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Abstract

A framework is presented for the provision of a structural realist ontology as dictated by
the implications of simultaneously accepting both inter-formulation and classical-quantum
species of ‘metaphysical’ underdetermination. The example of non-relativistic particle me-
chanics is considered, and it is argued that, modulo certain mathematical ambiguities, a viable
and consistent candidate structural ontology can be constituted in terms of a Lie algebra mor-
phism between algebras of observables and the relationship between the corresponding state
spaces.

1 Introduction

The viewpoint of ontic structural realism (OSR)(Ladyman 1998; French and Ladyman 2003; La-
dyman and Ross 2007) is in part motivated by two arguments towards the underdetermination
of the ontology associated with traditional realist descriptions of science. The first is formulation
underdetermination, and springs from the multiplicity of empirically equivalent formulations of
a given theory (Jones 1991; Bain 2009; French 2011). The second is pessimistic meta-induction,
and springs from the historical superseding of one empirically well-confirmed theory by another
(Laudan 1981; Worrall 1989). Under OSR the ontology of a physical theory is constituted by
mathematical structures rather than objects and entities. To avoid formulation underdetermi-
nation, one is limited to to an ontology constituted by the structures common between two
different formulations of a theory; and to avoid pessimistic meta-induction one is limited to the
structures common to a theory and its successor. For OSR to be viable: i) these structures must
be substantial enough to constitute a viable alternative ontology; and ii) the structures used to
avoid the two arguments must be consistent.

Here we will construct a proposal to evaluate OSR with respect to i) and ii) in the context
of the mathematical structures which underlie quantization (the procedure for turing a classical
theory into a quantum theory). It will be argued that through the close investigation of the formal
techniques that lie behind quantization we can gain a detailed understanding of fundamental
principles towards the construction of a ontic structural framework for physical theory. The first
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step in the implementation of this proposal is the consideration of the case of non-relativistic
particle mechanics. There it will be demonstrated, modulo certain mathematical ambiguities,
that a viable and consistent candidate for an OSR framework does exist. Future work will
consider gauge theories – in particular classical/quantum field theories – with a view towards
exploring the problem of quantizing gravity within our particular perspective on structuralism.

Our purpose here will not be to defend the necessity of the various arguments towards un-
derdetermination of ontology or the ontic structural realist response. Rather our analysis will
examine, in as concrete and explicit terms as possible, whether a viable and consistent candidate
for structural ontology can or cannot be constructed in the context of an explicit case study. If
it transpires that the proponent of OSR is not able to point to a consistent, generalising and
dynamical structural framework, in even the simplest of cases, then the position will be substan-
tially undermined, irrespective of the strength or weakness of the relevant motivating arguments.
Conversely, if a suitable framework can be found, then we have good grounds to examine that
frameworks extension to more general theories, over and above the question of granting it a priv-
ileged metaphysical status. In the end, if the pursuit of the principles underlying the consistent
construction of structural ontology gives us any genuine insight into the foundations of physical
theory, then it will have proved a worthwhile endeavour.

Moreover, within the gravitational arena, which is intended to be our eventual object of
study, the twin questions of mediating between competing formalisms and discovering the proper
framework for quantization are long standing problems, in want of new insights. Thus, it may
prove that the pursuit of ontological structural realism can be motivated by the pragmatic task
of assisting the physicist in their endeavours, over and above how such hand-maidening should
be characterised in an ontologically thick sense.

2 Formulation underdetermination and structural
realism

Following the analysis of (French 2011), we can consider three scenarios which can be grouped
together under the heading ontological (or metaphysical) underdetermination: theoretical under-
determination, interpretational underdetermination and formulation underdetermination. The
first is the most familiar within the philosophy of science and is when we are presented with
distinct theories each consistent with the same set of phenomena but each entailing an ontology
incompatible with the other. The classic example of such an underdetermination case is that
between special relativity and Lorentzian ether theory. The second interpretational notion of
underdetermination is particularly familiar within the philosophy of physics and relates to the
existence or two or more competing candidate ontologies for the same physico-mathematical for-
malism. The classic example of such an interpretational underdetermination is quantum mechan-
ics where multiple ontologies (e.g. non-local hidden variables or many worlds) may be associated
with the same Dirac-Von Neumann mathematical structure via starkly different interpretational
stances.

The third variant of underdetermination is perhaps the most neglected and shall be the main
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focus of our analysis. In addition to the underdetermination entailed by the existence of multiple
interpretations of a physical theory there is a subtly different class of underdetermination which
grows out the existence of multiple formulations. We can understand the formulation of a theory
as different ways in which the theoretical (i.e., non-representative) structure of a theory can be
expressed. The crucial hallmark of distinct formulations as opposed to distinct interpretations
is that (as well as being confined to the non-representative aspect of the theory) they are neces-
sarily accompanied with a rigorous translation dictionary which allows us to transform from the
language of one formalism to the language of the other. The interpretation and the formulation
of a theory are closely related. A given interpretation may make use of a particular formulation
of a theory and it may even be the case that a particular formulation is conducive to or exclusive
of a particular interpretation. The strength of the relationship may not be particularly strong,
however – such as in the case of quantum mechanics where the various possible formulations
(e.g. Schrödinger vs. Heisenberg pictures) are found to licence most, if not all, of the vari-
ous interpretations equally. However, there is definite scope for the choice between competing
formalisms to be restrictive enough to mandate only certain interpretations and therefore only
certain ontologies.

The key to genuine cases of formulation underdetermination is the possibility of cases where
two distinct formulations of the same theory place different bounds on the cast of viable in-
terpretations. The strength of these bounds demarcates three distinct notions of formalism
underdetermination: First, they may be strict, meaning that they are such that there is no sin-
gle interpretation that can be applied to both formalisms. Second, they may exclusive, meaning
that there exists at least one interpretation which is applicable to one formulation but not to
another. Third they may be loose; meaning that they are such that they make a particular
interpretation more natural to one formulation than to another. All three variants are philo-
sophically interesting since each (to a varying degree) leads to a situation whereby the nature
of our ontology is dictated not by a choice between empirically consistent theories, nor even be-
tween interpretations of the same theory, but rather by the seemingly arbitrary choice between
different formulations of the same theory.

What notion of realist ontology can be constituted in response to such cases of underdeter-
mination? According the proponents of ontic structural realism (OSR) the answer is a structural
one. Whereas, traditional variants of object orientated realism (i.e. that based upon a distinct
class of entities and things) must, in order to remain coherent, seek to break any genuine case
of formulation underdetermination by appeal to some external criteria; by endorsing OSR one
may side-step the undermining cut of underdetermination scenarios altogether.1 Under OSR the
ontology of a physical theory is constituted by mathematical structures rather than objects and
entities, and thus, one may avoid formulation underdetermination entirely by limiting oneself
to an ontology constituted by the structures common between two different formulations of a
theory.

Notwithstanding the question as to whether the traditional realist responses of breaking

1The conventional realist might of course alternatively simply dispute that genuine cases of underdetermination
can every actually occur.
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underdetermination by appeal to external criteria may constitute a better alternative strategy,
the onus is of course upon the proponent of OSR to be a little more specific about exactly
what kind mathematical structures they have in mind. In particular, it remains to be seen
whether or not the specification of a structural ontology is on its own be sufficient to resolve
a genuine case of formulation driven ontological underdetermination (Pooley 2006). As is well
illustrated by the type of ‘structural realism’ defended by (North 2009) (her position is, without
our terminology, a variant of conventional realism within which a geometric simplicity criteria is
invoked in order to break formalism underdetermination), it is quite possible for the structural
ontological vocabulary itself to be underdetermined if it is characterised in such a way as to be
particular to each formalism. Thus, the structures that the defenders of OSR are looking to
endorse must be such that they span between the appropriate formulations – it must be common
structure.

An obvious candidate for such structure is the mathematical transformations and interre-
lations that constitute the translation dictionary between two formulations. However, such a
characterisation of the structural ontology is also problematic. As further noted by (Pooley
2006), such interrelations between formulations offer only a very thin notion of structure that
alone seems insufficient to be the fundamental furniture of the world: what is needed is a ‘single,
unifying framework [which we can] interpret as corresponding more faithfully to reality than do
its various [conventional] realist representations’ (p.7). Thus, the challenge to the ontic structural
realist is to offer more than a purely set or group theoretic characterisation of the common under-
lying structure invoked to dissolve cases of underdetermination. What is needed, in essence, is a
physico-mathematical framework that generalises the structures relevant to each formulation in
such a way as to illustrate that each formulation is merely a different representation of the same
underlying ‘reality’. Such a framework must reasonably be taken to include dynamical as well
as purely mathematical aspects (Bain 2009) and must therefore be expected to be constituted
by structures intimately connected to measurable, dynamical quantities.

There is thus a rather complex challenge to the proponent of ontic structural realism in bal-
ancing the need to find structures that are abstract enough to transcend particular formulations
but concrete enough to be considered genuinely dynamical. The extent to which such a balance
is achievable in practice is best evaluated though the consideration of a series of explicit exam-
ples, the simplest available of these will be presented in the final part of this paper. Before then
however, we must consider some important additional constraints on our principles for structural
ontology construction which result from the interrelation of classical and quantum theories.

3 Quantization and structural realism

Quantization is a bridge between classical and quantum theories and thus provides a direct and
rigorous way of linking historically successive theories. Formally, the quantization of a classical
theory can be understood within a powerful and general geometric framework the essence of
which is contained within the relationship between classical symplectic structure and quantum
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mechanical Hilbert space structure.2 Explicitly, under the geometric quantization programme
(Echeverria-Enriquez, Munoz-Lecanda, Roman-Roy, and Victoria-Monge 1999) we seek a cor-
respondence between the sets of pairs constituted by: symplectic manifolds (M,Ω) together
with smooth real functions C∞(M), on the one hand; and complex Hilbert spaces H together
with self-adjoint operators A(H), on the other. We define the full quantization of a classical
system (M,Ω) as a pair (HQ, A) under certain conditions on HQ and the map, A, which takes
us between classical and quantum observables. The conditions are:

1. HQ is a separable complex Hilbert space. The elements | ψ〉 ∈ HQ are the quantum
wavefunctions and the elements | ψ〉C ∈ PHQ are the quantum states where PHQ is the
projective Hilbert space;

2. A is a one to one map taking the classical observables f ∈ Ω0(M) to the self adjoint
operators Af on HQ such that: i) Af+g = Af +Ag ii) Aλf = λAf ∀λ ∈ C iii) A1 = IdHQ

;

3. [Af , Ag] = i~A{f,g} (i.e., A is a Lie algebra morphism up to a factor);

4. For a complete set of classical observables {fj}, HQ is irreducible under the action of the
set {Afj}.

Of particular significance for our analysis is the third condition which encodes the relationship
between the classical Poisson bracket and the quantum mechanical commutator. The former is
defined implicitly by the symplectic structure Ω, and thus the pivotal role of that structure in
anchoring one end of the quantization bridge becomes apparent.

That quantization itself is found to point to certain structures within the classical predecessor
theory as in some way essential to the quantization of that theory is extremely interesting when
considered in the context of ontic structural realism. One of the principle motivating arguments
for the position (Ladyman 1998; Ladyman and Ross 2007), is that it is observed that throughout
the history of science empirically successful theories are often, if not always, replaced by theories
which include starkly different types of theoretical entities and objects. From this we may make
the pessimistically meta-inductive leap to the conclusion that the terms included within our
current best theories that relate to theoretical entities and objects should not be thought of as
constituting a genuine, robustly referential ontological vocabulary.3 Rather, the proponents of
OSR contend, we should focus our attention on the structural aspects of physical theory and
attempt to reconceive the notion of what constitutes the ontological vocabulary in terms of the
structure common between successive theories. If the formal structure of quantization techniques
itself points to certain key structural facets of classical theory then it seems natural to ask what
these structures correspond to within the quantum theory.

2Briefly put, a symplectic manifold is a smooth locally Euclidean space, equipped with a closed non-degenerate
two form. A Hilbert space is an abstract vector space equipped with an inner product.

3There are, of course, more sophisticated varieties of scietifc realism – such as that defended by (Psillos 1999)
– that can be argued to circumvent the cut of the pessimistic meta-induction. Since our primary focus is upon
examining the viability of OSR in of itself, rather than the strengths of its rivals we will neglect a full discussion
of such nuanced versions of ‘conventional’ realism.

5



We may then be able to specify precisely the structures that, according to OSR, should be
reified when constituting a structural scientific ontology at the classical/quantum boundary such
that it is robust to the challenge of pessimistic meta-induction. Clearly, the common structure
motivated by such historical succession between theories may or may not be consistent with
common structure between formulations discussed in the context of underdetermination above.
Quantization provides us with exactly the mechanism to examine exactly such questions since it
allows us to consider two different formulations of a classical theory and directly compare them
to their quantum correlates.4 If the OSR framework is a consistent one then one should be able
to constitute a structural ontology that simultaneously transcends both inter-formational and
inter-theoretic distinctions.

We can formalise this idea more explicitly. Let us assume we are given two formulations of
a classical theory which have been quantized (perhaps by different methodologies). We would
presume that from the two classical formulations will result the same quantum theory (although
this is not guaranteed) and we would thus then have two quantum formulations of this single
theory. Let us denote these formulations as C1, C2, Q1, Q2. A genuine implementation of the
OSR programme for resolving cases of underdetermination would then provide us with a unifying
framework for each of the pair of formulations, CUF and QUF . Furthermore, a genuine implemen-
tation of the OSR programme for confronting the challenge of pessimistic meta-induction would
give us a structural bridge between each of the classical and quantum formulations: CQ1, CQ2.
It should also give us such a bridge between our two classical and quantum frameworks: CQUF .
And furthermore, these two unifications should cohere. We can illustrate the situation graphi-
cally (committing a small abuse of mathematical diagrammatic convention) as follows:

C1
- CUF � C1

CQ1

?
- CQUF

?
� CQ2

?

Q1

6

- QUF

6

� Q1

6

Implementation of such a complex schema might be assumed to be impractical in general
terms. However, armed with mathematically well defined quantization procedures and interre-
lations between formulations we may perhaps be able to make some progress by considering a

4An alternative structural approach to conceiving of an ontology at the classical/quantum boundary would be
to focus upon the classical limit of the relevant quantum theories. We will here neglect a detailed consideration
of this option since it would provide little insight into the inter-formulation issue which we wish to investigate in
parallel.
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test case. The most basic case available is that of classical/quantum non-relativistic particle
mechanics, and it is to this that we now turn.

4 The case of non-relativistic particle mechanics

4.1 The Formulation and Interpretation of Newtonian
Mechanics

Let us consider a classical system consisting of a finite number of degrees of freedom and assume
that this system does not display any local symmetry.5 The physical theory describing such a
system is Newtonian mechanics and in modern terms the two principal formulations available
are Lagrangian and Hamiltonian (unfortunately, we do not here have space to consider the
Hamilton-Jacobi formulation also). The Lagrangian formulation of Newtonian mechanics is
framed within the space of solutions to the Euler-Lagrange equations which are dynamical curves,
γEL : TC → R, in the velocity-configuration space (the tangent bundle to configuration space),
(qi, q̇i) ∈ TC. The Hamiltonian formulation of Newtonian mechanics is framed within phase space
(a symplectic manifold defined as the cotangent bundle to confirguation space), (qi, pi) ∈ T ?C,
with Hamilton’s equations, ω(XH , ·) = dH, picking out a preferred tangent vector field on phase
space, XH , which is sufficient to define the set of dynamical curves for any specification of
instantaneous initial data.

By the criteria and definitions detailed above what we are dealing with here is two distinct
formulations of the Newtonian theory of mechanics: neither Lagrangian nor Hamiltonian formal-
ism furnishes us with an ontology without a further interpretation and the two are connected
by a rigorous translation dictionary provided by the Legendre transformation together with the
set of maps (parameterised by a one dimensional time parameter) that exists between a given
solution in the Lagrangian formulation and the corresponding sequence of instantaneous states
in the Hamiltonian formulations. The crucial question, in light of our above analysis, is then
whether we should understand these formulations as leading to an underdetermination of the
relevant ontology. This depends on the nature of the relevant interpretations available and their
relationship to these two formulations.

Focusing in particular on the temporal ontology of Newtonian mechanics, two candidate inter-
pretations are available. The first is constituted by the classic Newtonian picture of instantaneous
states of the world together with deterministic laws sufficient to fix all past and future states
given an initial state. We will call this the instantaneous picture of the world and understand it
as specifying an ontology which posits instantaneous states as part of the fundamental furniture
of the world. Supplementary to this picture we can ascribe additional and more metaphysical
structure such as a dynamical notion of time and an ontologically privileged present (Markosian
2011). Our concern here is not with the detailed philosophical analysis of these additional in-
terpretational structures and the extent to which they prove acceptable additions to the project

5Here and below we neglect the role of global symmetries for the sake of brevity. An analysis of the structural
connections relevant to them would follow straightforwardly from what we say about observables and state spaces.
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of furnishing the relevant theory with an ontology. They are certainly not generally taken to be
precluded by Newtonian mechanics at least.6 Rather, what we shall assume to be at the very
least non-controversial is that given the viability of an interpretation in terms of a instantaneous
picture, one may – if it is deemed reasonable – supplement this interpretation with additional
temporal ontic structure such as a dynamic time.

A second interpretation of Newtonian mechanics that provides us with a distinct temporal
structure is in terms of entire four dimensional histories which are specified by atemporal laws
(i.e., laws that are not defined at a given time) together with initial and final boundary conditions.
We will call this the teleological picture of the world since it implies the final boundary data
is fundamental in determining the laws. Unlike the instantaneous picture is does not posit
instantaneous states as part of the fundamental furniture of the world and, relatedly, it is not as
amenable to supplementation with the additional more metaphysical structure mentioned above
and discussed in more detail below. We do not mean this as necessarily a particularly strong claim
and will not therefore seek to make a justification of it in a strong sense. Rather, we believe it is
at the very least reasonable to assume that an interpretation of Newtonian mechanics in terms
of a teleological picture is, at face value, going to look more like a non-dynamic, ‘eternalist’ type
stance as to the metaphysics of time and less like the dynamic/privileged present type stances.

Just as there is a clear intuitive relationship between the aspects essential to the instantaneous
picture and the presentist stance, there is a clear intuitive relationship between the aspects
essential to the teleological picture and the anti-presentist stance. It would seem, furthermore,
that the teleological picture is such that it is inherently hostile to presentism – the laws, boundary
conditions and fundamental objects are things that, by the presentist lights, do not exist. Thus,
at a superficial level of analysis at least, there is a natural way of cashing out the difference
between our two pictures in terms of a substantive ontological difference.7

Even if we were to be more minimalist as to the level of metaphysical structure we wish to
permit, then we may still end up with genuine differences between the two pictures. Whereas
the instantaneous picture is predicated upon an ontology that necessarily includes instantaneous
states as fundamental, the teleological picture is not necessarily predicated upon such an on-
tology. Thus any approach to space-time ontology which precludes fundamental instantaneous
states can only be reconciled with the teleological picture – and is thus more naturally at home
within the Lagrangian formalism. Such an argument is of course not sufficient to establish that
there is no reasonable conventional realist ontology that transcends the Lagrangian/Hamiltonian
divide. Rather, we have that there are at least some notions of ontology that are underdeter-
mined by the case in hand, and thus that there is a requirement for the proponent of OSR to
provide a viable alternative ontology.

Let us then proceed to examine our case in terms of our framework for formalism under-

6See (Wüthrich 2010) for an interesting discussion of the extent to which the presentist view is precluded by
theories of quantum gravity of exactly the type that have been extensively detailed in this work.

7There is also reasonable scope to understand the difference between the instantaneous and teleological pictures
as possibly grounding a fundamental metaphysical difference as to the laws of nature. For example, it has been
claimed that the disposition essentialist viewpoint on laws of nature is inconsistent with the principle of least
action that is fundamental to the teleological picture (Katzav 2004). See (Smart 2012, §8) for further discussion.
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determination. We have two formulations of a theory together with two viable and distinct
interpretations (or interpretation types). Above we listed three ways in which such a situa-
tion may lead to formalism underdetermination. Firstly, the underdetermination may be strict,
meaning that there is no single interpretation that can be applied to both formalisms. Secondly,
it may exclusive, meaning that there exists at least one interpretation which is applicable to
one formulation but not to another. Thirdly it may be loose; meaning that one or more of the
interpretations are more natural to one formulation than to another.

Since the teleological interpretation (or interpretation type) is applicable to both Hamilto-
nian and Lagrangian formulations the first does not apply. One could argue for the second on
the grounds that the instantaneous interpretation might seem not to be applicable to the La-
grangian formulation. However, one may reconstruct the Lagrangian formulation such that it is
based upon points rather than curves within the tangent bundle and such that the dynamical
equations are differential equations giving a unique specification of dynamics at such a point
rather than restrictions on possible curves. Such a re-conception means that it is possible to ap-
ply a instantaneous interpretation to the Lagrangian formalism. However, the historically prior
and arguably most fundamental way of understanding Lagrangian mechanics is in the context
of action principles and variational calculus and such formal structure does necessarily lead to a
formulation which is in terms of curves with two boundary conditions. This point will be further
born out when we come to discuss the quantization of Lagrangian mechanics in terms of path
integral methods as well as the intimately related issue of symplectic structure. There is there-
fore a good case for the Lagrangian formulation being more naturally interpreted in teleological
rather than instantaneous terms and thus for us being confronted with a loose case of formalism
underdetermination.

Given that the solution space of the Lagrangian formulation is that of curves with two bound-
ary conditions, the natural interpretation is one in terms of a histories based ontology; with the
furniture of the universe entire four dimensional spacetimes along with the appropriate initial
and final conditions (i.e., the teleological picture). Given that the solution space of the Hamilto-
nian formulation is an initial data space, the natural interpretation is in terms of a instantaneous
state based ontology; with the furniture of the universe three dimensional spatial states with
appropriate instantaneous data (i.e., the instantaneous picture). Since the two formulations are
empirically equivalent and yet, to an extent, furnish us with distinct ontologies we have a good
case within which to examine the problem of constructing a viable structural ontology.

Clearly, although a positive result would not be sufficient to demonstrate superiority of OSR
over its conventional realist rivals – since we have not yet convincingly proved a case for the
underdetermination of their ontology – a negative result would be serve to severely weaken the
tenability of the OSR position: if one cannot find a consistent structuralist ontology for the
simplest of cases then the prospects for the programme to find wider application look grim.

4.2 The classical structural ontology

The ontic structural realist response to cases of formalism underdetermination is to seek to
reconceive the relevant notion of ontology in structural terms such that it is no longer under-
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determined. For such structure to genuinely constitute an ontology it is required to consist of
more than a mere interrelation between formulations, we need to find a suitably generalising
physico-mathematical framework which includes the requisite level of dynamical structure. Is
this possible for the case of Lagrangian and Hamiltonian mechanics?

Considering the analysis of (Belot 2007) and following the arguments of (French 2011), we
can make a good argument that the answer is yes. Belot’s work illustrates that for all standard
theories of classical mechanics the space which represents unique solutions within a Lagrangian
formulation of mechanics, has a close formal relationship with the space which uniquely represents
instantaneous states within a Hamiltonian formulation. Within Newtonian mechanics these
two spaces are simply the space of curves solving the Euler-Lagrange equation, γEL ∈ S, and
phase space, T ?C. Not only are these two spaces connected by a set of maps between time
slices of Lagrangian solutions and instantaneous canonical states, but since S is, like phase
space, a symplectic manifold, it is possible to prove that the two relevant dynamical arenas are
symplectically isomorphic. The existence of this symplectic isomorphism then allows us to fix
a precise relationship both between functions representing observable quantities within the two
formalisms and between the representation of dynamical change in the observable quantities.
Given a preferred slicing of a Lagrangian solution, for every moment of time we can construct
a symplectic isomorphism between a phase space function and a corresponding function on S –
and this relationship allows us to understand both functions as representing the same underlying
physical quantity as it changes over a dynamical history.

Thus the mutual symplectic structure of Lagrangian and Hamiltonian mechanics provides
us with exactly the kind of generalising framework, including dynamical structure, which we
are looking for and, although we will certainly not claim that this analysis is complete, there
is a convincing case for an ontic structural realist account of the Hamiltonian and Lagrangian
formulations of Newtonian mechanics in symplectic terms. This ontology is not constituted by
the symplectic isomorphism itself but by the interconnections between dynamical structures that
it encodes at the level of both observables and the state spaces. To accept this ontology is not
to endorse either the instantaneous or teleological interpretations, rather through OSR we are
able conceive of a fundamental reality that stands behind these two contrasting pictures of the
world in terms of precise structural framework.

4.3 Quantization and structural ontology building

We then come to the question most crucial to our analysis. Is this prospective structural ontology
of the suitable type to deal with both formulation underdetermination issues and the historical
undermining of pessimistic meta-induction? Would it be appropriate to conceive of some aspect
of symplectic structure as being preserved between the classical and quantum mechanical arenas?

The essence of the answer to this question has been already given. In our discussion of
geometric quantization techniques §3 it was noted that one of the key steps was defining the map
A : f → Af which takes us between classical algebra of observables, defined by functions on a
symplectic manifold, and the quantum algebra of observables, defined by self adjoint operators
on a Hilbert space. One of the restrictions on this map was that [Af , Ag] = i~A{f,g} and thus
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we see that by definition the geometric quantization scheme is such that the classical Poisson
bracket structure is carried over into the quantum context in terms of the commutator. We
can therefore justifiably argue that there exists a structural bridge between the observables of
classical Newtonian mechanics and non-relativistic quantum mechanics at a formal level, precisely
in terms of the link between the binary operations constituted by the Poisson bracket and the
commutator. This analogy is also reflected at the level of dynamics since when combined with
the Hamiltonian observable it is the binary operation that is responsible for generating evolution
in both the classical and quantum realms – i.e., we have that Ȧf = i~[Af , AH ] and ḟ = {f,H}.
Of course the Poisson bracket is itself defined implicitly by the classical symplectic structure, Ω,
and thus we have that it is the symplectic structure of the algebra of classical observables that
provides the foundations of the quantum mechanical algebra.

Further to this structural bridge from the symplectic form to the commutator, there is also a
suggestive resemblance between the classical state space (a manifold equipped with a symplectic
structure) and the quantum state space (a vector space equipped with an inner product struc-
ture). The question of the nature of the fundamental mathematical structures that lie behind
relationship is a deep one, and its full consideration would involve introduction of a considerable
amount of additional formal machinery. A simple and illustrative demonstration of the connec-
tion, that shall suffice for our current purposes, is provided by the decomposition of the inner
product into real an imaginary parts (Corichi 2008). If we consider two states | ψ〉, | φ〉 ∈ HQ,
and view HQ as a real vector space equipped with an inner product, then we may decompose
the inner product as: 〈ψ | φ〉 = G(ψ, φ) − iΩ(ψ, φ), where G is a Riemannian inner product on
HQ and Ω is a symplectic two form. The structures which define the classical and quantum state
spaces can thus be straightforwardly seen to be connected through the mutual use of symplectic
two form. Independently of anything to do with formalism underdetermination, a proponent
of OSR would therefore argue that the fundamental structure of a classical or quantum theory
is related to maps between algebras of observables, the relevant binary operations and the re-
lationship between the symplectic/inner product structure of the classical and quantum state
spaces. Fundamentally this is what is structurally consistent between the classical and quantum
theories. It is therefore what OSR implies we should seek to reify in the face of pessimistic
meta-inductive arguments. However, this is also the type of structure which we were driven
towards when considering the ontology of the classical theory alone so there would seem to be
prima facie coherence in our approach.

Let us then examine the case in hand more carefully. Given our two classical formulations
we arrived at a structural ontology encoded by a symplectic isomorphism between both the
relevant observables and state spaces. Given a generalised, geometric picture of classical and
quantum theory we arrived at a structural ontology encoded by: i) a Lie algebra morphism (up
to a factor) connecting the algebra of observables and the relevant binary operation; and ii)
the connection between the symplectic and inner product structures. Although these classical-
classical and classical-quantum bridges are not the same structures, they are clearly closely
related – a sympletic isomorphism can be understood a type of algebra morphism.

One way to refine our analysis a little is to consider two different formulations of quantum
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theory, look at the common structure, and compare this to both the classical-classical formulation
common structure and the general classical-quantum common structure. If we presume to have
quantized the Lagrangian formulation classical mechanics using a path integral methodology and
the Hamiltonian formulation using canonical quantization (which just amounts to a concrete
implementation of geometric quantization) then we would have two formulations of quantum
theory, each based on a formulation of classical theory. We will label these two formulations
after their principle originators – Feynman on the one hand and Dirac-von Neumann on the
other. Our desired consistent structural ontology could then expressed using the diagram that
was introduced above:

CLag. - CUF � CHam.

CQLagFey
?

- CQUF
?
� CQHamDvN

?

QFey.

6

- QUF

6

� QDvN

6

In this notation, our discussion thus far has already effectively covered CUF and CQHamDvN .
We will now briefly consider the rest of the diagram in order to give at least an evaluation of the
extent to which the relevant structural notion of ontology is suitably ‘commutative’.

The fundamental dynamical equation within Feynman path integral quantum mechanics is,
for a single particle:

Z = 〈qf |e−
i
h
H(tf−ti)|qi〉 =

∫
Dxe

i
h

∫ T

0
L(q,q̇)dt (1)

Where D is the functional measure. This path integral expression describes quantum mechanical
behaviour in a configuration space in that, roughly speaking, it gives us a probabilistic weighting
to paths through that space between an initial position qi and a final position qi. We thus see
that, under the Feynman approach, a quantum system is associated with a space of possible
histories (i.e., the space over which the integral is taken) and the nature of the path integral is
such that it gives (in an informal sense) an inner product structure to that space.

Within the classical theory we also focused upon a space of histories as fundamental to
the Lagrangian formulation; and it was the symplectic structure of that space which we took
to constitute one side of the structural bridge between Lagrangian and Hamiltonian theory.
Furthermore, in the generalised abstract case and the case of Hamiltonian theory, there is an
extent to which the symplectic structure within the classical theory is analogous to the inner
product structure within the relevant Hilbert space. It is natural therefore to ask whether the
symplectic structure of the classical history space in Lagrangian theory can be connected with a

12



Hilbert space, together with the necessary inner product structure, within Feynman path integral
quantum mechanics.

Unfortunately, although its heuristic, intuitive and practical value is undoubtably great, the
Feynman path integral as it has been introduced, is insufficiently mathematically well defined for
us to be able to answer this question. Consideration of the project of providing a more rigorous
mathematical basis to it would take us far beyond the limits of our current discussion, but we
may at least note that according to (Albeverio, Hoegh-Krohn, and Mazzucchi 2008) the Feynman
path integral for the solution the Schrödinger equation can be interpreted rigorously as a Fresnel
integral8 over a Hilbert space of continuous paths. Thus, given a suitable formalisation, it does
appear to be correct to think of path integral quantum mechanics in terms some form of Hilbert
space for histories. There is, therefore, some formal support for a tentative proposal that a struc-
tural bridge may be made between Lagrangian classical mechanics and path integral quantum
mechanics in terms of a connection between: a classical space of histories with symplectic struc-
ture, on the one hand; and a quantum space of histories with an inner product structure, on the
other. We do not, however, have the Lie algebra morphism that can be demonstrated to connect
the observables and dynamics of the classical Hamiltonian theory with the Dirac-von Neumann
quantum theory (as arrived at via canonical quantization). Relating the classical Lagrangian
notion of observable to some precisely analogous structure within path integral quantum theory
– if it is possible – is a highly non-trivial challenge.

In addition to seeking this structural connection between classical Lagrangian and quantum
path integral formalisms, consistency with the OSR philosophical framework drives us to look
for a similar connection between path integral and Dirac-von Neumann quantum formalisms.
Not least this is because these two quantum formalisms would appear to be naturally associated
with interpretation in terms of disparate ontologies – a quantum teleological type and quan-
tum instantaneous type picture respectively. Further to this, in order to establish the relevant
commutativity we need to find a quantum unifying framework to parallel our classical unify-
ing framework and then hope that the structural commonalities between these two frameworks
(the middle edge of our diagram) mirror those between the individual classical and quantum
formulations (the two outside edges).

Unfortunately, our progress is once more hampered by the unsolid mathematical basis of
Feynman’s approach. Again what is desired would be a well defined Hilbert space of histories
which could then be connected to the traditional Hilbert space of instantaneous quantum states.
In such circumstances, if the two Hilbert spaces could be shown to be unitary isomorphic and the
relevant isomorphism can be understood as entwining the representations of two sets of quantum
observables, then we would have established, despite the apparently fundamental interpretational
difference, that the two quantum formulations are fundamentally manifestations of the same
underlying physico-mathematical framework/structure. The situation with regard to the Hilbert
space aspect of our problem is again promising. According to (Dowker, Johnston, and Sorkin
2010) we may formalise a histories approach to quantum theory using the framework of quantum
measure theory (Sorkin 1994) and proceed to construct a histories Hilbert space which can be

8A special type of oscillating integral defined on a real vector space equipped with a norm.
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proved (given a unitary quantum theory with a pure initial state) to be isomorphic to the
conventional Hilbert space of the Dirac-von Neumann formalism. However, despite this success
at the level of state-spaces, the situation with regard to observables is less promising as there
is currently not a sufficiently general procedure for constructing an observables algebra within a
histories Hilbert space formalism, let alone a proof that such histories observables are suitably
related to their conventional Dirac-von Neumann counterparts.

We are, therefore, not in a position to reach a strong conclusion with regard to the observables
aspect of a cross-formulation quantum mechanical structural framework – and according to our
own criteria this means we have not quite met the necessary conditions for an adequate structural
ontology at the quantum level. However, through the relevant state space connections we have
suggestive evidence that our application of OSR in terms of the digram above is leading us in
a promising direction. In particular, for all of the four outer nodes of the diagram – i.e., the
Lagrangian and Hamiltonian formulations of classical mechanics and the path integral and Dirac-
von Neumann formulations of quantum mechanics – all the necessary structural connections can
be seen to hold with regard to the state spaces involved.

5 Conclusion

When considered in the context of pessimistic meta-induction and formalism underdetermina-
tion, a viable framework for an ontic structural realist understanding of non-relativistic particle
mechanics can be established as follows:

• The symplectic structure and Poisson bracket algebra of observables are what is funda-
mental at a classical level.

• The inner product structure and commutator algebra of observables are what is fundamen-
tal at a quantum level.

• The classical and quantum structures are analogous in the case of the state spaces and,
modulo the difficulties mention, connected directly by a Lie algebra morphism in the case
of the observables.

We thus have good evidence for the fundamental consistency within an OSR reading of non-
relativistic particle mechanics. Furthermore, we have laid the foundations for a set of structures
that is substantial enough to constitute a viable ontology. A Lie algebra morphism between
algebras of observables is more than a mere set of interconnections or group type object – it
is exactly the type of physico-mathematical structure that the proponent of OSR must look
for, since it cleavers our formalism at precisely at the basic dynamical joints. Together the
interconnections between the relevant observable algebras and state spaces form a framework that
generalises all of non-relativistic particle mechanics. As such, what we have found constitutes
the fundamental architecture of the physical theories within the scope of our present analysis –
and, moreover, provides a basis from which to extend our investigation into the realms classical
and quantum field theories.
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