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Bayesian probabilistic explication of inductive inference conflates neutrality of 

supporting evidence for some hypothesis H (“not supporting H”) with disfavoring 

evidence (“supporting not-H”). This expressive inadequacy leads to spurious 

results that are artifacts of a poor choice of inductive logic. I illustrate how such 

artifacts have arisen in simple inductive inferences in cosmology. In the inductive 

disjunctive fallacy, neutral support for many possibilities is spuriously converted 

into strong support for their disjunction. The Bayesian “doomsday argument” is 

shown to rely entirely on a similar artifact, for the result disappears in a reanalysis 

that employs fragments of inductive logic able to represent evidential neutrality. 

Finally, the mere supposition of a multiverse is not yet enough to warrant the 

introduction of probabilities without some factual analog of a randomizer over the 

multiverses. 

 

1. Introduction 
One cannot have any doubt of the many successes of the Bayesian project of explicating 

inductive inferences. Its successes have been widely and justly celebrated. What has received 

                                                
1 For helpful discussion, I thank Jeremy Butterfield, Eric Hatleback, Wayne Myrvold and 

participants at the conference “Philosophy of Cosmology: Characterising Science and Beyond” 
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less attention are the limits of these successes. The purpose of this note is to describe one 

circumstance in which Bayesian analysis fails. This is the extreme case of complete neutrality of 

evidential support. The Bayesian system is unable to distinguish it cleanly from strongly 

disfavoring evidence. The system tries to represent this complete neutrality with a broadly spread 

probability measure that ends up assigning a very low probability to each possibility. The trouble 

is that this same very low value of probability is correctly used when that same possibility is 

strongly disfavored by the evidence or, equivalently, its negation is strongly favored. In short, for 

an hypothesis H, a Bayesian analysis conflates the cases of evidence not supporting H with 

evidence supporting not-H. 

 If one insists that probabilistic notions should be used in cases of evidential neutrality, 

one ends up assigning neutral support the formal properties of evidential disfavoring. Since 

evidential neutrality warrants fewer definite conclusions than does evidential disfavor, this 

conflation leads to spurious conclusions that are merely artifacts of a poor choice of inductive 

logic. 

 My contention in this paper is that this conflation of neutral and disfavoring evidence has 

occurred repeatedly in philosophical and physical analyses in cosmology. Since cosmology often 

deals with problems of universal scope for which evidence is meager, it is rich in cases of neutral 

support and thus especially prone to the confusion. My purpose in this note is to elaborate the 

difference between neutral and disfavoring evidence, to show how non-probabilistic formal tools 

may be used to represent completely neutral evidential support and to give examples of the 

conflation of neutral and disfavoring evidence in cosmology. 

 In the following, Section 2 will develop a simple example of neutral evidential support in 

cosmology in order to fix the notion more clearly. Section 3 will investigate how this neutrality 

can be represented formally. It will be argued that a probability measure represents degrees of 

favoring and disfavoring, but does not capture neutrality. Rather an inherently non-additive 

representation must be used for completely neutral support. Section 4 will show that 

misdescription of neutrality of support by a probability measure leads to the “inductive 

disjunctive fallacy” in which disjunctions of neutrally supported possibilities are mistakenly 

judged as strongly supported. Illustrations in the literature include van Inwagen’s argument for 

why there is very probably something rather than nothing. Section 5 will sketch how the non-
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additive representation of completely neutral support can be incorporated into an alternative 

inductive logic. 

 Section 6 will show that the implausible results of the Bayesian “doomsday argument” 

arise as an artifact of the inability of the Bayesian system to represent neutral evidential support. 

A reanalysis in an inductive logic that can express evidential neutrality no longer returns the 

implausible results. Sections 7 will review how probabilistic representations can properly be 

introduced into cosmology. An ensemble provided by a multiverse is not enough. What is needed 

are some facts that specifically warrant probabilities. The difficulties of the “self-sampling 

assumption” arise because there are no such facts. Finally, the concluding Section 8 will suggest 

that mainstream cosmological theorizing is at risk of committing the same fallacies as sketched 

in earlier sections. 

2. A Cosmological Case of Neutral Support 
 A clear example of complete neutrality of support in cosmology arises in a more extreme 

version of multiverse theory. There we may postulate other universes, disconnected from ours, 

but in which the same fundamental laws of physics obtain. In these other universes, the 

fundamental constants like h, c, G and the parameters of the standard model of particle physics 

have different values, but our supposition is that we have no indication at all of what those values 

might be. Even so, we can still know a lot about these other universes. Except in degenerate 

cases, they will admit wavelike propagations of electromagnetic radiation. If the various 

fundamental forces are appropriately balanced, they will harbor chemical elements like our own, 

with characteristic quantized atomic spectra. But what can we say of the values of fundamental 

constants themselves? Our evidence tells us nothing. We have no reason at all to favor one set of 

values of Planck’s constant h over any other. The evidence is neutral.2 

 This case is to be distinguished from another multiverse theory in which we have 

disfavoring evidence for the same parameter. In this other multiverse theory, new universes are 

born from singularities through stochastic processes whose governing law, we shall suppose, 

                                                
2 Comparing fundamental constants across universes requires that we also compare the units of 

measurement used. Readers who wish to avoid these complications should replicate the 

arguments of this paper using dimensionless quantities, such as the fine structure constant. 
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provides a broadly spread probability distribution over the possible values of h. In this case, that 

h lies in any small interval of values is very improbable; our background evidence disfavors that 

small interval. Correspondingly, we have strong evidence that the actualized value of h lies 

outside this interval. 

 In the first multiverse theory, we simply have no support for the value of h to be in or not 

to be in some particular small interval of values. In the second, it is improbable that h lies in 

some small interval and probable that it lies outside it. 

 We should not conflate the two cases. Should we try to represent the neutrality of the first 

theory by assigning a low probability to h lying in the interval, we have contradicted that 

neutrality. For that assignment forces a high probability on h lying outside the interval, an 

outcome for which we must now assign strong support. That high probability and the resulting 

near certainty is a spurious artifact of the use of the wrong inductive logic. It is the support that 

would arise in the second theory in which the evidence disfavors strongly the small interval and 

thus strongly favor values outside that interval. 

3. Representing Neutral Evidential Support 

3.1 The Failure of a Probabilistic Representation 

 If a probability measure is able to represent degrees of evidential support at all, then a 

probability P(H|E) near unity must represent the case of evidence E providing strong support for 

the hypothesis H. It immediately follows from the additivity of probability measures 

P(H|E) + P(not-H|E) = 1 

that P(not-H|E) is close to zero. Since E favors H just to the extent that it disfavors the negation 

not-H, we must now conclude that, when P(not-H|E) is close to zero, evidence E strongly 

disfavors not-H. Reversing H and not-H, we can now conclude that, when P(H|E) is close to 

zero, evidence E strongly disfavors H. More generally, if there are n mutually exclusive and 

exhaustive outcomes A1, …, An, additivity requires 

P(A1|B) + P(A2|B) + … + P (An|B) = 1 

or, in other words, that the measure is normalized to unity. This normalization condition means 

that background evidence B can favor one outcome or set of outcomes only if it disfavors others. 
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 The additivity of probabilities is the mathematical expression of the complementary 

relationship of support and disfavoring.3 It leaves no place in the representation for neutrality. 

The standard device of representing neutrality with a broadly spread probability distribution 

merely assigns a very low probability to each possible outcome; that is the case of evidential 

disfavor, not neutrality.4 

3.2 Representing Evidential Neutrality 

 How are we to represent evidential neutrality? The difficulty for the most general case is 

that the full spectrum of evidential support cannot simply be represented by the degrees of a one-

dimensional continuum, such as the reals in [0,1]. The full spectrum forms a multi-dimensional 

space with, loosely speaking, disfavoring and neutrality proceeding in different directions. I 

know of no adequate theoretical representation of this space. 

 However we can discern what a small portion of it looks like. Write [A|B] as the 

inductive support proposition A is accorded by proposition B. The use of a new notation reminds 

us that these degrees of support need not be probabilities. Let us take the case of complete 

evidential neutrality. This extreme case can be captured by an essentially non-additive 

representation. The support accorded any contingent proposition A by the background B is just 

one fixed value that we write “I” (for indifference or ignorance) that figures in the distribution: 

(CNS) Completely neutral support 

[T|B] = 1    for all propositions T deductively entailed by B 

[A|B] = I    for all contingent propositions A  

[F|B] = 0    for all propositions F that logically contradict B 

                                                
3 Conversely it has been argued (Norton 2007, Section 4.1) that the presumption that the range of 

values of degrees of support span favoring to disfavoring leads us directly to an additive 

measure. 
4 What of the popular device of representing neutrality by sets of probability measures? It has 

been argued in Norton (2007, Section 4.2; 2007a, Section 6) that this device fails for several 

reasons. The most serious is that it is an attempt to simulate an inherently non-additive logic with 

an additive measure, rather than to seek the logic directly. 
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The 1 and 0 of the two extreme cases are less interesting; this is merely the assigning of extreme 

values to propositions we know deductively to be true or false given B. The interesting part is 

that all contingent propositions, whose truth values are left undecided by B, are accorded the 

same neutral value I. 

 The quantity [A|B] of (CNS) should not be confused with other quantities that arise in 

Bayesian analyses.5 This quantity expresses the total support accorded to an outcome A by the 

background B. It is a function of two propositions, A and B, only. It is distinct from a relation of 

differential or incremental support: the support accorded A specifically by evidence E in the 

context of background B. This is a tertiary function of three propositions, A, E and B. In a 

Bayesian analysis, it is measured by comparing the posteriors and priors, P(A|E&B) and P(A|B), 

such as through a difference measure: P(A|E&B)-P(A|B); and the analysis may seek to express 

neutrality through the probabilistic independence of E and A when they are conditioned on the 

background B. My concern is not the differential evidential import of E, but that a probabilistic 

prior such as P(A|B) must fail to capture total neutrality of support. 

 That (CNS) is the appropriate representation of completely neutral support has been 

argued at length in Norton (2008).6 I refer readers to it for a formally precise development. In the 

discussion below, I shall indicate informally how the result comes about. It comes from two 

independent invariance conditions, each of which yields the same outcome. 

3.2.1 Invariance under Redescription (and the Principle of Indifference) 

The principle of indifference asserts that, if the evidence bears equally on two outcomes, then the 

support accorded each by the evidence should be the same. This principle is so weak as to border 

on truism. It does have some strong consequences, however, if we allow that indifference and the 

                                                
5 I am grateful to Jonah Schupbach for raising this issue. 
6 In Norton (2008), I describe neutral support as an “ignorance” distribution. In using that 

description, regrettably I succumbed to the subjective Bayesian’s insistence that inductive logic 

is really about degrees of belief, whereas I now think we must insist that it is about objective 

degrees of support, as do objective Bayesians. The intrusion of opinion must be resisted since it 

corrupts evidential relations of support and obscures the limits of applicability of Bayesianism. 
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resulting equality of evidential import persists when the outcome space is redescribed. The 

invariance of this indifference leads directly (CNS). 

 Take the multiverse example of Section 2. The evidence is completely neutral over 

different values of h. As result it supports equally that h is in each of the intervals 0<h≤1, 1<h≤2, 

2<h≤3, 3<h≤4, … The neutrality of support persists if we consider the quantity h2 and, by the 

same reasoning, the evidence supports equally that h2 is in each of the intervals 0<h2≤1, 1<h2≤2, 

… But this is equivalent to asserting equal support for the intervals  0<h≤1 and 1<h≤4. 

Combining the two cases, we have equal support for the intervals 1<h≤2 and 1<h≤4, even though 

the first is a proper part of the second. We can write 

[“1<h≤2” | B] = [“2<h≤3” | B] = [“3<h≤4” | B] = [“1<h≤4” | B] 

By continuing this sort of argumentation with different rescalings of h, we arrive at equal support 

for all non-empty, proper subintervals of 0<h<∞. We can infer equality of support for finite and 

infinite intervals by rescaling from h to 1/h.7 Thus all non-empty, proper subintervals of  0<h<∞ 

must be assigned the same support I 

[any subinterval | B ] = I 

which is the expression of completely neutral support (CNS) for a continuous parameter. 

3.2.2 Invariance under Negation 

The same result is recovered from a different invariance to which completely neutral support 

conforms. That is invariance under negation. What motivates it is that completely neutral 

evidence cannot offer differential support to a contingent proposition and to its negation, so that 

[A | B] = [not-A | B] for all contingent propositions A 

This invariance condition is very strong. If we couple it with a condition of “monotonicity,” it is 

easy to show that the only admissible set of degrees assigns the same value to all contingent 

propositions. 

 As an illustration, again take the case of completely neutral support described in Section 

2 above.  If the proposition A locates h in the interval 0<h≤1, then its negation, not-A, locates h 

                                                
7 Then we have equal support for 0<1/h≤1 and 1<1/h≤2. But that corresponds to equal support 

for ∞>h≥1 and 1>h≥1/2. 
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in the complementary interval 1<h≤∞. Applying negation invariance to this and similar cases we 

have: 

[“0<h≤1” | B] = [“1<h≤∞” | B] 

[“0<h≤2” | B] = [“2<h≤∞” | B] 

The requirement of monotonicity8  asserts that no interval, such as 0<h≤2, can accrue less 

support than one of its proper parts, such as 0<h≤1. Thus we have 

[“0<h≤1” | B] ≤ [“0<h≤2” | B] 

[“1<h≤∞” | B] ≥ [“2<h≤∞” | B] 

It follows that all four strengths are equal. Combining and extending this analysis to other 

intervals, we arrive as before at the distribution (CNS) for a continuous parameter 

[any interval | B ] = I 

3.3 Neutrality and Disfavor versus ignorance and disbelief. 

Those familiar with the literature will find the last discussion non-standard. It is everywhere 

expressed in terms of evidential support. The now dominant subjective Bayesians have replaced 

all such talk with talk of “degrees of belief.” Neutrality becomes ignorance; disfavoring becomes 

disbelief. 

 This transformation has merged two notions that should be kept distinct. One is the 

degree to which a proposition inductively supports another. These degrees are objective matters, 

independent of our thoughts and opinions. The second is the degrees of belief that you or I may 

decide to assign to various bodies of propositions. Once we add our thoughts and opinions, these 

degrees will likely vary from person to person according to our individual prejudices. 

 For those of us interested only in inductive inference, the transformation has been 

retrograde. The evidential relations that interest us are obscured by a fog of personal opinion. 

This concern has led to a revival of so-called “objective Bayesianism,” which seeks to limit the 

analysis to objective relations. (For discussion, see Williamson, 2009.) A persistent problem 

facing this objective approach is that a probability measure cannot supply an initial neutral state 

                                                
8 More generally, monotonicity requires that, when A deductively entails C, [A|B] is not greater 

than [C|B].  This merely requires that the deductive consequences of a proposition are at least as 

well supported as the proposition. (See Norton, 2008, Section 6.2-6.3.) 
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of support, for the reasons just elaborated above. As result, objective Bayesians cannot realize 

the goal of a full account of learning from evidence that takes us by Bayesian conditionalization 

from an initial neutral state to our final state. Since any initial state must be some probability 

distribution, it always expresses more relations of support and disfavoring that we are entitled to 

in an initial completely neutral state. 

 Subjective Bayesians seek to escape the problem by declaring these relations in the initial 

state as mere ungrounded opinion that may vary from person to person. The hope is that, in the 

long run, continued conditionalization will wash away this unfounded opinion from the mix, 

leaving behind the nuggets of evidential warrant. While limit theorems purport to illustrate the 

process, it has long been recognized that the mix remains in the short term of real practice. It will 

be helpful for the further discussion to illustrate the problem. 

3.4 Pure Opinion Masquerading as Knowledge 

Let us assume that some cosmic parameter can take a countably infinite set of values k=k1, k=k2, 

k=k3,…. We have no idea which is the correct value, so, as a subjective Bayesians, we would 

assign a prior probability arbitrarily. Its variations encode no knowledge, but just the arbitrary 

choices made in ignorance. Since there are infinitely many possibilities, our probability 

assignments must eventually decrease without limit, else the total probability will not sum to 

unity.9 Let us say that, with the decrease needed, we assign the following two prior probabilities 

P(k135|B) = 0.00095         P(k136|B) = 0.00005 

Now we begin collecting evidence. We learn, say, that kn has n<1000; and then that kn has 

n<500; and then that kn has 100<n<200. All the while, we conditionalize on this new evidence 

and the probabilities of the remaining kn mount. Finally we acquire evidence E = k135 v k136. 

                                                
9 A countable infinity of outcomes can be accorded equal prior probabilities if the prior is 

“improper,” that is, it does not sum to unity. However, this uniformity will not be preserved 

under redescription of the outcomes. The posterior might remain improper if the evidence merely 

reduces the possibilities to a smaller infinite set, such as all kn with even n. The need to abandon 

one of the most important axioms of the probability calculus is a direct admission that 

probabilities are the wrong representation for the problem. 
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This is the most specific evidence possible. The next stage of evidence collection would merely 

declare which of k135 or k136 is the correct one. At this last stage of conditionalization, Bayes’ 

theorem in the ratio form assures us that 

€ 

P(k135 | E& B)
P(k136 | E& B)

=
P(k135 | B)
P(k136 | B)

=
0.00095
0.00005

 

Since the two posterior probabilities must sum to unity, it now follows that 

P(k135|E&B) = 0.95         P(k136|E&B) = 0.05 

We have become close to certain of k135 and strongly doubt k136. Yet it is clear from this last 

computation that our strong preference for k135 is entirely an artifact of the pure opinion encoded 

in the ratio of the priors. Far from being washed out, the priors have risen to dominate the 

outcome entirely. 

4. Neutrality of Support and the Inductive Disjunction Fallacy 
 The mistake of conflating evidential disfavor with evidential neutrality leads us directly 

to an inductive fallacy that I will call the “inductive disjunctive fallacy.” To see how it arises, 

recall that completely neutral support accords the same neutral degree of support to all 

contingent propositions. Take the case of an outcome space with contingent, mutually exclusive 

outcomes a1, a2, a3,… Taking disjunctions—“or’ing” these outcomes together—does not lead us 

to propositions with any greater support: 

I = [a1 | B] = [a1 v a2 | B] = [a1 v a2 v a3 | B] =  [a1 v a2 v a3 v a4| B] = … 

If, however, we seek to represent the neutrality of support with a broadly spread probability 

distribution so that  

P(an|B) = some small value,    for all n 

then taking disjunctions will generate propositions with increasing probability: 

P(a1 | B) < P(a1 v a2 | B) < P(a1 v a2 v a3 | B) < P(a1 v a2 v a3 v a4| B) < … 

Eventually, if we accumulate enough disjuncts, we can bring our probability close to unity, 

which we must interpret as strong support. 

 If we mistakenly believe that our probabilistic representation expresses neutrality of 

support for each proposition ai, then we can commit the inductive disjunctive fallacy: simple 
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arithmetic will lead us to infer incorrectly that taking a big enough disjunction of neutrally 

supported propositions gives us a proposition that is strongly supported. 

 The fallacy can be illustrated with the example of completely neutral support of Section 

2. The different values of the parameter h have completely neutral support. So the propositions 

that h lies in 0<h≤1 or 1<h≤2 or 2<h≤3 or … are each equally supported. Setting aside 

difficulties of normalization, we might then represent these as equal probability cases.  It then 

follows that virtually all the probability mass must be assigned to the complement of the interval 

0<h≤1, that is, 1<h≤∞. So we infer spuriously that a value of h not in 0<h≤1 is strongly 

supported. 

 One might imagine that this fallacy is too transparent to be committed in serious work. It 

turns out, however, that it is committed routinely in cosmology. Here are a few examples. Van 

Inwagen, while not himself a cosmologist, addresses a cosmological question. In (1996) he 

proposes to answer the question that is “supposed to be the most profound and difficult of all 

questions” (p. 95): “Why is there anything at all?” The argument is elaborate, so I shall jump to 

the essential step. Van Inwagen presents the premises that there is only one possible world in 

which there are no beings; but there are infinitely many possible worlds in which there are 

beings. The latter is arrived at by arguing that there are many ways for beings to be, but only one 

way for them not to be. He then urges that the probability of being actual for each possible 

universe is the same. (I set aside the problem that this instantly conflicts with the requirement 

that probability measures normalize to unity.) It now follows that the probability of “of there 

being nothing is 0”—“as improbable as anything can be” (p.99). Hence, no doubt, we are to infer 

that there being anything at all is as probable as anything can be. 

 Van Inwagen prudently admits that he is “…unhappy about the argument… No doubt 

there is something wrong with it … but I should like to be told what it is” (p. 99). What is wrong 

is that it is an instance of the inductive disjunctive fallacy. Our background assumptions are near 

vacuous and provide completely neutral support for the actuality of each possible world; 

therefore they provide completely neutral support for any disjunction of these possibilities. What 

van Inwagen has done is to represent this neutrality incorrectly by a widely spread probability 

measure, thereby committing himself fallaciously to the conclusion that a disjunction of all but 

one of them is strongly supported. 
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 The same fallacy is committed by Olum (2004) as part of a challenge to anthropic 

reasoning. He notes that, in an infinite universe, civilizations can grow to very great size as 

measured by the number of inhabitants and spatial extent. Most would be much larger than our 

own, young civilization, limited to planet Earth. Since “anthropic reasoning predicts that we are 

typical” we could be any of the individuals in any of these civilizations. Since, overwhelmingly, 

most individuals will belong to large civilizations, it follows that anthropic reasoning “predicts 

with great confidence that we belong to a large civilization.” Olum’s point is that the fact that we 

do not belong to such a civilization refutes the conclusion of anthropic reasoning, thereby 

suggesting this form of reasoning is defective. 

 My concern here is only to point out that Olum’s argument depends essentially on the 

inductive disjunctive fallacy. Our background evidence is neutral over which individual each of 

us may be. On Olum’s assumption, there are vastly more individuals in large civilizations. Take 

the disjunctive proposition that you are one of the individuals in a large civilization. Under the 

correct treatment of neutrality of support, that disjunctive proposition accrues no more support 

than the proposition that you are any particular individual. Yet Olum infers that the taking of the 

disjunction has transformed neutral support into “great confidence.” 

 A variant and rather more complicated form of Olum’s argument had already been given 

by Bostrom (2003). Bostrom considers not just the growth of civilizations, but that suitably 

advanced civilizations will have the ability to simulate conscious minds in computers. He 

considers the case in which the development of the civilizations is such that they are capable of 

simulating vastly many consciousnesses and they do so. In that case, in an argument of similar 

form to Olum’s, Bostrom concludes that “we are almost certainly living in a computer 

simulation” (p. 243). It is the same fallacy. 

 Another instance of the fallacy has circulated informally, although I have not found it in 

print.10Among multiverses, some will be spatially infinite and others spatially finite. The 

spatially infinite ones will have infinitely many more observers in them than the spatially finite 

ones. Since anthropic reasoning allows that we could be any of these observers, it is 

                                                
10 It was described by John Barrow as a test of one’s commitment to anthropic reasoning in 

discussion at the conference “Philosophy of Cosmology: Characterising Science and Beyond” St. 

Anne’s College, Oxford September 20-22, 2009. 
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overwhelmingly likely that we are the observers in a spatially infinite universe. Therefore our 

space is overwhelmingly likely to be infinite. 

5. Inductive Logics that Tolerate Neutrality of Support 
The inductive disjunctive fallacy has depended only on correcting the representation of 

completely neutral support. A fuller inductive logic will allow this representation to be the 

starting point of further inductive explorations, much as the Bayesian system uses prior 

probabilities as its starting point. Since we have no good characterization of the 

multidimensional space of degrees that accommodates both disfavoring and neutrality of 

evidence, we have no complete inductive logic that accommodates both.11 

 However it is possible to discern how such a logic might deal with conditionalization that 

proceeds from the initial state of completely neutral support. We weaken the Bayesian system so 

that it comes to tolerate completely neutral support. We do that by discarding the requirement of 

additivity of degrees of support. As discussed in (Norton, 2007), that additivity is independent of 

the dynamics of conditionalization encoded in Bayes’ theorem. We preserve one consequence of 

that theorem. For propositions T1 and T2, evidence E and background B, Bayes’ theorem in the 

ratio form asserts: 

€ 

P(T1 | E& B)
P(T2 | E& B)

=
P(E |T1 & B)
P(E |T2 & B)

•
P(T1 | B)
P(T2 | B)

=
P(T1 | B)
P(T2 | B)

 

where the second equality holds only in the special case in which each of T1 and T2 entail the 

evidence E. It follows immediately for this special case that if the priors P(T1|B) = P(T2|B), then 

the equality persists for the posteriors P(T1|E&B) = P(T2|E&B).  

  We now posit this result independently for a more general inductive logic: 12 

Conditionalizing from complete neutrality of support 

                                                
11 Norton (manuscript a) tries to survey the terrain of possible logics. It includes a sample 

“partial neutrality inductive logic.” 
12 This posit is not inevitable, but just the simplest. For cases in which it fails, see Norton (2007, 

Section 5) and the “specific conditioning logic” in Norton (manuscript a, Section 11.2). 
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If our background knowledge B is completely neutral with respect to two theories T1 and 

T2, so that [T1|B] = [T2|B] = I, and both theories entail the evidence E, then [T1|E&B] = 

[T2|E&B]. 

The virtue of this rule is that it immediately solves the subjective Bayesian problem of “Pure 

Opinion Masquerading at Knowledge.” We replace the probabilistic prior by a neutral prior: 

[k135|B] = [k136|B] = I 

Since each of k135 and k136 entails the evidence E = k135 v k136, we can apply the above rule of 

conditionalization to recover the result at which we should have arrived before 

[k135|E&B] = [k136|E&B] 

Our background support did not treat k135 and k136 differently; the evidence E did not treat them 

differently; so the combined support of background and evidence should not treat them 

differently. 

6. The Doomsday Argument 
A further illustration of these alternative logics can be found in a re-analysis of the doomsday 

argument. See Bostrom (2002, Ch. 6-7) for an introduction to the literature on the argument. 

 In its Bayesian form, the argument purports to give remarkable results on a foundation 

that seems too slender. Re-analysis that employs a more careful representation of neutrality of 

support can no longer reproduce these results, revealing that the strong results are merely an 

artifact of the defective probabilistic representation of neutral support. There are, of course, 

many versions of the doomsday argument. My goal here is not to address them all, but to show in 

an example of them how its result is entirely an artifact of the wrong choice of inductive logic. 

6.1 The Bayesian Analysis 

Consider a process, such as our universe, that may have a life of T years, where T can have any 

value. What do we learn about T when we find that the process has already persisted for t years? 

We assign a prior probability density p(T|B) to T and a likelihood to our learning that the process 

has persisted t years: 

p(t|T&B) = 1/T 
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The rationale is that we, the observer, have no reason to expect that we will be realized in one 

portion of the T year span than in any other, so our prior is a uniform probability density. We 

now apply Bayes’ theorem in the ratio form for two different values of T, both greater than t: 

€ 

p(T1 | t& B)
p(T2 | t& B)

=
p(t |T1 & B)
p(t |T2 & B)

⋅
p(T1 | B)
p(T2 | B)

=
T2
T1
⋅
p(T1 | B)
p(T2 | B)

 

If T1 < T2, it now follows that conditionalizing on our evidence shifts support to T1 by 

increasing the ratio of probability densities in T1’s favor by a factor of T2/T1. That is, the 

evidence of t shifts support differentially to all times T closer to t. More compactly, we have 

€ 

p(T | t& B)∝1/T  

 If T is the time of the end of the world, we are to believe it is coming sooner rather than later. 

 There is, of course, some room to tinker. A notable candidate is the likelihood p(t|T&B) = 

1/T. It amounts to saying we are equally likely to be realized in any year in the process. Since 

there are more people alive later in the universe’s history, a better analysis might scale the 

likelihood according to how many people are alive. This merely amounts to using a different 

clock. Instead of the familiar clock time of physics, we rescale to a people clock 

T’ = n(T)      t’ = n(t) 

where the function n(.) gives the number of people alive at the time indicated. The new analysis 

uses a likelihood 

p(t’|T’&B) = 1/T’ 

It will proceed exactly as before and arrive at the same conclusion. Support shifts to a sooner 

end. 

 One surely cannot help but feel a sense that this is something for nothing. We have 

supplied essentially no information to the analysis. We know there is a process; we have no idea 

how long it will last; we know it has lasted t years. On this meager basis, we somehow are 

supposed to believe that it will end sooner. 

 It is also clear that the favoring of earlier times is an artifact of the additivity of the 

probability measures used. For the analysis depends essentially on the likelihood p(t|T&B)=1/T, 

which varies according to T. The idea that likelihood was trying to express was merely that, even 

with a T chosen, no value of t in the admissible range t=0 to t=T is preferred; our evidence is 

completely neutral. That uniformity could be expressed by merely setting p(t|T&B) to a constant. 
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The additivity of probabilities, however, requires that all probability densities integrate to unity. 

As a result that constant must vary with different values of T as 1/T so that 

€ 

p(t |T & B)dt = constant dt
t=0
T∫ = constant.T =1

t=0
T∫ . 

So it is additivity that forces the result. Yet this additivity is just the formal property of 

probability measures that precludes them properly representing the evidential neutrality 

appropriate to this case. That is, the result depends upon using the wrong representation for 

evidential neutrality. 

6.2 The Barest Re-analysis 

 This illusion that we get something for nothing starts to evaporate once we re-analyse the 

problem in a way that eschews the troublesome additivity of the probability measures and more 

adequately incorporates neutrality of support. Here is a very bare version. We start with 

completely neutral support 

[T1|B] = [T2|B] = I 

Let us take the evidence of t merely to reside in the logically weaker assertion that we know T>t. 

Call this E. It now follows that the hypothesis of any T greater than t entails the evidence. Hence 

we can use the rule of conditionalization of Section 4 and infer that 

[T1|E&B] = [T2|E&B] = I 

That is, knowing that the end, T, must come after t, gives us no basis for discriminating among 

different end times T1 and T2. 

 What should we do if we do want to incorporate the further information that some 

specific t is observed? A return to the Bayesian analysis will show us a way to proceed. 

6.3 The Bayesian Analysis Again 

The Bayesian analysis of Section 6.1 is only a fragment of a fuller Bayesian analysis. When we 

explore that fuller analysis, we find the Bayesian analysis fails. Where it founders is on a 

requirement that the analysis should be insensitive to the units used to measure time. 

 To see how this comes about, consider the posterior probability, as delivered by Bayes’ 

theorem: 

€ 

p(T | t& B) = p(t |T & B) ⋅ p(T | B)
p(t | B)

=
1
T
⋅
p(T | B)
p(t | B)
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 for T>t. What seems unknowable is the ratio of priors p(T|B)/p(t|B). It turns out, however, that 

the ratio must be a constant, independent of T (but not necessarily independent of t). This follows 

from the requirement that the analysis proceeds the same way no matter what system of units we 

use—whether we measure time in days or years. To assume otherwise would not be 

unreasonable. If, for example, the process is the life span of an oak tree, we know that its average 

life span is 400-500 years. With this time scale information in hand, we should expect a very 

different analysis of the time to death if our datum is that the oak is 100 days old or 100 years 

old. However that is a different problem; the doomsday problem as posed provides no 

information on the time scale and no grounds to analyze differently according to the unit used to 

measure time. 

 To proceed, we assume that there is a single probability density p(.|.) appropriate to the 

analysis, so that the problem is soluble at all; and, to capture the condition of independence from 

units of time, we assume that the same probability density p(.|.) is used whichever unit is used to 

measure time. This entails that the probability density p(.|.) is invariant under a linear rescaling 

of the times t and T (that, for example, corresponds to changing measurements in years to 

measurements in days): 

t’ = At         T’ = AT 

This is a familiar condition applied standardly to prior probability densities that are functions of 

some dimensioned quantity T. Such a probability density, it turns out, must be the “Jeffreys 

prior,” which is:13 

p(T|t&B) = C(t)/T        for T>t 

where C(t) is a constant, independent of T. 

 The difficulty with this probability density in T is that it cannot be normalized to unity. 

The summed probability over all time T diverges: 

€ 

p(T | t)dT =
T=t
∞∫ (C(t) /T )dT =

T=t
∞∫ ∞ 

                                                
13 See, for example, Jaynes (2003, 382). The probability assigned to the small interval dT must 

be unchanged when we change units. That is: p(T|t&B)dT = p(T’|t’&B)dT’. Since T’=AT, we 

have dT’/dT = A = T’/T, so that p(T|t&B).T = p(T’|t’&B).T’, from which the Jeffreys prior 

follows immediately. 
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The Bayesian literature has learned to accommodate such improper behavior in prior probability 

distributions. The key requirement is that, on conditionalization, the improper prior probability 

distribution must return a normalizable posterior probability distribution. Here, however, the 

improper distribution is already the posterior distribution. So the failure is not merely a familiar 

failure of the Bayesian analysis to provide a suitable prior probability; it is its failure to be able to 

express a distribution of support over different times independent of units of measure. 

 The failure of normalization of probability is not easily accommodated. It immediately 

breaks connections with frequencies. While we may posit that ratios of the finite-valued 

probabilities are approximated by ratios of frequencies of the corresponding outcomes in the 

usual way, there is no comparable accommodation for outcomes with infinite probability. Their 

ratios are ill-defined. 

 We may wish to proceed nonetheless, interpreting the unnormalized probabilities just as 

degrees of support in some variant inductive logic. The result is curious. Consider the degree of 

support assigned to the set of end times T in any finite interval T1 to T2: 

€ 

P(T1 <T <T2 ) = p(T | t& B)dT = C(
T1

T2∫T1

T2∫ t) /T ⋅dT = finite 

The degree assigned to the set of end times greater than some nominated T2 

€ 

P(T >T2 ) = p(T | t& B)dT = C(
T2

∞∫T2

∞∫ t) /T ⋅dT =∞  

As a result, finite degree is assigned to any finite interval of times; and, no matter how big a 

finite interval we take, an infinite degree is always assigned to the set of times that comes after. 

Since support must follow the infinite degree, all support is accrued by arbitrarily late times. No 

matter how large we take T2 to be, all support must be located on the proposition that the end 

time T comes after it. The standard doomsday argument assures us that, on a pairwise 

comparison, more support is accrued by the earlier time for doom. This extended analysis agrees 

with that. It adds, however, that, when we consider the support accrued by intervals of times, 

maximum possible support shifts to the latest possible times. 

6.4 A Richer Analysis 

 The analysis of the last section shows two things: the unsustainability of the Bayesian 

analysis and the power of invariance requirements. Here is a way that invariance requirements 
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can be used in a non-Bayesian analysis. We seek the degree of support [T1, T2|t] for an end time 

in the interval T1 to T2 given by the observation that the process has progressed to time t. We 

assume both T1 and T2 are greater than t. 

 The Bayesian analysis of Section 6.1 required that we know which of all possible clocks 

is the correct one in the sense that the likelihood of our observation is uniformly distributed over 

its time scale. Of course it is virtually impossible to know which is the right one. We somehow 

need to judge how the cosmos is distributing our moments of consciousnesses as observers. Are 

they distributed uniformly in time? Are they distributed uniformly over the volumes of 

expanding space? Are they distributed uniformly over all people; or weighted according to how 

long each person lives? Are they distributed uniformly over all people or all people and primates 

with advanced cognitive functions? Or is the distribution weighted to favor beings according to 

the degree of advancement of their cognitive functions? 

 Let us presume that there is such a preferred clock in this analysis as well. In addition, we 

assume that we have no idea from our background knowledge which is the correct clock. As a 

result, we must treat all clocks the same. This condition is an invariance condition. The degrees 

of support assigned to various intervals of time must be unchanged as we rescale the clocks used 

to label the times. A consequence of this invariance is that the degrees of support assigned to all 

finite intervals must be the same; that is, for any T2>T1>t and any other T4>T3>t, we will have14 

[T1, T2|t] =  [T3, T4|t] = I 

This will still be the case if either interval in a proper subinterval of the other. In this regard, after 

conditionalization on t, we have a distribution with the properties of completely neutral support. 

For this reason, I give the single universal value the symbol “I”, as before. 

                                                
14 To see this, consider any monotonic rescaling f of the clock with the properties: t’=f(t)=t; T1’ 

= f(T1) = T3; and T2’ = f(T2) = T4. Since we have only relabeled the times, the degrees of 

support must be unchanged so that [T1, T2|t] = [T1’, T2’|t’]’ = [T3, T4|t]’. The prime on [.,.|.]’ 

indicates that we are using the rule for computing degrees of support pertinent to the rescaled 

clock. The invariance, however tells us that both original and rescaled systems use the same rule, 

so that the two functions [.,.|.] and [.,.|.]’ are the same. Hence [T1, T2|t] = [T3, T4|t] as claimed. 
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 That is, contrary to Bayesian analysis, learning that t has passed does not invest us with 

oracular powers of prognostication. On that evidence, we have no reason to prefer any finite time 

interval in the future over any other.15  

7. Bringing Back Probabilities 
 There are many cases in which a probabilistic logic is the right one. To know which they are, we 

need to find a grounding in the facts of the particular case for probabilities of the logic.16 The 

simplest case arises when the system is a stochastic one governed by physical chances, such as 

the decay of radioactive atom. Then it is natural to conform strengths of support to the chances, 

for then strengths of support will agree with frequencies of success. A widely applicable example 

occurs if we assume that the errors entering into the measurement of a quantity arise in a pseudo-

random manner. If they are small, independent and summed in accord with the antecedent 

conditions of the central limit theorem of probability theory, their pseudo-randomness warrants 

the use of a probabilistic bell curve to model the variations in the measured quantity. 17 

                                                
15 This result does not automatically extend to intervals open to infinity. However it is clear that 

a minor alteration of the analysis will return [T1, ∞|t] =  [T2, ∞|t] = I* for any T1>t and T2>t. It is 

plausible that some further condition will give us the stronger [T1, ∞|t] =  [T1, T2|t], so that I*=I. 

However I do not think invariance conditions are able to force it. 
16 The material theory of induction (Norton, 2003, 2005) is an extension of this idea. It asserts 

that the warrant for an inductive inference is not a universal formal template, but a locally 

obtaining matter of fact. 
17 The facts that warrant a probabilistic analysis need not be facts about physical probabilities. 

Imagine that one is at a racetrack placing bets with a “Dutch bookie” and that the constellation of 

assumptions surrounding the Dutch book arguments obtain. (See Howson and Urbach, 2006, Ch. 

3.) These facts warrant one conforming one’s inductive reasoning with the probability calculus—

but only as long as these facts obtain. 
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7.1 A Mere Ensemble is Not Enough 

 In the cosmology literature, there are efforts to use the physical facts of the cosmology to 

ground the assigning of probabilities to the components of a multiverse.18 This is the right way 

to proceed, although there is always scope for the facts invoked to fall short of what is needed. 

An ensemble is like a deck or cards. We do not have a probability of 1/52 for the ace of hearts 

when we merely have a deck of cards. We must in addition shuffle it and deal a card. Without 

this randomizer, merely having neutral evidential support for all cards is insufficient to induce 

the probabilities. 

 The proposal developed in Gibbons et al. (1987), Hawking and Page (1988) and Gibbons 

and Turok (2008) supplies an ensemble but no analog of the randomizer. It employs a 

Hamiltonian formulation of the cosmological theories and derives its probabilities from the 

naturally occurring canonical measures in them. 

 At first this seems promising since it is reminiscent of the natural measure of the 

Hamiltonian formulation of ordinary statistical physics. There, the association of a probability 

measure with the canonical phase space volume is underwritten by some expectation of a 

dynamics that is, in some sense, ergodic.19 That means that the system will spend roughly equal 

times in equal volumes of phase space, as it explores the full extent of the phase space. This 

behavior functions as a randomizer. It allows us to connect frequencies of occupation of a 

portion of the phase space with its phase volume, so that the familiar connection between 

frequencies and probabilities is recoverable. In the Gibbons et al. proposal, however, such 

ergodic-like behavior is not expected. Over time, a single model will not explore a fuller part of 

the model space of all possible cosmologies. Rather, the proposal is justified by the remark (p. 

736):  

Giving the models equal weight corresponds to adopting Laplace’s ‘principle of 

indifference’, which claims that in the absence of any further information, all 

outcomes are equally likely. 

                                                
18 For other examples of such efforts, see Tegmark et al. (2006) and Weinberg (2000). 
19 It is merely an expectation but not an assurance, since a formal demonstration of the sort of 

behavior expected remains elusive. 
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If that truly is the basis of the proposal, then its basis does not warrant the assigning of 

probabilities. We have seen in Section 3.2 above that application of the principle of indifference 

may lead to the non-probabilistic representation of completely neutral support. 

7.2 The Self-Sampling Assumption 

A similar failing arises in connection with the “self-sampling assumption” of Bostrom (2002, Ch. 

4, 5 and 9; 2002a; 2007). A very large or spatially infinite universe may harbor many observers 

and, prior to consideration of further evidence specific to our circumstances, we might ask which 

of these many we are. The background evidence considered is quite neutral on the matter. So the 

appropriate representation is that of completely neutral evidence, as described in Section 3.2 

above. That representation provides no basis for a probabilistic analysis. One can impose a 

probabilistic analysis on the problem by stipulation. That is the effect of the self-sampling 

assumption. It enjoins us as follows (2007, 433): 

One should reason as if one were a random sample from the set of all observers in 

one’s reference class. 

Since sampling is probabilistic, we assign equal probability to the outcome that we are each of 

the many observers. 

 Bostrom (2002, 618) stresses that these probabilities are not an adaptation of strengths of 

support to physical chances. “I am not suggesting that there is a physical randomization process, 

a cosmic fortune wheel as it were, that assigns souls to bodies in a stochastic manner. Rather we 

should think of these probabilities as epistemic” (Original emphasis; see also Bostrom, 2002, 57 

for similar remarks.). However if the probabilities are epistemic and thus implement an inductive 

logic, what grounds do we have for that logic being probabilistic? Bostrom continues to explain 

that he regards the assumption “as kind of restricted indifference principle.” 

 The principle of indifference, however, does not automatically warrant probabilities, but 

only equalities of inductive strength. As we saw in Section 3.2 above, if the indifference is 

extensive enough, the principle can directly preclude a probabilistic logic. Such preclusion arises 

when indifference persists over redescriptions. This proves to be a problem for the self-sampling 

assumption.  In forming our sampling distribution, should we be indifferent over all people? 

Over individual minutes experienced by people? Over groups of people? Over civilizations? 

Each choice gives a different probability measure. Bostrom (2002, 69-72) has identified this 
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problem as the “reference class problem” and attempts a solution in subsequent chapters (Ch. 10-

11). The attempt depends on the assumption that there is a single, correct reference class to be 

chosen and that poor choices can be eliminated by showing that they have undesirable 

consequences in a probabilistic analysis. Since the relevant evidence is sufficiently weak to allow 

indifference to persist over multiple descriptions, both assumptions of a unique, correct reference 

class and the applicability of probabilistic reasoning are in error. 

 Finally Bostrom (2002, 51-58; 2002a; 2007, Sect. 24.2) urges that we must employ the 

self-sampling assumption to save Bayesian analysis of evidence from the following problem. A 

standard result of Bayesianism is that a good theory is rewarded epistemically for saying that the 

observed outcome of an experiment is very probable, whereas as a poor theory is punished when 

it says that the outcome is improbable. Now, a poor theory can still allow the observed outcome 

to occur as a highly improbable fluctuation, so that its occurrence somewhere in a very big 

universe is all but assured. As a result, Bostrom believes, we cannot use our observation of the 

experimental outcome to reward the good theory and punish the poor one in an unsupplemented 

Bayesian analysis. Both theories allow the observation with high probability. We must invoke 

the self-sampling assumption to discount the high probability from the poor theory. 

 If Bostrom is right that the Bayesian analysis has to be saved by an incorrect 

representation of the inductive import of the evidence, then that seems good reason not to use a 

Bayesian analysis. The inductive import of the experiments do not have to be explicated by a 

Bayesian analysis, but only by an inductive logic that is properly adapted to the case at hand. 

Sometimes, as we saw above for the doomsday argument, a non-probabilistic inductive logic is 

called for. In this case, however, I do not believe that the problem Bostrom outlines is a 

challenge to Bayesian analysis.20 

                                                
20 In brief, the Bayesian needs only that the poor theory makes the outcome of our instantiation 

of the experiment very unlikely, whereas the good theory makes it likely. These facts are 

deduced within the poor and good theories and no consideration of other observers who may 

perform the experiment is needed. 
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 In sum, the self sampling assumption imposes a stronger probabilistic representation onto 

the problem than the weaker one warranted by the neutrality of the evidence, thereby risking that 

conclusions are artifacts of a poorly chosen logic.21  

8. Conclusion 
What the above analysis shows is that there are limits to Bayesian analysis. It is unable to 

separate neutral evidential support from disfavoring support. If we confuse the two by using a 

probability measure to represent neutral evidential support, we introduce artifacts into our results 

that merely reflect the poor choice of inductive logic. These artifacts were illustrated in 

cosmology in the cases of the inductive disjunctive fallacy and the doomsday argument. These 

examples are simplified and removed from mainstream cosmological theorizing. They were 

chosen for analysis precisely because of this simplicity. It gave us enough independent 

perspective to be able to untangle the faulty reasoning. 

 Are these same problems a concern in mainstream cosmological theorizing? It takes only 

a cursory review of the literature to see that it is. The multiverse literature has defined the 

“measure problem,” which is the problem of defining an additive measure over a set of 

multiverses. If defining an additive measure is merely a mathematical exercise in counting, then 

the problem would be benign. However it is not. The measure is supposed to reflect how much 

we expect the various multiverses to be actualized.22 In the conditions that largely prevail, our 

background evidence supplies completely neutral support for the actualization of each 

multiverse. Therefore, following the principal argument of this paper, an additive measure is 

simply the wrong structure. 

                                                
21 I pass over one lingering problem arising from the choice of the wrong inductive logic: 

standard approaches admit no probability measure that is uniform over a countable infinity of 

observers. 
22 Reviewing the articles collected in Carr (2007), for example, one finds probabilities appearing 

in full-blown Bayesian analyses, in casual mentions and much in between. The idea that 

assigning these probabilities is an arbitrary and even risky project appears often in the multiverse 

literature. See for example Aguirre (2007), Page (2007, 422), Tegmark (2007, 121-22). 
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 This poor choice can cause problems. Our background theories provide no grounds for 

various cosmic constants to take the values they do. Non-inflationary cosmology provides no 

reason for us to expect the curvature of the spatial slices to be as close to zero as it is. 

Fundamental theories simply stipulate values for basic constants like h, c and G and give no prior 

reason for why they should have just the very values need to enable our form of life. 

 There is a sense that these surprising values demand explanation. What argument can 

support that sense? The background theories provide no grounds for the parameters to have those 

specific values. That is, they provide completely neutral evidence. It is easy and common to 

represent that neutrality by saying that the prior probability of any particular value is very small. 

However the redescription of neutrality by the term “low probability” brings connotations. A low 

probability event in physics is commonly one that is not to be expected. If it does happen, we 

normally seek an explanation. By re-expressing neutral support as low probability, we have 

applied the wrong inductive logic. That brings artifacts. One is an unwarranted demand for 

explanation. 

 My point is not that we need no explanation for these parameter values. Rather it is that 

we should look elsewhere for a justification of the need for explanation. That raises a difficult 

question. We cannot insist that everything needs to be explained. Such insistence triggers an 

unsatisfiable infinite regress. Even if we explain why the parameters have the values they do, we 

would then need to explain why the equations in which they figure have the form they do; and so 

on indefinitely. We should surely grant that some things just are the way they are and no further 

explanation is needed. How do we divide those things that need explanation from those that do 

not? My sense is there is little intrinsic to the things that mark them as in pressing need of 

explanation. Rather, it is a post hoc analysis. Once we find a successor theory, inflationary or 

anthropic, that can explain some formerly contingent aspect of the world, then we go back and 

see that aspect anew as one that urgently demanded explanation.  
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