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In his initial formulation of the general theory of relativity, Einstein's proposal that freely falling

gravitating massive bodies follow geodesic paths was submitted as an independent fundamental prin-

ciple. By adopting this �geodesic principle� to supply the theory's law of motion, Einstein was

immediately able to recover both the free-fall motion of bodies in non-relativistic regimes and the

previously anomalous precession of the perihelion of Mercury. Over the last century numerous os-

tensible proofs claiming to have derived the geodesic principle from Einstein's �eld equations have

been developed. As a result physicists and philosophers of science alike frequently herald Einstein's

theory for having the unique distinction of being able to derive its dynamical �law of motion� from

its own �eld equations.

In this paper I critically survey the multiple attempts to derive the geodesic principle in the

context of Einstein's theory. Grouping these results into three major families, which I refer to as

(1) limit operation proofs, (2) 0th-order proofs, and (3) singularity proofs, I argue that none of these

strategies successfully demonstrates the geodesic principle, canonically interpreted as a dynamical

law that massive bodies must actually follow geodesic paths in Einstein's theory.

Speci�cally, I argue for the following three claims: First, limit operation proofs fail to demonstrate

that massive bodies are ever guaranteed to follow geodesic paths. Second, on the contrary 0th-

order proofs demonstrate that extended massive bodies generically deviate from uniformly geodesic

paths. Moreover, the only potentially extended distributions of matter and energy that fail to

avoid a uniform geodesic evolution are highly unstable, deviating from such motion under arbitrary

perturbations of their angular momentum (or higher order moments). Third, thanks to certain

mathematical theorems concerning distribution theory, alternative representations of massive bodies

as unextended �point� particles must result either in precluding the possibility of coupling the particle

to the spacetime metric in a way that is coherent with Einstein's �eld equations or in having to

excise the particle (and its would-be path) from spacetime entirely. This three pronged argument

reveals that not only does the geodesic �law of motion� fail to be a deductive consequence of the �eld

equations, but also any attempt to canonically interpret the geodesic principle in such a way requires

∗In the following, M will be taken to be a smooth, orientable, four-dimensional manifold, and (M, gab) will be
referred to as a Lorentzian spacetime if gab is a smooth metric of signature (+,−,−,−) de�ned on M. Excepting
quoted material all further notational conventions follow that of (Wald, 1984).
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that either the gravitating body is not massive, its existence violates Einstein's �eld equations, or

it does not exist within the spacetime manifold at all (let alone along a geodesic).

Having rejected the canonical interpretation of the geodesic principle as providing a fundamen-

tal law of motion or dynamical equation, I brie�y conclude with an alternative proposal that the

geodesic principle be instead interpreted as a universality thesis analogous to the use of the term

`universality' to classify the group behavior exhibited across thermal systems during phase transi-

tions. My suggestion is that if we weaken our interpretation of the geodesic principle, instead reading

it as a stability claim about the (four-dimensional) clustering of free-fall gravitating bodies in the

appropriate neighborhood of geodesic following models, we will be able to recover the con�rmation

results classically provided by the geodesic principle (such as the perihelion of Mercury con�rma-

tion), while still consistently applying the principle (now as a universality thesis) to actual massive

and extended bodies that can coherently couple to the spacetime metric in accordance with Ein-

stein's theory. Moreover, under such a proposed universality interpretation of the geodesic principle,

limit operation proofs (previously argued to be feckless under the canonical interpretation) may be

used to provide deep justi�cation for geodesic stability results detected through the observation of

generic free-fall bodies.

1 Einstein and The Canonical Account

1.1 Geodesic Dynamics

Einstein's adoption of the geodesic principle was originally thought to be an independent postulate

establishing the dynamics of the theory. Not long after the debut of his general theory, however,

numerous special-case results and plausibility arguments were developed suggesting that in fact

the principle was not logically independent (given certain assumptions about free-fall bodies) from

Einstein's �eld equations themselves.1 In the appendix to the third edition of The Meaning of

Relativity (1946), Einstein notes these developments concerning what he still refers to as �the law of

motion� as follows:

In the initial formulation of the theory the law of motion for a gravitating particle was
introduced as an independent fundamental assumption in addition to the �eld law of gravitation
... which asserts that a gravitating particle moves in a geodesic line. This constitutes a hypothetic

1Some of the earliest cited proofs and plausibility arguments include (Weyl, 1922, Eddington, 1923, Pauli, 1921,
Einstein and Grommer, 1927, Mathisson, 1937, 1940). Though (Einstein and Grommer, 1927) has often been cited
as the earliest result, the results by Eddington, Weyl, and Pauli clearly predate it. Lesser known variations of these
results were also o�ered in (Kop�, 1923), (von Laue, 1921), and (Becquerel, 1922), which were popular as texts on the
new theory at the time (see (Havas, 1989, 1993) for further discussion of Einstein's evident oversight in recognizing this
early work). Despite his comments on the apparent redundancy of the geodesic principle (see below), Kenne�ck (2005)
has argued that Einstein was very likely aware of the possibility of such special-case deductions prior to (Einstein
and Grommer, 1927) as evidenced by possible fragments of an unadopted manuscript for (Einstein, 1922). Moreover,
Einstein was clearly aware of the possibility of a special-case deduction, which carries over to the general theory, from
his Entwurf predecessor to the debut of the full theory in (Einstein, 1913) (see note 13 below).
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translation of Galileo's law of inertia to the case of the existence of `genuine' gravitational �elds.
It has been shown that this law of motion - generalized to the case of arbitrarily large gravitating
masses - can be derived from the �eld-equations of empty space alone.(Einstein, 1922, p113)

Beyond crediting the apparent redundancy of postulating the geodesic principle as an independent

assumption, note that Einstein explicitly characterizes the derivation result as pertaining not to

some kind of test particle of either vanishing or arbitrarily small relative mass, but to arbitrarily

large gravitating masses. The referenced result is no doubt that of (Einstein and Grommer, 1927)

(and its successors), frequently considered a locus classicus of early demonstrations. As we shall

see in section 1.3, since (Einstein and Grommer, 1927) was considered, at least by Einstein, to be a

derivation of the geodesic principle, this work serves as an invaluable guide to how he expected the

principle to be interpreted. In particular, it o�ers signi�cant illumination into what Einstein came

to believe was the content of his geodesic principle.2

With these results it seemed that general relativity di�ered remarkably from other classical �eld

theories such as classical electrodynamics or Newtonian gravitation. In (Einstein and Grommer,

1927), the authors highlight an apparent matter-�eld duality found in these classical �eld theories.

Echoing this dichotomy Leopold Infeld and Alfred Schild later characterize this equation duality in

classical �eld theories as follows:

Classical physics is dominated by a characteristic duality of �eld and matter. In Newton's
theory of gravitation as well as in the Maxwell-Lorentz theory of electromagnetism the physical
laws fall naturally into two independent classes. The �rst class consists of the partial di�erential
equations which (with suitable boundary conditions at in�nity) determine the �eld in terms of
the distribution and motion of the matter which �generates� it. The second class consists of
the dynamical equations governing the motion of matter under the forces �exerted� by the �eld.
(Infeld and Schild, 1949, pp408-9)

They then proceed to explain how the equations of general relativity (viz. Einstein's �eld equations

plus the geodesic equation) �t into this picture, observing that just as in cases like classical elec-

trodynamics, where there are two sets of equations, one set for how the �elds couple with source

charges (Maxwell's equations), and another for dynamics of how �passive� charged bodies behave

in those �elds (the Lorentz force law), so too is there a duality corresponding to the two sets of

equations in Einstein's theory. His �eld equations govern how the �eld couples with the gravita-

tional sources, while the geodesic equation provides the �law� for how gravitating bodies then surf

the resulting metric �eld. In contrast to other classical �eld theories, however, for Einstein's theory

2The idea behind what Einstein and Grommer identify as their preferred result is to squeeze the bodies into singular
curves that are then excised from the spacetime entirely. At that point the source terms in the �eld equations of such
a spacetime vanish, which is why in the long quote above Einstein notes that it can be derived from the equations
for �empty space alone.� (The bodies have been �t entirely into the excised curves making them technically �outside
of� the manifold and so not source terms of the �eld equations.) The demonstration is supposedly completed by
their argument that, if we were to �replace� the excised curves, they would be geodesics of the vacuum solutions to
the re-patched spacetimes (cf. (Infeld and Schild, 1949, p410)). This vacuum-cum-singularities technique was further
developed by Einstein, along with Infeld and Ho�man, in (Einstein et al., 1938, Einstein and Infeld, 1940, 1949) as
Einstein became increasingly opposed to representations of matter by means of continuous �elds (see section 1.3).
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it now seemed that the �eld equations for coupling the metric to energy-momentum sources also

entailed the geodesic equation for how free-fall massive bodies behave in a given geometric �eld.

Unlike with electrodynamics and Newtonian gravitation, the dynamical equations appeared not to

be logically independent.3

This �duality of �eld and matter� and the dichotomy of their corresponding equations, endorsed

by Einstein himself, is signi�cant for two reasons. First, it emphasizes the apparent boon for Ein-

stein's theory: general relativity is �special� in comparison with other classical theories because the

dynamical equations of the theory appear to logically follow from its own �eld equations.4 Second,

in order to even claim that general relativity has such a special status among classical �eld theories,

one must subscribe to a key presumption about the role of the geodesic principle active in the early

decades of the theory (and still endorsed frequently today), namely, that (analogous to the role of the

Lorentz force law in electrodynamics) the geodesic principle plays the role of providing the dynamics

of material bodies in the general theory of relativity. In the following, we shall refer to this account

of the role of the geodesic principle as providing the dynamics of general relativity as the canonical

account.

In his early comments on the geodesic principle, Einstein frequently endorses this canonical

account. In (Einstein, 1916) as well as his (Einstein, 1922) lectures on the theory, Einstein refers to

the geodesic equation or the principle as the �equation of motion� or �law of motion� over a dozen

times, characterizing them in this way not only for application to �particles,� but also in describing

�planetary motion� (most importantly the motion of Mercury) and the motion of a �gravitating

body� in general. As already indicated by the above long quote, Einstein continued to view the

geodesic principle as providing the �law of motion� not only for massless test particles but also for

�arbitrarily large masses� well after the theory's initial introduction.

During this period, the canonical view was likewise frequently articulated by Einstein's colleagues.

It takes only a brief survey of the literature from the �rst half of the 20th century to reveal the

widespread general adoption of the canonical view, with most authors taking it for granted that the

geodesic principle provided the dynamics of the theory regardless of its logical independence from

3By `logical dependence' here I mean derivability, perhaps under certain conditions characterizing the body in
question. Of course dissolving the conceptually suspect bifurcation of bodies into �background� charged sources,
which determine the �eld, and �passive� charged bodies that then react to the �eld (without generating self-forces) in
this caricature of electrodynamic evolution leads to well known signi�cant complications that have (even after over a
century of e�ort) yet to be fully resolved (for an historical presentation and philosophical discussion of this problem
see e.g. (Frisch, 2005)). As we will see, similar complications involving self-force-like e�ects are relevant in determining
the actual motion of free-fall bodies in general relativity. The independence resulting from such a bifurcation of bodies
into background sources and passive test bodies is, nonetheless, a separate notion from the logical independence of
the dynamical equations of motion from the �eld equations, which (at least according to the interpretation we are
now considering) exists in the electrodynamics case but not in the relativistic case.

4This distinction has been highlighted by philosophers such as Brown (2005, pp140-1) as well as the physicists who
worked on this problem in the early decades (e.g. (Einstein and Grommer, 1927, Infeld and Schild, 1949)). Unlike
these physicists, however, Brown astutely notes what he describes as the �limited validity� of deductions establishing
exact geodesic motion, a point that we will investigate in detail below.
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the �eld equations.5 Expressions of this view were unmitigated (and sometimes even highlighted) by

the apparent redundancy of postulating the geodesic principle as an independent assumption. This

attitude is typi�ed by the commentary of physicists such as Lanczos, for instance, who punctuates

his demonstration by noting that his penultimate equation �is equivalent to the `law of the geodesic

line' which has always been considered the natural dynamical law of general relativity.� (Lanczos,

1941, p818 emphasis added) Moreover, this canonical view of the geodesic principle as providing

the dynamics is frequently cited in text books on the subject both classical (e.g.(Bergmann, 1942,

pp224-5)) and contemporary (e.g. (Hobson et al., 2006, pp188-90) and even (Misner et al., 1973,

pp475-80)).6 Though our focus will be on Einstein's interpretation of the geodesic principle and its

role in providing the dynamics of the theory, he was not alone in this attitude well into the mid 20th

century. It is thanks to this combination of endorsements that the account of the geodesic principle

providing the dynamics of Einstein's theory is plausibly characterized as �canonical.�

1.2 Whither Test Particles?

If, according to what I have been describing as the canonical account, the geodesic principle provides

the dynamics of the general theory of relativity, we must �gure out to what exactly such a dynamical

principle is supposed to pertain. Who follows geodesics? A natural answer might be something like

�test bodies,� the theoretical tool in the physicist tool box used to describe how certain �sources�

react to the �eld without having to attend to the actual e�ects on the �eld values caused by the

presence of the bodies in question. In the case of relativity theory, we might then answer that �it is

test bodies who follow geodesics.�

While we will ultimately see that under a non-canonical interpretation something like this answer

might be endorsed (section 5), in the following survey of geodesic demonstrations it will be of central

importance to observe exactly why and in what manner ignoring the source e�ects of �test bodies� can

be justi�ed. That is to say, we will need to pay special attention (i) if a gravitating object is treated as

a �test body� because its source e�ects are simply left unaccounted for, or (ii) if the object is treated

as a �test body� because its source e�ects can be shown to be negligible (but non-vanishing) for the

relevant purposes of the deduction. The hazards of leaving test body approximations unjusti�ed

5E.g. references to the geodesic principle as providing the dynamics or law of motion in some form or another
are evident in (Eisenhart, 1928, Eddington, 1923, Tolman, 1930, Dirac, 1938, Lanczos, 1941, Infeld and Schild, 1949).
Some authors judiciously express the view in restricted form only as pertaining to �relatively small� masses or simply
to �mass points� (e.g. (Weyl, 1922, p256) or (Bergmann, 1942, pp224-5)). As we will see, in the former case, there was
still little real justi�cation for such heuristic winks at su�cient smallness (see sections 1.2 and 4.2 below), whereas in
the latter case signi�cant di�culties abound when it comes to representing the massive point particle that supposedly
follows a geodesic within the theory (see section 2).

6In the case of references found in contemporary texts there should be no doubt that the authors are well aware of
gravitational multipole and �self force� e�ects resulting in non-geodesic motion (see section 3 below). (Misner et al.
(1973, p479) are notably circumspect about some of these failures and later o�er explicit instruction on calculating
spin e�ects.) Hence, such references should be taken only as evidence of the pervasive popular endorsement of the
canonical view and the fact that the e�ect of the view's initial adoption still lingers in contemporary conceptions of
Einstein's theory.
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(i.e. case (i)) become most vivid when we consider proofs of the geodesic principle. In cases where

the �eld equations and dynamical equations are starkly separated, physicists have the luxury of an

apparent distinction: bodies whose source behavior is �turned on� are governed by the �eld equations,

whereas the behavior of test bodies can seemingly be restricted to the purview of the dynamical

equations alone. However, if one attempts to deduce the dynamical laws from the �eld equations,

this specious luxury evaporates. We are forced in the course of the proof to simultaneously discuss

the matter-energy of the �eld equations as the matter-energy that we ultimately hope to show obeys

the dynamical equations. Hence, it is not even an apparent option to treat test matter-energy as

being entirely free of the �eld equations as might happen in case (i).

As we will see, under the canonical interpretation, ignoring source e�ects of a body (even when

they are small) can often have signi�cant impact on the general validity of the deductions. With

his characteristically sardonic wit when discussing this subject, Jürgen Ehlers, in collaboration with

Ekkart Rudolph, emphasizes this challenge as follows:

The test body approximation is usually de�ned by the requirement that the contribution

of the body to the metric gαβ be negligible. The justi�cation of this drastic simpli�cation in

any particular case is by no means trivial and is therefore rarely considered. Since, according to

Einstein's (and similar) �eld equations, the curvature within a body is of the order of the density,

the �self curvature� usually dominates or is at least comparable to the �incident� or �external�

curvature (even for a small iron ball near the Earth's surface), and then it is wrong to take the

metric within the body to be nearly equal to the �given,� external one in the local mechanical

law [Tαβ
;α = 0].(Ehlers and Rudolph, 1977, p208)7

In case (ii) above the physicist will be able to explain why the e�ects of the test bodies are inconse-

quential in a relevant and rigorous sense and may hence be justi�ably ignored. While the majority

of attempts at geodesic demonstrations (certainly, at least, at the time of this quote) seemed to

fall under case (i), Ehlers and Rudolph here explain that a supplementary justi�cation of these test

body approximations with heuristic winks at relative smallness will not typically su�ce; far more

work is left unful�lled.

If the geodesic principle is to provide a dynamics that can be legitimately used to predict the

paths of actual bodies, we must �nd a way to draw suitable inferences from how these test particles

are supposed to behave to how actual bodies behave. Unfortunately, as is well known from the

case of classical electrodynamics, paying attention to the actual �eld-creating abilities of our (in

the electrodynamics case, charged) test bodies, things become increasingly messy. Shrinking the

body down to �in�nitesimal� volume results in a singular charge density, and extending the particle

still results in having to grapple with non-analytically expressible expansions of the e�ects that the

particle's own �eld has on its motion.

7Ehlers and Rudolph go on to explain in a parenthetical that �For this reason the mathematically elegant argument
given in (Geroch and Jang, 1975) is physically not very enlightening, in our opinion.� We will return to this point in
section 4.1.
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In the case of general relativity things are even more treacherous. As we shall see, not only

are there self-force and spin e�ects to be grappled with, but also, in the case of general relativity,

the presence of matter-energy, whose powers as a �eld source have not been arti�cially �turned o�,�

will e�ect the very metric that determines what counts as a geodesic. An in�nite matter-energy

density in general relativity is not just an aesthetically disheartening anomaly in our representation,

it often results in our inability to coherently speak about the spacetime path where the singularity

occurs. But if the metric becomes unde�ned wherever the source particle is located (if it can even

be said to have a location), how are we supposed to say that it is following a �geodesic� of that

metric? On the other hand, the representation of extended bodies in general relativity leaves a good

deal more freedom available for how the body's matter-energy is distributed, making it di�cult

to speak generally about such representations of the bodies (especially that they universally follow

geodesics). As we shall see, some of these issues had already become manifest by the time of (Einstein

and Grommer, 1927).

1.3 Einstein and Grommer's �Three Ways� to get it Straight

In the introduction to their paper Einstein and Grommer lay out the same dichotomy in Newton's

theory of gravitation and classical electrodynamics between �eld equations and dynamical equations

articulated decades later in the long quote discussed above from Infeld and Schild. Characteriz-

ing such matter-�eld �dualism� as �disturbing to any systematic spirit,� they proceed to identify

three �ways� [Betrachtungsweisen] in the general theory of dealing with such duality (Einstein and

Grommer, 1927, p3).8

Their ��rst way� is modeled after Newtonian gravitation, in which the �eld equations and the

geodesic equation are posited independently.9 This approach is most similar to Einstein's initial

introduction of the theory in that the �eld equations and the geodesic equation are postulated inde-

pendently. Unlike his initial introduction of the theory, however, in this method the �eld equations

in question are not Einstein's full �eld equations:

Gab = Tab (1.1)

where the Einstein curvature tensor on the left hand side is de�ned by

8Unless noted otherwise, this and all below translations of (Einstein and Grommer, 1927) are thanks to the gracious
assistance of Bihui Li.

9This method can be thought of as being modeled after the �eld theoretic accounts of Newtonian gravitation in the
sense that there too background sources might be represented by singular points generating a gravitational potential
�eld φ, where φ is a solution to Laplace's equation (i.e. Poisson's equation with ρ = 0) with suitable boundary
conditions at the singular points. This potential �eld is then surfed by test bodies satisfying the equation of motion

−∇iφ = d2x
dt2

i
, which of course comes from Newton's laws of motion and gravitation. Einstein emphasizes this analogy

explicitly in (Einstein and Infeld, 1949, p209-10), his �nal collaboration with Infeld on the subject.
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Gab := Rab −
1

2
gabR (1.2)

and the right hand side of the equation represents the �ow of matter-energy from any perspective.

Instead, for their ��rst way� they specify that the relevant �eld equations are the vacuum �eld

equations where equation (1.1) reduces to the equation:

Rab = 0 (1.3)

once the energy-momentum tensor �eld is made to vanish everywhere. At �rst blush, the appeal to

the vacuum �eld equations in this account may strike the reader as somewhat backwards. Accord-

ing to the dichotomy discussed above, it would seem that in this method Einstein and Grommer

are dealing with the uncomfortable distinction between �test energy-momentum� and the energy-

momentum sources contributing to the gravitational �eld by eliminating the sources while keeping

the test bodies. But in the discussion above, it was the energy-momentum test bodies facing con-

ceptual complications, not the �background� sources. So in their ��rst way� it might appear that

they are getting things the wrong way round, having eliminated the source energy-momentum while

retaining only the conceptually suspect test bodies.

One way of seeing why they specify the vacuum equations in this case is to consider why (from

the perspective of 1927) Einstein might have wished to employ the two sets of equations to generate

predictions.10 In particular, we might consider how he would have calculated the perihelion of

Mercury at that time. Once the Schwarzschild solutions had been discovered, it was possible to

determine the stable geodesics of the metric and from there calculate the perihelion of the orbit.

So modeling the sun (minus all the planets) with the Schwarzschild solution, we could apply this

calculation schema to the case of a Mercurial test body in such a background metric. But observe,

the Schwarzschild solution is a vacuum solution. According to our application of this model, all the

matter and energy of the Sun is to be found not in the spacetime manifold but �in� the singularity of

the Schwarzschild Solution �located� at the origin of the coordinate system. Einstein and Grommer

could consider the �rst way to be a possibility even though there is literally no place for energy-

momentum sources in the manifold, because hiding the sources in the singularity works so well in

this kind of application. Einstein and Grommer's selection of the vacuum equations in the ��rst

way� is indicative of a signi�cant shift in how Einstein in particular began to prefer to represent

matter-energy in his (as he saw it, not yet complete) theory. This attitude becomes even more

apparent in their response to the next method.

The problem with the ��rst way� of course is that rather than dissolve the aforementioned dis-

comfort with matter-�eld dualities when it comes to the general theory, it exacerbates the dichotomy.

In contrast, according to their �second way,� all matter-energy is represented via a continuous and

10See Einstein's comments on this strategy in (Einstein, 1995, p310).
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singularity free energy-momentum tensor �eld Tab. Unlike their ��rst way� method, this time they

seem to get things the right way round when it comes to the elimination of the potentially suspect

test bodies. They keep only the source matter-energy of the tensor Tab while eliminating all appeals

to test matter-energy.

After noting that as a consequence of (1.1), the total divergence of the energy-momentum tensor

vanishes, without any calculation or further explanation, they make the following claim:

If one assumes that matter is arranged along narrow �world-tubes� one obtains from this by an
elementary consideration the theorem that the axes of those �world-tubes� are geodesic lines (in
the absence of electromagnetic �elds). This means: the law of motion is a consequence of the
�eld law.11

It is di�cult to speculate which �elementary consideration� establishes their demonstration. Though

by 1927 special-case derivations of the geodesic principle from Einstein's non-vacuum �eld equations

had gained substantial proliferation, in the intervening decade since the debut of his general theory,

Einstein never published any discussion or recognition of such (apparent) redundancy. Given his

well known reputation for neglecting the literature, it is possible (though remarkable in light of his

familiarity with a number of the authors)12 that Einstein was not even aware of the abundance

of such results.13 Eddington's plausibility result in particular would appear to be paradigmatic of

Einstein and Grommer's �second way� approach, but it requires signi�cant symmetry assumptions

about the world-tubes in question in order to establish geodesic motion. Whether they were aware

of these earlier results or simply referring to their own margin calculations, for reasons that will

11Translation of quote from (Havas, 1989, p240).
12See (Havas, 1989) for detailed discussions on this point.
13Einstein's decade of silence (at least in publications) on the derivability should not be taken as evidence of his

ignorance of special-case derivations. It has been recently argued by Kenne�ck (2005) that there is evidence that he
was quite familiar with the possibility of special-case results. In particular the geodesic motion of pressureless dust
matter, which transfers to the full theory, was derived within the Entwurf theory. The easily transferred Entwurf
result in question can be understood by considering the following elementary derivation: Suppose matter takes the
form of a �pressureless dust� such that the energy-momentum tensor �eld can be written

T ab = ρUaUb

where the Ua have been normalized to be unit timelike. Then, if the covariant derivative of the left hand side vanishes
we have

0 = ∇a(ρUa)Ub + ρUa∇aUb

but contracting with Ub annihilates the second term leaving us with

0 = ∇a(ρUa).

So plugging this back into the second equation, at spacetime events where ρ 6= 0 we can divide through by ρ giving
us that the �dust matter� there obeys the geodesic equation

0 = Ua∇aUb.
In a recently uncovered fragment of notes evidently intended for his (Einstein, 1922), Einstein claims that his

�eld equations �already contains [sic.] the divergence equation and with it the laws of motion of material points,�
suggesting that he remained aware of this kind of result during the intervening decade. It should go without saying
that success in such a pressureless dust derivation does not generalize to arbitrary applications of the principle (nor
is its application in certain cosmological models above reproach).
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become evident in section 3, it is di�cult to imagine that Einstein and Grommer's unexplicated

�second way� derivations could have been terribly general, despite their tone to the contrary.

In any case, they immediately abandon this victory over the matter-�eld dualism in general

relativity, rejecting such �second way� derivations on the grounds that the use of a continuous

energy-momentum tensor �eld Tab to represent the distribution of matter-energy throughout the

manifold is suspect:

It looks as though the general theory of relativity has already overcome that annoying dualism.
This would be the case if we had already arrived at a representation of matter through continuous
�elds, or if we were at least convinced that one day we will arrive at it. But there can be no
question of that happening. All attempts in the last years to explain the elementary particles
of matter through continuous �elds are failures. The suspicion that this is ultimately not the
correct route to understanding material particles has become very strong in us.

This suspicion of the energy-momentum tensor was by no means a sudden development in Einstein's

attitude. Such comments echo cautions voiced by Einstein from the very beginning of his presentation

of the general theory. He expresses wariness about such a representation of matter-energy, for

instance, in his (Einstein, 1922) lectures as follows:

In reality, matter consists of electrically charged particles, and is to be regarded itself as a part,
in fact, the principal part, of the electromagnetic �eld. It is only the circumstance that we have
no su�cient knowledge of the electromagnetic �eld of concentrated charges that compels us,
provisionally, to leave undetermined, in presenting the theory, the true form of this tensor. From
this point of view it is at present appropriate to introduce a tensor, Tµν , of the second rank of as
yet unknown structure, which provisionally combines the energy density of the electromagnetic
�eld and that of ponderable matter; we shall denote this in the following as the `energy tensor
of matter'.(Einstein, 1922, p85)14

And in his perhaps most poetic (and well known) rejection of such a continuous energy-momentum

tensor �eld representation, in 1936 Einstein o�ers the following illustration of this attitude:

[General Relativity] is su�cient - as far as we know - for the representation of the observed facts
of celestial mechanics. But it is similar to a building, one wing of which is made of �ne marble
(left part of the equation [(1.1)]), but the other wing of which is built of low-grade wood (right
side of equation [(1.1)]). The phenomenological representation of matter is, in fact, only a crude
substitute for a representation which would do justice to all known properties of matter.(Einstein,
1995, p311)

Einstein's disparagement of the energy-momentum tensor as analogous to �low-grade wood� has to

do with its representation of matter-energy by means of the continuous tensor �eld. He describes it

as a �phenomenological representation� because such a continuum representation is so close to the

representation of matter in continuum mechanics as taking the form of a continuous medium (as is

phenomenologically apparent) rather than an atomistic or quantum form.15 Einstein's resistance to

the �low-grade wood� representation of matter energy particularly in the context of determining the

14See also his re�ection on these hesitations in (Einstein and Rosen, 1935, note 3)
15Cf. (Einstein, 1922, pp52-53)
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motion of bodies was intimately tied to his hopes for a uni�ed theory, and the �nal remark of (Einstein

and Grommer, 1927) explicitly speculates about their preferred �third way� methods leaving room

for integration with the �quantum theory of matter.�16 Though such hopes failed to come to fruition,

save for a brief wavering in 1935,17 Einstein would continue to resist the representation of matter-

energy by means of a continuous tensor �eld in favor of a singularity approach for the remainder of

his life, frequently voicing his skepticism of �low-grade wood� approaches.18

Einstein and Grommer's �third way� avoids both the �low-grade wood� representation of back-

ground sources with a continuous tensor �eld as well as suspect appeals to test bodies. Instead (in

the absence of electromagnetism), it makes use of the vacuum �eld equations alone, attempting to

hide all matter-energy along singular �world-lines� of the manifold. In the conclusion they character-

ize their result as a (special-case) demonstration that these �singular world-lines� obey the geodesic

principle, stating that �[i]f one understands masses in the gravitational �eld as singularities, then

the law of motion is fully determined by the �eld equations.�

Einstein's ultimately preferred singularity approach to the representation of matter-energy signif-

icantly in�uenced his interpretation of the geodesic principle. His adoption (and somewhat mistaken

interpretation) of the singularity method makes it clear why in his 1946 appendix to (Einstein, 1922)

he thought he could characterize the geodesic �law� as applying not just to test matter-energy but

to �arbitrarily large bodies.� By making use of the singularity results, he believed he was free to hide

as much matter-energy as he likes in the singular �world-lines,� while still (ostensibly) being able

to derive the geodicity of such curves. In section 2 we will critically review the incoherence of such

�third way� strategies, particularly in attempting to show that such �world-lines� are geodesics.19

But for now it is worth noting that though their introduction of the singularity method is initially

characterized as a representation of elementary particles, Einstein quickly shifts the auspice of his

�derived� principle to include large composite bodies such as Mercury as well.20 Einstein's dynamical

interpretation of the principle did not hinge on the ability to treat bodies obeying the principle as

arbitrarily small, nor did he see the proper interpretation of the dynamical role of the principle as

subject to the uncomfortable matter-�eld duality found in classical electrodynamics and Newtonian

gravitation. In fact, his work with Grommer strongly indicates that by 1927 he viewed the evident

16His early hopes (later dashed) that attending to the motion of bodies may yield insight into such uni�cation
have been recorded by collaborators such as Infeld (1980). For discussion see (Pais, 2005, Howard, 1990, Earman and
Eisenstaedt, 1999).

17This wavering was in response to a persistent challenge posed in his correspondence with Ludwik Silberstein
(see (Havas, 1993) for a detailed review of this controversy) and only lasted for a period of months surrounding his
publication of (Einstein and Rosen, 1935).

18See e.g. (Einstein et al., 1938, Einstein and Infeld, 1940, 1949)
19To avoid a tempting con�ation, note that Einstein and Grommer's �three ways� are distinct from what I will below

(in sections 2,3, and 4) classify as the three general families of deductions. Though the method of �singularity proof�
of section 2.1 uses Einstein and Grommer's �third way� strategy, both the 0th-order proofs and limit operation proofs
of sections 3 and 4 clearly count as �second way� strategies according to the Einstein and Grommer classi�cation,
breaking any compelling analogy.

20Moreover, early post-Newtonian con�rmations of the two-body motion of stellar objects is often credited back to
the work in (Einstein et al., 1938) and its successors, which likewise adopts the singularity method.
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derivability of the principle by means of the singularity method as a signi�cant triumph in this

respect. In his view, by making use of such singularity methods, Einstein could allow the geodesic

principle to play a dynamical role for actually massive bodies without (any longer) having to suc-

cumb to such dualism. Unfortunately, singularity proofs, both those using Einstein's methods as

well as those using more sophisticated methods, ultimately fail to establish the geodesic principle in

a way that is compatible with his �eld equations.

2 Singularity Proofs

The family of proofs which I will refer to as singularity proofs really consist of two distinct subclasses.

The �rst subclass follows Einstein and Grommer's original �third way� method in which they attempt

to use true singularities in the manifold in order to represent matter-energy. These singularities in

the manifold are then (somehow) supposed to be shown to be geodetic. With the mathematical

advances in distribution theory, these true singularity proofs were succeeded by the second subclass,

which attempts to leave the metric well de�ned at the location of the geodesic following particles by

coupling it to energy-momentum tensor distributions. In the next two subsections, we will consider

each of these in turn.

2.1 The Geodesic that Wasn't There

As already hinted, the most perspicuous di�culty with Einstein's method of deducing the geodesic

principle for particles represented as singularities in vacuum solutions is that (strictly speaking) the

supposed path of such geodesic following particles is not even in the spacetime manifold. In (1995,

p12) Earman poetically summarizes this �perplexing� strategy with the explanation that �to speak

of singularities in gab as geodesics of the spacetime is to speak in oxymorons.� The proponent of such

a �vacuum-cum-singularity� technique is faced with the rather paradoxical challenge of explaining

in what sense we can say that a singular curve (ostensibly constituted by the missing points in

the manifold) is actually a geodesic of the spacetime from which it is absent. Not only is no

metric de�ned at the singularity, but technically there are not even any spacetime events there:

the �geodesic� doesn't exist. By eliminating the �low-grade wood� representation of matter-energy

sources, Einstein dodged the di�culties associated with using continuous representations of energy-

momentum that might restrict the generality of the principle (see section 3 below) but only at the

cost of having to justify the geodicity of a metric-less hole in spacetime.

Though Einstein and Grommer avoid elaborate consideration of this challenge, their strategy

might (brie�y) be characterized as follows: splitting the �rst order perturbations of the Minkowski

metric in the neighborhood of the singularity into an �exterior� (γ(ext)αβ ) part resulting from sources

�far� from the singularity and an �interior� (γ(int)αβ ) part resulting from the ostensible presence of the

body �at� the singularity, they then argue that in their chosen coordinate system, γ(ext)αβ obeys the

12
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constraint that

∂γ
(ext)
44

∂xµ
= 0

along coordinates of the x4-axis where they locate the singularity.21 The suggested implication then

is that for a second singularity-free spacetime, whose metric is given by a γ(ext)αβ correction to the

Minkowski metric, the x4-axis (not in the domain of the �rst metric) is a geodesic. They seemingly

take for granted, however, that we must associate the singular boundary in the former spacetime

with the corresponding ��lled in� points along the x4-axis in the latter spacetime, perhaps due to the

appearance of an embedding relationship suggested by the similarity in the coordinatizations of the

respective spacetimes. Unfortunately, the claim that Einstein and Grommer's second singularity-

free spacetime can tell us something about the nature of the singularity of the original spacetime is

spurious. A similarity in the coordinates used to refer to the singularity in one spacetime and the

coordinates of a second spacetime without a singularity at those coordinates is not enough to infer

that the second spacetime is a ��lling in of the singularity.�

In an attempt to vindicate the vacuum-cum-singularity strategy, Infeld and Schild concede that

�[c]learly, the statement that a singular line is (or is not) a geodesic has no meaning�(Infeld and

Schild, 1949, p410).22 They proceed to argue that the geodesic principle might nonetheless be proven

by means of the vacuum-cum-singularity strategy, if it is once again asserted that the principle is

(at least) germane for a certain kind of representation of test particles:

Physically, we can consider a sequence of particles, with masses tending to zero, and a corre-
sponding sequence of gravitational �elds. In the limit m = 0 we obtain a limiting world line
along which the limiting gravitational �eld, the background �eld, is continuous. We must think
of the background �eld as being assigned a priori ; the geodesic �postulate� refers to the limiting
world line in this continuous �eld and is thus meaningful.

Recall, Einstein claimed (as late as 1946) that the vacuum-cum-singularity method can be used

to derive the postulate for �arbitrarily large masses.� The move of restricting their geodesic result

only to this speci�c variety of test particles, which we will refer to as Infeld-Schild or IS-particles,

constitutes a strategic retreat from Einstein's position. Infeld and Schild's derivation might hence be

thought of as an attempt to embrace case (ii) considered in section 1.2 by trying to justify why the

e�ects of the �test� body can be ignored. By restricting their results to these IS-particle sequences

of spacetimes, Infeld and Schild were forced to limit their result to particles of arbitrarily small

21Of course, technically the metric is not well de�ned at those coordinates, but they claim to avoid this problem
by stipulating that, since γ

(ext)
αβ is generated by �external� sources, it should be regular in the neighborhood of the

singularity. The (suspect) intimation being that for this reason it can be unproblematically extended across the
coordinates of the singularity.

22Infeld, Einstein's long time collaborator on the motion of bodies, became one of the principle champions of
singularity methods (both the vacuum-cum-singularity method and then later the distributional method) well after
Einstein's �nal contributions to the problem (Einstein et al., 1938, Einstein and Infeld, 1940, 1949, Infeld and Schild,
1949, Infeld, 1954, 1957, Infeld and Plebanski, 1960).
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mass but now had the chance of explaining why we can associate the geodicity of a curve γ of the

�background �eld� with the character of the singularities in spacetimes with m 6= 0: The background

spacetime is a �limit� of the singular spacetimes, and the coordinates in each of these spacetimes

demarcating the singularity are the same as those used to locate γ in the background spacetime.23

The limiting procedure Infeld and Schild use is fatally �awed. Though there is a coordinate

similarity of the �limit� spacetime and the singular spacetimes (speciously) suggesting an embedding

relation, the singularity will exist for every one of the m 6= 0 spacetimes in the run up to the

supposed �limit.� For every spacetime short of the background one, the �behavior at γ� will remain

unde�ned, obscuring the sense in which the singular spacetimes are �approaching� the background

one. Again, there is no rigorous sense in which the singular behavior of the sequence of spacetimes

converges to a non-singular background spacetime, making references to �the limiting behavior�

literally nonsensical.24

Infeld and Schild's attempts to derive the geodicity of singularities in the manifold by considering

perturbations in the boundary conditions that could be taken to indicate presence of arbitrarily

small matter-energy located at the singularity ultimately failed. Though it is possible to use surface

integral techniques, integrating around the singularity to suggest that there is (something like)

matter-energy �hidden� so to speak at the unde�ned (singular) boundary region, there is no way of

rigorously discussing what goes on �at the singularity� of such vacuum solutions, and in particular,

no way of inferring geodicity. Einstein and Grommer's �third way� vacuum method hence turns out

to be unsalvageable even with a retreat to the arbitrarily small IS-particles.

By 1954, even Infeld had turned to a kind of compromise between the �second way� appeal to

a non-vanishing energy-momentum tensor �eld and the �third way� attempts to concentrate matter

energy onto a world-line where the metric diverges (Infeld, 1954, 1957). In this method Einstein's

�low grade wood� is replaced (metaphorically speaking) by a kind of sturdier �pressure treated wood�

through the introduction of energy-momentum tensor distributions.

2.2 Pressure Treating the Wood: Distributional Energy-momentum

The idea behind distribution proofs of the geodesic principle is to concentrate all the matter-energy

of a (would-be) geodesic following particle onto a one-dimensional (often timelike) curve γ. Once

this is done, the task is to deduce from Einstein's �eld equations (or a generalization of them)

that γ must be a geodesic. In contrast to the singularity proofs of the last section, proofs using

distributional energy-momentum do not use the vacuum �eld equations (1.3) ultimately preferred

by Einstein. Instead a non-vanishing energy-momentum tensor distribution on the right side of the

equation is used to represent the particle. In a sense then, distribution proofs are similar to Einstein

23Actually, unlike Einstein and Grommer, they attempt to use (proto-)geodesic completion methods to covariantly
specify the singular �points.� Such completion methods unfortunately remain insu�cient.

24There may not even be a pathology-free (e.g. Hausdor�) way to �ll in the singularity (see (Geroch et al., 1982)).
See (Torretti, 1996, pp178-9) for further discussion of this fallacy.
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and Grommer's so-called �second way� demonstrations in that, like those proofs, they appeal to

�eld equations coupling the geometry of the manifold (via the Einstein curvature) to non-vanishing

energy-momentum sources.

Unlike �second way� demonstrations, however, distribution proofs do not (strictly speaking) make

use of Einstein's original �eld equations (1.1). In �second way� demonstrations, the objects equated

(Gab and Tab) are typically supposed to be smooth tensor �elds de�ned on the manifold. In distribu-

tional (singularity) proofs, on the other hand, the energy-momentum �eld on the right hand side of

the equation is a distributional object in some neighborhood of γ: assuming no electromagnetic con-

tributions in that region, its support is restricted to a measure-zero region (i.e. the one-dimensional

region γ). Yet in order to attribute non-vanishing matter-energy to the �particle,� we do not want

integrals of the �eld in that region to vanish. Hence, such proofs make use of an energy-momentum

tensor distribution that is de�ned by its action on a space of well behaved (mathematical) �test�

objects.25 The de�nition of the space of tensor distributions o�ers a natural extension of the space

of locally integrable tensor �elds in a way suggesting that we can �integrate� certain distributions

concentrated on measure-zero regions without the integral necessarily vanishing (details are reviewed

in appendix A).

In order to conduct a distributional derivation of the geodesic principle from �the� �eld equa-

tions of general relativity, Einstein's original equations (1.1) must (at least implicitly) be modestly

generalized by saying:

Gab = Tab as tensor distributions (2.1)

I.e. ifM is an orientable manifold, for all φab ∈ T 2
0 (M) with compact support:

ˆ

M

Gabφ
abvol =

ˆ

M

Tabφ
abvol (2.1a)

where vol can be any volume element de�ned onM.26 Distributional proofs hence constitute a kind

of compromise between Einstein and Grommer's �second� and �third� way methods of derivation.

Equation (2.1) is not a vacuum equation, but rather than taking a �low grade wood� approach to

representing the matter-energy of the particle as a continuously distributed �eld, it (in a sense)

allows us to specify the �particle's� four-dimensional extension as being precisely restricted to the

world-line (not tube) γ.

25The use of the term `test' in the context of distribution theory is only incidentally similar to the use of the term to
refer to �test bodies.� The former are well behaved sets of mathematical objects on which distributions act, the latter
(as already discussed) refers to a kind of theoretical representation signifying entities that react to physical �elds but
do not act as (signi�cant) sources of those �elds. Hence, there is no room for the two usages to be equivocated despite
the unfortunately abundant opportunity for confusion.

26Since smooth tensor �elds T 0
2 (M) are locally integrable and so have a natural embedding in the space of tensor

distributions D′02(M), using variational techniques, this relation trivially entails equation (1.1) in cases where the
respective �elds are smooth (see appendix A).

15



Forthcoming: Studies in History and Philosophy of Modern Physics

The earliest (implicit) use of distributional energy-momentum in the problem of motion in a rela-

tivistic context can be read into the derivations of the geodesic principle made by Myron Mathisson.27

Infeld did not trade in Einstein's vacuum-cum-singularity method for distributions until decades later

in his (Infeld, 1954, 1957, Infeld and Plebanski, 1960).28 Even still Infeld (1957, p399) characterized

his reluctance about such a shift by noting that though it is technically �unfaithful� to �Einstein's idea

of not using the energy momentum tensor,� the introduction of a distributional energy-momentum

tensor can be exculpated by the fact that it �tremendously simpli�es the entire deduction of the

equations of motion.�

The key to distribution proofs involves establishing a variational principle for integrals of the

energy-momentum tensor for which, in the special case of energy-momentum tensor distributions

concentrated on a world-line, the geodicity of the path is entailed. Speci�cally, assume one is able

to establish that for all smooth co-vector �elds ξb with compact support:

ˆ

M

T ab
g

∇aξbvolg = 0 (2.2)

where volg is the volume element for some metric gab and
g

∇a is the derivative operator compatible

with gab. It follows from (2.2) that if T ab has (distributional) support restricted to a timelike curve

γ in some neighborhood around it, then γ is a geodesic of gab.29 So letting T ab represent a point

particle whose world-line is given by γ in that region of the manifold, we might interpret the result

as saying that �point particles can only have a geodesic world-lines.�

Since condition (2.2) is su�cient for such a distributional representation of a point particle to

follow only geodesic world-lines, it is worth considering how such a variational principle can be

established in general relativity. Heuristically, we might �rst note that for smooth tensors, it is (in a

sense) a purely mathematical consequence of the Bianchi identities that the total divergence of the

Einstein tensor de�ned by (1.2) vanish (i.e. that ∇aGab = 0). Hence, Einstein's original equations

(1.1) immediately give us that

g

∇aT ab = 0 (2.3)

referred to as the conservation condition, which holds for any smooth solution (M, gab, T
ab) to (1.1).

27As we will discuss in section 3, Mathisson's technique involved deriving a variational principle for the integral of
an expansion (in gravitational multipole moments) of the energy-momentum tensor �eld, from which motion can then
be deduced. In particular, in (1937, 1940) Mathisson casually shows that applying the principle only to the lowest
order term in the expansion (because such a tensor �eld might be representative of a spinless �point particle�) entails
the geodesic equation. Though Mathisson does not make explicit use of distributions in these 0th-order derivations,
such an appeal can naturally be read into this technique as was done later by Havas and Goldberg (1962). See also
(Tulczyjew, 1959) for a distributional reconstruction of Mathisson's work.

28Infeld and Mathisson were colleagues in Poland when Mathisson had been developing the work from which his
derivations follow. Infeld, who was familiar with the relevant papers, later conceded that �at the time� he had not
understood Mathisson's (signi�cantly more advanced) methods (Infeld, 1968, p204).

29The full proposition is given with a proof in appendix B .
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Condition (2.2) follows for such smooth solutions from (2.3) by simply contracting with arbitrary

test co-vector �elds ξb and then integrating over the entire manifold.30

The problem is that we want (2.2) to hold not just for smooth solutions to (1.1) but for distri-

butional solutions to (2.1) as well. And in fact, the Bianchi identities do not automatically hold for

distributional Einstein tensors for every solution of the generalized �eld equations (2.1).31 Hence,

the conservation equation (2.3) does not automatically follow in the generalized case of tensor dis-

tributions. But both Mathisson's implicit distribution result and Infeld's explicit one overlook this

nuance, con�ating the distinction between solutions to (1.1) and (2.1) and then inferring that (2.3)

(and so (2.2)) automatically follows even for distributional sources.32

In 1974, Jean-Marie Souriau developed his own �proof� of the geodesic principle by making

use of distribution techniques, which again (essentially) take advantage of condition (2.2). Unlike

earlier attempts, however, Souriau justi�es the condition not through the Bianchi identities, but

by (rather ingeniously) formulating a �variational� method of expressing the condition that the

�eld equations must be generally covariant (now referred to in the literature as Souriau's (local)

covariance condition)(Souriau, 1974).33 In the case of the generalized �eld equations (2.1), such

Souriau covariance easily reduces to condition (2.2).

Though Souriau's method is able to avoid the particular invalidity of his predecessors' arguments,

his result is faced with an even more general threat to the use of distribution techniques in Einstein's

theory. In order to understand what goes wrong, observe that condition (2.2) does not just express

a restriction on T ab, but rather it expresses a restriction on the energy-momentum tensor �eld (or

distribution) in relation to a metric gab. Hence, condition (2.2) (and Souriau's subtly more general

covariance condition) de�ne a subset of ordered pairs of symmetric tensor �elds or tensor distributions

(gab, T
ab) de�ned on a manifoldM.34 Let us refer to such pairs as Souriau pairs. Of course, solutions

to the generalization of Einstein's �eld equations (2.1) can also come in ordered pairs de�ned onM.

And Souriau's covariance principle is supposed to establish that for any solution (gab, T
ab) to (any)

generally covariant �eld equations (such as (2.1)), (gab, T
ab) will constitute a Souriau pair. So the

logic works as follows:

30In fact, as discussed in appendix A, if the connection is smooth, the (covariant) derivative of a distributional T ab

is calculated precisely by negating the left side of equation (2.2). Hence, condition (2.2) is the natural generalization
of the classical conservation condition (2.3) and for this reason is sometimes referred to as the generalized conservation
condition.

31Most importantly, they do not automatically hold for the important class of GT-regular solutions discussed in
appendix C (see (Geroch and Traschen, 1987, p1020)).

32See (Infeld, 1957, �4) and (Mathisson, 1937, �2). See also the explicitly distributional reconstruction of Mathisson's
demonstration in (Havas and Goldberg, 1962, �2). This equivocation can still occasionally be found in introductory
texts o�ering what might be interpreted as �heuristic� derivations of the principle (see e.g. (Hobson et al., 2006,
p188-9)).

33The application of Souriau's local covariance condition was further developed in both relativistic and non-
relativistic contexts in (Guillemin and Sternberg, 1978, 1990, Sternberg, 1978, 1985b,a, 1999) and (Duval and Künzle,
1978, 1984) respectively.

34Moreover, in the context of linear distributions, gab must be non-degenerate, and (at minimum) it must have a
smooth connection wherever T ab behaves singularly (as a distribution).
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1. By Souriau's covariance argument, if (gab, T
ab) is a solution to (any) generally covariant �eld

equations (such as (2.1)), then the pair satis�es condition (2.2).

2. And by proposition 4,35 if (gab, T
ab) satis�es condition (2.2), and T ab is concentrated onto a

timelike world-line, then it must be a geodesic of gab.

3. Hence, if (gab, T
ab) is a solution to (2.1), and T ab is concentrated as a distribution onto a

timelike world-line, then it must be a geodesic of gab.

Though this argument is valid, the antecedent of line 3 renders the conclusion (essentially) vacuous.

The reason for this was ultimately demonstrated by Geroch and Traschen (1987, Thm. 1) in which

they show that the only reasonable36 solutions gab to the equations (2.2) cannot have sources (T ab)

with support concentrated on a one-dimensional curve.37 Hence, there is no (reasonable) distri-

butional solution (gab, T
ab) to Einstein's generalized �eld equations (2.1) such that T ab can also be

concentrated onto a timelike world-line.

Geroch and Traschen's theorem hence serves as an e�ective death nail for attempts to deduce the

geodesic principle from Einstein's �eld equations by using singular representations of one-dimensional

�point� particles. As a result we seem to be left with the following option: We could conduct

deductions from inexact (namely linearized) �eld equations.38 It is possible to deduce exact geodesic

motion in this case, but not from Einstein's actual �eld equations. Alternatively, we might move to so

called �second way� proofs attempting to deduce geodesic motion from Einstein's (non-vacuum) �eld

equations (1.1) using smooth energy-momentum tensors with four dimensional support to represent

our geodesic following objects.39 In the next two sections we will review the major strategies that

have been used in such �second way� deductions. As we shall see, by moving to a context of extended

representations of massive bodies, much more freedom in the behavior of the object is introduced,

ultimately leading to the deduction of non-geodesic motion in generic cases. It will turn out that

these additional modes of freedom can be later reduced by appealing to certain limiting cases, but

this has the detrimental result of either bringing us back to the context of singularity proofs, or to

35See appendix B
36Recall, according to (2.1) the energy-momentum tensor is equated with the Einstein curvature tensor, and the

curvature tensor in turn depends on the metric and its derivatives. Hence, the metric and its derivatives must meet
certain minimal conditions on their integrability in order for �integration� (i.e. the action) of the Einstein tensor (and
so the energy-momentum tensor) to make sense as a well de�ned tensor distribution. Geroch and Traschen de�ne a
class of metrics now called GT-regular metrics designed to meet such conditions so that the energy-momentum tensor
distributions determined by these metrics can make sense. See appendix C for the precise de�nition of this class of
metrics and a brief discussion of why this class in particular constitutes the appropriate class of �reasonable solutions�
to (2.2).

37They prove that distributional sources must have support of codimension no greater than 1 inM.
38The Geroch-Traschen proof crucially depends on the non-linear dependence of Einstein curvature on the metric.

See appendix C for discussion.
39A third possibility involving neither the original �eld equations (1.1) nor the (linear) distributional generalization

(2.1) which might be developed is considered in Appendix C (see note 64).
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limiting representations in which (contrary to the canonical account) the �gravitating� body simply

vanishes.

3 0th-Order Proofs

Einstein's �eld equations have an initial value formulation. Under suitable conditions, this problem

can be well posed so that we might use the �eld equations to deduce how a given tensor �eld de�ned

on a particular hypersurface evolves over time (viz. the domain of dependence of that hypersurface).

Though this works in principle, such a program is far more easily said than done in most cases and

often numerically rather than analytically. As a consequence if physicists wished to predict, say, the

motion of celestial bodies, it was more practical to �gure out a way to approximate the structure of

the bodies and the metric �eld a�ected by their presence by expanding both of these �elds through

various procedures and then dropping some of the �higher order� terms.40 After the respective �elds

have been suitably simpli�ed in this way, the physicist can take steps to determine the expected

�approximate� paths of such bodies. For the most part the resulting paths are not geodetic. However,

when all of the higher order terms of the tensor �eld representing the energy-momentum of a body

(and the tensor �eld representing the body's e�ect on the metric) are dropped, it is the case that

one is able to �deduce� geodicity from the reduced equations. Since these proofs share the feature

that all higher order terms accounting for the energy-momentum of the body (and its e�ects on the

metric) must be dropped in order to ensure geodicity, this class of deductions will be referred to

as 0th-order proofs. The overwhelming majority of geodesic �derivations� in the literature can be

classi�ed as belonging to this family of proofs. The explanation for this pattern is entirely pragmatic:

expansion methods are an e�cient way of generating approximations of the motion of bodies under

the in�uence of relativistic e�ects within particular margins of error.41 So, 0th-order proofs are quite

abundant in the literature, but ironically only thanks to the desire for approximations of motion

accurate to degrees higher than 0th-order, the lowest order geodesic deductions being o�ered as a

kind of afterthought or perfunctory check.42

By far, the earliest concerted attempts to approximate motion in relativity theory by expanding

the energy-momentum of a body can be found in the works of Mathisson (1937, 1940). To understand

the sense in which Mathisson �expanded� the energy-momentum tensor, consider a (timelike) world-

40Aside from historical computational hurdles, there exists a further (epistemologically motivated) reason for why
such approximation techniques might be advantageous. Namely, we might want to have a method of identifying the
bulk behavior of general massive bodies, which may be obfuscated by attending every detail as in the initial value
formulation. This further rationale will play an important role in the considerations of section 5. For now, however,
we will delay discussion of this epistemological motivation.

41Bursts of progress in such techniques often appear to be motivated by concomitant instrumental advances de-
manding further accuracy. For example the advances in approximating �self-force� e�ects in the last dozen years seem
to have been originally motivated by the promise of gravitational wave detectors (see (Quinn and Wald, 1999)).

42Because of such abundance, in this section I will not attempt a comprehensive review of all major attempts.
Instead, I will focus only on a few examples paradigmatic of the general methods of expansion techniques recovering
geodesic motion (at the lowest order).
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tube W in a relativistic spacetime (M, gab).43 We then consider a symmetric (locally integrable)

tensor �eld T ab with support contained in W. This tensor �eld can be interpreted as representing

the energy-momentum of a body moving along in the world-tube W. At this point, Mathisson

takes advantage of the fact that we can understand the properties of such a �eld by considering the

following linear operation de�ned on arbitrary smooth tensor �elds φab also compactly supported in

W:

< T ab, φab >7→
ˆ

M

T abφabvolg (3.1)

Picking an arbitrary smooth timelike curve I � s 7→ γ(s) ∈ W parametrized by proper time s, and

letting Σ(s) be a local foliation ofW parametrized by s and meeting certain orthogonality conditions

with respect to γ, Mathisson proceeds to show that by integrating across the Σ(s)'s the action (3.1)

can be equivalently approximated by a series of integrals along γ as follows:

ˆ

M

T abφabvolg =

ˆ

γ[I]

(
I
0

ab + I
1

abm1∇m1 + I
2

abm1m2∇m2∇m1 + ...

)
φabds ∀φab (3.2)

Where the tensor �elds Iabm1...mn satisfy certain symmetry conditions and orthogonality conditions

with respect to γ. These tensor �elds represent the 2n-gravitational-multipoles of the body T ab. The

�nal move to arrive at Mathisson's variational equation of motion is to let φab = ∇bξa for arbitrary
smooth, compactly supported co-vector �elds ξa. But in these cases, the left side of (3.2) takes the

form of the left side of the generalized conservation condition (2.2), which as we discussed above

is equivalent to the traditional conservation condition for a smooth T ab and metric. Based on this

reason, Mathisson sets the left side of (3.2) to 0, giving us the �nal form of his variational equation

of motion:

0 =

ˆ

γ[I]

(
I
0

ab + I
1

abm1∇m1 + I
2

abm1m2∇m2∇m1 + ...

)
∇bξads ∀ξa (3.3)

Mathisson was able to use this variational equation, expanded to the �rst (dipole) and to the second

(quadrupole) terms to generate explicit approximate equations of motion for a �small test body�

with angular momentum and spherical asymmetries. These equations were (much later) derived in

the better known (Papapetrou, 1951), using hyperbolic coordinates and somewhat similar expansion

techniques, and are sometimes referred to as the Mathisson-Papapetrou equations. In the late 60's

43Since our purpose in this section is primarily illustrative, in the following discussion I will assume that the
spacetime is simply connected, orientable and that the metric is smooth. Some of these constraints might be relaxed,
but as discussed above in section 2.2, doing so can lead to serious complications. Though Mathisson's work was quite
sophisticated for his time, there are a number of mathematical ambiguities in his original formulation that I will not
dwell on here, especially since such infelicities were eventually recti�ed by Dixon (see below). For example, the sense
in which W is timelike is made precise by Dixon through a construction that involves joining a particular set of local,
convex, disjoint, hypersurfaces with compact closure that are normal to a timelike �baseline� curve.
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W. G. Dixon took up the Mathisson project, eventually producing a fantastic series of papers

Dixon (1964, 1967, 1970b,a, 1973, 1974, 1975), which rigorously put what he called the multipole

approximation technique on fully maturated mathematical footing.

The geodesic result (already mentioned in section 2) comes when we drop all higher order terms

in the expansion of equation (3.3) to get the variational constraint:

0 =

ˆ

γ[I]

I
0

ab∇bξads ∀ξa (3.4)

From this constraint one can then deduce that if I
0

ab 6= 0 on γ[I] then the curve is a geodesic of

the metric compatible with the connection ∇a.44 So since (ex hypothesi) I
0

ab is supposed to be the

only (signi�cant) contribution to the energy-momentum of the body and our initial choice of γ was

arbitrary, we can think of this result as telling us that certain �suitable�45 timelike γ's contained

in such a body must be geodetic. The victory is rather Pyrrhic, however, because approximations

involving even one non-vanishing multipole term will no longer describe geodesic motion, and instead

predict a kind of �wobbling� behavior inside W.

In order to dodge this Pyrrhic foil, we might search for ways to justify the use of constraint (3.4)

as an exact (or at least stable) description satisfying the canonical interpretation. One possibility is

to justify the constraint by insisting that if the body is a point particle with only timelike extent, then

the particle's lack of spatial extent means that all higher order multipole terms must vanish, making

the only curve left in the support of the point particle relevantly �suitable� and hence geodetic. This

approach validates the inference to constraint (3.4) from Mathisson's full variational equation (3.3),

but it has the unfortunate side e�ect of turning the deduction into a variety of singularity proof

which as we saw in section 2 is incoherent with Einstein's �eld equations.

A second strategy is to accept that the body has spacelike extent, but then suggest that (3.4)

holds of a certain �conceivable� type of material body, namely, one that is perfectly symmetrical

about some timelike γ with respect to every higher order multipole moment. Though by construc-

tion such a representation would reduce the equation (3.3) to constraint (3.4), the proof is far from

general. Such a �conceivable� body is not possible according to just about any serious theory of mat-

ter considered by physicists. For example, such extreme symmetry constraints would require that

the body could not be composed of atomic or molecular constituents for such inhomogeneities would

necessitate spherical asymmetries in the distribution of the body's energy-momentum.46 Moreover,

44A deduction (somewhat di�erent from that of Mathisson's original proof) is contained in the proof of proposition
4 in appendix B (condition (3.4) is equivalent to condition (B.2), which in the course of the proof is shown to entail
geodicity, when we also assume that the body is non-vanishing on γ).

45The suitable γ must be a curve with respect to which the higher order terms nI
abm1...mn can be dropped.

Intuitively this can be thought of as a timelike axis of symmetry with respect to all of the multipole moments of the
body. As we shall see, when we expect perfect geodicity (i.e. that all the higher order terms can be dropped because
with respect to such a γ axis they actually vanish) this �suitability� condition becomes prohibitively strong.

46The body would need to consist of something like the metaphysically curious homogeneous material famously
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such restrictions necessary to generate geodesic motion are highly unstable under perturbations.

Any change in the angular momentum (or any other multipole moment) would break the symme-

try needed to exactly recover constraint (3.4). Though we might wish to identify these perfectly

symmetrical constructs as a kind of �idealization� in Einstein's theory, the idealization is degenerate

with respect to recovering precise geodesic motion: the path becomes non-geodetic under arbitrarily

small perturbations of the energy-momentum.47

Before moving on to the �nal class of geodesic deductions, it is worth pointing out that by invok-

ing a multipole approximation of the energy-momentum, the body considered is no longer coupled to

the metric in accordance with Einstein's equations (1.1). In other words, multipole approximations

(even ones that do involve some higher order terms such as the Mathisson-Papapetrou equations)

are guilty of adopting test body approximations that have not been explicitly justi�ed. They ignore

the so called �back reaction� or �self-force� e�ects that the body has on the metric.48 Hence, when

considering the path of extended bodies (i.e. �second way� deductions) we must not only worry

about correcting for the possibility of unjusti�ed test body approximations facing earlier proofs, but

now must also manage the �spin e�ect� corrections to geodesic motion resulting from the internal

degrees of freedom available to an energy-momentum tensor with spacelike extent. In the next sec-

tion we will consider the �nal family of deductions, which attempts to manage such deviations from

geodicity by conducting certain limit operations. As we shall see, it is only by taking limits that

appropriately manage both of these sources of non-geodicity that success is achieved. Unfortunately

for the canonical view, this will also mean that the body must vanish completely before we can

recover such geodicity.

4 Limit Operation Proofs

The strategy behind the �nal family of limit operation proofs is to avoid the complications aris-

ing from investigating the motion of �true� point particles with extent restricted precisely to one-

dimensional timelike curves by instead considering sequences of energy-momentum representations

of particles whose spacelike extent is con�ned to increasingly smaller neighborhoods of those curves.

We can think of these in�nite sequences of tensor �elds as representing particles with arbitrarily

small (but non-zero) spacelike extent in the sense that no matter how �narrow� we might want the

considered by Saul Kripke. In the context of Kripke's spinning disk, it is ironic that one of the constraints that we
are explicitly placing on such a material body is that it would have to be completely �spin free� in the speci�c sense
that 1I

abm1 = 0.
47Of course, as I shall argue below, this degeneracy only exists if we want to recover exact geodesic motion in

accordance with the canonical interpretation. If alternatively we want to weaken our interpretation, as I will suggest,
it may be possible to eliminate (or at least avoid) this kind of degeneracy.

48Signi�cant advances have been made in (Mino et al., 1997, Quinn and Wald, 1997, Gralla and Wald, 2008, Pound,
2010), which approximate the consequences of �self-force� e�ects as �rst order perturbations in the background metric.
Though these methods are not without their own di�culties (particularly when it comes to justifying what is referred
to as the �Lorentz gauge relaxation�) because these self-force e�ects lead to violations of geodesic motion, I shall not
elaborate on these complications here. For a nice introduction to these issues see (Wald, 2011).
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�particle� to be, eventually the sequence will list tensor �elds with support entirely con�ned in such a

narrow region. The strategy then is to show that if such a sequence of �elds can be constructed for a

given curve γ, then γ must be a (timelike) geodesic, allowing one (roughly) to claim that �arbitrarily

small particles must follow (timelike) geodesics.�

4.1 Geroch-Jang Particles

In contrast to the overabundance of 0th-order derivations, the class of limit proofs consists primarily

of two elegant results.49 The �rst result by Geroch and Jang (1975) considers sequences of ostensi-

ble energy-momentum tensor �elds of ever narrowing support. More precisely, Geroch and Jang's

theorem can be formulated as follows:

Theorem 1. (Geroch-Jang, 1975) Let γ : I → M be a smooth curve in Lorentzian spacetime

(M, gab). Suppose that given any open neighborhood O of γ[I], there exists a smooth symmetric

tensor �eld Tab de�ned onM such that for all points p ∈M:

1. Tab has non-vanishing support contained in O,

2. For all timelike ξa: Tabξ
aξb ≥ 0 and if Tab 6= 0, then (Tacξ

a)
(
T cbξ

b
)
> 0 ,

3.
g

∇aT ab = 0,

then γ[I] is the image of a timelike gab-geodesic.

In order to illustrate the signi�cance of these conditions, consider any set of nested neighborhoods

(Oi)i∈N that becomes arbitrarily narrow around the curve γ as i → ∞. Next consider a sequence

of tensor �elds (T
i
ab)i∈N such that each T

i
ab satis�es conditions 2 and 3, and for each i, T

i
ab satis�es

condition 1 for the neighborhood Oi. Let us refer to such a sequence of tensor �elds (T
i
ab)i∈N as

a Geroch-Jang or GJ-particle. The existence of a GJ-particle sequence for an arbitrary sequence

of nested neighborhoods tightening around γ is equivalent to the satisfaction of the conditions of

theorem 1.

Let us consider what each of the conditions says about GJ-particles. First, condition 1 estab-

lishes the arbitrary smallness characteristic of GJ-particles. Since the nested neighborhoods (Oi)i∈N
49The self-similarity limit operations done by Gralla and Wald (2008) can (in part) also be classi�ed as an enhance-

ment of these limit proof strategies, thought they then proceed to employ some of the expansion techniques discussed
in section 3. Hence, (Gralla and Wald, 2008) appears to constitute a kind of borderline case between the two families.
The work done far earlier by Robertson (1937) might also be considered a kind of proto-limit operation proof attempt,
in that he follows the general strategy of considering the limiting behavior of an extended �corpuscle� as the spatial
extent goes to 0. In contrast, the limits taken by Infeld and Schild (1949) in the �IS-particle� constructions discussed
in section 2.1 would determinately not count as a member of the family of limit operation proofs we are considering in
that (aside from the ill-de�ned convergence issues already discussed) for each of the sequence entries the test body is
represented by a singularity rather than a smooth tensor �eld representation of an extended object. This distinction
between considering the limiting behavior of sequences of extended bodies and merely attempting to appeal to limits
in the course of the demonstration is signi�cant, and the former more restrictive characteristic is required for our
present classi�cation (cf. Havas (1989, p254) who seems to overlook the signi�cance this distinction).
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become arbitrarily narrow, no matter how tight around γ we demand that the world-tube of the

particle be con�ned, T
i
ab will eventually (for su�ciently large i) stay that close (or closer). If we

interpret the symmetric �eld T
i
ab as an energy-momentum tensor, then condition 2 says that from

the perspective of any observer the matter-energy in that part of the universe (a) is non-negative

and (b) only �ows in timelike directions (it doesn't go as fast or faster than the speed of light). So,

roughly speaking, the theorem is only telling us about the behavior of a certain kind of body that

is of positive mass (as opposed for example to photons, which we don't expect to follow timelike

geodesics anyway or the kind of body we might wish to associate, say, with non-classical negative

energy solutions). Hence, such conditions restricting the kind of matter-energy that can constitute

a GJ-particle appear appropriate for the sort of material body about which we expect the princi-

ple to be relevant. However, it is worth observing that condition 2 does not follow from Einstein's

�eld equations, and hence constitutes an additional assumption that must be obeyed in order to get

Geroch and Jang's geodesic result.50

Condition 3 is the familiar conservation condition (2.3), which (as discussed in section 2.2) follows

directly from Einstein's original �eld equations for all smooth solutions. Condition 3 is the primary

reason why one might say that theorem 1 constitutes a �deduction� of the geodesic principle from

Einstein's �eld equations. If (gab, T
i
ab) were a solution to Einstein's �eld equations, then condition 3

would be automatically satis�ed for T
i
ab. This might allow us (roughly) to characterize Geroch and

Jang's result by claiming that �arbitrarily small bodies of positive mass that obey Einstein's �eld

equations must follow geodesics.�51

Unfortunately, this claim reveals a signi�cant complication. Assume that the T
i
ab represent the

entire contribution to the source side of Einstein's �eld equations (1.1) in their respective neighbor-

hoods of γ. In this case, they each should be having a non-zero perturbative e�ect (ε
i
ab) on the metric

of the spacetime manifold. The problem is that since the support of the GJ-particle is non-vanishing

but continually shrinking down in spacelike extent, this non-zero perturbative e�ect ε
i
ab will not be

stable in every region of spacetime even for su�ciently large i. That is to say, if solutions to the

50A recent discussion of this logical independence can be found in (Malament, 2009), along with a demonstration
that the existence of an �almost� GJ-particle (viz. ones that satisfy the �rst and third but not the second condition)
fails to ensure that γ is a geodesic. See also (Weatherall, 2011) in which it is shown that condition 2 (as opposed to
a slightly weaker energy condition originally used by Geroch and Jang) is necessary.

51A nuance worth noting that is imposed by condition 3 involves the question of electromagnetic (or other non-
gravitational) �eld e�ects. One might think that this phrasing of the principle is too strong: though neutral massive
bodies are supposed to follow geodesics, charged bodies under the in�uence of an electromagnetic �eld should not.
Of course, if there is an electromagnetic �eld to in�uence our GJ-particle it would supply further energy-momentum
(T

(EM)
ab ) in the neighborhoods of γ (indeed, electromagnetic energy-momentum that should not stay con�ned to

arbitrary neighborhoods of γ). So if, for example, we were talking about a charged body iTab interacting with an

electromagnetic �eld T
(EM)
ab near γ, then Einstein's �eld equations only ensure that the total energy-momentum is

conserved (e.g. g∇cgca(iTab + T
(EM)
ab ) = 0). This means that when we interpret the GJ-particle entries iTab as

representing the matter-energy �ow of (small, massive) bodies, condition 3 can be thought of as requiring that the
bodies are �free� in the sense that their energy-momentum does not change due to interactions with other non-
gravitational energy carrying �elds in the neighborhood of γ. Hence, we might paraphrase the result even more
appropriately by saying that �arbitrarily small free bodies of positive mass must follow geodesics.� (But see next.)
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respective T
i
ab of a GJ-particles take the form g

i
ab = gab + ε

i
ab, the perturbation �eld ε

i
ab must vary

for some larger i value. This means in particular that ε
i
ab cannot vanish for arbitrarily large i, so no

matter how far out in the sequence we look the remaining T
i
ab's will never all couple to the metric

gab in accordance with Einstein's �eld equations. Hence, the constraints placed on the existence of a

GJ-particle do not prevent di�erences between (a) the geodesic structure of a spacetime in which a

GJ-particle entry obeys Einstein's �eld equations and (b) the geodesic structure of the background

metric gab according to which γ actually counts as a geodesic. In other words, geodesics of gab

will not necessarily remain geodesics of the spacetimes with GJ-particles in them. We can think of

imposing a GJ-particle in neighborhoods of γ as having a kind of �bending� e�ect on γ, ruining its

geodicity.

So while it is nice to know that GJ-particles must follow geodesics of some spacetime, strictly

speaking the theorem does not ensure that GJ-particles must follow geodesics of the spacetime(s) in

which they might actually exist (at least not without violating Einstein's �eld equations). Though

Geroch and Jang's theorem is appealing with respect to its mathematical elegance and certain aspects

of its representational fertility, in this form it is guilty of relying on a test body approximation that

is ultimately left unjusti�ed by the conditions. That being said, re�ection on the theorem leaves one

with the sense that �if only the perturbative e�ect ε
i
ab could be controlled somehow as the GJ-particle

shrinks down in size, then we might at least be able to say that the spacetime metrics g
i
ab coupling

to our GJ-particle entries should `come close' to the background metric gab.�52 In the next section,

we will consider a second limit operation proof achieving just this sort of result.

4.2 Ehlers-Geroch Particles

In 2004, Ehlers, who had evidently been concerned by the Geroch-Jang �test body approximation�

for nearly three decades (see note 7), collaborated with Geroch to develop a second result that ac-

commodates for the �geodesic bending� e�ects of GJ-like particles. If Geroch and Jang's theorem

approaches things from the �source side� of Einstein's �eld equations (1.1), then the Ehlers & Ge-

roch (2004) can be said to approach things from the geometry side of the equations. Speci�cally,

instead of considering sequences of energy-momentum tensors, they consider sequences of metrics

which converge in an appropriate way to a background metric and whose energy-momentum sources

simultaneously satisfy (essentially) the same conditions as those placed on GJ-particles. Their result

can be formulated as follows:53

52Note, for any GJ-particle sequence (iTab)i∈N, there exists a second GJ-particle sequence (iT̂ab)i∈N whose matter-
energy density vanishes arbitrarily quickly as i → ∞. (Just de�ne iT̂ab := (αi)(iTab) for each i where (αi)i∈N is
sequence of scalars converging to 0 suitably quickly.)

53Note, the theorem as stated originally in (Ehlers and Geroch, 2004) is slightly stronger than the following version:
their result still goes through if the strict inequality in condition 2 is weakened to allow for equality as well. Of course
the theorem as stated is an immediate consequence of the slightly stronger version. The di�erence is inconsequential
to our current discussion.

25



Forthcoming: Studies in History and Philosophy of Modern Physics

Theorem 2. (Ehlers-Geroch 2004) Let γ : I → M be a smooth timelike curve in Lorentzian

spacetime (M, gab). Suppose that for any su�ciently small closed neighborhood K ⊂M of γ[I] there

exists a sequence of smooth Lorentzian metrics g
j
ab de�ned on K such that for all points p ∈ K:

1. For all j: G
j
ab has non-vanishing support contained in the interior of K,

2. For all j and all timelike ξa: G
j
abξ

aξb ≥ 0 and if G
j
ab 6= 0, then g

j

bd

(
G
j
abξ

a

)(
G
j
cdξ

c

)
> 0,

3. The g
j
ab → gab as metrics in C 1(K) as j →∞,54

where G
j
ab is the Einstein curvature tensor determined by g

j
ab, then γ[I] is the image of a gab-geodesic.

As with GJ-particles, we might illustrate the content of the theorem by considering an arbitrary

set of nested neighborhoods (Ki)i∈N converging down around γ[I]. For these neighborhoods, we

can now consider the double indexed sequences of smooth metrics ( g
(i,j)

ab)i,j∈N and corresponding

curvature tensors ( G
(i,j)

ab)i,j∈N de�ned for each i on Ki. The latter sequence of curvature tensors

( G
(i,j)

ab)i,j∈N can then be identi�ed via Einstein's equations as a sequence of energy-momentum tensors

( T
(i,j)

ab)i,j∈N which we will call Ehlers-Geroch or EG-particles. Observe, it follows from conditions

1 and 2 in theorem 2, that each T
(i,j)

ab satis�es conditions 1 and 2 of theorem 1 in (Ki, g
(i,j)

ab).

Moreover, because each T
(i,j)

ab is equal to a smooth Einstein curvature tensor, they automatically

satisfy condition 3 of theorem 1 in (Ki, g
(i,j)

ab) as well. Hence, EG-particles are quite similar to GJ-

particles, the di�erence with EG-particles is that the further condition 3 ensures that the perturbative

e�ect of EG-particles on the �background metric� (gab) can be made arbitrarily small (in the relevant

senses) for su�ciently large j. Most importantly, the convergence demanded in condition 3 ensures

not only that the γ is a geodesic of the background metric gab, but also for su�ciently large j, γ

will come arbitrarily close to being a timelike geodesic with respect to the �perturbed� metrics g
(i,j)

ab.

So not only can EG-particles (like their GJ-particle cousins) be made arbitrarily small in (spacelike)

extent around γ for su�ciently large i, unlike GJ-particles by picking su�ciently large j we can also

control the �geodesic bending� e�ects resulting from their presence, ensuring that the EG-particle

will be shrunken down around a curve that will come arbitrarily close to actually being a geodesic.

54The C 1(K) topology τC1(K) is de�ned on the space of ordered pairs of symmetric tensor �elds and covariant
derivative operators de�ned for the closed region K. τC1(K) consists of point-wise neighborhoods of the tensor �elds
and connections respectively, varying continuously with p but otherwise arbitrarily in the respective spaces (this can
be done explicitly, for example, with the selection of arbitrary positive de�nite metrics de�ned on K). We say that

jgab → gab as metrics in C 1(K) if for every neighborhood N ∈ τC1(K) of (gab,∇a), for su�ciently large j we have

(jgab,∇(j)
a ) ∈ N where ∇a and ∇(j)

a are the unique derivative operators compatible with their respective metrics.
Because these operators are uniquely determined by their metrics, explicit reference to them can be suppressed in the
articulation of the theorem.

26



Forthcoming: Studies in History and Philosophy of Modern Physics

Hence, Ehlers and Geroch's result can be characterized by the claim that �arbitrarily small bodies

of positive mass come arbitrarily close to following geodesics.�

Unfortunately for the canonical view, the theorem cannot ensure the actual geodicity of γ in

the presence of any massive body obeying the �eld equations. Though by �turning up� the i and j

indices so to speak, we can make the EG-particle both as narrow and �close to straight� as we want,

we can never ensure actual geodicity for any �nite j. Actual geodicity is only achieved at the limit

in the spacetime with the metric gab. Ehlers and Geroch's theorem ensures near geodicity in the

approach to the limit, but if in accordance with the canonical view we are looking to ensure massive

bodies following actual geodesics, theorem 2 does not do the trick.

An ardent defender of the canonical view might attempt to get around the fact that geodicity

is not acquired for j < ∞ by focusing on �the limit case� directly. One problem with this is that

though condition 3 establishes convergence of the metrics and an approach to the geodicity of γ, it

is insu�cient for the convergence of EG-particles to a �limit� energy-momentum �eld.55 In general,

there is no energy-momentum limit of an EG-particle. In fact, the only way to get convergence of

EG-particles in a way that does not allow for new energy-momentum to suddenly appear at the

limit (but not before) and likewise does not violate Einstein's �eld equations at the limit is by

having the EG-particle converge to a tensor �eld that vanishes around γ.56 In other words, EG-

particles don't generally converge, but even the ones that might converge (at least in any acceptable

way) either violate Einstein's �eld equations or vanish. Again the canonical view is left unable to

55Ehlers and Geroch consider an explicit counterexample sequence of spacetimes whose metrics converge according
to condition 3, but whose associated curvature tensors (and so energy-momentum tensors) become divergent. The
reason for this possibility is that curvature tensors involve not just derivatives of the metric but also of the connection
(see equations (C.1) and (C.2) below), but convergence in the C 1 topology only ensures closeness of the metric and
the connection, but not higher derivatives. They note that ruling out such examples would involve strengthening
condition 3 to require convergence in a more restrictive �C 2(K) topology.�

56To see why this is the case, let K be an arbitrary su�ciently small closed neighborhood of γ from theorem 2. If we
want to preserve coherence with Einstein's �eld equations, then any �converging� sequence of energy-momentum ten-
sors (jTab)j∈N coupled to the metrics jgab de�ned forK as in theorem 2 will have to converge to some energy-momentum
tensor Tab equal to the Einstein curvature tensor Gab determined by the background metric gab. (Otherwise, it would
be the case that the energy-momentum �in the limit� fails to couple to the limiting metric in accordance with equations
(1.1).) Now let τ be any topology on the space of rank (0, 2)-tensor �elds with respect to which it might be claimed
that jTab → Tab as j →∞. Of course there are numerous topologies with respect to which this might be claimed; some
may be physically appropriate and others may not. Luckily, we need not determine here which particular topology
(if any) is in fact most appropriate. Instead we will only require that any relevant convergence must at least ensure
the following condition for all p ∈ K:
Vacuum-point preservation: If there exists a j0 ∈ N such that for all j > j0, T

j
ab|p = 0 , then Tab|p = 0.

The vacuum-point preservation condition should strike us as a reasonable restriction on any τ -convergence in this
context since it only precludes the sudden appearance of �new energy-momentum� at the limit that wasn't already
present in the approach as j → ∞. (Vacuum-point preservation would be obeyed, for instance, if we wanted to
focus our discussion speci�cally on convergence in C 2(K).) Now from condition 1 of theorem 2, we know that for
every j, jTab = jGab = 0 on ∂K. Hence, if the limit is vacuum-point preserving we have that Tab|∂K = 0. But K
was an arbitrary su�ciently small neighborhood of γ, which means that Tab will vanish on the boundary of every
su�ciently small neighborhood of γ. Moreover, since gab is smooth, we know that Tab = Gab must be smooth. It
follows from these two facts that Tab must vanish in some neighborhood of γ. Hence, the only way to ensure that
the energy-momentum tensors coupling to the sequences (jgab)j∈N de�ned in theorem 2 converge in a vacuum-point
preserving way without violating Einstein's �eld equations is by having them vanish around γ.
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establish actual geodesic motion for massive bodies. Though EG-particles can be said to �come

close� to exhibiting geodesic motion, the only way to establish actual geodicity is by violating the

�eld equations or having energy-momentum of the particle completely disappear. As in the case of

0th-order proofs, though the proofs can establish a kind of �approximation� to geodesic following in

the case of extended bodies with matter-energy, when it comes to establishing genuine geodicity,

both fall short, achieving such strict results (at best) only for inapposite or pathologically idealized

special cases.

5 Conclusion: Towards a Geodesic Universality Thesis

In this paper I have argued that the canonical view that the geodesic principle provides the dy-

namics of general relativity theory fails. Under this interpretation, the commonly endorsed belief

that the principle can be derived either from Einstein's original �eld equations or a distributional

generalization of them must be rejected (even if we allow for further background assumptions about

the kind of matter-energy that is supposed to follow such geodesics). By reviewing the three major

classes of proof, we have seen that would-be geodesic following bodies are forced either (i) to meet

unrealistically restrictive special-case conditions, (ii) to have no matter-energy at all (i.e. vanish),

(iii) to violate Einstein's �eld equations, or (iv) to be located on �paths� that don't just fail to be

geodesic but fail to exist in the spacetime manifold at all.

Such arguments reveal that the claim that �massive bodies follow geodesics in Einstein's theory�

cannot be accepted as any sort of precise articulation of the actual motion of bodies in general

relativity. However, this does not mean that there is no place for the principle. Instead, it is my

suggestion that we weaken our interpretation of the geodesic principle, modestly �demoting� it from

the status of dynamical principle governing the paths of massive bodies in Einstein's theory to a less

fundamental geodesic universality thesis to be interpreted in analogy with the kind of universality

exhibited, for instance, in thermal systems during phase transitions. Though a comprehensive

argument for this thesis will have to wait for a sequel to the current paper, let us brie�y sketch what

role such a less fundamental interpretation of the principle would serve, and how we might justify

such an interpretation.

5.1 A New Place for the Principle?

The geodesic principle cannot accurately provide an account of the motion of massive bodies consis-

tent with Einstein's equations. Even in the case of �arbitrarily small� bodies, the principle fails to

account precisely for the dynamics of general relativity theory. Moreover, if what we are interested in

the precise evolution of bodies over time (viz. in the future domain of dependence of a neighborhood

of a set of bodies on a particular folium), we have the initial value formulation. However, the avail-

ability of such a precise tool for determining the dynamical evolution of every bit of matter-energy
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in a certain region may not always be optimal. As discussed in section 3 techniques for determining

the evolution of bodies in their future domain of dependence can be less than pragmatic. Moreover,

we generally do not have access to the appropriate initial data information that might be used in

such formulations (e.g. it is di�cult to ever attain precise information about the �ow of matter-

energy in the interior of Mercury). Recently Gralla and Wald (2008, p2) have highlighted some of

the complications of relying exclusively on initial value formulations as follows:

The physical content of general relativity is contained in Einstein's equation, which has a well

posed initial value formulation (see, e.g., [(Wald, 1984)]). In principle, therefore, to determine the

motion of bodies in general relativity - such as binary neutron stars or black holes - one simply

needs to provide appropriate initial data (satisfying the constraint equations) on a spacelike slice

and then evolve these data via Einstein's equation. However, in practice, it is generally impossible

to �nd exact solutions of physical interest describing the motion of bodies by analytic methods.

Although it is now possible to �nd solutions numerically in many cases of interest, it is di�cult

and cumbersome to do so, and one may overlook subtle e�ects and/or remain unenlightened

about some basic general features of the solutions. Therefore, it is of considerable interest to

develop methods that yield approximate descriptions of motion in some cases of interest.

Gralla and Wald's �nal point is particularly germane to answering the question of whether there is

a proper place for the geodesic principle: Even if we do have access to su�cient initial data, and

we were able to bound the pragmatic hurdles (numerically if not analytically), having the precise

details about what every piece of matter-energy is doing at every single point in spacetime runs

the risk of obscuring what we should expect of the general behavior of bodies under gravitational

in�uences. Perhaps counterintuitively, by taking a step back from the deluge of details that we

might receive from an initial value solution and instead searching for general approximations of the

motion, we might actually capture further knowledge concerning the �basic general features� of these

solutions. Such approximations of motion of course should lose something in the way of accounting

for the precise evolution of a particular gravitating body. Nonetheless, if we wish to understand,

not the precise evolution, but the broad characteristics of the paths of general gravitating bodies,

approximate descriptions may in this respect have more potency than precise ones.

The geodesic principle understood not as a precise description of the evolution of massive bodies,

but instead taken as a formula for characterizing the approximate behavior of (appropriately small)

massive bodies in general may still o�er important opportunities for insight into relativistic dynamics.

Remarkably, if we wish to understand the principle as playing this role of characterizing this kind

of general behavior, then limit operation proofs such as (Ehlers and Geroch, 2004) in particular

help to provide a substantial justi�cation for why we should expect such �approximate geodicity� of

their paths. Recall, though theorem 2 was unable to establish perfect geodesic evolution of (actually

massive) bodies, the interpretation of the theorem's signi�cance o�ered above was able to establish

that �appropriately small massive bodies will follow timelike paths that are almost geodesic.� So
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while such a result fails to tell us about the paths with absolute precision, it does enable us to draw

the broad inference that large classes of bodies can be expected to stick �close to� a geodesic path

for suitable time scales. If understood appropriately, being able to draw this kind of inference for

such general classes of bodies without having to know about their exact constitution o�ers great

opportunity for understanding about gravitation and gravitational dynamics despite the lack of

attention to details at a certain level of precision. This insight can be achieved despite the fact that

the geodesic principle fails to provide the kind of fundamental dynamics-de�ning role expected by

the canonical interpretation.

Moreover, the kind of near-geodesic clustering of massive bodies that seems to be explained by

results such as (Ehlers and Geroch, 2004) is well con�rmed by our experimental observations.57

Planetary bodies, whose relative size and gravitational e�ect compared to the sun is suitably small,

exhibit near geodesic behavior. In particular, the Mercury con�rmation shows that this clustering

can be con�rmed in relativistic regimes. Though a precise enough experiment should reveal di-

vergence from perfect geodesic motion, once we have weakened the principle to a claim about the

near-geodesic clustering of gravitating free bodies in general, the kind of subtle wobbling we might

expect given the discussion in section 3 need not count as discon�rmation. Instead, a vast number

of examples from Newton's apple to gravitation on astronomical scales now constitute opportunities

to con�rm such general near-geodesic clustering.

5.2 Geodesic Universality

The suggestion considered above that the geodesic principle might be reinterpreted as a characteri-

zation of the general patterns of behavior of (small) gravitating bodies, despite signi�cant possible

variations in details of how the bodies are constituted or the type of external gravitational �eld

they might be exposed to, is analogous to a prominent classi�cation of certain phenomena studied

in other �elds of physics. Referred to as universality phenomena, such clustering patterns across

multiple systems are studied most prominently in characterizing the similarities in behavior exhib-

ited by thermal systems during phase transitions and near criticality. Kadano� (2000, p225), often

identi�ed as one of the �rst to apply this concept in its contemporary sense in physics, has de�ned

`universality' as applying to patterns in which �[m]any physically di�erent systems show the same

behavior.� In the study of critical behavior, for instance, the phenomena is identi�ed when numerous

systems seem to cluster into what are called universality classes, despite possible vast disparities in

the fundamental details characterizing members of a single class.

Robert Batterman who has done remarkable work in introducing universality phenomena to the

philosophical literature argues that �[w]hile most discussions of universality and its explanation take

57In fact, as long as we do not expect perfect geodicity, results from more sophisticated �0th-order type� proofs (e.g.
those in (Gralla and Wald, 2008, Pound, 2010)) can be used to identify the appropriate regime scales for which we
might expect such observed clustering.
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place in the context of thermodynamics and statistical mechanics,... universal behavior is really

ubiquitous in science� (Batterman, 2002). This claim has no shortage of vindicating examples:

Universality identi�ed in criticality models has been used to characterize the clustering behavior in

astonishingly diverse contexts from avalanche and earthquake modeling (Kadano� et al., 1989, Lise

and Paczuski, 2001), to extinction modeling in population genetics (Sole and Manrubia, 1996), to

modeling belief propagation in multi-agent networks (Glinton et al., 2007, 2010). Batterman has

identi�ed many examples of universality phenomena distinct from criticality models as well, including

patterns in rainbow formation, semi-classical approximation, and drop breaking (Batterman, 2002,

2005, 2006, 2009).

It is my suggestion that the kind of near-geodesic clustering discussed above constitutes yet

another example of (non-thermal) universality in physics. Though no free body of realistic matter-

energy should be expected to exactly follow timelike geodesics, limit operation proofs establish that

in general the world-tubes of bodies of su�ciently small relative size and gravitational e�ect can be

expected to cluster around timelike geodesic curves despite otherwise potentially quite signi�cant

variations in their particular energy-momenta. Further argument is of course called for before the

geodesic universality interpretation can be fully adopted.58 However, such a thesis o�ers a promising

avenue for redeploying the geodesic principle in a way that respects the positive results of a number

of the geodesic �demonstrations,� which we have seen otherwise fall short of establishing the principle

under its canonical construal. Most importantly, retaining the principle in the form of a universality

thesis permits us to draw inferences and improve our understanding about the paths of general

gravitating bodies despite their lack of perfect geodicity.

Appendix

A Tensor Distributions

Let M be an orientable n-dimensional smooth manifold. The space D′(M) of scalar distributions

onM can be de�ned as the linear dual to the (LF-)space Ωn
c (M) of smooth, compactly supported

n-forms onM. The space Ωn
c (M) plays the role of our test �elds in a di�erential geometry context

in that (sinceM is orientable) these test �elds can essentially be thought of as products of smooth,

compactly supported scalar �elds (i.e. the test functions of typical distribution theory) and an

arbitrary volume element ε := εabcd ∈ Ωn(M).

This construction can be generalized to de�ne linear spaces D′s
r(M) of tensor distributions of

rank (r,s) onM as the dual of the space T rs (M)⊗Ωn
c (M) of test tensor �elds consisting of exterior

products of smooth tensors of rank (s, r) and compactly supported n-forms. Each element of T rs (M)

58It is worth emphasizing that in light of the arguments presented here, the geodesic universality thesis would need
to reject the claim that actual gravitating bodies need ever follow geodesics precisely. Hence, a comprehensive defense
of the thesis will involve explaining why this is compatible with the clustering behavior which it does a�rm.
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de�nes a mapping (via contraction) from the space D′s
r(M) to the space D′(M). In fact, the space

D′s
r(M) is isomorphic (as a C∞(M) module) to the space of products of smooth tensors of rank

(s,r) with elements of D′(M) (Grosser et al., 2001, Thm 3.1.15).

Hence, tensor distributions of rank (s, r) can be intuitively thought of as familiar smooth tensors

�elds of the same rank with scalar distributions as their coe�cients. Analogous to the case in scalar

distribution theory, a locally integrable tensor �eld αa1...asb1...br
(not necessarily smooth) has a natural

embedding in D′s
r(M), where the action < αa1...asb1...br

, · > on a test tensor �eld Φb1...br
a1...as is given by:

< αa1...asb1...br
,Φb1...br

a1...as >=

ˆ

M

αa1...asb1...br
Φb1...br
a1...as

It is this embedding that suggests that the action of distributions on test objects is like that of

integrating the contraction of the tensor distribution with a test tensor �eld. The support of tensor

distributions is likewise extended in the following way: a tensor distribution < αa1...asb1...br
, · > is said to

have support on K if all test �elds with support disjoint from K are in the kernel of < αa1...asb1...br
, · >.

If ∇b is any smooth derivative operator, the derivative of a tensor distribution αa1...asb1...br
∈ D′s

r(M)

is a distribution ∇aαa1...asb1...br
∈ D′s

r+1(M) whose action is de�ned by:

< ∇bαa1...asb1...br
,Φb1...brb

a1...as >= − < αa1...asb1...br
,∇bΦb1...brb

a1...as > ∀Φb1...brb
a1...as ∈ T

r+1
s (M)⊗ Ωn

c (M)

In the case that αa1...asb1...br
is a locally integrable tensor �eld (not necessarily di�erentiable in the classical

sense), and there exists a second locally integrable tensor �eld βa1...asb1...brb
such that

< βa1...asb1...brb
,Φb1...brb

a1...as >= − < αa1...asb1...br
,∇bΦb1...brb

a1...as > ∀Φb1...brb
a1...as ∈ T

r+1
s (M)⊗ Ωn

c (M)

then βa1...asb1...brb
is said to be the weak derivative of the tensor �eld αa1...asb1...br

.

Elements in the linear spaces D′s
r(M) do not have a well de�ned product structure, and so unlike

smooth tensors, they do not constitute an algebra. As a consequence, we can only consider exterior

products and contractions of tensor distributions with non-distributional tensor �elds.

B Proof from Generalized Conservation of T ab

In order to represent a �point� particle by means of an energy-momentum tensor distribution T ab,

it will be useful to de�ne the following scalar distribution in the space D′(M).

De�nition 3. If γ : I →M is a smooth curve in the spacetime (M, gab) then we will refer to the
linear mapping D(γ,g) : C∞c (M)→ R given by following action on test functions:
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ˆ

M

D(γ,g)φ volg 7→
ˆ

I

φ ◦ γ ds ∀φ ∈ C∞0 (M) (B.1)

as the concentrating distribution for γ in spacetime (M, gab).59

Proposition 4. Let (M, gab) be a Lorentzian spacetime, and let γ : I → M be a smooth timelike

curve in M for some interval I. Then, if there exists a smooth symmetric tensor �eld T
γ

ab de�ned

onM and non-vanishing on γ[I] such that,

ˆ

M

(
D(γ,g)Tγ

ab
) g

∇bξavolg = 0 ∀ξa ∈
(
T 0
1 (M)

)
c

where
(
T 0
1 (M)

)
c
is the space of smooth co-vector �elds on M with compact support and D(γ,g) is

the concentrating distribution for γ in (M, gab), then γ[I] is the image of a geodesic of gab.

Proof: Setting φ = T
γ

ab
g

∇aξb for arbitrary ξa ∈
(
T 0
1 (M)

)
c
, it follows from de�nition 3 that

ˆ

I

T
γ

ab
g

∇bξads = 0 ∀ξa ∈
(
T 0
1 (M)

)
c

(B.2)

Let K(γ) be the set of smooth functions onM that vanish on γ[I]. Clearly for any ξa ∈
(
T 0
1 (M)

)
c

and α ∈ K(γ) we have that αξb ∈
(
T 0
1 (M)

)
c
giving us the following:

ˆ

I

T
γ

ab
g

∇b(αξa)ds = 0 ∀α ∈ K(γ), ξa ∈
(
T 0
1 (M)

)
c

(B.3)

And since α vanishes on γ[I], (B.3) reduces to:

ˆ

I

T
γ

abξa
g

∇bαds = 0 ∀α ∈ K(γ),∀ξa ∈
(
T 0
1 (M)

)
c

(B.4)

We now observe that (B.4) holds (if and) only if for each ξa ∈
(
T 0
1 (M)

)
c
there exists a smooth

scalar �eld ψξ with compact support in γ[I] such that:60

T
γ

baξb = ψξU
a ∀p ∈ γ[I] (B.5)

59For any φ ∈ C∞c (M), the set of �test-function weighted� volume elements φ volg is equivalent to the space of
test 4-forms Ω4

c(M). So though we have de�ned the action of D(γ,g) relative to its action on test functions C∞c (M)
de�nition 3 clearly gives a well de�ned element of the space D′(M) constructed in appendix A. Of course despite this
equivocation, it is worth observing that the action of D(γ,g) does depend on the particular gab as well as γ.

60The only if direction is satis�ed by assuming for contradiction that for some ξa the vector γT
abξa is not proportional

to the tangent vector to γ at some point p0 ∈ γ[I]. Since γT
abξa is smooth this means that for some sub-interval

I0 ⊂ I such that p0 ∈ γ[I0], γT
abξa will not be proportional to the tangent vector. We now select an α which is

positive at all points in a su�ciently small neighborhood of γ[Io] save those points on γ[Io] and vanishing everywhere
else to give us a non-zero value for the integral

´
T abξa∇bαds in violation of (B.4).
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where Ua is the unit tangent vector to the curve γ (recall γ is timelike). Hence, since this holds for

arbitrary ξb, on γ[I] we have that T
γ

ab must take the form:

T
γ

ab = UaP b (B.6)

for some smooth vector �eld P a de�ned on γ[I]. Moreover, since T
γ

[ab] = U [aP b] = 0 on γ[I],

contracting with Ub entails that there exists a smooth scalar �eld m = UaP
a de�ned on γ[I] such

that:

P a = mUa (B.7)

So substituting into (B.2) and conducting an integration by parts we get:

ˆ

I

U b
g

∇bmUaξads−
ˆ

I

ξaU
b
g

∇bmUads = 0 ∀ξa ∈
(
T 0
1 (M)

)
c

In particular for all ξa compact on γ[I], the �rst term vanishes and by arbitrarily varying these ξa

with compact support on γ[I], it follows from the second term that

U b
g

∇bmUa = 0 (B.8)

Last, the �rst integral of equation (B.8) gives us that the value m2 (and so m) is constant along

γ. So since T
γ

ab 6= 0 on the curve, we have that m is a non-zero constant on γ and the geodesic

equation follows immediately from (B.8):

U b
g

∇bUa = 0 (B.9)

Hence, γ[I] is the image of a g-geodesic.

�

C GT-regular and Semi-regular Metrics

In order for a tensor distribution source such as Tab to be well de�ned as a distribution, it must be

locally integrable.61 So since we want gab to be a solution to Einstein's generalized �eld equations

(2.1), Geroch and Traschen tailor their class of GT-regular metrics by �rst looking at how the

Einstein tensor, equated (as a distribution) to Tab, depends on the metric and then considering what

61A tensor distribution αa1...arb1...bs
∈ D′rs(M) is said to locally integrable or in L1

loc when scalar densities of the form

αa1...arb1...bs
Φb1...bsa1...arabcd

are Lebesgue measurable and integrable for arbitrary Φ ∈ T sr (M)⊗Ω4
c(M). Similarly αa1...arb1...bs

will

be said to be locally square integrable or in L2
loc when α

a1...ar
b1...bs

α
a′1...a

′
r

b′1...b
′
s

is locally integrable (and so on for elements in

Lploc).
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integrability properties the metric must satisfy in order to achieve integrability of the curvature.

Speci�cally, let ∇̃a be any smooth derivative operator with Riemann curvature R̃abcd. Now consider

the dependence of another Riemann curvature tensor on an arbitrary metric gab (not necessarily

smooth) in terms of ∇̃a:

Rabc
d = R̃abc

d + 2Cde[bC
e
a]c + 2∇̃[bC

d
a]c (C.1)

Cabc = gae
(
∇̃(bgc)e −

1

2
∇̃egbc

)
(C.2)

Inspection of (C.1) reveals that Rabcd will be locally integrable if the tensor Cabc is locally square

integrable.62 Moreover, (C.2) reveals that Cabc will be locally (square) integrable if gab is locally

bounded and the weak derivative of gab exists and is locally (square) integrable. We hence have the

following class of metrics:63

De�nition 5. (GT-regular metrics) A symmetric tensor �eld gab de�ned onM is called a GT-

regular metric if gab and gab are both in L∞
loc ∩H1

loc.

In this de�nition L∞
loc is the space of locally bounded �elds, and H1

loc is the Sobolev space of

square integrable �elds, whose weak �rst derivatives exist and are also square integrable. Hence,

membership in the class of GT-regular metrics su�ces for having a well de�ned Einstein tensor

distribution.

The �rst nuance to note about this class is that though these metrics are su�cient for well

de�ning curvature tensors as distributions, Geroch and Traschen's restrictions can be weakened a

bit more. That is to say, we do not necessarily need the (weak) derivative of the metric to be square

integrable, but only that the tensor �elds Cabc and Cde[bC
e
a]c (i.e. the contraction not the exterior

product) exist and are locally integrable (though we still need gab and gab to be de�ned almost

everywhere and be essentially bounded). Such a (strictly) wider class of metrics are referred to as

semi-regular or Gar�nkle metrics after his investigation in (Gar�nkle, 1999). In contrast to GT-

regular metrics, there do exist semi-regular metrics whose Einstein curvature tensor distribution can

be concentrated on submanifolds of codimension 2.

Unfortunately, as previously observed in (Geroch and Traschen, 1987), even this meager weaken-

ing to semi-regularity faces representational complications. The reason for this has to do with why

GT-regular metrics are so appropriately termed regular. A second important set of results proven

62This condition directly su�ces for the second term. Moreover, since L2
loc ⊂ L1

loc and the last term will be locally
integrable if Cabc is locally integrable it also su�ces for the �nal term term. Since all smooth tensor �elds are locally
integrable, the �rst term is locally integrable without any further condition.

63It should be noted that since GT-regular metrics are not in general Lipschitz in their �rst derivative, integral
curves of �geodetic �elds� Ua satisfying the condition Ua∇aUb = 0 will not always exist (or be uniquely determined
for an initial value Ua(p0)). In other words, geodesic curves will not always be well de�ned, particularly across regions
of singular curvature.
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by Geroch and Traschen (1987, Thm. 2-3), was that Cauchy sequences of regular metrics not only

converge to a regular metric, but their respective curvature tensors converge to the curvature tensor

of the limiting metric. In contrast, when we move to semi-regular metrics, this property is lost. This

means that though we can de�ne the action of curvature tensor distributions in semi-regular cases

with support in less than three dimensions, such cases cease to have a natural interpretation as an

extension of the classical framework of relativity theory.64

As a �nal remark, it is worth noting that Geroch and Traschen's proof strategy crucially depends

on the required square integrability of the connection. It is because of this dependance (in part) that

an analogous theorem preventing the existence of solutions with one-dimensional concentrations of

energy-momentum (or mass-momentum) cannot be reconstructed for linearized approximations of

Einstein's equations (or for Newtonian gravitation). This means that (in a sense) it is thanks to the

non-linearity of Einstein's �eld equations that we are unable to coherently represent point particles

in general relativity theory. In other words, it is the non-linearity that precludes the possibility of

using distribution proofs to deduce the geodesic hypothesis (in its most literal form) from the exact

�eld equations. Since historically the ability to deduce the geodesic principle from the �eld equations

in the canonical account has typically been attributed to the fact that Einstein's equations are non-

linear, it is not without irony that this non-linearity is what stands in the way of the most literal

variety of geodesic deduction.

64 Recently in (Steinbauer and Vickers, 2006, Steinbauer, 2007, Steinbauer and Vickers, 2009) the authors have
worked to generalize Einstein's original equations even more than equation (2.1) in order to allows for solutions from
non-linear tensor algebras (for clarity I will refer to elements of these algebras as generalized tensors) that can make
sense of non-regular metric solutions such as GT-irregular Gar�nkle metrics. Assuming this generalization project will
come to fruition, such an end run around the Geroch-Traschen result would still fall short of vindicating the canonical
view. The basic idea has to do with observing that actual material bodies have spacelike extent. That is to say massive
bodies, even really small bodies or �atomic� constituents aren't true points. This fact is germane to representations
by means of tensor distributions and generalized tensors alike. Typically, physicists are able to avoid this problem
when making use of distributional objects by arguing that objects of very small extent are �well approximated� by
point particle representations through tensor distributions. But as we saw in section 3, any spacelike extent will
generically molest the result of perfect geodesic motion expected of the canonical view (cf. Butter�eld's �atomism�
thesis regarding limits of the arbitrary small in (Butter�eld, 2011)).
The point is further punctuated in the case of generalized tensor algebras. Tensor distributions are embedded into

these algebras by a process called association where it is shown that integrals of the in�nite sequences constituting
generalized tensors converge (in a speci�ed way) to the action of a tensor distribution. Though a detailed investigation
of this procedure will have to wait for further works, we may heuristically appreciate the the complications of physically
interpreting generalized tensors associated with one-dimensionally supported tensor distributions by observing that
it is quite possible for such an association relation to exist even if every element of the sequence constituting the
generalized tensor has support that extends outside the one-dimensional curve. So even if one-dimensionally supported
sources could be associated with solutions to some such generalized �eld equations, a proponent of the canonical view
would face interpretive challenges similar to the ones she faced in our discussion of EG-particles. That is to say,
when it comes to interpreting the physical signi�cance of such �associated solutions� she would still only be able to
recover a point particle source that could count as being concentrated entirely on a geodesic curve at the (associated
distributional) limit, but not before.
See also (Grosser et al., 2001, 2002, 2008) and references therein for further work developing generally covariant

algebras of generalized tensors.
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