially occupies the state
|elsewhere〉. But if we assume that the particle starts out in superposition (1)
and model the particle-detector interaction in the usual quantum-mechanical
way—evolving their joint state using Schrödinger’s equation—then after the
detection is complete, the state of the combined particle-detector system has
to be

1√
2
|in the box 〉|‘in the box’ 〉+

1√
2
|elsewhere〉|‘elsewhere’ 〉. (2)

We get yet another superposition, this time involving states of the detector!
If, then, the usual way of thinking about superpositions is correct, we cannot
say the detector has definitely detected the particle either in the box or
elsewhere, and so we cannot account for its results. Worse, what could we
have meant by saying that there is equal probability of detecting the particle
either inside the box or elsewhere?

At this point we have reached a major fork in the road. Either we modify
or replace Schrödinger’s equation so that superposition (2) can be allowed to
‘collapse’ with equal probability onto one of the two states that figure in (2),
states in which the detector does have a definite state of detection. Or we
reject the usual way of thinking about superpositions and amend the models
of quantum theory so that detectors can still be taken to register definite
results, superpositions notwithstanding. But while both collapse and no-
collapse theorists do successfully locate measurement outcomes within their
models, on closer examination it becomes evident that their models are set
up so that they contain outcomes as part of their explicit definition! The
prospect of explaining measurement outcomes, even just structurally, looks
bleak.

As I noted earlier, a superposition makes different statistical predictions
than if we attribute a state to the system which is simply a statistical mixture
of the states in the superposition. What makes collapse theories viable in the
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face of the overwhelming evidence for the standard theory’s superpositions is
that the observables whose statistics one would need to measure to tell the
difference between a superposition and the corresponding statistical mixture
become increasingly difficult to measure when all the interactions between the
system (here, our particle) and its environment (our detector) are explicitly
taken into account. (This phenomenon is known as ‘decoherence’.)

Nevertheless, if one is not inclined, as I am not, to alter the empirical
content of the standard theory, one should try and find a way of turning
no-collapse theories into proper structural accounts of quantum measure-
ments. The problem is that if we abandon the standard assumption that a
particle definitely possesses a property only when its quantum state dictates
that the property is certain to be found on measurement, we need an alter-
native proposal for connecting quantum states to properties that will allow
us to say measurements have outcomes without having to reject any of the
mathematical structures around which the standard theory is built.

An important aspect of the structure worth mentioning is that the ob-
servables of any quantum system (position, momentum, etc.) are represented
by a noncommutative algebra of operators on the system’s state space, the
mathematical space in which vectors like |in the box 〉 and |elsewhere〉 reside.
A major part of the literature on the foundations of quantum theory has
been devoted to showing that this noncommutative algebra cannot support
value assignments to all observables in the standard theory (unless one wishes
to revise logic, which can be seen as an attempt at structural explanation
of a different sort). But no-collapse theorists do not need every observable
to possess a definite value, only enough observables to model measurement
outcomes. What no-collapse theorists need is a way of distinguishing an ap-
propriate subset of all the observables in the standard theory that can be
ascribed definite values and to which the probabilities of quantum theory
can sensibly refer. A good deal of my post-doctoral work was devoted to
identifying some of the obstacles to this program while at the same time
trying to carry it through (cf. [11]).

Suppose, now, that the program is complete. Would we have an ex-
planation of measurement outcomes? On this, not all no-collapse theorists
agree. The issue is dynamics. Once we have a coherent story about which
observables of the standard theory possess definite values, it seems entirely
natural to extend it to a story about how those values change over time.
Will their time evolution be deterministic or indeterministic? Will particles
have well-defined trajectories in space? If we sever the standard connection
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between quantum states and possessed values, answers to these questions are
no longer fixed by the standard theory, which only gives a law of evolution
for quantum states. In a recent paper with Michael Dickson [12] we showed
that, to account for the puzzling correlations predicted by quantum theory,
even no-collapse theories with an indeterministic dynamics for values face
problems. In particular, these theories must violate Lorentz invariance, i.e.
the relativistic requirement that the dynamical stories told by observers in
different states of motion should have the same form, and be related to one
another by ‘Lorentz transformations’ (so that the observers can all agree on
the speed of light). But should no-collapse theorists give in to the demand for
dynamics in the first place? It seems to me that serious commitment to the
idea that structural explanations are good explanations will not necessarily
privilege explanations that invoke dynamical structure over other structures.

I just alluded in passing to puzzling quantum correlations. And in the
previous section I mentioned that even indeterministic causal processes will
not suffice to recover quantum phenomena. In Salmon’s Four Decades of
Scientific Explanation [7] he places three issues at the top of his agenda of
open problems for scientific explanation in the fifth decade (which is now
drawing to a close). Central to Salmon’s account of causal processes is the
idea of a ‘conjunctive fork’, in which the correlation between two or more
spatially separated events is traced to causal processes propagating from
some common cause in their past. It is natural, then, that Salmon’s third
open problem should raise the question of explaining the puzzling nature of
quantum correlations between spatially separated events.

I have no idea what an appropriate explanation would look like;
we may need to know more about the microcosm before any ex-
planation can be forthcoming. But I do have a profound sense
that something that has not been explained needs to be explained.
([7], p. 186)

I entirely agree with this last sentiment. So I want to end this section by
sketching a structural explanation of probably the most puzzling correla-
tions thrown up by quantum theory: correlations in the vacuum state of a
relativistic quantum field.

For present purposes, I need not elaborate on what a relativistic quantum
field is, nor on exactly what defines its vacuum state, except to note that
it is the state of lowest energy of the field. Apart from this, the vacuum
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is not what its name suggests—it is a sea of activity. Any detector you
might design, to measure any characteristic of the field, will always have a
nonzero probability (albeit, generally low probability) of registering a value
for that characteristic. This is the phenomena of vacuum fluctuations. The
interesting thing for us is that the vacuum fluctations that can occur in
any two nonoverlapping regions of space are maximally correlated. This
means that any measurement outcome obtained in one region could have
been predicted with (arbitrarily high) certainty on the basis of a measurement
result obtained in the other region.

To appreciate how surprising this is, consider the well-known correlation
between the reading on a barometer and stormy weather. When the barom-
eter’s reading falls one can (usually!) predict with certainty that a storm is
on its way. Thus stormy weather is maximally correlated to the drop in the
barometer’s reading. Of course, the explanation for this correlation is that
the falling barometer and stormy weather both arise from a common cause:
a fall in atmospheric pressure. But in the case of vacuum fluctuations, every
possible occurrence in one region is maximally correlated to some occurrence
in the other. It’s as if each and every feature of the weather were maximally
correlated to some feature of the barometer! Moreover, in the vacuum max-
imal correlations like these obtain between the states of any two regions of
space.

It seems almost unimaginable that we could find a common cause or
causes in the past of these maximal correlations that would explain them
all. And even if we could, the common causes would themselves be involved
in exactly the same kind of correlations between spatially separated events,
because the vacuum looks the same at all times. Either we embark on an in-
finite regress of explanation in search of common causes, or we have to accept
the correlations as brute facts. In fact, the infinite regress is stopped at the
very first step by the fact that vacuum correlations violate ‘Bell inequalities’
that all common cause models of spatial correlations are committed to. So
we’re stuck with accepting the correlations as brute facts.

Or are we? A physicist might be inclined to say that the vacuum is filled
with maximal correlations because they are required for the field to satisfy
restrictions imposed on its energy-momentum by relativity. But while true,
the formal proof of this fact is not terribly enlightening and doesn’t seem
to instantiate any general argument pattern! Instead, let’s see if we can get
a sense of how maximal correlations could possibly arise in the vacuum by
looking more generally at quantum states that can give rise to correlations
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like that.
First, a few more words about quantum states. Recall our particle that

could be either in the box or elsewhere, and our particle detector that either
detected it in the box or elsewhere. After the particle-detector measurement
interaction, they were left in superposition (2). The most general state they
could have been left in, if they had interacted in any old way, has the form

c11|in the box 〉|‘in the box’ 〉 + c12|in the box 〉|‘elsewhere’ 〉
+c21|elsewhere〉|‘in the box’ 〉 + c22|elsewhere〉|‘elsewhere’ 〉 (3)

where the coefficient c11 is in general a complex number whose absolute
square gives the probability that the particle was in the box and the de-
tector detected it there, with a similar interpretation applying to the other
coefficients c12, c21 and c22 above. Since the four terms above represent all
the four possible things that could happen, the sum of the squares of their
coefficients, which are the probabilities that attach to each possibility, must
sum to 1. It is convenient to represent state (3) by listing its coefficients in
the 2× 2 array, or matrix

(

c11 c12

c21 c22

)

.

So every possible state of our particle-detector system corresponds to a ma-
trix of this form whose squared entries sum to 1. From now on I’ll take it for
granted that all our matrices are to have this property.

Notice that had we assumed the particle to be in one of three nonover-
lapping regions, and the detector to have one of three recording states, then
their state would be given by a 3× 3 matrix. More generally, if we have two
systems, the first capable of occuping m different states, and the second n
different states, then their joint state will be given by an m×n matrix, with
m rows and n columns. Still more generally, if we add a third system that
can occupy p different states, then the joint state of all three systems will be
given by a three-dimensional m × n × p matrix with mn rows, mp columns
and np ‘files’. (See Figure 2 overleaf.) We can also envisage states of three
systems given by infinite×infinite×infinite matrices, e.g. three particles each
confined to one of an infinite number of nonoverlapping boxes. And if we
have more than three systems, we just have to add on more dimensions to
our matrices.

The connection between maximal correlations and quantum states is es-
tablished via the idea of (linear) independence. To get the basic idea, let’s
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Figure 2. Three-Dimensional Matrix
(The entries would be spaced at regular intervals throughout the box.)

go back to the simple case of a 2× 2 matrix state
(

c11 c12

c21 c22

)

.

Two mathematical operations can be performed on the rows and columns of
this matrix. First, we could multiply all entries in a row or column by some
number. Thus multiplying the row (c11, c12) by 17 yields (17c11, 17c12), which
is also written as 17(c11, c12). Second, we could add any pair of numbers to
the entries in a row or column. Thus adding (−3, 17) to the column (c11, c21)
gives (c11 − 3, c21 + 17), which is also written as (c11, c21) + (−3, 17). The
rows of a 2× 2 matrix are called independent if for no numbers x and y is it
the case that

x(c11, c12) + y(c21, c22) = (0, 0)

except when x = y = 0. Similarly, the columns of a 2 × 2 matrix are
independent if the equation

x(c11, c21) + y(c12, c22) = (0, 0)

holds only when x = y = 0. For example, the first two of the following 2× 2
matrices

(

1/2 0
0 1/2

)

,
(

1/3 0
1/3 1/3

)

and
(

1/4 1/4
1/4 1/4

)

have independent rows and columns, while the third has neither independent
rows nor columns.

This concept of independence applies to matrices of any size and dimen-
sion. Thus, the three columns of a 2× 3 matrix

(

c11 c12 c13

c21 c22 c23

)
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Figure 3. Maximal Correlations between Fluctuations in Three Regions

will be independent if

x(c11, c21) + y(c12, c22) + z(c13, c23) = (0, 0)

implies x = y = z = 0. In fact, it is not difficult to verify that when the
number of columns exceeds the number of entries in each column, as in this
case, they cannot be independent. The same would hold if the number of
rows exceeded their length. Note, finally, that we can extend the idea of
independence to matrices with infinitely many rows (columns, files, etc.) by
stipulating that they are independent when any finite number of them are.

Now we can get some insight into maximal vacuum correlations. Focus
just on the maximal correlations between three spatial regions, as depicted in
Figure 3 above. (Considering more regions only complicates things without
changing the fundamentals.) Treating each region as a ‘system’, we can assign
it one of various quantum states. The three regions together will then have
a state given by some three-dimensional matrix—as in Figure 2 previously.
The physical requirement that vacuum-like maximal correlations obtain be-
tween the three regions turns out to be equivalent to the purely mathematical
requirement that this three-dimensional matrix have independent rows, inde-
pendent columns and independent files. (For the argument that establishes
this for an arbitrary set of regions, and hence arbitrary-dimensional matrix,
see [13].)

Now our three-dimensional matrix has dimensions m×n×p. Recall that
the number of independent rows cannot exceed the length of each row, and
likewise for columns and files. Thus for our three-dimensional matrix to have
independent rows, columns and files we need (cf. Figure 2)

mn ≤ p, pm ≤ n, and np ≤ m.
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Multiplying both sides of the first inequality by m, using the second inequal-
ity and cancelling the n’s, we get m2 ≤ 1 which implies m = 1! Using similar
arguments, it follows that n = p = 1. But regions in the vacuum can cer-
tainly occupy more than one state, otherwise what sense can it make to say
that fluctuations occur in each region? So our only option in the face of the
inequalities above is take each of m, n and p to be infinite. The first thing
we’ve learned, then, is that to sustain vacuum-like correlations, our three
regions must each be able to occupy an infinite number of different states.

So think, now, of the set of all infinite×infinite×infinite matrices (whose
squared entries sum to one!—so there can’t be any lower bound on their size).
Within this set, there will be matrices with independent rows, columns and
files, though they are somewhat tricky to construct. Furthermore, if we
start with any infinite three-dimensional matrix, it is always possible to
find another with independent rows, columns and files that has entries as
close to the entries of the first matrix as you like. (The argument for this is
nontrivial; once again, see [13].) In a certain sense, then, almost every infinite
three-dimensional matrix you write down is going to support vacuum-like
correlations between our three regions!

I believe this provides a striking illustrating of structural explanation. We
started with the puzzle of explaining maximal vacuum correlations without
appeal to causal processes. To see how such correlations could be possible, we
considered what the joint state of three regions of space needed to look like.
We translated into the model the feature to be explained—mathematically,
it is equivalent to the independence of the rows, columns and files of the
state’s matrix. We then noticed that only matrices with infinitely many
entries can satisfy this condition, but also that once we restrict ourselves
to infinite matrices the condition is satisfied by almost all of them. The
upshot is that once one has committed to using the standard mathematics
of quantum theory, one is implicitly committed to a whole host of states
with vacuum-like correlations, and (I claim) a large part of the mystique
surrounding those correlations evaporates.
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Problems for Structural Explanation in Quan-
tum Theory

I have yet to give any compelling argument for letting structural explanations
stand alone as full-blooded explanations. I shall soon indicate some obstacles
that I believe such an argument would need to face. But I first want to
indicate briefly three foundational issues in the relativistic quantum theory
of particles and fields that raise both opportunities and difficulties for a
structural approach to explanation.

The first issue concerns problems that arise when one attempts to marry
relativistic and quantum structures. If we try to realize Lorentz invariance
in the state space of a free particle, it follows that the ‘particle’ has to be an
intrinsically nonlocal object that cannot be confined to very small distances.
Worse, the particle’s ‘position’ states (relativistic counterparts to |in the box 〉
and |elsewhere〉 of the previous section) allow the particle to behave in ways
contrary to the spirit, if not the letter, of relativity. For one thing, these
states can propagate faster than light. For another, an observer who merely
changes her state of motion relative to the particle will see its state spread
out over all of space, no matter what lengths are taken to confine the particle
to a finite spatial region!

The standard response to these maladies is to abandon the search for
a coherent relativistic quantum theory of particles and move directly on to
the analysis of fields. But it is not clear what dictates this abandonment.
Jeremy Butterfield and Gordon Fleming [14] have forcefully argued that no
principle of relativity, properly understood, is violated by the strange posi-
tion behaviour of relativistic quantum particles. Marrying relativistic and
quantum structures gives birth to spectacular new predictions about parti-
cles which are there in the formalism of the theory, and so ought to be taken
seriously unless we have direct evidence to the contrary. This kind of argu-
ment deserves close scrutiny, especially by those like me who profess to take
the mathematical structure of physical theories seriously.

This leads directly to the next problem, which concerns how we should
deal with surplus mathematical structure in our theories not instantiated in
the physical world. Think again of the matrices we invoked in the previous
section. In restricting ourselves to matrices whose squared entries summed
to one, we were setting aside all other matrices as physically irrelevant. But
this was innocuous given that for none of those other matrices would the
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probabilities for an exhaustive set of mutually exclusive possibilities sum to
1. After all, we wouldn’t want to be put in the position of saying that half
the time the particle will be found in the box and three-quarters of the time
it will not!

Not all cases are that easy. Quantum field theory models collections of
‘identical particles’ by requiring that there be no quantity one can measure
that will distinguish the particles from each other. This requirement puts
a mathematical restriction on the states the particles can occupy. But the
restriction is far weaker than the one Nature itself instantiates. We observe
bosons and fermions, but never any of the other ‘paraparticles’ whose states
would also prevent them from being distinguished one from another. In
response, some physicists have devised clever theoretical arguments to ex-
clude paraparticles a priori, but in the end they either proceed from dubious
premises or beg the question. If indeed they all fail, then since there is
no natural way to excise paraparticle states from the theory, a structuralist
about explanation will have to accept their nonexistence in nature as a brute
fact. Can a structuralist brush this off as easily as a constructive empiricist
such as Bas van Fraassen [15], for whom empirical adequacy of a theory and
the pragmatics of explanation are all that matters?

The third issue concerns the stance one should take towards essentially
different formalisms of the same theory. Presumably for a structuralist the
formalisms will not say the same thing and a choice needs to be made. The
issue is usually discussed by philosophers in reference to choosing between
a particle and field ontology for relativistic quantum field theory. But what
I have in mind is a different sort of choice, between the standard vector
space formalism and the algebraic approach to the theory. This latter is fast
becoming the formulation of choice for pursuing the foundational problems
of quantum field theory (on both flat and curved spacetime), and has its
roots in classic papers written in the 30’s and 40’s by Jordon, von Neumann
and Segal.

I do not think the suggestion is that we should all become realists about
the algebraic structure of observables in quantum theories. Nor do I think (as
a few commentators have worried) that the algebraic program relies on an op-
erationalist philosophy of science in its reliance on observables as primitives.
Instead, what motivates the program is the desire to capture the intrinsic
structure of relativistic quantum field theory by associating algebras of lo-
cal observables with regions of spacetime. In the ‘concrete’ approach to the
theory, those observables are constructed out of quantum fields, but once
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constructed the algebraic approach counsels us to throw that ladder away.
Will we then have isolated the instrinsic structure of the theory, the structure
we should appeal to in our explanations? It is not clear, partly because the
issue of surplus structure raises its ugly head again through the fact that
the algebraic definition of a state is far more liberal than the standard one
involving matrices that I employed in the previous section.

There are many more issues to be pursued than these (e.g. the challenges
posed for our understanding of quantum processes by the emerging field of
quantum computation). And, of course, there is much more to be done before
one could take structural explanation seriously as a philosophy of physics.

Thus one could ask why locating phenomena within a unified mathemati-
cal model is anything more than a pragmatic virtue. One could also question
whether structural explanations are always adequate to the task. In How the
Laws of Physics Lie [16], Nancy Cartwright argues that idealized physical
laws—and presumably this includes idealized mathematical models—fail to
capture the richness and complexity of phenomena in the real world. Causes,
even in quantum theory, must be invoked to fill the explanatory gap. On the
other hand, there is no reason why mathematical models at varying ‘dis-
tances’ from the actual phenomena cannot share in the burden of explaining
that phenomena. The problem would be to spell this out so that all contact
is not lost with the model that sits at the highest level of abstraction and
idealization. (A particularly stark example is the gap—indeed, chasm—that
exists between the laws of atmosphere physics and models employed to fore-
cast the weather.) I should also emphasize that I do not take structural
explanation to be incompatible with explanation by appeal to causal struc-
tures. My claim is only that explanation as explanation does not privilege
one sort of structure over any other. This attitude is, I believe, unavoidable
in modern physics where all one typically has, at least at the highest level of
abstraction, is a theory’s mathematical structure.

There is of course another branch of philosophy in which the status of
mathematical structures is controversial—the philosophy of mathematics it-
self. It strikes me that nothing less than a full-fledged philosophy of math-
ematics will be needed to make the ideas presented here compelling. In
particular, there has been a recent surge of interest in explanation in mathe-
matics proper which I think has great potential to shed light on explanation
in modern physics. A mathematical explanation of why some theorem is
true does not (cannot!) proceed by citing its causes. Nor will the explana-
tion always be simply the deductive proof of the theorem, which might only
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tell us that the theorem is true without elucidating why it is true. Rather,
the theorem’s explanation seems to have something to do with how it fits
into the larger picture of mathematical ideas. That picture I take to be best
captured by category theory (about which philosophers of mathematics have
largely been silent) which could be seen as playing roughly the same role in
mathematics as a theoretical model does in physics. Furthermore, I suspect
that a philosophy of mathematics based on category theory could well show
many of the traditional problems of mathematical ontology to be misguided,
just as structuralism about physics suggests a similar view about physical
ontology. But this is not to suggest that structural explanation cannot be
objective. In fact, my most difficult challenge will be to spell out why and
in what sense structural explanation is objective.

In a wonderful little article on Concepts of Cause in the Development of
Physics [17], Thomas Kuhn observes

. . . in physics new canons of explanation are born with new the-
ories on which they are, to a considerable extent, parasitic. New
physical theories have, like Newton’s, repeatedly been rejected by
men who, while admitting the ability of the new view to resolve
previously intractable problems, have nevertheless insisted that
it explained nothing at all. Later generations, brought up to use
the new theory for its power, have generally found it explana-
tory as well. The pragmatic success of a scientific theory seems
to guarantee the ultimate success of its associated explanatory
mode. Explanatory force may, however, be a long time coming.
The experience of many contempories with quantum mechanics
and relativity suggests that one may believe a new theory with
deep conviction and still lack the retraining and habituation to
receive it as explanatory. ([17], p. 29)

I’d like to consider myself a contributor to that retraining so that modern
physical explanation can be embraced as more than just force of (mathemat-
ical) habit.
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