Detfusing Bertrand’s Paradox

Zalan Gyenis
Department of Mathematics and its Applications
Central European University
Nador u. 9. H-1051 Budapest, Hungary
gyzQrenyi.hu

Miklos Rédei
Department of Philosophy, Logic and Scientific Method
London School of Economics and Political Science
Houghton Street, London WC2A 2AE, UK
m.redei@lse.ac.uk

July 2, 2012

Abstract

The classical interpretation of probability together with the Principle of Indiffer-
ence are formulated in terms of probability measure spaces in which the probability
is given by the Haar measure. A notion called Labeling Irrelevance is defined in
the category of Haar probability spaces, it is shown that Labeling Irrelevance is
violated and Bertrand’s Paradox is interpreted as the very proof of violation of La-
beling Invariance. It is shown that Bangu’s attempt [2] to block the emergence of
Bertrand’s Paradox by requiring the re-labeling of random events to preserve ran-
domness cannot succeed non-trivially. A non-trivial strategy to preserve Labeling
Irrelevance is identified and it is argued that, under the interpretation of Bertrand’s
Paradox suggested in the paper, the paradox does not undermine either the Princi-
ple of Indifference or the classical interpretation and is in complete harmony with
how mathematical probability theory is used in the sciences to model phenomena.
It also is argued however that the content of the Principle of Indifference cannot be
specified in such a way that it can establish the classical interpretation of probability
as descriptively accurate, predictively successful or rational.

1 The main claims

Bertrand’s Paradox, published first in [3], is regarded a classical problem in con-
nection with the classical interpretation of probability based on the Principle of
Indifference, and it continues to attract interest [17], [22], [2], [20] in spite of al-
leged resolutions that have been suggested in the large and still growing literature
discussing the issue ([12] and [16] are perhaps the most well-known suggestions for



resolutions; the Appendix in [16] contains a brief summary of a number of typical
views of the Paradox).

It is not the aim of this paper to offer yet another “resolution” or criticize the
ones available; rather, we suggest a new interpretation of Bertrand’s Paradox and
analyze its relation to the classical interpretation of probability. The interpretation
proposed here should make clear that Bertrand’s Paradox cannot be “resolved” —
not because it is an unresolvable, genuine paradox but because there is nothing to be
resolved: the “paradox” simply states a provable, non-trivial mathematical fact, a
fact which is perfectly in line both with the correct intuition about how probability
theory should be used to model phenomena and with how probability theory is in
fact applied in the sciences.

The key idea of the interpretation to be developed here is that the category of
probability measure spaces with an infinite set of random events for which a clas-
sical interpretation of probability based on the Principle of Indifference can be
meaningfully formulated is the one in which the set X of elementary events is a
compact topological group, the Boolean algebra S representing the set of random
events is the set of Borel subsets of X and the probability measure py is the (nor-
malized) Haar measure on S. After stating the General Classical Interpretation
in terms of the probability measure space (X, S, py) together with the Principle
of Indifference, we will define a notion called Labeling Irrelevance in this cat-
egory of measure spaces: Labeling Irrelevance expresses the intuition that the
specific way the random events are named is irrelevant from the perspective of the
value of their probability understood according to the classical interpretation. It
will be shown that Labeling Irrelevance does not hold in this category of proba-
bility measure spaces and we interpret Bertrand’s Paradox as stating this provable
mathematical fact.

This interpretation makes it possible to formulate precisely the extra condition
on re-labelings that ensures that re-labelings do preserve the probabilities of events;
the condition is an expression of the demand that re-labelings do not affect our
epistemic status about the elementary events. We also will show that the recent
attempt by Bangu [2] to block the emergence of Bertrand’s Paradox by requiring
re-labelings to preserve randomness cannot succeed non-trivially.

The interpretation will also make it clear that Bertrand’s Paradox does not
affect the Principle of Indifference and does not, in and by itself, undermine the
classical interpretation of probability — the classical interpretation, the Principle
of Indifference and Labeling Irrelevance are independent ideas. This is not
to say that the classical interpretation is maintainable however; the main problem
with it is that it gives the impression that it is possible to infer empirically correct
probabilities from an abstract principle stating some sort of epistemic neutrality.
It would be a mystery if this were possible, but we will argue in the final section
that this is not possible and does not in fact happen in applications of probability
theory.

2 The elementary classical interpretation of
probability

Betrand’s Paradox appeared at a time when probability theory had already pro-
gressed from the purely combinatorial phase involving only a finite number of ran-
dom events to the period when it got intertwined with calculus. This development



began in the early 18th century with the appearance of limit theorems (theorem
of large numbers, Bernoulli 1713, and central limit theorem, de Moivre 1733, [8]);
yet, by the late 19th century the theory had not yet reached the maturity that
would have made the mathematical foundations of the theory clear and transpar-
ent. This was clearly recognized by Hilbert, who, in his famous lecture in Paris in
1900, mentioned the need of establishing probability theory axiomatically as one of
the important open problems (Hilbert’s 6th problem [27], [26][p. 32-36]). Hilbert’s
call was answered only in 1933, when Kolmogorov firmly anchored probability the-
ory within measure theory [13]. (See [7] for the history of some of the major steps
leading to the Kolmogorovian axioms.)

In the measure theoretic approach probability theory is a triplet (X, S, p), where
X is the set of elementary random events, S (the set of general random events) is
a Boolean o algebra of certain subsets of X and p (the probability) is a countably
additive measure from S into the unit interval [0,1]. Typically, one also needs
random variables to describe certain features of the phenomenon to be described
probabilistically: A (real valued) random variable f is a measurable function f
from X into the set of real numbers R; measurability being the requirement that
the inverse image f~!(d) of any Borel set d in R belongs to S. The measurability
requirement entails that the distribution of a random variable d +— p(f~1(d)) is
well-defined, the distribution of f is in fact the probability measure p o f~! on
B(R) defined as (po f~1)(d) = p(f~*(d)) for all Borel sets d € B(R). The number
p(f~1(d)) is the probability that f takes its value in d. Note that the events also
can be regarded as random variables: an element A in S can be identified with the
characteristic (also called: indicator) function x4 of the set A (see e.g. [19] for the
mathematical notions of measure theoretic probability).

The significance of probability theory being part of measure theory is that
foundational-conceptual problems of probability theory, such as Bertrand’s Para-
dox, can best be analyzed in terms of measure theoretic concepts. With few ex-
ceptions, the papers on Bertrand’s Paradox typically do not aim at providing an
analysis on this level of abstraction however, and, as a result, the precise nature of
the paradox remains less clear than it should be. One such exception is Shackel’s
paper [22], which raises the issue of “Getting the level of abstraction right” [22][p.
156] explicitly. But the level of abstraction suggested by Shackel is a bit too high.
To see why, we recall first the classical interpretation of probability together with
the Principle of Indifference in measure theoretic terms.

The elementary version of the classical interpretation of probability concerns the
probability space (X, P(X,),pu), where X, is a finite set containing n number of
random events and the full power set P(X,,) of X,, represents the set of all events.
The probability measure p,, is determined by the requirement that the probability
pu(A) be equal to the ratio of the “number of favorable cases to the number of all

cases”: )
number of elements in the set {z; : z; € A}

pu(A) = (1)

n

This is equivalent to saying that p,, is the probability measure that is uniform on the
set of elementary events. While it is not always stated and emphasized explicitly, it
also is part of the classical interpretation what we call here the Interpretive Link:
that the numbers p,(A) are related to something non-mathematical. Without such
an interpretive link, the classical interpretation is not an interpretation of proba-
bility at all: the numbers p, (A) defined by (1) are just pure, simple mathematical
relations. There are two standard Interpretive Links: The Frequency Link



and the Degree of Belief Link. We formulate here the first only, the latter will
be discussed briefly in section 7. Thus we have the following specification of the
classical interpretation:

Elementary Classical Interpretation: In case of a finite number of elementary
events the probabilities of events are given by the measure p, that is uniform on
the set of elementary events and (Frequency Link:) the numbers p,(A) will be
(approximately) equal to the relative frequency of A occurring in a series of trials
producing elementary random events from X,.

Notice the future tense in the above formulation: it is this reference for future
random trials that distinguishes the classical interpretation (with the Frequency
Link) from the frequency interpretation, in which the ensemble of elementary ran-
dom events determining A’s relative frequency must be specified before one can talk
about probabilities (cf. [25][p. 24]).

The classical interpretation so formulated is not maintainable however: simple
examples (such as throwing a loaded die) show that it is only under special circum-
stances that p,(A) is indicative of the frequencies with which A will occur in trials.
This is what the Principle of Indifference is supposed to express. To state this
principle we reformulate first the condition (1). Let II,, be the group of permuta-
tions of the n element set {1,2,...n} and m € II,, be a permutation. Then the
probability measure p,, on P(X,,) which is uniform on X, is determined uniquely
by the condition

for every m € I, one has: p,({z;}) = pu({Tr;)}) forallie {1,2,...n} (2)

Elementary Principle of Indifference: If the permutation group II, expresses
epistemic indifference about the elementary random events in X,,, then the (Ele-
mentary) Classical Interpretation is correct.

Thus the (Elementary) Principle of Indifference states that the (elementary
version of the) classical interpretation of probability is maintainable only if one is
epistemically neutral in some sense about the elementary events. For now, we leave
it open how to specify the content of the “epistemic neutrality”, we will return to
the issue of epistemic neutrality in section 7.

3 The general classical interpretation of prob-
ability in terms of Haar measures

Bertrand’s Paradox is typically regarded as an argument against the universal ap-
plicability of the Principle of Indifference: Bertrand’s Paradox type arguments
are intended to show that applying the Principle of Indifference can lead to
assigning different probabilities to the same event. Both the original version of the
argument and the numerous simplified versions of it involve an (uncountably) infi-
nite number of elementary random events however. But then it is not obvious at all
how one can apply the Principle of Indifference because the formulation of it in
the previous section looses its meaning if the set of elementary events is not finite:
there is no permutation group in the infinite case with respect to which one could
require invariance of the measure yielding the “right” probabilities; equivalently:
there is no probability measure on an infinite S that would be uniform on the infi-
nite set X of elementary events. What is then the Principle of Indifference in



connection with such infinite probability spaces? Without answering this question
in suitable generality, Bertrand’s Paradox cannot be properly discussed in measure
theoretic concepts.

Shackel’s paper [22], which aims at an analysis of Bertrand’s Paradox in abstract
measure theoretic terms, realizes the importance of this question but does not offer
a convincing specification of the Principle of Indifference: Shackel just assumes
a measure f on S and stipulates that the probabilities p(A) be given by p as p(A4) =
w(A)/u(X) (“Principle of indifference for continuum sized sets” [22][p. 159]). But
there are infinitely many measures p on S that could in principle be taken as ones
that define a probability p. Which one should be singled out that yields a p that
could in principle be interpreted as expressing epistemic indifference about elements
in X7 This crucial question remains unanswered in [22].

It is clear that without some further structure on an infinite X it is not possible
to single out any probability measure on § and hence it is impossible to formulate
an indifference principle on such a measurable space. The formulation of the Ele-
mentary Principle of Indifference in terms of the permutation group II,, gives
a hint about what kind of structure is needed in the more general case however: It
is a natural idea to try to replace the permutation group IL, by another group G
to be interpreted as expressing epistemic neutrality and hope that the elements g
of G determine a function ay: X — X (an action on X) in such a way that if one
requires the analogue of (2) by postulating

forallge G : p*(A) =p"(ayl4]) forall Ae S (3)

then the above condition (3) determines a unique probability measure p* on S, just
like in the case of a finite number of events. Problem is that for a general measurable
space (X,S) with a continuum sized X there is no guarantee in general that a G
exist leading to a p* — much less that it leads to a unique p*. There is however such
a guarantee under some additional assumptions: If X itself is a topological group
satisfying certain conditions.

If X is a locally compact abelian topological group, or a not necessarily abelian
but compact topological group, then there exists a unique (up to multiplication
by a constant) measure (called: the Haar measure) py on (the Borel sets of) X
which is invariant with respect to the group action. Furthermore, if X is compact
then the measure py is normalized and py is then a probability measure. (The
Appendix collects some elementary facts about the Haar measure; equation (29) in
the Appendix formulates the invariance of the Haar measure precisely).

The canonical example of an unbounded Haar measure is the Lebesgue measure
on the real line: the Lebesgue measure is the unique measure on the real line that
is invariant with respect to the real numbers as an additive group — the group
action is the shift on the real line. The same holds for the Lebesgue measure
on R”. The normalized restrictions of the Lebesgue measure on R" to bounded,
compact subsets of R™ are thus distinguished by the feature that they originate
from a shift-invariant measure; moreover, the Lebesgue measure on any interval
[a, b] also can be regarded as Haar measure in its own right and the same holds for
sets xI'[aj, b;] in R™ (cf. Appendix). Both the original Bertrand’s Paradox and the
simplified versions of it take the normalized restriction of the Lebesgue measure to
some bounded, compact sets in R™ (n = 1,2) as the measure that expresses the
Principle of Indifference. This amounts to interpreting (more or less tacitly)
the group that generates the Lebesgue measure as a symmetry expressing epistemic
neutrality about the elementary events.



Thus in general, the group action on X determined by X itself as a group can
play the role of the action of the permutation group on X,, and the Haar measure
pg on a compact X is the analogue of the uniform distribution on X, if a non-zero
uniform distribution on the elements X does not exist, which is the case if X is
an infinite set. Note that taking the Haar measure as the analogue of the uniform
distribution is also justifiable using maximum entropy techniques (see [11]). In what
follows, (X, S, pm) stands for a probability measure space in which X is a compact
topological group with continuous group action, & is the Borel o algebra on X
and py is the Haar measure on S. In the terminology of these group and measure
theoretic notions the general classical interpretation of probability and the related
principle of indifference can be consistently formulated generally as follows:

General Classical Interpretation: If X is a compact topological group, then
the probabilities of the events are given by the Haar measure py on (the Borel sets
of) X and (Frequency Link:) the numbers p,(A) will be (approximately) equal
to the relative frequency of A occurring in a series of trials producing elementary
random events from X.

General Principle of Indifference: If X is a compact topological group and if
the group action expresses epistemological indifference about the elementary random
events in X, then the General Classical Interpretation is correct.

4 Labeling Irrelevance

Part of the intuition ingrained in the classical interpretation of probability is what
can be called Labeling Irrelevance. Intuitively, the Labeling Irrelevance states
that from the perspective of the values of the probabilities it does not matter how
the events are named: re-naming them should not change their probability. To
formulate this idea precisely, we need the notion of re-labeling (re-naming) first:
If (X,S,pr) and (X',S’,py) are two probability spaces describing the same phe-
nomenon then the map h: X — X' is called a re-labeling if it is a bijection between
X and X’ and both h and its inverse h~! are measurable, i.e. it holds that

h[A] € & forall AeS (4)
h Bl eS forall BeS' (5)

(Here h[A] = {h(x) : x € A} and h=[A"] = {h~ (') : 2’ € A’}.) Note that without
the measurability condition required of h it can happen that a general event A € §
has probability but its re-named version h[A] does not — in this case h cannot be
called re-naming of random events (and similarly for h').

Labeling Irrelevance is the claim that from the perspective of probabilities (un-
derstood in the spirit of the classical interpretation), naming is irrelevant; that is to
say, if (X,S,pn) and (X', S, ply) are two probability spaces and h is a re-labeling
between X and X’ then it holds that

Py (hlA]) = pr(A) forall AeS (6)
pa(h A = py(A) forall A €& (7)

Recall (see e.g. [1][p. 3]) that two probability measure spaces (X, S, p) and (X', S, p/)
are called isomorphic if there are sets Y € S and Y’ € S’ such that p(Y') = 0 = p/(Y”)
and there exists a bijection f: (X \Y) — (X'\Y’) such that both f and its inverse
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f~! are measurable and such that both f and f~! preserve the measure p and p/,
respectively; i.e. (8)-(9) below hold:

P (f[A]) = p(A) forall AeS (8)
p(f7lA]) = pA) forall A'e S 9)

The function f is called then an isomorphism between the probability measure
spaces. Labeling Irrelevance can therefore be expressed compactly by saying

Labeling Irrelevance: Any re-labeling between probability spaces (X, S, py) and
(X', S, ply) is an isomorphism between these probability spaces.

5 General Bertrand’s Paradox

Labeling Irrelevance is obviously a very strong claim and Bertrand’s paradox
can be interpreted as the proof that it cannot be maintained in general (see below).
But why would one think that Labeling Irrelevance holds in the first place?
The answer is: because Labeling Irrelevance does hold for an infinite number of
probability spaces: for probability spaces with any finite number elementary events
probabilities of which are given by the uniform probability measure. A bijection h
between two finite sets X,, and X’ = X, of elementary events exists if and only if the
sets X, and X,,, have the same number of elements, n = m, and this entails that the
two uniform distributions on those equivalent sets will assign the same probability
to A and h[A] (and to A’ and h~![A’]) — no Bertrand’s Paradox can arise in this case.
Since the intuition about probability theory was shaped historically by situations
involving only a finite number of random events, it is not surprising that Labeling
Irrelevance became part of the intuition about probability. It turns out however
that this intuition is a poor guide if the set of elementary events is not finite: This
is precisely what Bertrand’s Paradox shows, general form of which is the following
statement:

General Bertrand Paradox: Let (X,S,py) and (X', S', p/;) be probability spaces
with compact topological groups X and X’ having an infinite number of elements
and pp,p)y being the respective Haar measures on the Borel o algebras S and
S" of X and X’. Then Labeling Irrelevance does not hold for (X,S,py) and
(X', S, ply) in the sense that

e cither there is no re-labeing between X and X’;

e or, if there is a re-labeling between X and X', then there also exists a re-
labeling that violates Labeling Irrelevance.

The General Bertrand’s Paradox is a trivial consequence of the following non-
trivial theorem in measure theory:

Proposition 1 ([24], [21]). If X is an infinite, compact topological group with the
Haar measure pg on the Borel o algebra & of X, then there exists an autohomeo-
morphism 6 of X and an open set E in S such that pg(0[E]) # pu(E).

By definition an autohomeomorphism 6 of X is a bijection from X into X such
that both # and its inverse ! are continuous. Since continuous functions are Borel
measurable, an autohomeomorphism is a re-labeling: a re-labeling of X in terms of
its own elements. Assume now that (X, S, py) and (X', S’,p);) are two probability
spaces with infinite, compact topological groups X and X’ and Haar measures py
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and pfy. If h: X — X' is a re-labeling between X and X’ then either h is an
isomorphism between the probability spaces (i.e. preserves the probability in the
sense of (6)-(7)) or it is not. If it is not, then Labeling Invariance is violated by h.
If h does preserve the probability (and is thus an isomorphism between (X, S, pm)
and (X', S’,py)) then by Proposition 1 there exists an autohomeomorphism 6 on
X and there exists an open set E € S such that py(0[E]) # puy(F). This means
that for the re-labeling given by the composition h o § we have

Pu((ho O)E]) = py(ROE]]) = pu(6[E]) # pu(E) (10)

so the re-labeling h o # violates (6) and thus h o # violates Labeling Invariance.
In either case Labeling Invariance is violated. Furthermore, the autohomeomor-
phism ensured by Proposition 1 provides a re-labeling of the elementary set of events
of any infinite compact group in terms of its own elementary events in such a way
that the Haar measure yielding the probabilities of the events in the spirit of the
classical interpretation are not preserved under the re-labeling.

The General Bertrand’s Paradox is thus a general feature of infinite probability
measure spaces with the Haar measure yielding the probabilities, and note that it
says more than the original Bertrand’s Paradox, which only claimed that there exist
Haar measures and re-labelings that violate Labeling Irrelevance: The General
Bertrand’s Paradox says that no two Haar probability spaces can satisfy Label-
ing Irrelevance; i.e. if there is at all a re-labeling between two probability spaces
(X,S,pr) and (X', S, p;) with infinite X and X' then there is also re-labeling be-
tween these spaces that violates Labeling Invariance, and for any space (X, S, pg)
with an infinite X there exists a space (namely itself) and a self-re-labeling of
(X, S, py) that violates Labeling Invariance. Thus Bertrand’s 1888 Paradox can
be viewed as the specific “Lebesgue measure case” of a mathematical theorem that
was proved in full generality in 1993 only.

We close this section by giving an explicit, elementary example of violation of
Labeling Invariance; this example will be referred to in the next section. In a
well-defined sense (explained in Remark 1) the example is general.

Example Let [a,b] and [c, d] be two closed intervals of the real numbers and

([a,b], Sja.p)s Plap) and (¢, d], Sje.qps Ple,a))
be the two probability spaces with p,p and pj. g being the normalized Lebesgue
measures on the intervals [a, b] and [c, d], with S|, 5) and Sj g being the Borel measur-
able sets of the respective intervals. Elementary algebraic calculation and reasoning
show that one can choose the parameters «, § and « in the definition of the simple
quadratic map h defined on the real line by

h(z) = ax® 4 Br +~ (11)

in such a way that h maps [a,b] to [c,d] bijectively and both h and its inverse
are continuous hence (Borel) measurable. Thus (the restriction to [a,b] of) h is a
re-labeling between ([a, b], Sja.4), Pla,p) and ([c, d], Sjc,a), Ple,q))- Specifically, the pa-
rameters below have this feature

d—c
o = m (12)
d—c
g = —QQW (13)
I R (14)
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Furthermore, if € is a real number such that [a,a + €] C [a, b] then

€

b—a

p[a,b]([av a+ 6]) =

and since h takes [a,a + €] into [c, ¢+ (bd_;GSQ€2] one has

Pled)(h[la,a+€]]) = d i c (c * (bd—_ac)2 62)

It is clear then that for many e

Pagi(faa+e) = # 1 (o (bd_‘ac)gez) =pea(hflaatd])  (15)

which is a violation of Labeling Irrelevance.

Remark 1. Note that the above example is typical in the following sense: A proba-
bility measure space is called a standard probability space if X is a complete, separa-
ble metric space and S is the Borel ¢ algebra of X. Standard, non-atomic probability
spaces are isomorphic to ([a,b], Liq 4, Pjap) With some interval [a,b] where L,y is
the algebra of Lebesgue measurable sets in [a,b] (see [1][Chapter 1, p. 3]). Hence
the above example gives a large number of re-labelings that violate Labeling Ir-
relevance in the category of spaces (X,S, py) with X being a complete, separable
metric space. This covers all the spaces that occur in connection with Bertrand’s
Paradox.

6 Attempts to save Labeling Irrelevance

One may attempt to defend Labeling Irrelevance by trying to block the emergence
of Bertrand’s Paradox. The previous section makes it clear what the possible strate-
gies are to achieve this: One can impose some extra condition on re-labelings that
entails either that re-labelings satisfying the extra conditions do not exist (Strategy
A) or that the re-labelings satisfying the additional conditions force the re-labelings
to be isomorphisms of the probability spaces (Strategy B). Although not formu-
lated in this terminology, Bangu’s recent attempt [2] is an example of Strategy A.
We show below that Bangu’s suggestion for Strategy A is ambiguous however and
that resolving the ambiguity makes it either a trivial case of Strategy B or is unsuc-
cessful. A successful implementation of Strategy B is to say that it is unreasonable
to expect a re-labeling to preserve probabilities unless the re-labeling also preserves
our epistemic status with respect to the elementary events: after all, the Principle
of Indifference states that py is the correct probability only if the group structure
of X expresses epistemic neutrality. So the following stipulation is in the spirit of
the Principle of Indifference:

Definition: The re-labeling h between probability spaces (X, S, py) and (X', S', p’y)
preserves the epistemic status if it is a group isomorphism between X and X'.

Since the probability measures py and p’; are completely determined by the
respective group actions, re-labelings that preserve the epistemic status are isomor-
phisms between the measure spaces, hence no Bertrand’s Paradox can arise with
respect to such re-labelings; furthermore, not every re-labeling is a group isomor-
phism — thus this strategy works in a non-trivial way.



Bangu’s suggestion is that one should only expect Labeling Irrelevance to hold
for bijections that “preserve randomness” — this is his Assumption R — Bertrand’s
paradox is only a paradox in his view if Labeling Irrelevance is violated by re-
labelings satisfying the randomness condition, which, he claims, has not been shown
and the burden of proof is on those who claim such re-labelings exist. It is clear from
the wording of his paper that he conjectures that no such proof can be given, i.e.
that no randomness preserving re-labelings exist that violate Labeling Irrelevance
(i.e. that he is following Strategy A).

As Bangu also points out, the notion of randomness is notoriously both vague and
rich: the adjective “random” can be applied to different entities (events, processes,
dynamics, ensembles etc.), it can come in the form of a pre-theoretical informal
intuition, in form of precise mathematical definitions, and it also can come in de-
grees. Thus one has to be very careful and specific when it comes to the problem
of whether “randomness is preserved” under a re-labeling of the elementary events.
Bangu leaves it deliberately open in what sense precisely “randomness” might not
be invariant under re-labeling of the random events; hence his suggestion remains
somewhat vague. No matter what kind of notion of randomness one has in mind,
if it is to be relevant for probabilistic modeling of a phenomenon, then it must be
expressible in terms of probabilities, since the basic principle guiding the modeling
of phenomena by probability theory is the maxim:

Distribution Relevance: “A property is probability theoretical if, and only if, it
is describable in terms of a distribution” [15][p. 171].

In the spirit of Distribution Relevance one can take the position that ran-
domness of a phenomenon expressed by “randomness” of the random variables that
describe the phenomenon are encoded in the distribution of the random variables.
Consequently, under this interpretation of randomness, if one is given two proba-
bility models (X,S,p) and (X', S’,p’) of a given phenomenon and h: X — X’ is
a re-labeling between (X, S, p) and (X', 8’,p’), then h preserves the randomness of
the two probabilistic descriptions if and only if it holds that if f: X — R is any
random variable in (X, S, p) with distribution po f~! then the distribution p’ o f/f1
in (X’,8’,p') of the re-named random variable f' = f o h=! coincides with po f~!:

(P o(foh ™)™ M) (d)=(pof')(d)  forallde B(R) (16)

and conversely: for every random variable ¢’: X’ — R which is the re-named version
of a random variable g = ¢’ o h in (X, S, p) it holds that the distribution p’ o ¢’ “tin
(X', 8",p') of ¢’ and the distribution po g=! of g = ¢’ o h in (X, S, p) coincide:

(po (g oh)™)(d) = (p og ")) for all d € B(R) (17)

Since the random events themselves are random variables, the two equations (16)-
(17) must hold for every characteristic function x4 (A € S) in place of f and every
characteristic function y 4. (A" € ') in place of ¢’ as well, so this requirement of
preserving randomness amounts to the demand that the following two equations
hold:

p'(h[4]) = p(A) forall AeS (18)
p(h71[A]) = p'(4) forall A’ €&’ (19)

which is precisely Labeling Irrelevance (egs. (6)-(7)). So, if “preserving random-
ness by re-labeling” in Assumption R is understood in the spirit of Distribution
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Relevance as conditions (16)-(17) then the only randomness-preserving re-labelings
are the isomorphisms and no Bertrand paradox can arise indeed — requiring preserv-
ing randomness in this sense is equivalent to the requirement that the re-labelings
are isomorphism, Strategy A, so interpreted, is trivial.

One can try to argue that this is an extremely strong interpretation of “pre-
serving randomness” and that randomness also can be interpreted differently as ex-
pressed by some other property ®(p) of the probability measure p. For instance, one
has the intuition that a probability measure sharply concentrated on a single point
in X is far less “random”, it represents much more certainty by having zero vari-
ance than a probability distribution that has a large variance. The usual (Shanon)
entropy of a probability measure also can be taken as a measure of “randomness”
of the phenomenon that the probability model describes [4][p. 61-62]. Thus one
can interpret the requirement of “preserving randomness under re-labeling” in As-
sumption R in different ways depending on what property ® one chooses:

Assumption R[®]: If (X, S, py) and (X', S, ply) are two probability spaces and h
is a re-labeling between X and X’ then we say that Assumption R[®] is satisfied
if both ®(pg) and ®(p’;) hold.

It is clear then that if there is a property ® of randomness of a probability mea-
sure and there exists probability spaces (X, S, py) and (X', S’, ply) with a re-labeling
h: X — X' such that Assumption R[®] is satisfied but Labeling Irrelevance is
violated by h then Bertrand’s paradox re-emerges.

The variance and the entropy are such properties: Consider the probability
spaces ([a, b, S(4.1), Pla,p) and ([¢, d], Sjc,q]; Ple,q)) described in the Example in section
5. The variance o(pj,p)) of the normalized Lebesgue measure py, on any interval
[a, b] is by definition equal to

b1 b 2 (b—a)?
e e A (= (20)

and the entropy E(pjqp) of pay is by definition

b
E(pias) =~ [ @log(a)ds =log(b — a) (21)

It follows then that if b—a =d — ¢ =t then

2
oPiait) = o Plea) = Ty (22)
E(p[a,b]) = E(p[a,b]) = log(t) (23)

On the other hand, the map h defined in the Example remains a re-labeling even
if b — a = d — ¢ and Labeling Irrelevance is violated by this map because for
b—a=d—c=1teq. (15) entails that for many ¢ we have

pag(faa+d) = # (et 1) = pg(hllaa+ ) (24

Thus Bertrand’s paradox re-emerges: The probability space ([c, d], Sjc,a), P[c,q)) can
be regarded as a re-named version of the probability space (a, b],S[ayb},p[mb]) via
the re-labeling h defined by (11) and (12)-(14), furthermore, if b — a = d — ¢ then
this re-labeling satisfies Assumption R[®] with ® being the variance or entropy,
and because of (15) h violates Labeling Irrelevance (6)-(7).
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One also can try to question Distribution Relevance. But if one gives up
Distribution Relevance and interprets “randomness” in a way that makes ran-
domness not expressible exclusively in terms of the distributions involved, then
the appropriately modified Assumption R constrains even less the emergence of
Bertrand’s Paradox. Rowbottom and Schackle [20] take Assumption R to be (a
technically undefined) “unpredictability” and argue (informally) that there are re-
labelings that preserve “unpredictability” and which are not isomorphisms, contrary
to what Bangu [2] seems to conjecture. As a technically more explicit example, as-
sume that a dynamic {a; : t € R} is given on ([a,b], Sjq 4}, Plap)) and a dynamic
{ap : t € R} is given on ([c,d], Si¢.q]; Ple,q), Where ay and « are one parameter
groups of measure preserving maps on [a,b] and [c, d] respectively. As randomness
of the dynamical systems ([a, b], Sj.4]; Pla,p))> {u}) and ([c, d], Sic.q); Ple.a))> {a}) one
can take the randomness of the respective dynamics such as ergodicity, or mixing,
which are not expressible in terms of py,; and pj.q only. Given the re-labeling
h between ([a,b], i p)s Plap)) and ([¢, d], Sjc.a), Ple,q)) described in the Example in
section 5 that violates Labeling Irrelevance one can then specify the dynamics
{4} and {a}} in such a way that they are both ergodic, [4][p. 34], generating a
Bertrand’s Paradox, or in such a way that {oy} is ergodic whereas {«}} is not, which
would be a violation of preserving randomness (Assumption R) hence not a case
of Bertrand’s Paradox (according to Bangu’s requirement) — anything is possible
under such a dynamical interpretation of randomness.

Thus the emergence of Bertrand’s paradox cannot be blocked in a non-trivial way
by requiring the paradoxical examples to satisfy the randomness test and showing
that they cannot pass this test: unless one requires in effect that the re-labeling
be an isomorphism, Bertrand’s Paradox emerges: If Distribution Relevance is
accepted and randomness is interpreted as measured by the variance or entropy of
the probability measures then elementary examples can be given that show violation
of Labeling Irrelevance. If Distribution Relevance is abandoned then the
randomness requirement can be satisfied even more easily.

7 Comments on the classical interpretation

While Bertrand’s Paradox shows that Labeling Irrelevance cannot be maintained
in general, this does not undermine, in and by itself, either the classical interpreta-
tion of probability or the Principle of Indifference: It is clear from the discussion
in the previous sections that the Principle of Indifference and Labeling Irrel-
evance are independent ideas: One can in principle maintain the classical interpre-
tation based on the Principle of indifference and reject Labeling Invariance
completely or restricting it to the domain in which it holds: in the category of prob-
ability measure spaces with a finite number of random events, or to re-labelings that
preserve the epistemic status.

Thus Bertrand’s Paradox is defused; however this is not to be taken as defence
of the classical interpretation. The classical interpretation is deeply problematic for
simple, non-technical reasons that are related to the general issue of how one should
view the status of probability theory.

One has to distinguish applications of probability theory from interpretations of
probability as this latter term is used in philosophy of science. Probability theory is
part of pure mathematics in the first place. In an application of probability theory
one relates the mathematical elements in a triplet (X,S,p) to non-mathematical
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entities. This involves two tasks:

Event Interpretation To specify what the elements in X and & stand for.

7

Truth Interpretation To clarify when the proposition “p(A)=r” is true/false.

In an application, probability theory thus becomes a mathematical model of a cer-
tain phenomenon that is external to mathematics. A probability measure space is
a good model of the phenomenon if it has two features: descriptive accuracy and
predictive success. Descriptive accuracy means that under the fixed specification of
the Event and Truth Interpretations propositions such as p(A4) = r are true about
events that have been observed in the past. Predictive success means that the prob-
abilistic propositions p(A) = r will be true in future observations. It is clear that
both descriptive correctness and predictive success are robustly empirical features;
hence, whether a probability space is a good model is a question that can be an-
swered only on the basis of empirical considerations. This is of course not new,
there is nothing peculiar or mysterious about probabilistic modeling, probabilistic
scientific theories are just like any scientific theory from this perspective. !

The mathematical notion of isomorphism between probability measure spaces
is in complete harmony with the application of probability theory — and so is the
General Bertrand Paradox: The Event Interpretation and Truth Interpretation are
conceptually different issues, the former does not determine the latter, and, ac-
cordingly, two probability spaces are defined to be isomorphic if fwo conditions are
satisfied: the random events in the two spaces are connected by a re-labeling and
the re-labeling preserves the probabilities. From the perspective of the notion of
isomorphisms of probability spaces finite probability spaces with the uniform prob-
ability measure just happen to have the “contingent” feature that in this category
re-labelings are isomorphisms; in this case the re-labelings contain enough informa-
tion to make them isomorphisms.

Interpretations of probability are typical classes of applications of probability
theory, classes consisting of applications that possess some common features, which
the interpretation isolates and analyzes. The main problem with the Classical In-
terpretation (understood with the amendment of the Principle of Indifference)
is that it disregards the empirical character of the applications of probability the-
ory and gives the impression that descriptive accuracy and predictive success in
applications are based on (and can be ensured by referring to) an priori-flavored
principle that expresses some sort of epistemic indifference about random events.
But this is not possible, which is shown by the difficulty (often pointed out in con-
nection with the Principle of Indifference [9]) that it is unclear how to specify
the precise content of “epistemic neutrality” in such a way that the Principle of
Indifference does not become circular and holds nevertheless: The Principle of
Indifference holds only if epistemic neutrality does entail that the probabilities of
the events given by the uniform probability measure will be equal to the frequencies
of events in actual trials producing elementary random events, and such a conclu-
sion cannot be validly based on a priori considerations — if it could, the Principle
of Indifference would have solved the problem of induction.

! Although Marinoff [16] does not emphasize the empirical aspect of probabilistic modeling, his resolu-
tion of Bertrand’s Paradox is essentially in the spirit of probabilistic modeling described here: Marinoff
distinguishes different types of random generators representing different types of randomness and notes
that, depending on which random generator produces the random events featuring in a Bertrand Paradox
type situation, one obtains different probability distributions — there is nothing paradoxical about this.
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One might say that the classical interpretation and the Principle of Indiffer-
ence should be taken not with the Frequency Link but with the Degree of Belief
Link, according to which py should be viewed as representing degrees of belief [5],
[17]. To assess the viability of such an interpretation of the classical interpretation
one has to distinguish two further specifications of the notion of degree of belief:
descriptive and normative.

In the descriptive interpretation the claim is that pg does represent the degree
of belief of a particular person (or a specific group of people) about random events
happening if the persons are epistemologically neutral about the events. Whatever
the precise content of this epistemological neutrality, this descriptive interpretation
of the degrees of belief is again an empirical claim about the thinking and behavior
of certain people, which may or may not be true; testing it (including testing if the
people in question have degrees of belief indeed) is a matter for empirical psychology
— but this interpretation has little to do with how probability theory is applied in
the sciences.

In the normative interpretation py is declared to stand for the rational degrees of
belief of an abstract person (agent) if the agent is epistemologically neutral about the
elementary events. In this case one has to ask in what sense and why pg represents
rational degrees of belief? One answer can be that py is rational if (X, S,py) is a
good model of a certain phenomenon in the sense described earlier in this section
and a rational agent’s belief better be in harmony with the probabilities provided by
a good model. This interpretation of rationality of pyr is essentially the content of
the Principle Principle [14] and, while it is very natural, one should realize that py
features in it in two roles: (i) standing for the degree of belief and (ii) representing
some extra-mental, non-degree-of-belief-type quantities (for instance frequencies or
some other dimensionless physical quantities [23]) with which the degrees of belief
are required to be equal. Thus this interpretation reduces the Degree of Belief Link
to another Interpretive Link and thereby the rationality (or otherwise) of an agent’s
degree of belief is made again dependent on empirical matters. But then it does not
matter from the perspective of rationality of the degrees of belief whether the agent
is epistemically neutral about the elementary events or not, because the correctness
of the probabilistic model is an empirical matter that cannot be ensured on the
basis of an a priori neutrality, and probability measures different from py can very
well be rational if they satisfy the Principle Principle and the probabilistic model
is good. Another possible specification of rationality of the agent’s degrees of belief
can be that they are consistent, i.e. that py satisfies the axioms of probability.
Obviously, this does not single out pyr as the only rational probability.

In sum: Bertrand’s Paradox interpreted as violation of Labeling Irrelevance
does not undermine the classical interpretation of probability understood with the
Principle of Indifference, and violation of Labeling Irrelevance is in complete
harmony with how mathematical probability theory is used in the sciences to model
phenomena; yet, irrespective of Bertrand’s Paradox, the content of the Principle
of Indifference cannot be specified in such a way that it can establish the classi-
cal interpretation of probability as descriptively accurate, predictively successful or
rational.

Appendix

This Appendix recalls some elementary facts about the Haar measure. Standard
references for the Haar measure are [18] and [10][Chapter XI.], for a more recent
presentation see [6].
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X is called a topological group with multiplication (z,y) — z -y and inverse
x — 2z~ 1 if the map (z,y) — 271 -y is continuous (z,y € X). A measure p on the
Borel algebra S of the group X is called left invariant (respectively right invariant)
with respect to the group action if eq. (25) (respectively eq. (26)) below hold

p(4) = p(zA) forallz e X AeS (25)
p(A) = p(Ax) forallz€e X AeS (26)

where for an z € X, the sets A and Az are defined by

zA = {z-y:yeA} (27)
Az = {y-xz:ye A} (28)

The measure p is called invariant if it is both left and right invariant, i.e. if
p(A) = p(zA) = p(Az) foralze X AeS (29)

On any locally compact topological group there exists both a left p%{ and a right
pg invariant Haar measure and they are unique up to multiplication by a constant.
The left and right invariant Haar measures are in general different. Since both
the left and Haar measure is unique up to constant multiplication, and since for
any € X the measure p,(A) = pk(Az) is again a left invariant measure, there
exists a real number A(z) such that p,(A) = A(z)pL(A4). The map z — A(x) is
called the modular function of the group. If A(z) = 1 for all x, then the groups
are called unimodular; for unimodular groups the left and right invariant Haar
measures coincide and yield an invariant measure. Compact and locally compact
abelian groups are unimodular. The Haar measure is bounded if and only if X is
compact — the Haar measure is then a probability measure.

The canonical examples of unbounded Haar measures are the Lebesgue measure
on the real line and the Lebesgue measure on R”. It is shown below that the nor-
malized restrictions of the Lebesgue measure on R™ to subsets of the form x['[a;, b;)
in R™ also can be regarded as Haar measures in their own right with respect to a
compact group G. This entails that the Lebesgue measure on the closed set x['[a;, b;]
also can be viewed as a Haar measure with respect to G because the Lebesgue mea-
sure space over X['[a;,b;) and over X['[a;,b;] are isomorphic. (Note that G is not
the shift; it cannot be since shifted subsets of [0,1) are not necessarily subsets of
[0,1) and the group of “shifts modulo 1”7 do not form a topological group due to
discontinuity of the “shift modulo 1” operation.) Since [0,1) can be mapped onto
[a,b) by a continuous linear bijection connecting the (normalized) Lebesgue mea-
sures on the intervals [0,1) and [a, b), to see how the Lebesgue measure on [a,b) is
a Haar measure in its own right, it is enough to see how the (normalized) Lebesgue
measure pj 1) on the interval [0, 1) emerges as a Haar measure. Let

Slz{ze(C: 2| =1}

be the unit circle on the complex plane. As S is a compact topological subgroup of
C with the multiplication of complex numbers as the group operation, there exists
a normalized Haar measure pz on S'. The exponential function f defined by

R R (OE

is a continuous and continuously invertible bijection between the unit interval [0, 1)
and the unit circle S'; hence both f and its inverse are measurable. We claim that

15



f is a measure theoretic isomorphism between the interval [0, 1) with the Lebesgue
measure on it and S' with the measure py on it; i.e. that
pr = ppnof ! (30)

To verify (30), by the uniqueness of Haar measures, it is enough to show that
Plo,1) © f~!is a Haar measure, i.e. that Plo,1) © f~1is invariant with respect to the
group operation in S', which is the multiplication of complex numbers. Since the
exponential function f turns addition of real numbers into multiplication of complex
numbers, for B C S! and z € C we have

fY(B-2) = f[B] +tmod 1 (31)

where the translation
Y—Y +¢tmod1 (32)

is the standard shift of set Y C [0, 1) by ¢ followed by “pulling back” into [0,1) the
part of Y that is shifted out of the bounds of [0, 1); formally:

Y+tmod1l=(YN[0,1-¢t) +t)Uu(YN[1-¢1) —(1-1))

Plo,1) is translation invariant on [0, 1) in the sense that for any measurable set A C
[0,1) and 0 < ¢ < 1 we have

Po,1)(A) = po,1y(A +t mod 1),

so we have

pu(B - 2) = poy(f (B 2)) = pp1y(f ' (B) +t mod 1) = ppo 1) (f~(B)) = pu(B)

The Lebesgue measure pﬁ)’l) on the n-dimensional cube [0, 1)" also can be regarded
as a Haar measure: one can consider the Haar measure p% on the n-dimensional
torus

T =S x St x - x S (n times)

which is a compact topological subgroup of C™ with the coordinate-wise multipli-
cation of complex numbers as group operation. Put

f : [0, 1)” — Tn7 f(t07 o 7tn) — (627Tit0, B '7627ritn)

Then f is a continuous and continuously invertible bijection and, applying the
previous argument in each coordinates, one concludes

P =y o f
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