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Paradoxes have long been a driving force in philosophy. They compel us to think more clearly 

about what we otherwise take for granted. In Antiquity, Zeno insisted that a runner could never 

complete the course because he’d first need to go half way, and then half way again; and so on 

indefinitely. Zeno also argued that matter could not be infinitely divisible, else it would be made 

of parts of no size at all. Even infinitely many nothings combined still measure nothing. These 

simple thoughts forced us to develop ever more careful and sophisticated accounts of space, 

time, motion, continuity and measure and modern versions of these paradoxes continue to vex 

us. 

 This engine of paradox has continued to power us to this day. Relatively recently, 

Einstein fretted over a puzzle. How was it possible that all inertially moving observers would 

find the same speed for light? Surely if one of them was chasing rapidly after the light, that 

observer would find the light slowed. But Einstein’s investigations into electricity and 

magnetism assured him that the light would not slow. He resolved this paradox with one of the 

most influential conceptual analyses of the twentieth century. He imagined clocks, synchronized 

by light signals, and concluded that whether two events are judged simultaneous will depend 

upon the motion of the observer judging.1 

                                                
1 For more, see Norton (forthcoming). 



2 

 What is distinctive about these philosophical paradoxes is that they are not mere 

expressions of practical limitations. The difficulties they expose lie within the very ideas 

themselves. Zeno’s worry was not that a real runner might fail to complete a long race because 

the runner gets tired. His concern was the very idea of any runner, no matter how accomplished 

or idealized, completing any race, no matter how short. The difficulty lies in the ideas of space, 

time and motion. In his paradox of measure, Zeno was not concerned that we might never find a 

real knife capable of slicing matter indefinitely finely. His concern was that matter must be such 

that infinite division lay beyond even the sharpest knife, whose edge had been honed to the 

perfection of an ideal mathematical point. 

 Now let us consider sailing. There are many difficulty technical problems associated with 

sailing. If a sailboat is to be even minimally serviceable, its design must conform to an 

engineering lore that has grown through the centuries. In general, the problems this tradition 

solves do not rise to the level of paradox. However there are some puzzles attached to sailing that 

are more fundamental than a particular engineering challenge. In this chapter, I will consider 

three. They do not have the importance of the paradoxes of Zeno and Einstein. Indeed, as I shall 

try to show, their diagnosis and resolution is a short and, I hope, entertaining diversion. However 

they are foundational paradoxes, for they challenge no particular sailboat, but the very idea of 

sailboats powered by the wind. They are: 

If a sailboat is powered by the wind, how can it sail into the wind? 

If a sailboat is powered by the wind, how can it sail faster than the wind? 

If a sailboat “makes its own wind” when it moves, why does it need any other wind? 

The first two will be familiar to sailors and most have made their peace with them. The third is 

less straightforward. That sailboats “make their own wind” is commonly said by sailors, but few 

explicitly pursue the thought to its paradoxical end. We shall do so now. 

 While profound philosophical morals will not be found in these paradoxes, I will suggest 

that they connect nicely to two issues in recent philosophy. The first two paradoxes will lead us 

directly into a conundrum concerning causal metaphysics. The third will lead us to ponder an 

intriguing mode of investigation of nature, the thought experiment. 

___oOo___ 

Here are the first two paradoxes again, spelled out in greater detail. They are treated together 

since they involve essentially the same issues. 
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1. The cause of a sailboat’s motion is the motion of the wind. 

2. The effect of a cause cannot be greater than or contrary to the cause. 

3. Therefore, a wind-powered sailboat cannot sail faster than the wind or into the wind. 

This conclusion contradicts: 

4. Real sailboats routinely sail into the wind; and sailboats designed for speed can sail 

faster than the wind. 

Those who are not sailors will likely find the argumentation leading to conclusion 3. convincing, 

at least initially. Its plausibility depends upon a limited experience of what the wind can do. It 

calls to mind dry leaves blown about by wind. The wind may lift them, but it will not move them 

faster than its own motion or contrary its own motion. The conclusion is also correct for some 

cases of sailing, such as old-fashioned square-rigged sailing ships running before the wind. Then 

their sails functions like big bags catching the wind. The boat will be blown in the direction of 

the wind, near enough, and, as long as it sails in that direction, the ship will never move faster 

than the wind. 

 However the conclusion 3. is incorrect for almost any sailboat that can align its sails in a 

fore-aft direction. This is especially so for the most common type of small sailboat now used 

recreationally. A Bermuda rigged sailboat has a single mast with two triangular sails, a jib and a 

mainsail, oriented in the fore-aft direction. Such sailboats routinely sail into the wind; and, if 

designed for speed, easily sail faster than the wind when sailing across the wind. 

 Where the analysis of 1-3 fails for such boats is that it mischaracterizes the causal 

processes. The motion of the wind is not the immediate cause of the motion of the boat. A more 

immediate cause is the force with which the wind presses on the sails. For even light winds, this 

force can be considerable. In what are called “moderate breezes” on the Beaufort scale of wind, 

13-17 miles per hour, the wind generates pressures of around one pound per square foot on the 

sails. Small modern sailboats, under 20 feet in length, can carry 200 square feet of sail; and older 

designs often carried significantly more.2 So the wind exerts a considerable force of many 

                                                
2 For wind pressures, see Skene (2001, p. 92). This older design manual from the 1930s also 

records (p. 90) averages of sail areas for 300 well-functioning yachts and found that average to 

be 550 square feet for sailboats of 20 foot length (LWL). That is considerably more than present 

day sailboats of comparable hull length. 
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hundreds of pounds on the sails. This force now acts independently of the motion of the wind 

that produced it. A few hundred pounds of force pressing on the sails will lead the sailboat to 

heel over, just as if someone attached a rope to the center of effort of the sail and pulled it. 

 Some of this force can be directed towards the bow of the boat and drives it over the 

water. How much boat speed results from a given force depends almost entirely on the design of 

the boat’s hull and, as a result, the resistance the water provides to its motion. Once that forward 

directed force is fixed, so is the motion of the hull. It makes no difference if the force comes 

from the press of the wind, oars and paddles or a motor powered propeller. The force contains no 

coded record of the speed of the wind that produced it for the sailboat to read covertly and 

respect! 

 For the familiar monohull design, a small boat can easily be driven up to a maximum 

speed that cannot be passed by greater forces generated by sails. For small boats this maximum 

speed is commonly less than the speed of the wind.3 But that is purely an accident of the hull 

design. If the hull is designed for speed, nothing prevents the boat achieving speeds greater than 

the wind. Two-hulled catamarans present considerably less resistance that monohull boats. If 

sailing across the wind, they do not lose the press of the wind when they move fast. Then, well-

designed catamarans are easily able to sail faster than the wind. The wind can provide 

considerable force; their hulls provide little resistance; so off they go! 

___oOo___ 

 To see how a sailboat can gain against the wind, we need to consider the different “points 

of sail” of a sailboat. These are the different ways a sailboat can proceed in relation to the wind. 

They are shown in Figure 1. 

 

                                                
3 At this “hull speed,” the boat sits in the trough of a wave created by its own motion. The effect 

of further force is no increase in speed but merely a deepening of the trough. As a rule of thumb, 

the hull speed in knots is computed as 1.34 multiplied by the square root of the boat’s length in 

feet. This means that a 16 foot boat can expect a maximum speed of about 5.4 knots, even if the 

wind is blowing considerably faster. 
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Figure 1. Points of sail. 

 

When a sailboat is on a run, the wind blows directly from its stern. Then the sails function like 

bags just catching the wind. On this point of sail the fastest the boat can move is the speed of the 

wind. As the boat approaches the speed of the wind, the boat’s motion cancels out the speed of 

the wind, so that the wind felt on the boat by the sails diminishes. When the boat is close to the 

speed of the wind, the air on deck becomes calm. The experience is not unlike being carried by 

the wind in a balloon. One’s speed over the ground may be quite high, but in the balloon’s basket 

the air will be still. 

 All this changes when the boat sails across the wind on a beam reach. On this point of 

sail, the sails are let out so that they deflect the wind towards the rear of the boat. The resulting 

pressure on the sails yields a force, “Fwind,” pointed diagonally forward, as shown in the first 

diagram of Figure 2. 
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Figure 2. Resolution of forces on the sail. 

 

If the boat’s hull was simply a tub, then this force would move the boat in that diagonal 

direction. However an essential part of a hull design is to make the hull as resistant as possible to 

sideways motion. This is usually effected with a centerboard in small boats or a broad flat keel in 

bigger boats. The force on the sails, Fwind, can be divided into two components, as shown in 

Figure 2. One is parallel to the boat’s motion, “Fdrive,” and the other perpendicular to it, “Fbeam”. 

The high resistance to sideways motion means that the sideways force, Fbeam, produces little or 

no motion, whereas the low resistance to forward motion means the forward force, Fdrive, 

produces motion forwards. Hence the boat is driven across the wind. 

 Only a small modification to the above analysis shows how sailboats can sail into the 

wind. When a sailboat is close hauled, as shown in the second diagram of Figure 2, the wind still 

produces a force on the sails. That force, Fwind, can once again be decomposed into two parts, 

Fdrive and Fbeam. Since the sails are now pulled in closer to the centerline of the boat, the 

component Fdrive is smaller in relation to Fbeam. However the hull will still prevent Fbeam 

producing sideways motion, so that Fdrive will drive the boat forward. 

 This forward motion will now gain against the wind. It is common for Bermuda rigged 

sailboats to be able to sail at 45o to the wind. As a result, if a close hauled sailboat tacks 

repeatedly, that is, zig-zags across the wind, it can follow a track whose average course points 

directly into the wind. 
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 In sum, the first two paradoxes are resolved by denying premise 2, that the motion of the 

wind, as a cause of the motion of the boat, cannot have an effect greater than itself or contrary to 

itself. When powering a sailboat, the motion of the wind can produce faster motions in the 

sailboat and motions directed against the wind. 

___oOo___ 

 To a philosopher, what is important in this last analysis is the centrality of causal notions. 

In the abstract, it seemed entirely unremarkable to expect that the effect of a cause cannot be 

greater than or contrary to the cause. Yet this simple causal truism was wrong and generated the 

first two paradoxes. 

 We see in miniature one of the dominant and, in my view, most important facts about our 

investigations into causation. At any moment in history, we have held to a repertoire of facts 

about causation that we believed to be necessities. They are assertions that, shielded from deeper 

reflection and a broader exposure to experience, seem unassailable. However, when we think 

more and learn more about the world, we find we must abandon them. 

 Until the seventeenth century, it was widely accepted on Aristotle’s authority that a final 

cause, the goal towards which a process moved, was as important as the efficient cause, that 

which initiated the process. In that century, the advent of the mechanical philosophy was 

premised on denunciation of final causes. However, we had by no means then “got it right.” The 

century’s hero, Isaac Newton4, felt he had such an unassailable grasp on causation that he could 

denounce causal action at a distance as “so great an absurdity, that I believe no man, who has in 

philosophical matters a competent faculty of thinking, can ever fall into it.” Yet by the nineteenth 

century, Newton’s gravitation was widely accepted to be precisely this, unmediated action at a 

distance. In that century, the notion of causation was stripped down to its barest essentials. It 

came to be equated with determinism, the simple fact that the present state fixes the future. This 

pure and apparently secure notion of causation fell. It was overturned with the advent of modern 

quantum theory in the 1920s. According to that theory, the present cannot fix the future. The best 

we can have are probabilities for a range of different futures. 

 These are just a few episodes in the history of our failure to grasp what causality 

demands. It is important that we see just what this failure has been. It has not been our failure to 

                                                
4 Newton (1692/93, third letter). 
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discern what has always concerned causal thinking: how is it that things in the world are 

connected. The little history that just unfolded is a story of our coming to understand better and 

better how things are connected. The failures of the story were our efforts to discern ahead of 

science what sorts of connections new science must reveal. 

 How are we to interpret this long history of failure? There are causality optimists who 

think that the best response to failure is to try and try again. Eventually they hope we will hit 

upon the true causal principles that govern the world and all possible sciences. My own view 

(Norton, 2003, 2007) is rather different and represents a minority view among theorists of 

causation. It is that we need to learn that efforts to legislate causal principles ahead of experience 

are doomed to failure at the hands of new investigations. 

 As a result, I believe that the familiar causal talk is very different from what it seems. 

One could be forgiven for imagining that science is exploring a realm governed by some general 

law of causality that rules from the metaphysical heights above all sciences and to which all 

sciences must all defer. In my view, something like the reverse is correct. Science is revealing to 

us deeper truths about the interconnectedness of things in the world than we could have ever 

imagined. In order to facilitate our understanding of it, we graft causal talk onto those 

discoveries. The repeated cycle of failure and revival of causal talk is really a history of the 

elasticity of causal terms and our eagerness to apply them to whatever science may deliver. We 

do not have and will never have a factual principle of causality to which all sciences, known and 

as yet unknown, must conform. 

___oOo___ 

 Sailors commonly remark that sailboats create their own wind. The effect is a familiar 

one. If you pedal a bicycle at 10 mph on a calm day, you will find yourself pedaling into a 10 

mph headwind created by your motion. Exactly the same thing happens with a sailboat. A 

sailboat at 10 mph is sailing into a 10 mph wind it has created. Of course sailors never see this 

headwind in isolation. The wind they see, the apparent wind, is always the vector sum of the 

created wind and the true wind. So if the sailboat is on a beam reach in 10 mph winds, the two 

winds combine to yield a 14 mph wind coming at an angle of 45o to the bow.5 Figure 3 shows 

                                                
5 The two velocities are at right angles and so must be summed by Pythagoras’ theorem: 

(apparent wind speed) 2 =  (true wind speed) 2 + (created wind speed) 2. 
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how the true wind and apparent wind are combined when the sailboat is close hauled. It will be 

important for later discussion to note that the effect of the created wind is to move the direction 

of the apparent wind closer to the bow. 

 
Figure 3. True and apparent wind for a close hauled sailboat. 

 

 Thus far we have no paradox. By their motions, sailboats create wind.6 Our quest is for 

paradoxes and there does seem to be an intriguing paradox lurking in shadows. It arises from the 

essential difference between the case of a bicycle and a sailboat. A bicycle is powered by your 

muscles; a sailboat is powered by the very thing created, the wind. Here is the paradox: 

5. A moving sailboat creates its own wind. 

6. A moving sailboat is powered by the wind. 

7. Therefore, a moving sailboat is in part self-powered and is thus, in part, a perpetual 

motion machine. 

                                                
6 However muddy thinking can be attached to this created wind. For example, I’ve heard it said 

that sailboats can sail faster than the wind precisely because they create their own wind. What 

they cannot do, the story goes, is sail faster than the apparent wind. This latter limit is supposed 

to replace the original, mistaken notion that sailboats cannot sail faster than the true wind. The 

whole mode of analysis is mistaken. It is based on attempting to preserve a false principle that 

should not be preserved--that sailboats cannot outsail the wind. In any case, the replacement 

principle is false. On a run, a sailboat routinely moves faster than the small apparent wind speed. 
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This contradicts 

8. Perpetual motion machines (self-powered devices) are impossible. 

The concern is that a sailboat is, in part, realizing a device whose impossibility underlies one of 

the most important laws of physics, the conservation of energy. For it appears to be achieving 

just what perpetual motion machine makers have long sought.7 Their goal is a device that derives 

the power to run from its own internal operations. They have tried many designs. For example 

they equip an electric car with a generator, so that as the car moves, the generator is turned. The 

generator produces electricity that, supposedly, now fully powers the car’s electric motor. This 

simple design and its thousand and one variants have all failed. Is a sailboat the thousand and 

second variant that has finally succeeded? 

 It is not too hard to see that the traditional design of sailboat acquires no added motive 

force from the created wind. Qualitatively, the result comes from combining effects that work in 

opposing directions. The force that drives the sailboat comes from the speed of the wind over the 

sails. So an increase in the speed of the wind over the sails will increase the force on the sails. It 

doesn’t matter if the wind is the true wind or the apparent wind. Sails cannot distinguish the two. 

The force on the sails is determined by the speed of the wind at the sails, however it arises. 

 If that were the only effect, then we would be well on our way to realizing the paradox 

just sketched. However there is a counteracting effect. As Figure 3 shows, the effect of adding 

the created wind to the true wind is to move the direction of the wind closer to the bow.8 As a 

result the angle between the wind direction and the sails decreases; the wind now comes closer to 

blowing parallel to the sails’ surfaces. This diminished angle reduces the wind-generated force 

on the sails in two ways. First, the volume of air scooped up by the sails diminishes since the 

profile of the sails facing the wind is smaller. Second the force-generating deflection of the wind 

is now through a smaller angle. Figuratively, the wind strikes a more glancing blow onto the sails 

and thus exerts a weaker force on them. 

                                                
7 For a history, see Ord-Hume (2005). 
8 This is true when sailing close hauled or on a beam reach, but not when running. However the 

case of running does not concern us here since then the created wind opposes the true wind and 

yields an apparent wind of reduced speed. 
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 These effects have been described only qualitatively. However when they are combined, 

the effects that diminish the force overwhelm the one that increases it, so that that the net effect 

is a loss of motive force. To see quantitatively that this is so, one needs to construct a careful 

mathematical model of the interaction of the wind with the sails, which I have done. The result 

follows after some elaborate juggling of trigonometric functions. I will not reproduce them here, 

since the details of the calculations are tedious and not any more illuminating than the reciting of 

the qualitative effects above. 

 One can however get a sense that the apparent wind cannot drive a sailboat merely by 

recalling an experience familiar to every sailor. Imagine the sailboat sitting becalmed in 

completely dead air. If the boat is given a small push, perhaps from a paddle or a hand on a dock, 

the boat will move forward. That motion will create wind. However the wind will blow straight 

down the centerline of the boat and, therefore, will be unusable by the sails as a way of 

generating any forward directed motive force. The boat will gently slow to a halt, just as the 

generator-dynamo self-powered car cannot sustain an initial push. 

___oOo___ 

 What this last analysis shows is that a particular design of sailboat, the common Bermuda 

rig, is unable to realize the perpetual motion machine of the paradox. Does that settle the matter? 

Might another design fare better? Might an improved design of sailboat be able to extract energy 

from the created wind and thus realize a perpetual motion machine? Here the decision is not so 

straightforward. The normal response to a proposal for a perpetual motion machine is that it is 

impossible because it would violate the law of conservation of energy. However in addition it is 

customary to complete the refutation by pinpointing where the design fails. The generator-

electric motor car, for example, fails because the slightest loss of energy due to friction means 

that the generator cannot supply as much energy as the electric motor demands.  

 What complicates the question is that a sailboat has an external source of energy, the 

kinetic energy of the true wind, as well as the possibility of the internally created energy of the 

created wind. Any analysis must disentangle the two. If a sailboat generates more energy when it 

is moving faster and thus experiences a greater apparent wind, which is the source of the extra 

energy? Is it merely more energy harvested licitly from the kinetic energy of the true wind? Or 

are we generating more energy from the created wind in violation of the law conservation of 

energy? 
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___oOo___ 

 What we should like to develop is a general sense that the created wind perpetual motion 

machine will always be defeated by internally counteracting effects. The greater apparent wind 

will deliver greater energy, but all gains will be lost by some other effect that essentially arises in 

connection with the created wind. To see that things will always work out this way is hard if we 

examine the functioning of any real sailboat or even any real wind-powered device. For all such 

devices are beset by many inefficiencies, such as frictional energy losses or incomplete 

extractions of wind energy. If a boat functions better when sailing into the wind, is that truly 

some sort of perpetual motion effect; or is it simply the reduction of inefficiencies? 

 The way to escape this problem is to consider an imaginary, wind-powered boat in which 

all the inefficiencies are idealized away. In this thought experiment, we consider a device that is 

perfectly efficient in extracting energy from the wind and is beset by no dissipative processes. 

For concreteness, we will imagine that our boat extracts energy from the wind with a large 

system of wind turbines and that this energy then powers its propeller. Any idealized system 

capable of extracting all the energy from the wind could be used; the turbine system is used 

simply because it is easy to visualize and compute. Its operation is shown in Figure 4. 

 

 
Figure 4 Wind turbine powered boat. Velocities with respect to water. 
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The boat sails at vector velocity v into a true wind with vector velocity w. The wind turbines are 

perfectly efficient, so that the wind turbine extracts all the kinetic energy of the wind that enters 

its throat. That means that the wind enters the turbine throat at velocity w and, as the boat moves 

off, it discharges a wake of entirely quiescent air, that is, air with zero velocity.  

 How does this moving boat appear to a sailor on its deck? We merely add a velocity v to 

each of the velocities, with the result shown in Figure 5. The boat is now at rest and the water 

beneath the boat moves at velocity v towards the stern. The air discharged by the wind turbine is 

at rest with respect to the water, so it also moves at v towards the stern. Finally, the air entering 

the turbine moves at an apparent velocity of w+v. This added velocity v is the wind created by 

the boat’s motion. 

 

 
Figure 5. Wind turbine powered boat. Velocities with respect to boat. 

 

We use these velocities to compute the energy the turbine extracts from the wind, for the turbine 

has no way of distinguishing true from apparent wind. All it knows is that it scoops up air at 

velocity w+v and discharges it at v. It turns out that the resulting energy extraction is greater than 

the kinetic energy of the true wind passing through the turbine. (See Appendix for calculations.) 

We interpret the extra energy as supplied by the created wind and write: 



14 

 

Total energy 

extracted 

= Kinetic energy 

from true wind 

+ Kinetic energy from 

created wind. 

(1) 

 

If this were the entirety of the analysis, then we would have achieved a device that generates 

energy from nothing. However it is not. The total energy of (1) is not available to power the boat. 

There is a consumption of energy that arises inescapably as part of the operation of the wind 

turbine. In order to extract energy from the wind, the turbine must take rapidly moving air and 

slow it down. That means that the turbine must apply a force to the wind. This is an ineliminable 

resistance force against which the boat must work. Moving against this force consumes energy. It 

turns out that this energy consumption matches exactly the extra, created energy: 

 

Energy consumed in moving 

against resistance force 

= Kinetic energy from 

created wind. 

(2) 

 

Combining (1) and (2) we recover 

 

Net energy 

extracted 

= Kinetic energy from 

true wind 

(3) 

 

Hence the extra energy we thought we gained from the created wind is exactly consumed as the 

energy needed move the boat against the wind. That is, the net energy extracted is just the kinetic 

energy extracted from the true wind. The boat is not a perpetual motion machine that is powered 

even in part by its own self-created energy. 

___oOo___ 

 In sum, we learn for the highly idealized wind-powered boat of the thought experiment 

that it can extract energy from the wind created by its own motion. However exactly that extra 

energy is consumed by an inescapable counteracting effect. The result seems quite general. 

There is nothing in the thought experiment that specifically requires a wind turbine to extract the 

energy. Any device will be subject to essentially the same analysis. Making the boat more 

realistic by removing the idealization of perfect efficiency and no dissipative frictional effects 
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will not help. It will carry us further from the possibility a perpetual motion machine. We now 

develop the sense that extracting net energy from the created wind is an appealing but impossible 

illusion. 

 For a philosopher interested in epistemology, the study of how we get to know things, 

this last conclusion is fascinating. The thought experiment has taught us something important 

about the operation of wind-powered vehicles like sailboats that is much harder to recover from 

experiment. We could have conducted a series of tests on a variety of sailboats to see if we could 

gain net energy from the created wind. Presumably each test would have told us that we could 

not, in that case. However we would always be left wondering if our failure to extract net energy 

from the created wind merely resulted from our lack of ingenuity in finding the clever design of 

boat that could do it. The thought experiment, however, indicates that our failure is a matter of 

principle. The quest for a better design can end. 

 Merely thinking about examples so idealized as to be unrealizable gives us a more secure 

and more general understanding of physical possibility than real experiments. How is that 

possible? This is the central problem of the epistemology of thought experiments. This problem 

has attracted a flourishing philosophical literature. I’ll mention two extreme views in this 

literature. One is defended by my colleague Jim Brown of the University of Toronto and the 

other by me. 

 Brown is a Platonist and he urges that something in the right sort of thought experiment 

enables us to tap into a Platonic realm in which the laws of nature reside. The thought 

experiment lets us “see” the laws in a way that mere material experiments cannot. If this seems 

far-fetched, it might be helpful to recall the case that is the model for Platonic thought, 

mathematics. Draw an equilateral triangle—one with three equal sides--on a piece of paper and 

measure its angles. To within the accuracy of measurement, you will find that the angles are the 

same. Repeat the exercise for several more triangles. The results will be the same. That is no 

surprise. You fully expected it and did so to the extent that any slight differences in your 

measurements would be dismissed as errors. But how did you get this knowledge that trumps 

actual experience? It is because thought affords you a deeper understanding of triangles than 

mere measurement can bring. Your mind can grasp the ideal triangles of the Platonic realm of 

which the triangles you drew are but poor imitations. 
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 My view is the opposite of Brown’s. It is deflationary and finds nothing epistemically 

remarkable in thought experiments. While they certainly have great rhetorical powers, 

epistemically they can do nothing more than ordinary argumentation. They are, I maintain, 

merely picturesque argumentation. As a result, you get nothing more out of a thought experiment 

than what you put into it as assumptions and what can be wrestled from those assumptions by 

deductive or inductive argumentation. In the thought experiment concerning wind-powered 

boats, what was assumed was the Newtonian mechanics of frictionless fluids. That theory 

conforms to the conservation of energy. As a result, it was a foregone conclusion that it would 

not allow the creation of energy from nothing. The only novelty was to see precisely how the 

theory blocked its creation. We did not learn anything that transcended the assumptions made. 

Had we made different assumptions, such as some concocted mechanics that did not respect 

energy conservation, we could have arrived at a thought experiment that vindicates the free 

creation of energy. 

 To see how Brown and I have sought to settle our differences and for an entry into the 

literature on thought experiments, see Brown (2004) and Norton (2004). 
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Appendix: Analysis of the Wind-Powered Boat 
Air will enter the inlet of the turbine with cross-sectional area9 Ain at density ρin and velocity 

w+v. It is discharged at the outlet with cross-sectional area Aout at density ρout and velocity v. 

Conservation of mass requires 

ρin Ain.(w+v) = ρout Aout . v                                                 (A0) 

Considering velocities in the boat frame of reference, the turbine scoops up air with energy 

density (1/2) ρin |w+v|2 at a volumetric rate Ain.(w+v); and discharges air with energy density 

(1/2) ρout |v|2 at a volumetric rate Aout . v. Hence the total power, that is, the total rate at which 

energy is delivered by the turbine is 

Ptotal    =    (1/2) ρin |w+v|2 Ain.(w+v)    -   (1/2) ρout |v|2 Aout . v 

Applying equation (A0), this becomes10 

Ptotal    =    (1/2) ρin |w|2 (Ain.(w+v))   + ρin (w . v) (Ain.(w+v))                          (A1) 

This equation corresponds to equation (1) of the main text. The first term represents the rate of 

delivery of kinetic energy by the true wind. The true wind, moving at speed |w| has kinetic 

energy density at the inlet of (1/2) ρin |w|2 and arrives at a volumetric rate (Ain.(w+v)). The 

second term is the energy delivered by the created wind, which has an apparent energy density at 

the inlet of ρin (w . v). 

                                                
9 The vector Ain has magnitude equal to the cross-sectional area of the inlet and a direction 

normal to the cross-section; and similarly for Aout. 

10 Using (1/2) [|w+v|2 - |v|2] = (1/2) [|w|2 + 2 w . v  + |v|2 - |v|2] = (1/2) |w|2   +  w . v. 
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 To operate, the turbine scoops up air with a momentum density ρin (w+v) and discharges 

air with the reduced momentum density ρoutv. To slow the air, the turbine must apply a force to 

the air equal to the rate of change of momentum: 

Fresistance    =     ρin (w+v) (Ain.(w+v))   -   ρoutv (Aout . v) 

Applying (A0), this expression reduces to 

Fresistance    =     ρin w (Ain.(w+v)) 

Since the boat moves at velocity v, energy is consumed in working against this force at the rate 

Presistance    = Fresistance.v  =   ρin w.v (Ain.(w+v))                                         (A2) 

This corresponds to equation (2) of the main text. The net power available is just the difference 

Pnet = Ptotal – Presistance =  (1/2) ρin |w|2 (Ain.(w+v))                                      (A3) 

This equation corresponds to equation (3). 


