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Abstract

The Aharonov-Bohm effect1 is typically called “topological.” But it seems no more
topological than magnetostatics, electrostatics or Newton-Poisson gravity (or just
about any radiation, propagation from a source). I distinguish between two senses
of “topological.”

1 The Aharonov-Bohm effect
A wavefunction is split into two, and these, having enclosed a (simply-connected) re-
gion ω containing a solenoid, are made to interfere on a screen. The enclosing wave-
function is sensitive to any enclosed electromagnetism inasmuch as the electromagnetic
potential2 A, a one-form, contributes a phase

exp i

∮
∂ω

A

to (the wavefunction along) the boundary ∂ω and hence to the interference pattern on
the screen. The electromagnetism on ω is related to the circulation around the boundary
by Stokes’ theorem

(1)
∮
∂ω

A =

∫∫
ω

dA.

The electromagnetic field3 F = dA produced by the solenoid is circumscribed to a
middle region λ ⊂ ω surrounded by an isolating region4 λ′ = ω − λ where F van-
ishes but not A. The full Aharonov-Bohm effect can be considered the ‘differential’ or
‘incremental’ sensitivity of the interference pattern to variations in the current through
the solenoid.

1Ehrenberg & Siday (1949), Aharonov & Bohm (1959)
2By “potential” I just mean primitive: the potential of the electromagnetic two-form F = dA is its

primitive A↔ (A, ϕ), the potential of the magnetic two-form B = dA is its primitive A, the potential of
the electric one-form η = ∗E = dϕ is its primitive ϕ (the Hodge dual ∗ being taken in three dimensions),
the potential of the three-form density ρ = dE is its primitive E.

3It is perhaps easiest to think of F as a purely magnetic field B produced by the current density J = d∗B
in the solenoid.

4It will be convenient to view λ and ω as concentric disks.
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2 The topological1 interpretation
I will distinguish between two (related but) different senses of “topological”:

1. Topological1: related to the absence or presence of a hole (which may or may
not contain a source, like a solenoid or a charge).

2. Topological2: invariant under appropriate continuous deformations.

The topological1 interpretation5 of the Aharonov-Bohm effect can be formulated as
follows: If A were closed throughout a simply-connected region ω it would also be
exact, and hence expressible as the gradient A = dµ of a zero-form µ (a real-valued
function); the flux ∮

∂ω

dµ =

∫∫
ω

d2µ

through the boundary ∂ω would then vanish, since d2 = 0. But here A is closed on
λ′; from dA = 0|λ′ it does not follow that A is exact, nor that the flux through the
enclosing loop vanishes: it may or may not.

The existence of the source responsible for the effect is therefore ruled out by one
topology (A closed throughout a simply-connected region) but not another.

The same applies to a simply-connected three-dimensional region Ω enclosed by a
two-dimensional boundary ∂Ω. If the two-form E were closed throughout Ω it would
also be exact, and hence expressible as the curl E = dζ of a one-form ζ; the flux∫∫

∂Ω

dζ =

∫∫∫
Ω

d2ζ

5Aharonov & Bohm (1959, p. 490): “in a field-free multiply-connected region of space, the physical
properties of the system still depend on the potentials.” Wu & Yang (1975, p. 3845): “The famous Bohm-
Aharonov experiment [ . . . ] showed that in a multiply connected region where fµν = 0 everywhere there
are physical experiments for which the outcome depends on the loop integral [ . . . ] around an unshrinkable
loop.” And p. 3856: “fµν underdescribes electromagnetism because of the Bohm-Aharonov experiment
which involves a doubly connected space region.” Nash & Sen (1983, p. 301): “We [ . . . ] consider the
consequence of assuming the field F to be identically zero in some region Ω. At first one may think that
there will be no physically measurable electromagnetic effects in such a region Ω. This is not so, effects may
arise if the topology of Ω is non-trivial, e.g. if Ω is not simply connected. [ . . . ] In terms of parallel transport
one says that zero curvature does not imply trivial parallel transport if the region in which the curvature
is zero is not simply connected. This underlies the fact that there is a sense in which the connection is a
more fundamental object than the curvature, even though a connection is gauge dependent and not directly
measurable.” Ryder (1996, p. 101-4): “the Bohm-Aharonov effect owes its existence to the non-trivial
topology of the vacuum [ . . . ]. The Bohm-Aharonov effect is the simplest illustration of the importance of
topology in this branch of physics. [ . . . ] The relevant space in this problem is the space of the vacuum, i.e.
the space outside the solenoid, and that space is not simply connected. [ . . . ] It is thus an essential condition
for the Bohm-Aharonov effect to occur that the configuration space of the vacuum is not simply connected.
[ . . . ] in other words, it is because the gauge group of electromagnetism, U1, is not simply connected that the
Bohm-Aharonov effect is possible. [ . . . ] The configuration space of the Bohm-Aharonov experiment is the
plane R2 [ . . . ] with a hole in, and this is, topologically, the direct product of the line R1 and the circle [ . . . ].
There is, nevertheless, a positive effect on the interference fringes. The mathematical reason for this is that
the configuration space of the null field (vacuum) is the plane with a hole in [ . . . ].” Martin (2003, p. 48): “in
the case of non-trivial spatial topologies, the gauge-invariant interpretation runs into potential complications.
[ . . . ] So-called holonomies [ . . . ] encode physically significant information about the global features of the
gauge field.” Agricola & Friedrich (2010, p. 275): “so ist das verbleibende Gebiet Ω − S der Ebene aus
Sicht des Elektrons nicht mehr einfach zusammenhangend.” See also Nounou (2003).
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through the boundary would then vanish. But if the region on which E is closed has a
hole in it, the flux through the enclosing surface may or may not vanish.

This is precisely what we have in electrostatics, where the electric field E = ∗dϕ
is (Hodge-dual to) the gradient dϕ of the scalar potential ϕ. The vanishing divergence
dE expresses the conservation of electricity where none is created, away from the
charges that produce E according to the Maxwell-Poisson equation dE = d∗dϕ = ρ,
ρ being the charge density. If the divergence dE vanished throughout the volume Ω,
there would be no electricity produced and hence none radiated through the enclosing
surface.6 But a charge in Ω—say in a region7 Λ ⊂ Ω isolated by Λ′ = Ω− Λ—would
prevent electricity from being conserved throughout Ω.

We have the same formalism in Newton-Poisson gravity, where ϕ is the gravita-
tional potential, dϕ and E both represent gravitational force, and ρ is the mass density.
Gravity8 would therefore be another topological1 effect.

Again, the topology of the region where the ‘potential’ (A or E or whatever)
is closed tells us relatively little: if the region were simply-connected, conservation
would be general within the enclosing surface since there could be no holes containing
sources; and if nothing were created inside the enclosing surface, the total radiation
through it would vanish. But if the topology does not allow the presence of holes to be
ruled out, the presence of sources in them cannot either; and sources would produce a
flux through the enclosing surface.

A non-trivial topology cannot, on its own at any rate, rule out the absence of a
source either. Nor does it provide the ‘amount’ or ‘intensity’ of the possible source
(which would tell us the intensity of the effect—the flux through the enclosing surface).
So the full Aharonov-Bohm effect, which can be considered ‘differential,’ is hardly
topological1, or at any rate no more so than electrostatics or Newton-Poisson gravity.

3 Topological2 effects

3.1 Aharonov-Bohm
The Aharonov-Bohm effect is topological2 in the sense that certain basic quantities (say
the contour integral (1) and resulting interference pattern) are invariant under appropri-
ate continuous deformations. It seems that (fundamental aspects of) electrostatics and
Newton-Poisson gravity are just as topological2. Magnetostatics may be even more
topological2.

Since the electromagnetic field F = dA = dA′ is easier to measure than the
potential A, it is customary to view the freedom expressed by the substitution

(2) A 7→ A′ = A+ dξ

(ξ being a zero-form) as unobservable. Such transformations deform the level sets of
A’s local potential9 γ. One can first imagine a purely ‘angular’ γ (with values running

6Over and above any divergence-free electrical background that may or may not be present.
7It will be convenient to view Λ and Ω as concentric spheres.
8Or rather the total gravitational attraction radiated by a mass.
9For wherever A is closed it can be written locally as the gradient A = dγ of a zero-form γ—just as E

can be written locally, wherever it is closed, as the curl E = dζ of a one-form ζ.
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from say 0 to 2π),10 whose level lines are straight rays radiating through the annulus λ′

from the inner disk λ to the edge ∂ω. A gauge transformation (2) would then deform
the level rays, bending them without making them touch. The circle ∂ω can likewise be
deformed into any loop going around the solenoid once. The Aharonov-Bohm effect
is topological2 in the sense that neither deformation affects the integral (1) (or the
resulting interference pattern).

Whereas here the deformations are allowed by (and part of) theory, in the next cases
they will be counterfactual.

3.2 Electrostatics (& Newton-Poisson gravity)
The basic law here, the Gauß-Maxwell equation

(3)
∫∫

∂Ω

E =

∫∫∫
Ω

dE =

∫∫∫
Ω

ρ

(or dE = ρ), is topological2 inasmuch as the boundary ∂Ω and electric field lines
can be continuously deformed without affecting the integral (3)—which is the electro-
static analog of the (contour integral giving rise to the) Aharonov-Bohm effect. We can
imagine a spherically symmetric charge distribution ρ contained in Λ ⊂ Ω (everything
concentric): the electrical field lines radiated by the charge in Λ correspond to the level
rays radiating from the solenoid in λ. Nothing in electrostatics prevents the deforma-
tion of ∂Ω. Admittedly the electric rays cannot be bent without violating E = ∗dϕ;
despite preserving the divergence dE = dE′, the transformation

(4) E 7→ E′ = E + dα

(the three-dimensional version of (2), α being a one-form) is counterfactual—which
does not prevent a conditional characterisation of the effect as topological2: “the inte-
gral would remain the same even if the field lines were bent.”

Most of this applies (mutatis mutandis) to Newton-Poisson gravity.
Why bother with obvious facts about integration? Because much is made in the

literature of the homotopically deformable loop ∂ω (which corresponds to the homo-
topically deformable surface ∂Ω) and gauge transformation (2) (which corresponds to
the admittedly counterfactual transformation (4)).

3.3 Magnetostatics
The basic law here, Mawell’s equation∫∫

∂Ω

B =

∫∫∫
Ω

dB = 0

(or dB = 0), holds because a magnet has two poles, that act as source and sink of the
same field lines, which form loops going from one pole to the other: all magnetism

10Such a γ cannot be continuous everywhere; we can imagine a single discontinuity, say on the ray γ =
0 = 2π.
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produced is eventually recovered. If a magnetic loop crosses the boundary ∂Ω it will
cross it again on the way back to the magnet, thus erasing whatever it contributed to
the integral on the way out. The law is topological2 in that the boundary ∂Ω and
field lines can be deformed11 continuously without affecting the integral. Nothing in
magnetostatics prevents the deformation of ∂Ω; the deformation of the field lines by
B 7→ B′ = B+dβ is again counterfactual, being prevented by the observability of the
magnetic field B = dA.

But if I continue to dwell on these old three-dimensional theories I may give the
impression I want to make a point about them, whereas my real point concerns the
Aharonov-Bohm effect: that it is hardly topological, or at any rate no more topological
than electrostatics etc.

My thanks to Nazim Bouatta, Dennis Dieks, Éric Gourgoulhon, Marc Lachièze-Rey
and Jean-Philippe Nicolas for valuable clarifications and corrections.
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