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Abstract

By inserting the dialogue between Einstein, Schlick and Reichenbach in a wider network of debates about the epistemology
of geometry, the paper shows, that not only Einstein and Logical Empiricists came to disagree about the role, principled
or provisional, played by rods and clocks in General Relativity, but they actually, in their life-long interchange, never
clearly identified the problem they were discussing. Einstein’s reflections on geometry can be understood only in the
context of his “measuring rod objection” against Weyl. Logical Empiricists, though carefully analyzing the Einstein-Weyl
debate, tried on the contrary to interpret Einstein’s epistemology of geometry as a continuation of the Helmholtz-Poincaré
debate by other means. The origin of the misunderstanding, it is argued, should be found in the failed appreciation of
the difference between a “Helmhotzian” and a “Riemannian” tradition. The epistemological problems raised by General
Relativity are extraneous to the first tradition and can only be understood in the context of the latter, whose philosophical
significance, however, still needs to be fully explored.
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1. Introduction

Mara Beller in her classical Quantum dialogue (Beller,
1999) famously suggested a “dialogical” approach to the
history of science. According to Beller, the scientific dis-
course always addresses the discourse of other scientists,
which in turn may react by changing their views in res-
ponse. In Beller’s view, scientific discourse is not only dia-
logical but also “polyphonic”. Different dialogues overlap
and nurture each other forming a communicative network,
whose analysis is indispensable in understanding the single
contributions.

Beller provided of course her own celebrated dialogical
analysis of the emergence of the so-called “Copenhagen in-
terpretation” of quantum mechanics. Such a methodologi-
cal approach, however, could be effectively extended to the
history of philosophy of science. In particular there is little
doubt that the dialogue between Albert Einstein and the
Logical Empiricist, mainly Moritz Schlick and Hans Rei-
chenbach, about the epistemology of geometry represents
one of the decisive moments, if not the decisive moment,
of 20th century philosophy of science (Howard, 2009). In
this dialogue Logical Empiricists established the founda-
tion of their new kind of empiricism which, for better or
for worse, inspired a generation of philosophers.

As we shall see, this dialogue is interrelated with other
dialogues : the debate among Einstein, Max Born, Paul
Ehrenfest, Max von Laue and others around the 1910s
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on the notion of rigid bodies in Special Relativity (§2.1)
and most of all those between Einstein, Herman Weyl
and Walter Dellänbach (§3) on the role of rigid rods and
clocks in General Relativity (§2.2) around the 1920s. In
turn, these dialogues bare a complex relation with a series
of controversies, among Bernhard Riemann, Herman von
Helmholtz, Henri Poincaré and others, which burst forth
in the second half on 19th century after the “discovery” of
non-Euclidean geometries (Torretti, 1978).

Einstein’s dialogue with Schlick and Reichenbach must
then be understood with a backdrop of this rich and varie-
gated web of different interrelated dialogical interchanges,
in which every argument reveals its full meaning only when
regarded as a response to other arguments. The aim of this
paper is to show that this dialogue, considered in its pro-
per historical setting, can however be singled out by a sort
of odd peculiarity : its protagonists never really agreed on
what they where discussing about and, surprisingly, never
seemed to have noticed it.

In recent literature the Einstein-Logical Empiricists de-
bate has been regarded as a philosophical controversy concer-
ning a problem that the “parties to the instrument” uni-
vocally identified : whether measuring rods and clocks do
or should play an epistemological fundamental role in Ge-
neral Relativity. Einstein, till the end of his life, argued
that the theory has an empirical content, as soon as oneas-
sumes the existence of rigid infinitesimal rods that can be
used to measure the interval between any two neighbo-
ring points (Stachel, 1989). However, he also recognized in
several occasions that this was only a sort of practical com-
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promise (Howard, 1990, 1994) or at least he was forced by
Weyl to recognize it (Ryckman, 1995). Both Weyl and the
Logical Empiricists can be then considered as “Einstein’s
agonists”, even if they were speaking up for “different Ein-
steins” (Ryckman, 1996, 2005), or at least of two different
sides of “same Einstein” (Howard, 2005, 2009).

The “received view” can then be roughly summarized
as follows : In the 1920s the Logical Empiricists, especially
Schlick and Reichenbach, believed to follow Einstein’s gui-
dance in assuming that without rods and clocks the “edi-
fice of physics” would be deprived of empirical content
(Friedman, 2002) ; however Einstein, more in consonance
with Weyl, accepted this assumption only provisionally :
the behavior of rods and clocks should be in principle deri-
ved from the theory and not used to grant its observational
basis (Ryckman, 2005).

Recent historical literature had thus made enormous
progress in revealing the complex “dialogical” background
hidden behind the apparent monolithic Einstein-Logical
Empiricists-epistemology of geometry (see Fogel, 2008, ch.
3, 4 for an ecellent overview). Einstein’s position turned
out to be much more sophisticated than the Logical Em-
piricists had believed, and most of all rather at odds with
their own empiricism. In my opinion, however, recent lite-
rature has been strangely recalcitrant to make the succes-
sive step and unravel a rather discomforting truth about
the “emperor’s clothes”. Actually Einstein and Logical Em-
piricism were simply not discussing the same problem. The
celebrated dialogue to which modern philosophy of science
owes its origin was a dialogue of the deaf.

Logical Empiricists were convinced that the Helmholtz-
Poincaré controversy on the empirical-conventional choice
among the class of possible (Euclidean or non-Euclidean)
Riemannian geometries could be extended in the new ge-
neral relativistic context (Friedman, 1995), by substitu-
ting a stipulation about the congruence of “finite rigid bo-
dies” with that of “infinitesimal rigid rods” (Torretti, 1983,
239f.). Einstein’s was rather exclusively concerned with the
very existence of rigid infinitesimal rods, which is presup-
posed by Riemannian geometry, but — as Weyl had shown
— is far from being necessary. Einstein’s rather sporadic
references the Helmholtz-Poincaré debate served then to
face rhetorically Weyl’s challenge in semi-popular writing,
rather then making a case for conventionalism (§4.2 ; §4.5).

As we shall see in detail, the Logical Empiricists knew
the issue raised by Weyl very well and, in particular Rei-
chenbach, discussed it, along with Einstein’s counter-objection,
at length, thereby displaying a vast knowledge of all tech-
nical details (§4.1 ; §4.3 ; §4.4 ; §6) ; however, they surpri-
singly never came to realize that Einstein’s epistemolo-
gical reflections on geometry addressed precisely Weyl’s
criticism of the use of rods and clocks as direct metrical
indicators. Even more puzzling is the fact that Einstein, in
turn, apparently never felt compelled to clear up the mi-
sunderstanding, neither in private correspondence, nor in
published writings, nurturing the reciprocal illusion that
the debate revolved on a well-identified problem to which

the contenders gave different solutions.
The historical dialogue between Einstein and the Logi-

cal Empiricists found its crowning moment in the famous
imaginary dialogue between “Reichenbach” and “Poinca-
ré” staged by Einstein in his final “Remarks” for the Li-
brary of Living Philosopher’s volume published in the late
1940s. As Reichenbach’s successive reply shows, even in
that occasion, Einstein and Reichenbach did not come to
an agreement on what was the apple of discord (§6). For
more then thirty years Einstein, Schlick and Reichenbach
were engaged in a lively discussion about the epistemo-
logy of geometry, but for more then thirty years they were
talking at cross-purposes.

If our reconstruction will turn out to be correct, we
have then to face the ugly truth that the epoch-making
debate in which philosophy of science was defined as an
independent discipline was based in hindsight on a quite
simple misunderstanding. There are still, however, some
not irrelevant lessons, that can be drawn from an accurate
historical reconstruction of this debate. Differently than
what the Logical Empiricists thought and what it is still
often argued in literature, what we may call the “Helmholt-
zian” tradition which traversed the 19th century geometry
did not play any relevant role in the emergence of Gene-
ral Relativity, and it is utterly inadequate to understand
the philosophical problems that theory raised. Einstein’s
theory drew its conceptual resources exclusively from what
we may call a “Riemannian tradition”, that, although evol-
ving parallely in roughly the same years, philosophers have
often neglected to adequately investigate (§7).

2. From finite Rigid Bodies to Infinitesimal Rigid
Rods. Einstein between Geometry and Reality

2.1. Finite Rigid Bodies in Special Relativity
Early on, Einstein insisted on the “epistemological” im-

portance of “rigid bodies” as the mediating element to
connect geometry with physical reality. Already in his 1905
paper on the electrodynamics of moving bodies, Einstein
pointed out that in a coordinate system at rest the posi-
tion of a body can be determined “by the employment of
rigid measuring rods [Maßstäbe] under the methods of Eu-
clidean geometry and expressed in Cartesian co-ordinates”
(Einstein, 1905, 892). A Cartesian system of co-ordinates
can be thought of as a cubical frame-work formed by rigid
unit rods. Translations of such a rigid cube into itself can
be used to introduce number triples as coordinates and
these can then be employed as marks of position throu-
ghout the entire space. To specify relations in time, we
require in addition a standard clock (in general a system
which runs down periodically) placed, say, at the origin of
our Cartesian system of coordinates or frame of reference.
In this context, the introduction of coordinates could the-
refore be directly defined by measurements made by rigid
bodies and uniformly ticking clocks (see for instance Ein-
stein, 1907, 439).
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As early as 1907, however, Einstein pointed out that in
Special Relativity it is difficult to clarify the behavior of
bodies and clocks in accelerated frames of reference (Ein-
stein, 1907, §18 ; in particular 455). In 1909 Max Born
(Born, 1909), referring to Einstein’s 1907 paper, sugges-
ted a Lorentz invariant definition of a rigid body (the so
called Born rigidity condition). “The method used by me
— Born writes — consists in defining rigidity by a diffe-
rential law instead of an integral law” (Born, 1909, 3) ; in
particular Born defined analytically “the differential condi-
tions of rigidity” by using a quadratic form of three spacial
differentials (Born, 1909, §2 ).

In addition to the paper published in the Annalen der
Physik, Born presented the results of his work at the mee-
ting of the German Society of Scientists and Physicians
(Salzburg, 21-25 September 1909), which was also atten-
ded by Einstein. The results where published one year la-
ter (Born, 1910). On that occasion Born mentioned Gustav
Herglotz’s result that in Special Relativity a rigid body has
only three degrees of freedom, in contrast to the six of clas-
sical mechanics (Herglotz, 1910 ; see also Noether, 1910).
Just four day after the meeting Paul Ehrenfest published
in Physikalische Zeitschrift a celebrated paper discussing
how an ideally rigid cylinder cannot be brought from rest
into a state of rotation about its axis of symmetry, without
violating Lorentz Invariance (Ehrenfest, 1909). The para-
dox became well-known as “Ehrefenst Paradox” (cf. Grøn,
2004).

In private correspondence Einstein declared his interest
in “[t]he latest relativity-theoretical investigations of Born
and Herglotz . . . It really seems — he argued — that in
the theory of relativity there does not exist a ‘rigid’ body
with 6 degrees of freedom” (an Jakob Laub, March 1910,
CPAE : 5. 232 ; tr. in Stachel, 1989). In 1911 Max von
Laue, developing the works of Born, Ehrenfest, Herglotz
and Noether, showed that in Special Relativity an accele-
rated body has an infinite amount of degrees of freedom,
thus implying that rigid bodies cannot exist. By assuming
that “a propagation with superluminal speed is excluded
for all physical effects” (von Laue, 1911, 86), Laue sho-
wed that an impulse simultaneously acting on n different
points of a body will necessarily result in at least n de-
grees of freedom. Einstein explicitly mentioned a similar
result in a discussion following the lecture version of Die
Relativitäts-Theorie (Zurich, 16 January 1911 ; published
as Einstein, 1911) : “There can be altogether no rigid body
according to the Theory of Relativity” (CPAE 3, Doc. 18,
443). If we move a part of a rigid body then also the other
end should immediately move. However, this would be an
infinitely fast signal which is not acceptable in Special Re-
lativity.

Thus, although Einstein did not participate publicly
in the discussion of the Ehrenfest Paradox, he was well
aware of the difficulties that lurk in the definition of a “ri-
gid body” in Special Relativity . However, the concept of
“rigid body” apparently continued to play for him the fun-
damental “epistemological” role of mediating between abs-

tract geometry and physical geometry : “the propositions
of Euclidean geometry — Einstein noticed in his 1912 lec-
tures on Special Relativity — obtain physical content”, if
they are interpreted as “propositions concerning arrange-
ments [Gruppierungen] of material straight lines and tracts
in relative rest” (CPAE 4, Doc. 1, 36).

In a footnote attached to this passage, Einstein labeled
this definition as “woolly [unscharf] (Rotation)” (CPAE 4,
Doc. 1, 104 ; n. 56). The reference is probably to the the
famous “rigidly rotating disk” thought experiment (Sta-
chel, 1989), which Einstein mentioned for the first time in
a published paper in February 1912 (Einstein, 1912, §1).
Einstein came to the conclusion — reached independently
by Theodere Kaluza (Kaluza, 1910) — that the proposi-
tions of Euclidean geometry cannot hold exactly on the
rotating disc nor in general within a gravitational field.
However, according to Einstein “[t]he measuring rods as
well as the coordinate axes are to be considered as rigid
bodies”, “even though the rigid body cannot possess real
existence” (Einstein, 1912, 131).

2.2. Infinitesimal Rigid Rods and General Relativity
As Abrahm Pais has noted, “the celebrated problem

of the rigid body in the special theory of relativity sti-
mulated Einstein’s step to curved space, later in 1912”
(Pais, 1982, 202). Einstein was forced to rethink the rela-
tionship between coordinates and measurements with rods
and clocks (Stachel, 1989) and to abandon the restrictions
imposed by Euclidean geometry ; moreover Born’s mathe-
matical technique may have brought him to consider qua-
dratic differential forms with variable coefficients (Maltese
and Orlando, 1995). As is well-known, around 1912 Ein-
stein was introduced to the work of Erwin Bruno Christof-
fel (Christoffel, 1869), Gregorio Ricci-Curbastro and Levi-
Civita (Levi-Civita and Ricci-Curbastro, 1900) by his ma-
thematician friend Marcel Grossmann. In 1913, together
with Grossmann, Einstein saw how to formulate, at least
in outline, a theory of gravitation based on the expres-
sion ds2 =

∑
gµνdxµdxν , whose coefficients gµν represent

the behavior of measuring-rods and clocks with reference
to the coordinate system, as well as the potentials of the
gravitational field (Einstein and Grossmann, 1913).

In this context, co-ordinates lost their simple metri-
cal significance and do not directly signify lengths measu-
red by a unit measuring rod anymore : The length of a
measuring rod is not determined solely by the coordinate
differentials dx1, dx2, dx3 but also by the six functions
g11, g22, g33 . In a four dimensional manifold the measure
of time is similarly influenced by the gravitational poten-
tial g44, so that the distance of two neighboring events,
measured with the aid of a portable clock, is different from
the differential dx4 of the time coordinate : “From this
one sees that, for given dx1, dx2, dx3, dx4” the interval ds
which “corresponds to these differentials can be determi-
ned only if one knows the quantities gµν that determine
the gravitational field” (Einstein and Grossmann, 1913, 9).
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Thus, one does not know the meaning of “distance” bet-
ween two events, specified initially by physically meanin-
gless co-ordinates xν , until one knows the coefficients gµν .
On the other hand, after a coordinate system has been in-
troduced, the gµν should in principle be obtained from the
direct measurement of space-like and time-like distances.

In the Entwurf-paper, Einstein found the solution to
this conundrum by assuming that one can construct a Eu-
clidean or Minkowskian coordinate-system with unit rods
and clocks in an enough small (in astronomical propor-
tions) region of space-time. Instead of the general coordi-
nates xν , one can introduce the rectangular coordinates
ξν , in which ds2 = dξ 2

1 + dξ 2
2 + dξ 2

3 + dξ 2
4 , i.e. Special Re-

lativity is valid, where the gµν are constant ; the invariant
measure of the distance between two spacetime points ds,
as determined by unit-rods and clocks not accelerated in
this frame, is referred to by Einstein as “naturally measu-
red”.(Einstein and Grossmann, 1913, 8).

In the last sections of the successive systematic expo-
sition of the Entwurf -theory, Die formale Grundlage der
allgemeinen Relativitätstheorie (Einstein, 1914) — presen-
ted to the Berlin Academy in 1914 — Einstein suggested
the implications that the new theory could have on the
philosophy of geometry. Traditionally geometry presup-
poses that “two points of a ‘rigid’ body must be separated
by a certain distance, which is independent of the posi-
tion of the bodies ; the propositions of geometry completed
with this statement are (in a physical sense) either right or
wrong” (Einstein, 1914, 1079 ; my emphasis). These pro-
positions are considered as integral laws, since they “deal
with distance of points at a finite region” (Einstein, 1914,
1079). General Relativity has forced us to adopt a near-
geometrical approach — akin to that of Maxwell in physics
— by “gradually introducing the requirement that the fi-
nite distances between points could no longer appear in the
elementary laws” (Einstein, 1914, 1080 ; my emphasis). Ri-
gid finite bodies are substituted by infinitesimal rigid rods
so that the propositions of geometry “are reduced to diffe-
rential laws” (Einstein, 1914, 1080 ; cf. D’Agostino, 2000,
235).

After having presented the field equations for deter-
mining the gµν in November 1915 (Einstein, 1915c,d,a,b),
in §4 of his March 1916 review paper Die Grundlage der
allgemeinen Relativitätstheorie (Einstein, 1916), Einstein
returned to the conditions necessary to compare the pre-
dictions of the theory with the observed facts. He insis-
ted again on the fact that “ds2 is a quantity ascertainable
by rod-clock measurement of point-events infinitely proxi-
mate in space-time, and defined independently of any par-
ticular choice of co-ordinates” (Einstein, 1916, 776). More
precisely the gµν can be found stepwise in the failure to
extend the local Minkowski coordinates over lager regions
of space-times ; they are the numbers to which we have to
multiply the coordinate distances in order to assure ds2

has the same length all over the manifold. Of course the
same length can be determined only up to an arbitrary
constant ; so one still needs to make a global choice of the

“units in which we shall express the length of lines” (Lo-
rentz, 1917, 1345).

2.3. Atoms and Clocks
To appreciate the physical meaning of this last remark,

it useful to resort to a paper that the Austrian Physi-
cist Ludwig Flamm sent to the Physikalische Zeitschrift
in September 1916. Illustrating the Schwarzschild solution
(Schwarzschild, 1916) in a geometrical form, Flamm ex-
plains with admirable clarity under which conditions it is
possible to perform measurements in General Relativity :

If one chooses as an elementary clock the red line
emitted by a cadmium atom [die rote Kadmium-
linie aussendende Molekül] and sets its period of
oscillation as the time unit, then one recognizes at
once [ohne weiteres] that, because of the constancy
of the velocity of light [wegen jener Konstanz der
Lichtgeschwindigkeit], the metrical unit length at
every place and in every time must coincide [de-
cken muss] with the same number of wave lengths
of the cadmium red line [der roten Kadmiumlinie].
Similarly, if one set an elementary measuring-rod
as the lattice spacing [Distanzgitter] of the rock-
salt crystal [Steinsalzkristalls], one would reach the
same conclusion in relation to the “naturally mea-
sured” velocity of light. This fundamental presup-
position lies at the basis of General Theory of Rela-
tivity, that for instance the ratio between the wave-
length of the red cadmium line and the lattice constant
of rock salt is an absolute constant. Also in an ar-
bitrary gravitational field, this constant must be
from independent of place and orientation and of
the time point [Zeitpunkt] (Flamm, 1916, 451 ; my
emphasis).

General Relativity is built on the assumption that ideal
clocks are not affected by the presence of a gravitatio-
nal field. If two cadmium atoms are brought together to
the same place, they will always show the same frequency,
6436.4696 Å, for the cadmium red line (Jackson, 1936).
If we set this rate of ticking as the unit clock, we have
then defined a time unit which can easily be reproduced
all over the manifold, since all cadmium atoms red lines
will show the same frequency and same rate of ticking. Of
course, the particular standard clock used does not matter
because the only effect of changing from one clock to ano-
ther is to change the unit of time with the ratio of the two
units being constant. As Flamm points out, the ratio of
the wavelength of the red cadmium spectral line over the
lattice distance of rock-salt crystal is an absolute constant
of nature.

Referring, among others, to Lamm’s paper, in his lec-
tures on the foundations of physics held in Winter Term
1916-1917, David Hilbert seems already to be clear about
the epistemological difficulties which lurk behind this as-
sumption :

In order to read the time one needs a clock. Such a
clock can be found realized in nature in the grea-
test conceivable perfection in an oscillating and

4



light-emitting atom [Molekül], let say a yellow spec-
tral line of the sodium atom . . . The proper time T
of an oscillating atom is independent of the gravi-
tational field, in which the atom is located . . . This
axiom has of course . . . only a provisional charac-
ter. When physics will be finally fully developed
[vollständig ausgebaut], then the axiom must ap-
pear as a consequence of the general theory (Hil-
bert, 1917, 284 ; my emphasis)

In order to perform measurements in General Relativity
one must assume as an axiom that, for instance, the yel-
low emission line of sodium vapor measured by an observer
at rest with respect to the atom will always be 5893 Å. If
we set this as the unit of length, the ticking of such clocks
provides a measure of the length of a timelike world-line.
Two identical clocks in different positions within a gravita-
tional field (let say on the earth and on the sun) measure,
of course, a different elapsed time (first clock effect or twin
paradox). As a consequence, frequency of a signal emitted
by one clock would appear increased (red shift) or decrea-
sed (blue shift) if measured at the position of the other
clock (Hilbert, 1917, 285 ; cf. Earman and Glymour, 1980;
Hentschel, 1994). However, the rate of ticking of identical
clocks, as measured by a nearby observer, is assumed to
be independent of the world-line on which the measure-
ments are made. Such an “axiom” allows the comparison
of lengths measured at a distance as Riemannian geometry
requires.

At the end of the passage just quoted, Hilbert makes
an epistemological point that cannot fade out into silence.
General Relativity assumes this “axiom”, but it cannot
prove it through its own conceptual resources. Thus this
assumption has only a provisional character. At a later
stage of development of physics it should appear, however,
as the consequence of the theory. Even if it is hard to track
down Hilbert’s sources, his phrasing reveals a clear simi-
larity with that of Einstein, who, as we shall see, at about
the same time had started to attribute to this very issue
a fundamental epistemological importance, that contem-
porary philosophers, alas, have not been able to always
appreciate.

3. Schlick’s Early Conventionalism and Einstein’s
Discussion with Weyl and Dällenbach

As is well-known, Einstein’s insistence of the impor-
tance of measurement rods and clocks was the starting
point of Moritz Schlick’s attempt at providing a philoso-
phical interpretation of General Relativity, exemplified in
his celebrated 1917 paper, published in two installments on
the semi-popular journal Die Naturwissenschaften (Schlick,
1917, tr. in Schlick, 1978, vol. I, 207-269). From Schlick’s
point of view Einstein’s approach could be considered the
heir to the discussion between Helmholtz and Poincaré on
the role of rigid bodies in the epistemology of geometry.
In particular, Schlick introduced here the main lines of
his conventionalism : the choice of the geometry of space

depends on which body one considers as rigid ; but it is im-
possible to know which bodies are rigid without knowing
the geometry of space. One breaks the circle by regarding
as rigid those bodies from which the simplest physics would
result, that is the physics that contain the least arbitrary
elements (Schlick, 1917, 167).

Of course Schlick was well aware that “the notion of
a rigid rod, which preserved the same length at all times,
no matter what its position and surroundings might be”
(Schlick, 1917, 182, tr. 1978, I, 238), “had already been
modified to a certain extent in the Special Theory of Rela-
tivity”, where “the condition was fulfilled”, only for “a rod
respectively at rest with regard to each system in question”
(Schlick, 1917, 182, tr. 1978, I, 239). In General Relativity
“the length of a rod . . . can also depend on its place and
its position”, so that the very possibility of measurements
was irremediably jeopardized (Schlick, 1917, 183, tr. 1978,
I, 244).

Schlick’s strategy to find a “δός μοι που̂ στω̂” (Schlick,
1917, 183, tr. 1978, I, 244) to perform measurements wi-
thin a general relativistic context was of course to assume,
as Einstein did, that the behavior of rigid rods is Eucli-
dean (or Minkowskian in case of rods and clock) in small
domains — which however “may still be large compared
with the dimensions which are used elsewhere in physics”
(Schlick, 1917, 183, tr. 1978, I, 245). In small portions
of space-time, as Schlick points out, “[t]he ‘line-element’
has a direct physical meaning, and can be ascertained by
means of measuring-scales and clocks” (Schlick, 1917, 183,
tr. 1978, I, 245), independently of the coordinate system
used. It must be then assumed that the “the value which
we there obtain for ds is valid generally” (Schlick, 1917,
184, tr. 1978, I, 249), i.e. the line element ds has the same
length under all circumstances : “The numerical value of
ds is always the same, whatever orientation the chosen lo-
cal co-ordinate system may have” (Schlick, 1917, 183, tr.
1978, I, 245).

Schlick offers an accurate reconstruction of Einstein’s
own theory of measurement ; its compatibility with Schli-
ck’s own conventionalism is, however, all but obvious. On
Schlick’s own account, the rigidity of small rods is not sti-
pulated : rigid are those rods and ideal are those clocks
that have a pseudo-Euclidean behavior ; meaning those
that can be disposed to forming a rectangular grid in suf-
ficiently small regions of spacetime (Torretti, 1983, 239f.).
One of these measuring devices can be set conventionally
as a unit rod but this has nothing to do with the conven-
tional choice among different possible metrical geometries.
Changing the unit of measurement does not change the
metric of space but only multiplies all lengths by the same
scale factor. In Riemannian geometry, this factor is in fact
assumed to be constant, i.e. that ratio of the two units is
assumed to be the same whenever they are compared.

Schlick, who had been in correspondence with Ein-
stein since the late 1915’s, sent him a copy of his paper
on the 4th of February, 1917. Einstein replied on the 6th
of February, 1917 praising Schlick’s paper unconditionally,
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especially for its empiricist flavor (Howard, 1984; Hent-
schel, 1986). However, some days later (probably after the
15th of February, 1917), Einstein wrote to his former Zu-
rich student Walter Dällembach, emphasizing that the idea
that the ds could be found directly through a measurement
done by rigid rods, is not at all satisfying from an episte-
mological point of view :

Dear Dällenbach ! Your remarks are, in my opi-
nion, to a large extent correct. 1 Strictly speaking,
the concept of ds2 volatilizes in an empty abstrac-
tion : ds2 cannot be rigorously considered as the
result of measurements, not even in the absence of
electromagnetic fields. You have rightly indicated
the reasons why it is so. Nevertheless, in a didacti-
cally reasonable presentation of the theory the ds2

must be so considered, as if it were rigorously mea-
surable . . . A logically satisfying presentation can
be achieved (a posteriori), so that the a single,
more complex solution is related to the observed
facts. A measuring-rod would then be an atomic
system of a certain type that does not play any
special role in the theory (CPAE 8, Doc. 565, 803 ;
my emphasis)

A small rigid rod in astronomical proportions, lets say a
rock-salt crystal, is a composite structure in atomic ones ;
its rigidity results from the fixity of the spacing between
chlorine and the sodium atoms arranged in a cubic lattice,
maintained by electrical forces. Thus, rigid rods cannot be
considered as theoretically self-sufficient entities but their
description involves quantum theoretical principles, whose
justification, however, lie outside the conceptual frame-
work of General Relativity. As Einstein admits, the beha-
vior of such an atomic structure, the fact that it preserves
its length wherever it is transported, should in principle
be justified within General Relativity, rather than serving
to connect it with the observed facts.

As the letter to Dällenbach reveals, Einstein’s repeated
insistence on measuring rods and clocks, far from repre-
senting the chief philosophical implications of the General
Relativity, as Schlick thought, was then a sort of provi-
sional and “didactic” compromise, a point on which, as
we have seen, nearly at same time Hilbert had also insis-
ted. Dellänbach was at that time Weyl’s doctoral student ;
his objection to Einstein probably reflects the discussions
that he might have had with Weyl himself. In 1917, Weyl
gave his famous lectures on relativity at the ETH Zurich,
which would appear as a book one year later in 1918 with
the title Raum-Zeit-Materie.

As is well-known, in his presentation Weyl explicitly
tried to avoid the use of exceedingly complicated measu-
ring instruments, such as rods and clocks, for the measu-
rement of gik by restricting himself exclusively to the ob-
servation of the arrival of light signals ; for instance, those
emitted by two stars, i.e. to measuring the angle between
null geodesics (ds2 = 0) at a certain point. In this way,

1. Einstein refers to a private conversation,

however, the metric can be determined only up to an arbi-
trary scale factor (g′

ik = λgik), which “can be determined
only through the individual choice of a unit of measure”
(Weyl, 1918c, 182). After determining the metric up to a
constant by the use of light rays, one can use rods and
clocks to determine the constant as well, by fixing a choice
of units for space-time distances. The constancy of λ as-
sures the comparability at a distance not only of the angles
among curves, but also of their lengths.

In a 1918 paper, Reine Infinitesimalgeometrie, Weyl
famously argued, however, against the necessity of this last
element of “geometry at a distance” (Weyl, 918s) which
still survives in Riemannian Geometry (form more details
cf. : Scholz, 2008, 2004; Ryckman, 2005; Bell and Korté,
2011). All intervals between close pairs of points can thus
be changed by the multiplication of an arbitrary factor λ,
which may be different in different locations. As is well-
known, in a successive paper, Gravitation und Elektrizität
(Weyl, 1918b), Weyl suggested that, by removing such a
blemish in Riemannian geometry, in addition to the gµν
also the quantities φν appear, which could be identified
with the four potentials of the electromagnetic field (Weyl,
1918b).

As we as have seen, in Einstein’s theory it is presup-
posed that if two cadmium atom clocks are separated and
brought together along different world-lines, they will still
tick at equal rates but in general, they will show a “first
or usual clock effect”, from this they would then measure
different elapsed times, if one of them had passed through
a gravitational field. Weyl’s theory would introduce a “se-
cond clock effect” : If two cadmium atoms are separated
and brought back, the final size of the atom might differ,
the spectral lines be shifted, and thus show different rates
of ticking that would serve as an indicator of the elec-
tromagnetic field (cf. : Vizgin, 1994; O’Raifeartaigh and
Straumann, 2000; Goenner, 2004, ch. 3 ; § 4.1).

Einstein was highly impressed by Weyl’s theory, but he
was unable to settle “the measuring-rod objection [Maßstab-
Einwand]” against it, which he communicated personally
to Weyl in March 1918 (CPAE 8, Doc. 510 and 512). In
a brief note published in a appendices to Weyl’s paper
(Einstein, 1918), Einstein famously argued that if Weyl’s
theory were true, “there could not be chemical elements
with spectral lines of determined frequencies” ; rather “the
relative frequencies of two spatially neighboring atoms of
the same kind should be, in general, different” (Einstein,
1918, 40). This is however not the case. The relative constancy
of the frequency of atoms is then a plausible factual as-
sumption. As Weyl pointed out in his rejoinder to Ein-
stein, however, “the task remains, in my theory as well as
in Einstein’s, to derive this fact by the dynamics carried
through explicitly” (Weyl, 1918a, 479).

Writing to Einstein on (after the 15th of June, 1918),
Delläbach acknowledged that, if Weyl’s theory applied to
reality, “one would lose the connection with the observed
facts” (CPAE 8, Doc. 565, 803) ; however, in order to as-
sure this connection, Einstein had assumed “too complex

6



things as rigid bodies or clocks” (CPAE 8, Doc. 565, 803)
while being unable to explain their behavior. Einstein’s
reply is interesting throughout :

If then two ds at distant points were measured with
measuring rods or, in a certain way, were found to
be equal, they would still be found equal, if they
were measured in a different way. This is a deep
property of our world, which must find expression
in the foundation of physics. . . I know that Weyl
does not admit it. He would say that clocks and
measuring-rods must appear as solutions ; they do
not occur in the foundation of the theory. But
I find : if the ds is measured by a clock (or a
measuring-rod), is something independent of pre-
history, construction and the material, then this
invariant as such must also play a fundamental role
in the theory. Yet, if the manner in which nature
really behaves would be otherwise, then spectral
lines and well-defined chemical elements would not
exist (CPAE 8, Doc. 565, 803 ; my emphasis)

In other words, Einstein could only acknowledge a res facti,
that we happen to live in a world in which the relative
periods of clocks and the relative lengths of rods do not
depend on their histories. Weyl, on the contrary, was rai-
sing a questio iuris by asking that the behaviors of such
complicated material structures, such as rods and clocks,
should be considered as a solution to the equations of the
theory ; (in Einstein’s as well as in his own theory), that
is, it should be deduced from some dynamical theory of
matter (cf. Weyl, 1919, 260).

Following this line of thought by 1920 (Weyl, 1920), at
the Meeting of Natural Scientists in Bad Nauheim (19-25
September 1920), Weyl had started to account for the ap-
parent constancy of frequency of atoms by distinguishing
between a “tendency of persistence” (Beharrungstendenz)
or “adjustment” (Einstellung) (Weyl, 1920, 649). Roughly
Weyl suggested that cadmium atoms do not preserve their
size if transported, but they adjust it every time to the ra-
dius of the spherical curvature of every three-dimensional
section of world (Weyl, 1920, 650). Similarly a magnetic
needle always adjusts its direction to the north in the ear-
th’s magnetic field and does not preserve it.

In the discussion which followed Weyl’s paper, Einstein
insisted, however, that in his theory “[t]emporal-spatial
intervals are physically defined with the help of measu-
ring rods and clocks” (Einstein reply to Weyl, 1920, 650),
whose “equality is empirically independent of their prehis-
tory”. This presupposition — he argued — assures “the
possibility of coordinating [zuzuordnen] a number, ds, to
two neighboring points” (Einstein’s reply to Weyl, 1920,
650). Renouncing this “coordination [Zuordnung]” would
rob “the theory of its most solid empirical support and pos-
sibilities of confirmation” (Einstein’s reply to Weyl, 1920,
650).

These and similar expressions were, of course, music
to the Logical Empiricists’ ear. However, Einstein, in the
same Bad Nauheim meeting, by addressing other interlo-
cutors, assumed a quite different stance. For instance when

discussing Max von Laue’s paper on the gravitational red-
shift, Einstein rather defined ,“the fact that measuring-
rods and clocks have to be introduced separately, instead
of being constructed as solutions of differential equations”
as “[a] logical weakness of the theory in the today state”
(Einstein’s reply to Laue, 1920, 652).

4. The Emergence of Logical Empiricism as a Mi-
sunderstanding of Einstein’s Philosophy of Geo-
metry

4.1. Reichenbach’s Objections to Schlick’s Conventiona-
lism

Unaware of this complex dialogical background, Schlick
in 1917 had after all very good reasons to emphasize the
fundamental role of rods and clocks played in General
Relativity. As Einstein wrote in a letter to Cassirer in
June 1920 : “The destiny of General Relativity as a phy-
sical theory depends entirely upon the interpretation of
the ds as result of measurement, which can be obtained
in a very quite definite way through measuring-rods and
clocks” (CPAE 10, Doc. 44, 293). Schlick’s could then legi-
timately interpret Einstein’s language of coordination as a
confirmation of his own philosophical approach, which in
the meantime, had been presented in a systematic form in
the first 1918 edition of the Allgemeine Erkenntnisslehre
(Schlick, 1918), a book which, as will shall see, was to have
a considerable influence on Einstein himself.

More puzzling is the fact that Schlick could believe that
Einstein’s insistence on the the direct mensurablity of the
ds was compatible with a form of conventionalism à la
Poincaré. The impossibility of carrying out such program
is explained very neatly in Reichenbach’s 1920 “Kantian”
monograph on relativity, Relativitätstheorie und Erkennt-
nis apriori (Reichenbach, 1920)

As is well-known, according to the young Reichenbach,
who had been one of the five students in Einstein’s first
seminar on General Relativity, conventionalism works only
for spaces of constant curvature (Friedman, 1995). In each
of such spaces there is the a unique (up to a constant posi-
tive factor — i.e. up to the choice of a “unit of length”) set
of congruence relations so that each such a set of congruence
relations is inconsistent with any other set. Conventiona-
lism is then based precisely on the idea that one can make
an arbitrary choice among one of such incompatible sets.

In Riemannian geometry of variable curvature no unique
set of congruence relations can be defined all over the
space, so the very idea of a unique conventional choice
among alternative congruent relations does not make sense.
For this reason, Reichenbach points out, Poincaré “ex-
cludes from the beginning Riemannian geometry, because
it does not permit the displacement of a body without
change of form” (Reichenbach, 1920, 104, n. 1 ; tr. 1965,
109, 1 ; translation modified). In the general case only the
unit of length is globally available on a Riemannian ma-
nifold, in contrast to Weyl’s non-Riemannian geometry
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where a separate unit of length at every point of space
may be defined.

What characterizes Einstein-Riemann-geometry is then
the possibility of comparison of small measuring rods at
a distance. As Reichenbach points out, “Weyl’s genera-
lization of the theory of relativity . . . abandons altoge-
ther the concept of a definite length for an infinitely small
measuring-rod” (Reichenbach, 1920, 73 ; tr. 1965, 76), that
is it drops the hypothesis of globally availability of the li-
near unit of measure. Reichenbach correctly observes that
“[i]f, for instance, Weyl’s generalization should turn out to
be correct . . . [t]hen the comparison of two small measu-
ring rods at two different space points would also no longer
contain the objective relation that it contains in Einstein’s
theory” (Reichenbach, 1920, 87 ; tr. 1965, 91 ; translation
modified).

Reichenbach did not hide his reservations towardWeyl’s
idea “that mathematics and physics are but one discipli-
ne” (Reichenbach, 1920, 73 ; tr. 1965, 76) ; however, he had
all the elements to understand that Schlick’s attempt to
save conventionalism by shifting the attention from rigid
bodies to infinitesimal rigid rods simply misses the point.
In Riemannian geometry, the choice of the unit rod or of
the unit clock is of course arbitrary, but the ratio of the
units is constant all over the manifold. This is a matter of
fact and not of convention.

In the years between 1920 and 1929 Reichenbach will
play a fundamental role in defending and popularizing Ein-
stein’s theories (Hentschel, 1982), acquiring at the same
time an admirable technical knowledge of its mathemati-
cal apparatus. Surprisingly, however, probably under the
influence of Schlick, he will abandon his very convincing
critique of geometrical conventionalism.

Having the possibility to have a first look at Reichen-
bach’s book, Schlick immediately wrote to Einstein : “Rei-
chenbach does not seem to me to be fair [nicht gerecht
zu sein] toward Poincaré’s conventionalism [Konventions-
lehre]” (Schlick an Einstein, 9.10.1920 ; CPAE 10, Doc.
171). Writing to Reichenbach some weeks later, Schlick
tried to debunk Reichenbach’s critique of conventionalism,
arguing (erroneously) that Poincaré in his later writing
included geometries of variable curvature in his approach
(Reichenbach to Schlick 26.11.1920 ; Schlick and Reichen-
bach, 0 22).

Reichenbach answered agreeing on Schlick’s “and Ein-
stein’s point of view” [und Einsteins Standpunkt] that in
principle one could chose between keeping relativity and
abandoning Euclidean geometry or vice-verse : “physics,
however, makes the first decision . . . you, and Poincaré,
would say for the sake of simplicity [um der Einfachheit
halber] . . . But I have an instinctive refusal against this in-
terpretation” (Reichenbach to Schlick 29.11.1920 ; Schlick
and Reichenbach, 0 22). As is well known, Reichenbach
very rapidly overcame his “instinctive disinclination” to-
ward conventionalism, a fact that still puzzles historians
(on this point see : Parrini, 2005). In the following years
Reichenbach would describe Einstein’s epistemological achie-

vement precisely as the discovery that would have made
it possible in principle for physics to make the second de-
cision, that is to get rid of non-Euclidean geometry by
preserving gravitation as a real force.

4.2. Einstein’s Geometrie und Erfahrung
The publication of the expanded form of Einstein’s

1921 lecture Geometrie und Erfahrung (Einstein, 1921, tr.
in Einstein, 1954, 232-246) probably played a major role in
Reichenbach’s “conversion”. In the lecture, Einstein refer-
red explicitly to Schlick’s book on the theory of knowledge
(Schlick, 1918), which he had read during a journey to
Holland in October 1919 (cf. Howard, 1984, 620).

Following Schlick’s method of implicit definitions (Schlick,
1918, §7), Einstein distinguishes between “purely axioma-
tic geometry” and “practical geometry”, which “contains
affirmations as to the relations of practically-rigid bodies”
(Einstein, 1921, 6 ; tr. 1954, 235). Einstein even claims
that, if “this view of geometry” as a “branch of physics”,
“had not served as a stepping-stone”, he “should have been
unable to formulate the theory of relativity” (Einstein,
1921, 6f. ; tr. 1954 235).

Einstein, however, famously recognized that Poincaré
was “sub specie aeterni” right (Einstein, 1921, 8 ; tr. 1954,
236) when he denied that that the physical behavior of
rigid bodies can be used to establish whether the abstract
geometry (G) is true or false ; in principle it is always pos-
sible to make rigid bodies agree with any kind of geometry
we please by changing the physical laws (P ) that govern
their behavior. Only the sum G+P , geometry plus physics,
can be compared with experience (Einstein, 1921, 7-8 ; tr.
1954 , 236).

The reference to Poincaré is at first sight quite puzz-
ling. The concept of “rigid body” which lies at the basis
of his philosophy of geometry is already quite problematic
in Special Relativity, and becomes completely useless in a
space of variable curvature, such as that of General Rela-
tivity (Friedman, 2002). Einstein was of course referring
to “practical infinitesimal rigid rods [praktisch unendlich
kleinen Massstabe]” (CPAE 7, Doc. 31, 271).

General Relativity presupposes that, if two of such
rods “are found to be equal”, i.e. have the same length,
“once and anywhere, they are equal always and everywhe-
re” (Einstein, 1921, 9 ; tr. 1954, 237). The same assumption
must be made for clocks, that “when going at the same
rate” in some place and time, “they will always go at the
same rate, no matter where and when they are again com-
pared with each other” (Einstein, 1921, 9f. ; tr. 1954, 238)
The name of Weyl is not explicitly mentioned by Einstein.
However, Einstein’s argument to support this claim is a
only thinly veiled allusion to the “measuring-rod objec-
tion” against him : “The existence of sharp spectral lines
— Einstein writes — is a convincing experimental proof
of the above-mentioned principle of practical geometry”
(Einstein, 1921, 9 ; tr. 1954, 238 ; my emphasis)

Thus the reference to Poincaré in Einstein’s Geometrie
und Erfahrung has nothing to do with the classical pro-
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blem of the choice among Euclidean and non-Euclidean
sorts of Riemannian geometries. On the contrary, the very
nature of Riemannian (or pseudo-Rimannian) geometry is
at stake. The transportability of small measuring rods and
atomic clocks — the fact that their relative lengths and
rates are independent of their position — “is the ultimate
foundation . . . which enables us to speak with meaning of
a metric in Riemann’s sense of the word” (Einstein, 1921,
11 ; tr. 1954, 238).

As Einstein noticed in a note to an unpublished ar-
ticle intended for “Nature” (Grundgedanken und Methoden
der Relativitätstheorie, in ihrer Entwicklung dargestellt,
1920), “this sort of equality” between rods and clocks, “an
endurable, independent from the motion-prehistory [eine
dauernde, von der Bewegungsvorgeschichte unabhängige],
is “a crucial [massgebende] presupposition of the entire
theory” (CPAE 7, Doc. 31, 280). Einstein accepted such
a presupposition as an empirical fact that small rods of
equal length will remain so after arbitrary separation. Weyl
could however object that such a behavior could not be di-
rectly read off from observations, since two equal measu-
ring rods, because of the influence of temperature, external
forces etc., will likely not have the same length when reuni-
ted ; Einstein’s alleged fact was no more than an arbitrary
stipulation.

With some good will one can glimpse here some vague
resemblance to Poincaré’s conventionalist arguments against
Helmholtz’s empiricism. Poincaré was ready to “save” Eu-
clidean geometry (G), by changing the laws of physics (P ) ;
Weyl claimed that it was always possible to maintain a
non-Riemannian “aether-geometry” [Äthergeometrie], by
blaming the “body-geometry” [Körpergeometrie] (Weyl,
1921a, 232) — the empirically observed Riemannian be-
havior of rods and clocks — on the physical mechanism
of “adjustment”. From this point of view, as Weyl put it
in the 1921 edition of Raum-Zeit-Materie, geometry and
physics “form an inseparable unity, something that should
be kept in sight always as a whole” (Weyl, 1921c, 60).

The interpretation of Geometrie und Erfahrung is then
a paradigmatic case, where Beller’s “dialogical” approach
turns out to be indispensable. The text is easy to misun-
derstand without bearing in mind that Einstein, by refer-
ring to Poincaré, was actually addressing the epistemolo-
gical question raised by Weyl without mentioning him (cf.
Ryckman, 2005, §3.5).

It is sufficient to pay attention to Einstein’s phrasing.
According to Einstein, Poincaré was sub specie aeterni
right for the following reason : he had shown that so-
lid bodies and clocks are not “irreducible elements” but
“composite structures”, which must “not play any inde-
pendent part in theoretical physics” (Einstein, 1921, 8 ;
tr. 1954, 236 ; my empahsis) ; in principle they should be
constructed “theoretically from elementary concepts”. Ho-
wever, according Einstein, “in the present stage of develop-
ment of theoretical physics” this is not possible, and “these
concepts must still be employed as independent concepts”
(Einstein, 1921, 8 ; tr. 1954, 237 ; my empahsis)

These are of course exactly the alternative attitudes
toward the role of rods and clocks in General Relativity
that Einstein, Weyl and Dällenbach had debated in public
writings and in private correspondence some years earlier.
Weyl still insisted on this point in a 1921 paper : Ein-
stein’s “measure-determination . . . with help from measu-
ring rods and clocks” can be accepted only to assure “a
preliminary connection to experience” ; in principle, howe-
ver, the transportability (or non transportability) of rods
and clocks should be regarded “as consequences of the de-
veloped theory” (Weyl, 1921b, 259-260).

In a paper publish in the same year — addressing di-
rectly Reichenbach’s 1920 critique —Weyl seems to regard
precisely this point as the major “philosophical” implica-
tion of his attempt to unify gravitation and electricity (cf.
Rynasiewicz, 2005) :

From different sides, 2 it has been argued against
my theory, that it would attempt to demonstrate in
a purely speculative way something a priori about
matters on which only experience can actually de-
cide. This is a misunderstanding. Of course from
the epistemological principle [aus dem erkenntnis-
theoretischen Prinzip] of the relativity of magni-
tude does not follow that the “tract” displacement
[Streckenübertragung] through “congruent displa-
cement” [durch kongruente Verpflanzung] is not in-
tegrable ; from the principle that no fact can be
derived. The principle only teaches that the inte-
grability per se must not be retained, but, if it
is realized, it must be understood as the outflow
[Ausfluß] of a law of nature (Weyl, 1921a, 475 ;
last emphasis mine).

Weyl clears the ground of possible misunderstandings ; his
theory intended only to show that Einstein’s assumption
about the existence of rigid infinitesimal rods and ideal
clocks is not logically necessary, but only a factual claim,
that General Relativity should be able to justified. There is
little doubt that in his 1921 lecture Einstein was addressing
precisely Weyl’s challenge, recognizing it as inescapable
sub specie aeternitatis, even if impossible to overcome sub
specie temporis.

4.3. A Parting of the Ways : Schlick’s and Reichenbach’s
Misunderstanding of Einstein’s Epistemology of Geo-
metry

Isolated from the background of the dialogue withWeyl,
Geometrie und Erfahrung seemed to confirm Schlick’s phi-
losophy of geometry beyond every hope. Not only Einstein
explicitly mentioned Schlick’s 1918 book, but he refers ex-
plicitly to Poincaré, apparently putting his own theory on
the background the 19th century debate about geome-
try. Schlick’s famous Erläuterungen to Helmholtz’s wri-
ting on geometry (Helmholtz, 1921) show how easily Ein-
stein’s formula G + P could be integrated in Schlick’s
own conventionalism. Einstein had somehow reconciled the

2. The reference is to Reichenbach, 1920 and Freundlich, 1920
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Helmholtz-Poincaré antithesis in a sort of Hegelian synthe-
sis : one can determine the geometry of space empirically
by assuming the conventional definition of rigidity of bo-
dies which leads to the most simple physics (see e.g. Helm-
holtz, 1921, Schlcik’s note 31).

In his recension of Einstein’s Geometrie und Erfahrung,
published on June, 3th 1921 on Die Naturwissenschaften,
Schlick seems however to be aware of the the fact that there
was another problem about which Einstein was concerned :

It has been often noticed that there is no simple
compelling reason to chose some physical bodies
[Naturkörper] as rigid ; we could use an arbitrary
[beliebiges] system of geometry for the description
of reality, if only we are ready to change at the
same time the system of physics ; only the totality,
geometry plus physics, is determined forcefully by
experience. Einstein recognizes the in principle ir-
refutable validity of this conception ; however just
as Poincaré admitted, that the economy of science
forces us to choose, without hesitation, a deter-
minate geometry (even if he thought it was the
Euclidean one) ; similarly for Einstein in today’s
state of development of physics, it is inevitable to
use [zugrunde zu legen] empirical physical bodies
[Naturkörper] with determinate properties as rigid
measuring rods in the measurement of the displa-
cement possibilities [Lagerungsmöglichkeiten] ; one
should use those bodies which satisfy that condi-
tion — which can be confirmed by the experience
— that two measuring rods are always and ove-
rall equally long, if they once and somewhere were
found as equal (a condition, which Weyl, as well-
known, had tried to drop). Under this condition
the axioms of practical geometry are pure empiri-
cal sentences that can be communicated through
observation (Schlick, 1921, 435 ; my emphasis).

Schlick, of course, could appreciate Einstein’s refinement
of Poincaré’s “economical” procedure to make an, in prin-
ciple, arbitrary decision about which rods are rigid. Ho-
wever Schlick makes also a more subtle point. He remarks
that such rods must satisfy a “condition” (the ratio of the
lengths of two rods is the same whenever they are com-
pared) that it is “confirmed by experience”, even if Weyl
has “tried to drop it”. Thus Schlick was aware of Einstein’s
measuring-rod-objection. Surprisingly, however, he did not
seem to realize that precisely the epistemological status of
this “condition” (whether it is only “confirmed by expe-
rience”, or if it should be “derived from the theory”), was
Einstein’s main epistemological concern.

After all, Einstein mentions Schlick’s own book at the
very beginning of the Geometrie und Erfahrung, but does
not mention the name of Weyl. Schlick could then have
the legitimate impression that Einstein was pursuing a si-
milar “Poincaréian” agenda, revolved on the classical pro-
blem of the choice among Euclidean and non-Euclidean
geometry. This misunderstanding can be appreciated even
more clearly if one considers the following passage of Rei-
chenbach’s review article on philosophical interpretations

of Relativity published in the same year :
[1] We have mentioned above, that the congruence
of two tracts can be defined through transporta-
tion of a natural measuring-rod ; however this is of
course only a definition. It could also be defined
in another way ; for instance, a measuring rod af-
ter two juxtapositions becomes 1/2 of its original
length, after three 1/3 etc. One obtains then a Rie-
mannian geometry of different measuring-determination
[Maßbestimmung]. The “change” of the measuring
rods can in this case be interpreted as an effect of
force, that in this way it is introduced in the de-
finition [hinzudefiniert] [of a rigid rod]. Depending
on the choice of the field of force, one gets a dif-
ferent geometry. For this reason material objects
[materiellen Gebilde] do not define a single geome-
try, but a class of geometries ; this is precisely the
meaning of conventionalism. [2] However one must
consider, that this class of geometries is in turn not
arbitrary, but their validity is based on an axiom,
that denotes an empirical fact [einen empirischen
Tatbestand] ; it is the assumption that two natural
measuring rods, which can be brought to superpo-
sition once [die sich einmal zur Deckung bringen
lassen], can be superposed again after they have
been transported along different paths. In the va-
lidity of this axiom — we want to call it the axiom
of the class of Riemannian geometries — lies an in-
variant characteristic of the possible geometry ac-
cording to Einstein (Reichenbach, 1921, 365-366)

This passage is in my opinion extremely significant and de-
serves a careful reading. It shows precisely the point where
Einstein and Logical Empiricists came to a misunderstan-
ding :
[1] In the first part of the quote, Reichenbach refers to the

classical problem of the choice among possible Rie-
mannian geometries with different measure determi-
nations. By arguing that a non-Euclidean geometry
is equivalent to a Euclidean geometry with a field of
universal forces, Reichenbach shows that the choice
is arbitrary. This was the original problem discussed
by Helmholtz and Poincaré, and adapted by Schlick
in the new general-relativistic context : “According
to the theory of relativity, the choice of a geome-
try is arbitrary ; but it is no longer arbitrary once
congruence has been defined by means of rigid bo-
dies” (Reichenbach, 1921, 360 ; 1978, I, 38).

[2] In the second part of the passage, however, Reichen-
bach makes a different and, for our goals, more im-
portant consideration. Reichenbach notices that all
Riemannian geometries (Euclidean or non-Euclidean)
share a common property : they all presuppose that
two measuring rods of the same length remain so if
separated and brought together again. As Reichen-
bach correctly notices, this “axiom” — actually an
empirical fact — defines the entire class of Rieman-
nian geometries, that is of the “possible geometries
according to Einstein”.
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It is not exaggerated to claim that we are here in front of a
sort of a parting of the ways : Reichenbach, in subsequent
years, will base his philosophical interpretation of Gene-
ral Relativity on the conviction that Einstein was mainly
concerned with problem [1]. It is not by chance that, still
in the 1978 English translation of Reichenbach’s paper, the
pages on Weyl’s theory were simply omitted as “of no his-
torical importance” (Reichenbach, 1978, 38). However, as
we have seen, it was precisely problem [2] which Einstein
was addressing.

It must be emphasized that Reichenbach understood
perfectly well the epistemological implications of Weyl’s
theory ; he simply did not recognize them as the central
issue of Einstein’s reflections on geometry. Reichenbach in
fact took back his previous objection “that Weyl wants to
deduce physics from Reason, since Weyl has cleared up
this misunderstanding” (Reichenbach, 1921, 367 ; the refe-
rence is to Weyl 1921a, 475). He had come to realize that
Weyl did not want to impose on nature his purely infinite-
simal geometry, but rather show that the transportability
of rods and clocks — uncritically assumed by Einstein —
is actually not logically necessary :

Weyl took exception to the fact, that Einstein has
simply condoned [einfach hingenommen] the uni-
vocal transportability of natural measuring-rods
[eindeutigen Uebertragbarkeit natürlicher Maßstäbe].
He does not want to dispute the axiom of the
Riemannian class for natural measuring rods ; he
wants only to urge that the validity of this axiom,
being not logically necessary, “is understood as an
outflow [Ausfluß] of a law of nature”. I can only
agree with this demand [Forderung] ; it is the mea-
ning of mathematics, that, by discovering more ge-
neral possibilities, reveals the contingency of cer-
tain facts of experience [speziellen Tatbestände der
Erfahrung als speziell kennzeichnet] and thus save
Physics from simplification [Simplizität]. Admit-
tedly, Weyl was able to explain the univocal trans-
portability of natural measuring-rods only in a very
incomplete way. But the only fact that he had tried
to follow this path, regardless of its empirical cor-
rectness, was a genial advance [genialer Vorstoß] in
the philosophical foundation of physics (Reichen-
bach, 1921, 367f.).

Reichenbach sees here clearly which is the point : Einstein
assumed the Riemannian idea of measurement as a simple
fact (einfach hingenommen) : the “univocal transportabi-
lity of natural measuring-rods” is an independent hypo-
thesis which must be presupposed to assure the compara-
bility of the predictions of the theory with reality. Weyl, by
showing that another class of geometries in which this as-
sumption is dropped would be equally possible, had rightly
asked for an explanation : the “univocal transportability of
natural measuring-rods” must be derived from the theory,
it must be a consequence of it.

Reichenbach provides an admirable presentation of the
Weyl-Einstein controversy : Einstein’s de facto Rieman-
nian assumption vs. Weyl’s requirement of its de iure jus-

tification in front of a as well feasible non Riemannian-
alternative. What Reichenbach seems to have missed is
the fact, that Einstein, by referring to Poincaré in his 1921
lecture, was addressing precisely this issue and not suppor-
ting a form of conventionalism à la Schlick. The original
problem discussed by Poincaré, namely the choice within
the class of possible Riemannian geometries was not at
stake at all.

By the contrary Reichenbach reneges his previous opi-
nion that “the metric . . . expresses an objective property of
reality” and insists that “[t]his conception does not contra-
dict conventionalism”, which for Reichenbach is evidently
implied in Einstein’s formula G + P : “Schlick must not
be interpreted as saying that a certain metric has been
prescribed ; a metric emerges only after the physical laws
have been established (the P of Einstein’s formula). One
can also change the metric, provided one changes the laws
of physics correspondingly” (Reichenbach, 1921, 356 ; tr.
1878, I, 34f. ; my emphasis).

4.4. Getting off Track : The Implementation of Reichen-
bach’s Conventionalism

Reichenbach’s 1922 paper La signification philosophique
de la théorie de la relativité (Reichenbach, 1922), the first
comprehensive presentation of his new conventionalist ap-
proach to geometry and relativity, shows clearly that he,
in wake of Schlick, had come to interpret Einstein’s refe-
rence to Poincaré, so to say, “literally” : “The solution to
the problem of space is therefore found only in this concep-
tion we call conventionalism, which goes back to Helmholtz
and Poincaré” (Reichenbach, 1922, 40 ; tr. 2006 ; 135). The
central problem for Reichenbach is precisely how to chose
among different possible Riemannian geometries.

By introducing the idea of a non-detectable force of
type X, such as gravitation, which causes uniform shrin-
kages and expansions in all materials, Reichenbach concludes
that the main philosophical lesson of General Relativity is
the following : “[t]he definition of congruence is . . . arbi-
trary, and what is congruent in one geometry is not ne-
cessarily congruent in another” (Reichenbach, 1922, 33 ;
tr. 2006 ; 127 ; my emphasis). It is worth to notice that
Reichenbach makes also here, although rather in passing,
an important remark : “This definition of congruence is
arbitrary, but it is uni-vocal, and it entails that two rigid
rods that are congruent at a point remain congruent at all
points. This is an axiom that we can consider to be ex-
perimentally well confirmed” (Reichenbach, 1922, 35 ; tr.
2006 ; 129 ; my emphasis).

Reichenbach thus addresses the issue again that the
univocality of the definition of “congruence” as such is only
an experimental, but not a logical truth. A non-univocal
definition of congruence would be in principle legitimate :
“This is the path that Weyl followed with perfect rigor ;
it cannot be said that a rod is equal in an absolute sense
to one at another place, but that we can dispose altoge-
ther with the arbitrary process of the comparison of rods”
(Reichenbach, 1922, 41 ; tr. 2006 ; 136).
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Reichenbach seems here to confuse different issues. There
is actually no univocal definition of congruence of bodies in
Riemannian manifolds of variable curvature, as Reichen-
bach himself had rightly noticed it in 1920. In such spaces,
in fact, the congruence of bodies is not independent of po-
sition : two plane figures which are congruent on the equa-
tor of an egg-shaped surface cannot be reproduced at the
pole. In all Riemannian manifolds, however, there is an ar-
bitrary, but univocal definition of the unit of length : two
small rods of equal lengths in a place will still have the
same length wherever they are compared.

The fact that the univocality of the definition of a unit
of length was only “experimentally well confirmed” was
precisely Einstein’s main and only epistemological concern
which emerged in the discussion of Weyl. The fact that
Reichenbach did not appreciate this point is nothing but
stunning. Reichenbach, in fact, explains it with usual ac-
curacy in his more technical 1924 Axiomatik der relativis-
tischen Raum-Zeit-Lehre (Reichenbach, 1924, tr. Reichen-
bach, 1969).

As we have seen, using light rays ds2 = 0, one can de-
termine the value of gµν up to a scale factor : “then every
metric g′

µνwhich results from gµν through multiplication
by a scalar field λ(x1, ..., x4) will satisfy these axioms, since
in it the lines ds2 = 0 satisfy the same equation” (Reichen-
bach, 1924, 120 ; tr. 1969, 151). As Reichenbach notices if
“the light geometry furnishes only the quotient gµν

g′
µν

= qµν ,
then “[f]or the determination of the absolute values of the
gµν in the gravitational field, however, we need material
things, either natural clocks or rigid rods” (Reichenbach,
1924, 122 ; tr. 1969, 170).

Thus Reichenbach shows very clearly that we need rods
and clocks only in order to force the parameter λ to be
constant :

One can now imagine the construction of the me-
tric gµν . If any coordinate system K is given for the
world, then point events of the distance ds2 = +1,
ds2 = 0, ds2 = −1 can be produced by means
of rigid rods and clocks permanently at rest in K.
The world will thus be interspersed with unit mesh
points. The functions gµν are to be determined
in such a way that with the chosen coordinates
ds = ±1 or 0, respectively, for all mesh points.
If merely the quotients qµν are to be construc-
ted, light signals alone suffice. . . . Only in order
to make the unit of length (or the unit of time)
of the various systems K′ equal are transportable
rigid rods (or clocks) needed. The significance of
material things becomes clear : they bring about
a comparison of the units at different points. This
comparison cannot be achieved by means of light
signals ; for all other purposes light is sufficient
(Reichenbach, 1924, 120 ; tr. 1969, 151 ; my em-
phasis)

Thus Reichenbach is completely clear about the fact that
only in order to assure the reproducibility of the unit of
length we need the rigid rods and clocks. If the ratios of the
gµν is determined by using light signals, then clocks and

rods serve to determine the factor λ. The requirement that
two small rigid rods are congruent at a point and remain
congruent at all points is identical to the assumption that
scale factor λ is constant. This property characterizes the
class of Riemannian geometries as such and says nothing
about the possibility of making a choice within this class.
As we have seen, the ratio of two of such small rods —
and therefore also their ratio = 1, their equality — is an
absolute constant in General Relativity, and thus it is not
subjected to any conventional stipulation.

The relevant epistemological problem Einstein was for-
ced to consider after his debate with Weyl was precisely
that of the status of such a transportability of rods and
clocks in General Relativity. Again one has only to follow
Reichenbach’s exposition :

The word “adjustment” used by Weyl for the first
time in this context characterizes the problem very
well. It cannot be an accident that two measuring
rods are equal at every place in a neighborhood
comparison ; this fact must be explained as an ad-
justment to the field in which the measuring rods
are embedded like test bodies. Just as the com-
pass needle adjusts itself to the magnetic field of
its immediate environment, even though merely in
its direction, so measuring rods and clocks adjust
their unit lengths to the metrical field. The me-
trical relations between material objects must be
explained in this fashion. The answer can be given
only by a detailed theory of matter of which no-
thing is known until now. (Reichenbach, 1924, 64 ;
tr. 1969, 91 ; my emphasis)

Reichenbach explains here once again eloquently the vexed
question : “it cannot be an accident that two measuring
rods are equal at every place in a neighborhood compa-
rison” ; Weyl had therefore required “this fact must be
explained”. Precisely as Einstein, however, Reichenbach
claims that we do not have a “detailed theory of matter”
from which one can deduce such a behavior of our rods.
It is thus nearly incomprehensible that Reichenbach fai-
led again to realize that Einstein’s in his 1921 lecture was
exactly addressing this issue and not renewing the em-
piricism/conventionalism debate between Helmholtz and
Poincaré.

4.5. Einstein’s Reflections on Philosophy of Geometry bet-
ween 1923-1926

Schlick’s 1925 second edition of his Allgemeine Er-
kenntnislehre confirms even more clearly that the reading
of Einstein’s lecture on the background of the Helmholtz-
Poincaré controversy prevailed among Logical Empiricists
(Schlick, 1925, 326). Einstein’s reflections on geometry pu-
blished in about those years, however, clearly suggest that
Einstein’s reference to 19th century conventionalism can-
not be interpreted literally, but have to be inserted in its
proper “dialogical” context.

In his delayed lecture for his 1921-22 Nobel prize de-
livered to the Nordic Assembly of Naturalists at Gothen-
burg in July 1923 Einstein had famously insisted that, as
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composite atomic systems, rigid bodies cannot be used to
verify the laws of nature, for these very same laws should
in principle account for their rigidity (D’Agostino, 2000,
241f.). According to Einstein, “it would be logically more
correct to begin with the whole of the laws” (Einstein,
1923, 3 ; my emphasis) and not with an “artificially isola-
ted part” such as rods and clocks (Einstein, 1923, 3 ; my
emphasis).

In a 1924 recension (Einstein, 1924b) to a book of a mi-
nor Neo-kantian, Adolf Elsbach (Elsbach, 1924), to which
recently attention has been drawn (Howard, 1990, 2010),
Einstein distinguishes similarly two different “standpoints”
toward the question “whether one grants reality to the
practically-rigid body” : according to the Standpoint A,
geometry “contains assertions about possible experiments” ;
the Standpoint B, on the contrary, “only geometry with
physical sciences taken together” can be compared with
experience (Einstein, 1924b). It is not hard to glimpse here
once again the opposition between Einstein’s and Weyl’s
epistemological stance.

What is more important is that, in a paper publi-
shed one year later, Nichteuklidische Geometrie und Phy-
sik (Einstein, 1925), Einstein expressly attributed the stand-
point A to Poincaré, whereas the standpoint B with that
of Helmholtz :

In order to see the matter clearly, one must consis-
tently adopt one of two points of view. [A] In the
first, one holds that the “body” of geometry is rea-
lized in principle by rigid bodies in nature, provi-
ded that certain conditions are met regarding tem-
perature, mechanical strain, etc. ; this is the point
of view of the practical physicist. In this case, the
“distance” of geometry agrees with a natural ob-
ject and thereby all propositions of geometry gain
the character of assertions about real bodies. This
point of view was especially clearly advocated by
Helmholtz, and we can add that without him the
formulation of relativity theory would have been
practically impossible. [B] In the other point of
view, one denies in principle the existence of ob-
jects that agree with the fundamental concepts of
geometry. Then geometry by itself would include
no assertions about objects of reality, only geome-
try taken together with physics. This point of view,
which may be more complete for clearly by Poin-
caré. from this standpoint, the entire content of
geometry is conventional ; which geometry is pre-
ferable depends on how “simple” physics can be
made by using geometry to agree with experience
(Einstein, 1925, 253, tr. in Pesic, 2007, 161)

Again Einstein refers here evidently not to finite rigid bo-
dies ; in a space of variable curvature “the possible contact-
displacements [Berührungslagerungen] of practically rigid
bodies would be different in different cases, conditioned
by the influence of the circumstances [Milieu-Einflüssen]”
(Einstein, 1924a, 86) ; as in the general case there is no
unique set of congruence relations, so that it would not
make sense to decide once and for all, which tiles of space

are congruent as Helmholtz’s and Poincaré’s philosophy
of geometry would require. Einstein refers of course to
the “the possible disposition of infinitely many, infinitely
small rigid bodies [Lagerungsmöglichkeiten für unendlich
viel unendlich kleine starre Körper]” (Einstein, 1925, 253,
tr. in Pesic, 2007, 161). The local Euclidean behavior of
such rods cannot be extended “over finite regions” of space
(Einstein, 1925, 253, tr. in Pesic, 2007, 161), at least if we
attribute the same length to one of such rods in all posi-
tions and in every orientation.

Einstein’s reference to Helmholtz and Poincaré is then
nothing more then a “rhetorical device” which actually
serves to address Weyl’s challenge. Einstein adopted the
“Helmholtzian” standpoint A, accepting provisionally as
an independent fact that there are rigid infinitesimal rods,
whose length would be the same under all circumstances.
Weyl followed a “Poincaréan” standpoint B, by arguing
that such a behavior of infinitesimal rods cannot be obser-
ved, but it is at most a convenient stipulation.

The problem with which Einstein was concerned was
then completely detached from the historical dialogue bet-
ween Helmholtz and Poincaré, whose names are used as
mere labels to identify two abstract philosophical posi-
tions : “consistent thinkers — as Einstein put it in the
entry “space-time” for the 13th 1926 edition of the En-
cyclopedia Britannica — considered it preferable to allow
the content of experience [Erfahrungsbestände] to corres-
pond to geometry and physics conjointly” (Einstein, 1926,
609). Einstein however is still convinced that “it would
not be advisable to give up the first view, from which geo-
metry derives its origin”, i.e. interpretation of geometry
as science of the behavior of rigid bodies, “an abstraction
that is well rooted in the laws of nature” (Einstein, 1926,
609).

Logical Empiricists, not only did not appreciate that
Einstein supported the standpoint A only provisionally —
as it is usually claimed in literature. They never unders-
tood the very problem to which the alternative referred :
the reproducibility vs. “not-reproducibility of the gauge-
unit [Nichtreproduzierbarkeit der Eicheinheit]”, as Fritz
London put it (London, 1927, 187). Weyl’s theory at that
time was losing most of its convincing power. As is well
known, however, London’s suggestion to replace the scale
factor in the original theory with a phase factor would
make Weyl’s “gauge invariance” one of the central feature
of 20th century physics (Yang, 1986; O’Raifeartaigh and
Straumann, 2000).

5. Reichenbach’s Relativity of Geometry

As we have seen, Reichenbach was of course comple-
tely aware of the problem of “not-reproducibility of the
gauge-unit” was a relevant issue. He discussed it again as
early as in §4 of his classical semi-popular Philosophie der
Raum-Zeit-Lehre, which he had already finished in 1926
(but will be published as Reichenbach, 1928, tr. Reichen-
bach, 1958). As is well-known, according to Reichenbach,
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whereas the definition of the concept of the unit of length
is a conceptual definition, the choice of the interval that
serves as a unit of length is a coordinative definition —
a definition which coordinates an abstract concept with a
“piece of reality”, such as the meter standard in Paris (cfr.
Shapiro, 1994). Reichenbach adds however this significant
consideration :

After this solution of the problem of the unit of
length, the next step leads to the comparison of two
units of lengths at different locations. . . . Assume
two measuring rods which are equal in length. They
are transported by different paths to a distant place ;
there again they are laid down side by side and
found equal in length . . . it is an observational fact
[beobachtbare Tatsache], formulated in an empiri-
cal statement [Erfahrungssatz], that two measuring
rods which are shown to be equal in length by lo-
cal comparison made at a certain space point will
be found equal in length by local comparison at
every other space point, whether they have been
transported along the same or different paths . . .
The physical fact makes the convention univocal
(eindeutig), i.e., independent of the path of trans-
portation. The statement about the univocalness
(Eindeutigkeit) of the convention is therefore em-
pirically verifiable and not a matter of choice. One
can say that the factual relations holding for a local
comparison of rods, though they do not require the
definition of congruence in terms of transported
rods, make this definition admissible. Definitions
that are not unique are inadmissible in a scientific
system (Reichenbach, 1928, 24f. ; tr. 1958, 17 ; my
emphasis ; trasnlation slightly modified).

Reichenbach is then aware that it is only “a matter of
fact that our world” admits a “univocal” definition of the
unit of measure (Reichenbach, 1928, 25 ; tr. 1958, 17) ; it is
only for the “factual relations holding for the behavior rigid
rods” (Reichenbach, 1928, 27 ; tr. 1958, 17). The choice of
a rod as the standard unit of length is arbitrary, is matter
of definition or convention, but that two of such unit rods
are equal everywhere when compared, is a matter of fact.
Reichenbach, as Einstein, accepted this “fact” and eleva-
ted it as a very condition for a “coordinative definition”
(Reichenbach, 1928, 27 ; tr. 1958, 17).

However the question of the univocality of the defini-
tion of the unit of measure is clearly not the central pro-
blem for Reichenbach. He rather moves quite abruptly to
the question of the definition of the “congruence of bodies”,
(Reichenbach, 1928, §5) which is at the basis of his famous
“relativity of geometry” (Reichenbach, 1928, §8). Reichen-
bach famously claims that the relativity of geometry “is
essentially the result of the work of Riemann, Helmholtz,
and Poincaré” (Reichenbach, 1928, 48 ; tr. 1958, 35), who
— in Reichenbach’s view — firstly recognized that which
is the geometry of space, Euclidean or non-Euclidean, rests
on a conventional definition as to which bodies are rigid.
Einstein simply applied this approach to physics.

Of course, as Reichenbach himself noticed, even if only
by the end of the book, “there are no rigid bodies” in Ge-
neral Relativistic spacetime ; the concept of rigidity “loses
its definiteness in fields in which the adjustment of measu-
ring instruments is not uniform” (Reichenbach, 1928, 302 ;
tr. 1958, 264). Reichenbach, however, believed to have still
an “ace in the hole” ; in General Relativity the coordina-
tive definition concerns not finite bodies, but “infinitesimal
measuring instruments” (Reichenbach, 1928, 302 ; tr. 1958,
264 ; my emphasis). As it has been pointed out (Torretti,
1983, 239f.) however, Reichenbach’s approach is hardly
compatible with his conventionalism, as it paradoxically
emerged neatly from Reichenbach’s own account.

Reichenbach explains with the usual clarity that in or-
der to perform measurements, we “carry around infinite-
simal measuring rods” (Reichenbach, 1928, 285 ; tr. 1958,
249), which we assume to be unit rods. Riemann’s geo-
metry assumes that the laws of disposition of such rods
approach more closely those of Euclidean geometry the
smaller the dimensions of the considered region of space
become. Rods are progressively more rigid as far as they
are smaller. If our rods do not show such an Euclidean be-
havior, as Reichenbach observes, “we would assume, the-
refore, that the unit rod was not chosen sufficiently small
and would claim that the axiom would be satisfied if the
rod were shortened” (Reichenbach, 1928, 286 ; tr. 1958,
250). So the rigidity of rods is evidently not stipulated ar-
bitrarily, but checked under the presupposition that space
is Euclidean in small domains (Torretti, 1983, 239f.).

After having determined a rigid unit rod according to
this procedure, the geometry of space around a point can
be then found empirically, under the presupposition “that
ds2 be equal lo 1 for the same gµν and any direction of
the rod rotated in P the gµν will be determined uniquely
[eindeutig]” (Reichenbach, 1928, 285 ; tr. 1958, 249) (up to
a coordinate transformation). If in small regions of space
gµνare necessarily constant, over larger region of space, we
might discover that, by combining the coordinate differen-
tials according the Euclidean formula, “the resulting ds2 is
by no means equal to 1” (Reichenbach, 1928, 285 ; tr. 1958,
249). We would be then then forced to introduce “the cor-
rections factors gµν”, so “that the gµν thus obtained will
satisfy the condition ds2 = 1 for all positions of the unit
rod” (Reichenbach, 1928, 286 ; tr. 1958, 250). Other ob-
servers in other regions of spacetime will the adopt the
same measurement procedure, and they will find also the
value of the gµν in their neighborhood. Riemannian geo-
metry presupposed that not only the ratio gµν = λg′

µν ,
but the value of the constant λ can be determined after
all observers have come to agree on the unit of measure
to use : “Through experiment we discover at every point
those numbers gµν by which the coordinate differentials
must be multiplied in order that the interval will equal 1”
(Reichenbach, 1928, 287 ; tr. 1958, 251).

This procedure can of course be easily extended to the
case of a pseudo-Riemannian manifold of General Relati-
vity, where “[t]he coordinative definition of congruence is
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again given in terms of clocks, rods, and light rays” (Rei-
chenbach, 1928, 287 ; tr. 1958, 251). If the field equations
predict a certain value of the gµν (up to a coordinate trans-
formation), let’s say the Schwarzschild solution, we could
then verify if the predictions of the theory were “true” or
“false”, using light rays “as a realization of ds2 = 0, and
infinitesimal clocks and rods “as realizations of ds2 = ±1”
(Reichenbach, 1928, 287 ; tr. 1958, 251).

This is of course perfectly true, but it is also worth it
to make clear that this is not “a coordinative definition of
congruence” in the sense of Helmholtz and Poincaré. As
we have seen the definition of “congruence of bodies” is
not univocal in General Relativity ; there is no single set
of congruence relations ; the very idea of making a unique
conventional choice among different incompatible sets does
not even make sense (Friedman, 1995). As Reichenbach
had explicitly shown in 1924, rods and clocks serve only to
determine the choice of the linear unit of measure, which in
General Relativity is regarded as arbitrary, but univocal.

Usually units of measure are defined with reference to
an individual standard, such as the meter standard pre-
served in Paris ; of course it is more useful when standards
are defined through class terms, for instance “the linear
unit may be defined by means of the wave length of the
red cadmium line. 3 The similarity of all cadmium atoms
is used for this purpose, and there is no need to store a
special unit at a definite location” (Reichenbach, 1929a,
30 ; tr. 1978, I, 161)*. The unit of measure can be easily
replicated all over the manifold.

Even though, in Reichenbach’s parlance, this is a “coor-
dinative definition”, clearly it does not concern the choice
among Euclidean and non-Euclidean geometry. As we have
seen, by coordinating ds2 = −1 with another atom, let say
an atom of sodium with a yellow emitting line, all lengths
would be changed by a scale factor, but their ratios would
remain unchanged. Thus the spacetime metric would re-
main the same, being defined only up to a constant scale
factor.

The real philosophical problem lurks rather in the phrase
“there is no need to store a special unit at a definite loca-
tion”. The stability of atomic spectra shows that there is
a class of similar objects that can be used to reproduced
the unit of measure in different positions (Reichenbach,
1928, 355). According to Reichenbach that the “objects in
question are similar is, of course, not established by defini-
tion, but is a fact that must be discovered” (Reichenbach,
1929a, 30 ; tr. 1978, I, 161)*.

To find an explicit discussion about the nature of this
factual presupposition we must however wait for the long
appendix on Weyl’s theory (Reichenbach, 1928, 331-373) :

The foundation of Riemannian space [is that] two
measuring rods which are found equal, when they

3. In 1927, the International Conference on Weights and Measures
redefined the meter in terms of a red cadmium spectral line (1 m =
1,553,164.13 times the wavelength of the 6436.4696 Å cadmium red
line).

are compared near to each other, will be again
equally long if they are transported through dif-
ferent ways in another place ; the same must be
assumed for the unit clocks . . . We have noticed
above that such a definition [of equality of length]
is only for this reason possible, because, the measuring-
bodies posses the mentioned special property [Vor-
zugseigenschaft] ; if the measuring rods would have
different length every time they met, the usual de-
finition of congruence would not be possible. The
mentioned property is not a means to obtain a
knowledge of the equality of tracts . . . but it is a
necessary condition for a definition of congruence
distinguished by this special property [Vorzugsei-
genschaft] (on this topic see § 4) (Reichenbach,
1928, 332)

Reichenbach refers here explicitly to his §4 of the book
where he discussed precisely the “univocality” of the defi-
nition of “equality of tracts”. The fundamental question is
then the following. “What would happen if the measuring
rods would not posses the mentioned special property [Vor-
zugseigenschaft] ?” (Reichenbach, 1928, 332). Reichenbach
surprisingly consigned this question to the appendix of his
book (which will be even not translated into English). It is
however not at all exaggerated to argue that this was the
core problem of Einstein’s reflections on geometry. Ein-
stein had assumed the “Vorzugseigenschaft” of rods and
clocks as an independent “fact” ; Weyl had showed that
the alleged fact is at most a “stipulation”.

Reichenbach explains very minutely the technical de-
tails of Weyl’s theory in the appendix (cf. Coffa, 1979).
A brief summary can be found for instance in a paper of
1929 discussing Einstein’s new geometry based on distant-
parallelism :

Weyl noticed that Riemannian geometry contains
a special presupposition : two measuring rods which,
if compared next to each other are equal, are al-
ways equal, if, after having been transported through
different ways, are compared again. Weyl asked,
whether it would be possible to conceive more ge-
neral geometrical relations, in which the rods change
their length in dependence from the way along
which they are transported ; he found a mathema-
tical procedure which allows to formulate this case
. . . In this way he produced an extension of the
Riemannian space-type of undeniable mathemati-
cal meaning, which he however wanted to apply
also to the physical problem just described [the
unification of gravitation and electricity] . . . such
a theory, however, had to be abandoned for phy-
sical reasons ; the effect of the electrical field on
transported clocks [predicted by the theory]* was
absent.
* One has just to think of an atomic clock, e.g. the
rotating electron system of the atom, whose even-
tual change in frequency found expression in the
emitted spectral lines. (Reichenbach, 1929b, 121)

Of course Reichenbach had good reasons to consider Weyl’s
theory as discredited. Reichenbach, however, does not seem
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to realize that, when Einstein refers, rather sporadically,
to Helmholtz and Poincaré, he alludes exclusively to this
“special presupposition” of Riemannian geometry, i.e. the
“Riemannian method of space-mesurments” (Reichenbach,
1929b, 121) of which Weyl had shown the contingency by
introducing “a more richer geometry then the Riemannian
one” (Reichenbach, 1929b, 121)

6. Einstein vs. Reichenbach. From the Real to the
Imaginary Dialogue

As is well know, Einstein’s esteem for Reichenbach was
so high that in 1926 he managed, together with Max Planck,
to create for him a teaching position in “natural philoso-
phy” at the University of Berlin, where Reichenbach re-
mained till the 1930s (Hecht and Hoffmann, 1982). Ne-
vertheless Reichenbach’s famous doctrine of the “relati-
vity of geometry” shows that he surprisingly was not able
to appreciate Einstein’s reference to the dialogue between
Helmholtz and Poincaré was little more than an homage,
rather the exposition of a philosophical program.

Reichenbach’s attempt to insert Einstein’s theory as
the heir of the line Riemann-Helmholtz-Poincaré was doo-
med to a failure. Not only Reichenbach neglected the group-
theoretical implications of Helmholtz and Poincaré’s work
(Friedman, 1995) — on which for instance other philoso-
phers such as Ernst Cassirer insisted (Cassirer, 1938, 1944,
1950, I, ch. 2 ; written in 1930s). Most of all they did not
appreciate the fact that Riemann’s work evolved along a
different non-geometrical tradition — mainly in the work
of Christoffel, Ricci and Levi-Civita (Reich, 1994) — whose
geometrical significance was rediscovered only after Gene-
ral Relativity by Levi-Civita himself (Reich, 1992). The
philosophical problem raised by Weyl’s theory, which Ein-
stein was actually addressing, can be understood exclusi-
vely within this tradition.

However, Reichenbach could certainly not be blamed
for having lost the track in following Einstein’s complex
“dialogical” network. Einstein resorted to the Logical Em-
piricists’ favorite language of “coordination” to address
Weyl’s holistic challenge and presented at same time his
dispute with Weyl as novel version of the dialogue between
Helmholtz and Poincaré. Behind Einstein dialogical stra-
tegy lurks probably the exigence to extrapolate two gene-
ral epistemological attitudes toward the geometry-physics
relationship — the standpoints A and B of the Elsbach-
review — from their more technical counterparts.

Einstein conformed to a sort of “double truth doctrine”
all of his life. On the one hand, he never abandoned the
conception of geometry as investigation of “local relations
of idealized corporeal objects” (Einstein, 1930c, 173 ; tr. in
Pesic 2007, 173 ; see also Einstein, 1930a,b) ; geometry is
“the science of laws governing the mutual position of prac-
tically rigid bodies” (Einstein, 1934, 227). In Physik und
Realität (Einstein, 1936), Einstein even defined as a “fatal
error [ver hängnisvolle Irrtum]” the fact that this concep-

tion of geometry “has fallen into oblivion” (Einstein, 1936,
321, tr. 356).

On the other hand, Einstein candidly admits that in,
General Relativity, such an assumption is not completely
consistent. This is particularly clear in a famous passage of
his Autobiographical notes (written in 1946, but published
as Einstein, 1949a) :

One is struck [by the fact] that the theory (ex-
cept for the four-dimensional space) introduces two
kinds of physical things, i.e., (1) measuring rods
and clocks, (2) all other things, e.g., the electro-
magnetic field, the material point, etc. This, in
a certain sense, is inconsistent ; strictly speaking
measuring rods and clocks would have to be repre-
sented as solutions of the basic equations (objects
consisting of moving atomic configurations), not,
as it were, as theoretically self-sufficient entities.
However, the procedure justifies itself because it
was clear from the very beginning that the postu-
lates of the theory are not strong enough to deduce
sufficiently complete equations from them for phy-
sical events sufficiently free from arbitrariness, in
order to base upon such a foundation a theory of
measuring rods and clocks. If one did not wish to
forego a physical interpretation of the co-ordinates
in general (something which, in itself, would be
possible), it was better to permit such inconsis-
tency — with the obligation, however, of elimina-
ting it at a later stage of the theory. But one must
not legalize the mentioned sin so far as to imagine
that intervals are physical entities of a special type,
intrinsically different from other physical variables
(Einstein, 1949a, 59 ; my emphasis).

Einstein’s epistemological preoccupations are then coherent
with those that he had expressed in the past. In the final
“Remarks Concerning the Essays Brought together in this
Co-operative Volume” (finished in 1948) at the end of vo-
lume he emphasizes the following points :

1. General Relativity assumes that there is “such a thing
as a natural object which incorporates the ‘natural-
measuring-rod’ independently of its position in four-
dimensional space” ; in particular “a spectral line” is
“considered as a measure of a ‘proper time’ (Eigen-
Zeit) (ds2 = gikdxidxk )”. This point of view “made
the invention of the General Theory of Relativity
psychologically possible, however this supposition is
logically not necessary” (Einstein, 1949b, 685 ; may
emphasis).

2. This assumption is then not definitive : Only “[if] one
disregards quantum structure, one can justify the in-
troduction of the gik ‘operationally’”, referring to
“the existence of an arbitrarily sharp optical signal”
(Einstein, 1949b, 686, my emphasis). We do not have
at this time “a complete theory of physics as a tota-
lity” in which “the objects used as tools for measu-
rement do not lead an independent existence along-
side of the objects implicated by the field-equations”
(Einstein, 1949b, 686, my emphasis).
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The echo of the debate with Weyl and Dällenach (cf. §3) in
the late 1910s can still be heard in these passages written
thirty years later. The constancy of atoms give physical
meaning to the mathematical invariant ds ; within General
Relativity this remains an unverified assumption, which,
in a later stage of the development of physics, should be
derived from the theory.

As is well-known, Einstein used exactly this form of ho-
lism à la Weyl against Reichenbach in the final “Remarks”
(Einstein, 1949b). Interestingly Einstein resorts again to
the opposition between Helmholtz and Poincaré to display
the epistemological implications of the points 1. and 2. : “Is
a geometry . . . verifiable (viz., falsifiable) or not ? Reichen-
bach, together with Helmholtz, says : Yes, provided that
the empirically given solid body realizes the concept of
“distance” Poincaré says no and consequently is condem-
ned by Reichenbach” (Einstein, 1949b, 677f.).

In his contribution to the volume, Reichenbach (Rei-
chenbach, 1949), who Einstein praises for “the precision
of deductions” and “the sharpness of his assertions”, had
namely rehearsed his neo-conventionalist doctrine : after a
definition of congruence has been chosen under the crite-
rion that it does not imply redundant physical forces, then
geometry of physical space (Euclidean or non-Euclidean)
can be verified empirically using rods and clocks. Einstein
famously replied by imagining a dialogue between “Rei-
chenbach” and “Poincaré” (Einstein, 1949b). By the end
of the dialogue a unidentified “Non-Positivist” bursts upon
the scene. The passage is very famous, but is worth to re-
hearse it once again :

Non-Positivist : If, under the stated circumstances,
you hold distance to be a legitimate concept, how
then is it with your basic principle (meaning = ve-
rifiability) ? Do you not have to reach the point
where you must deny the meaning of geometrical
concepts and theorems and to acknowledge mea-
ning only within the completely developed theory
of relativity (which, however, does not yet exist
at all as a finished product) ? Do you not have to
admit that, in your sense of the word, no “mea-
ning” can be attributed to the individual concepts
and assertions of a physical theory at all, and to
the entire system only insofar as it makes what is
given in experience “intelligible ?” Why do the in-
dividual concepts which occur in a theory require
any specific justification anyway, if they are only
indispensable within the framework of the logical
structure of the theory, and the theory only in its
entirety validates itself ? (Einstein, 1949b, 678 ; my
emphasis)

By substituting a non-Positivist for Poincaré, Einstein had
probably come to realize that such a holism was not really
implied by Poincaré’s conventionalism, being rather si-
milar Pierre Duhem’s epistemological stance (Grünbaum,
1963a, 133 ; for the historical plausibility of this hypothe-
sis, see Howard, 1990).

The holism of Non-Positivist, however, clearly resembles
that of Weyl’s philosophy of geometry. In his 1949 En-

glish augmented translation (Weyl, 1949) of his 1927 mo-
nograph Philosophie der Mathemaik und der Naturwissen-
schaft (Weyl, 1927), Weyl explicitly argues that geometry
and physics can be only “put to the test as a whole” (Weyl,
1949, 134). Weyl’s objections against Einstein were still vi-
vid thirty years after their original dispute had started. It
must be bared in mind that Einstein and Weyl were col-
leagues for nearly twenty years in Princeton. In a “Appen-
dix” of the book Weyl still insisted on the fact that “the
behavior of rods and clocks” should in principle come out
“as a remote consequence of the fully developed theory”
and not used to measure “the fundamental quantity ds2”
(Weyl, 1949, 288).

Beller’s dialogical method becomes once again very use-
ful. Einstein addressed several interlocutors at one time,
interweaving different real dialogues in an imaginary one,
in which, moreover, contenders of disparate epochs appear.
Einstein’s dialogical web it is then not easy to disentangle.
Reichenbach, after all, could have had the impression that
Einstein was attributing to him a view of the empirical cha-
racter of geometry not unlike that which Einstein himself
had used as a stepping-stone (and that he still defended
in a 1951 letter to the Australian student Leonard Cham-
pion as reported by Stachel, 1989). However, it is quite
clear that Einstein was addressing Weyl’s objection ; the
apple of discord was once again “the existence of an arbi-
trarily sharp optical signal”, that can be used to reproduce
the unit of time at distance.

However, Logical Empiricists clearly still did not grasp
this point. It is sufficient to consult their reviews of Schilpp’s
volume which came up immediately after its publication
(Frank, 1949; Nagel, 1950). Similarly in his 1951 response
to “Professor Einstein[’s]” “witty defense of conventiona-
lism” (Reichenbach, 1951, 135), Reichenbach simply re-
hearsed once again his neo-conventionalist position, en-
tirely based on the question of establishing whether the
choice among Euclidean and non-Euclidean geometries de-
pends on an empirical or conventional definition of congruence.
It is rather ironic that Reichenbach argued “that there can
be no differences of opinion between mathematical philo-
sophers if only their opinions were clearly stated” (Rei-
chenbach, 1951, 135). The life-long dialogue between him
and Einstein, that traverses 30 years of their professional
carrier, seems to have been based on complete misunders-
tanding.

7. Conclusion. A Dialogue of the Deaf

Modern philosophy of science is highly indebted to the
dialogue among Einstein, Schlick and Reichenbach on the
role of rods and clocks in General Relativity. In this dia-
logue, Logical Empiricism made the first steps along the
philosophical movement, which, especially in its “Ameri-
can incarnation” dominated 20th century philosophy of
science, before stiffening in a over-simplified straw-man
version that only recent historical literature has began to
call into question.
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However, this dialogue was surprisingly a dialogue of
the deaf. The reason in disarmingly simple : Logical Empi-
ricists were concerned with the question of making a choice
within the class of Riemannian geometries. Einstein rather
worried by the legitimacy of the assumption that charac-
terizes the class of Riemannian geometries as such, as in-
cluded into the larger class of geometries prospected by
Weyl. Logical Empiricists knew the latter issue perfectly
well, but they never realized that Weyl was the interlocu-
tor Einstein was actually addressing. On turn, Einstein
never felt compelled to set the things straight, so that
the illusion that the subject of the debate revolved on
the conventional vs. empirical choice between Euclidean
and non-Euclidean geometries persisted. This turned to
be a “a stubbornly persistent illusion” which was drag
along in successive famous debates, e.g. the Grünbaum-
Putnam controversy (Grünbaum, 1963b; Putnam, 1963;
Grünbaum, 1968b,a, ch. III).

As Grünbaum’s “Riemann-Poincaré principle of the conven-
tionality of congruence” shows (cf. Giedymin, 1982), the
misunderstanding between Einstein and Logical Empiri-
cists is the result of what may be called a collision of
mathematical traditions (Norton, 1999) : The “Helmhot-
zian” tradition, which presupposes the “existence of bo-
dies independent of position” and the “Riemannian” tra-
dition, which started from the much weaker presupposition
that “length lines if independent of position” (Freudenthal,
1956; Torretti, 1978, 1999).

Helmholtz’s geometrical point of view developed ma-
thematically mainly by Sophus Lie (starting from Lie, 1886)
in the theory of a continuous group of transformations
(Lie, 1893) and was brought to its epistemological conse-
quences by Poincaré (Friedman, 1995; Heinzmann, 2001
and others). Riemnann’s geometrical insight, however, re-
mained dormant ; it was mainly developed non-geometrically
by Rudolph Lipschitz (Lipschitz, 1869), Christoffel, Ricci
in the form of a theory of differential invariants (Ricci-
Curbastro, 1883, 1886, 1888, 1889), later systematized into
the so called “absolute differential calculus” (Ricci-Curbastro,
1892; Levi-Civita and Ricci-Curbastro, 1900), of which
General Relativity, by Einstein’s own account, was the
“triumph” (Reich, 1994). The geometrical implications of
Riemann’s revolutionary approach were rediscovered only
after the appearance of General Relativity, among others
by Levi-Civita, Hessenberg and radicalized in Weyl “gauge
invariance” principle.

Einstein’s assumption that the relative length of rods
does not depend on their pre-history is comprehensible
only in the context of the “Riemannian” tradition and does
not have much to share with the “Helmholtzian” one. Logi-
cally Empiricists not only completely neglected the group-
theoretical implications of Helmholtz’s approach, but most
of all did not accorded sufficient attention to the role that
Riemann and his successors had played in the history epis-
temology of geometry (see for instance DiSalle, 2006). Ne-
glecting the distinction between the Riemannian and the
Helmholtzian tradition in the history of philosophy of geo-

metry, in the attempt to furnish “a Helmholtzian approach
to space and time” (Darrigol, 2007) confuses, not unlike
the Logical Empiricists, the problem of the comparabi-
lity of the length lines at a distance, with that of the
congruence of bodies (Torretti, 1983, 238f.).
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