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Abstract

Indeterminism, understood as a notion that an event may be con-
tinued in a few alternative ways, invokes the question what a region of
chanciness looks like. We concern ourselves with its topological and
spatiotemporal aspects, abstracting from a nature or mechanism of
chancy processes. We first argue that the question arises in Montague-
Lewis-Earman conceptualization of indeterminism as well as in the
branching tradition of Prior, Thomason and Belnap. As the resources
of the former school are not rich enough to study topological issues, we
investigate the question in the framework of branching space-times of
Belnap (1992). We introduce a topology on a branching model as well
as a topology on a history in a branching model. We define light-cones
and assume four conditions that guarantee the light cones so defined
behave like light-cones of physical space-times. From among various
topological separation properties that are relevant to our question, we
investigate the Hausdorff property. We prove, against an objection of
Earman (2008), that each history in a branching model satisfies the
Hausdorff property. As for the satisfaction of Hausdorff property in
the entire branching model, we prove that it is related to the phe-
nomenon of passive indeterminism, which we describe in detail.

1 Problem

Uncontroversially, our world has spatial and temporal aspects, or (as the
physics has it)—spatiotemporal aspects.1 Accordingly, an adequate analy-
sis of (in)determinism of our world must explain how (in)determinism plays
out in space and time (or in a spacetime). Although the intuitive core of
the notion of (in)determinism, i.e., “the past does (not) determine uniquely
the future” is hardly contentious, there are a few proposals of how to rigor-
ously explain this intuition. Prominent are two approaches nowadays, that
develop, respectively, a Laplacean, physics-inspired, concept and a notion
based on modal intuitions voiced perhaps first in Aristotle’s De Interpreta-
tione. Despite deep philosophical differences (which we will review shortly),
the two approaches face a similar challenge: to explain what a region of in-
determinism looks like. Here is how the question arises. Without making

1TP’s research is supported by grant 668/N-RNP-ESF/2010/0 of the (Polish) Ministry
of Education. The research of the third author is supported by the VIDI research program
639.072.904 of the Netherlands Organization for Scientific Research (NWO).
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any claim to historical accuracy, it is good to think of both schools as in-
troducing a concept of a global course of events, calling it a possible world,
possible history, or possible scenario. To analyze (in)determinism, they next
postulate some global directionality, which needs to be neither temporal, nor
linear. As a result, the Laplacean school has a concept of initial segments
of possible worlds, whereas the Aristotelian invokes a distinction between
an event’s past, its future of possibilities, and its wings, that is, the set of
events space-like related to it. To address the question of (in)determinism,
the Laplacean then looks for isomorphic initial segments of a pair of possible
worlds, the later segments of which are not isomorphic. The Aristotelian
school asks if there is some event whose future of possibilities contains more
than one alternative possibility. Accordingly, both the schools legitimize
a notion of passing from the region of determinateness (isomorphic initial
segments, or an event’s past including perhaps its wings) to the region of
indeterminacy (one of non-isomorphic later segments, or one of alternative
possible futures of an event). We may thus consider a path, say a photon’s
trajectory, passing from the region of determinateness to the region of in-
determinacy. Since a spacetime is typically assumed to be continuous, the
following question arises: What does the path look like at the border of de-
terminateness and indeterminacy? For instance, is there a last element in the
the determinateness region, or a first element in the indeterminacy region?

The proper tools to handle questions like this belong to topology, and in
particular, to the theory of the so-called separation properties. Our paper
focuses almost entirely on one of these properties, called the Hausdorff prop-
erty, to be explained in §3.1. This property comes to the fore in debates over
topological aspects of indeterminism: Supposing that indeterminism plays
out in spacetime, philosophers and physicists typically ask if the Hausdorff
property is satisfied.2 Our focus on the Hausdorff property has a practi-
cal dimension as well: An investigation of other separation properties would
extend the size of this essay beyond any tolerable limit. Other topologi-
cal features of indeterminism nevertheless require study as well. In fact, we
hope this essay will serve as a call to further investigate the issue of what
the region of passage from determinateness to indeterminacy looks like. The
phrase “looks like” is to indicate that we are not concerned with the physics

2Recently the philosopher J. Earman (2008) discussed the Hausdorff property in rela-
tion to various ways of conceptualizing indeterminism. On the role of Hausdorff property
in physics we have also been taught by the physicist A. Staruszkiewicz, whom we gratefully
acknowledge.
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of indeterministic processes, that is, with the question of how indetermin-
ism occurs. We are concerned solely with a combination of spacetime and
modality, and the topological issues this combination raises.

To handle the topological questions, we need, however, a rigorous theory
combining indeterminism and spacetime. With the exception of Montague’s
(1962) model-theoretic analysis of point mass mechanics and Newtonian grav-
itation, there is not enough mathematical rigor in the current developments
of Laplacean (in)determinism to permit a fruitful study of topological is-
sues. The required rigor is possessed by Belnap’s (1992) axiomatic theory
of branching space-times (BST1992), which combines (in)determinism with
(rudimentary) relativistic spacetimes. Moreover, the BST axioms are fru-
gal, and as far as topological questions are concerned, BST1992 and the
Laplacean approach have some affinity (as we show in §2). Thus, although
we will carry out our investigations in the BST framework, our findings have
bearing for the Laplacean school as well.

As we said, we will investigate one separation property: the Hausdorff
property. In doing this, we will pursue two quite separate goals. Chiefly we
address the following question: Under what conditions does a BST model of
indeterminism (that is, a model of BST comprising many branching histories)
satisfy the Hausdorff property? Our secondary aim is to address the Earman
(2008) argument that “literal branching of a relativistic spacetime” (p. 193)
leads to a failure of the Hausdorff property.3 The failure of the Hausdorff
property has various negative consequences for physics, which Earman lists.
So, in order to avoid these consequences, each individual spacetime in BST
needs to satisfy the Hausdorff property. We thus investigate whether or not
this is so. Intuitively speaking, it is unbelievable that adding indeterminism
should destroy topological properties of a single spacetime (or history in
BST parlance). In an earlier publication, we stated some theorems (mostly
without proof) that supported the unbelievability intuition. Here we lay
down our reasoning in full detail, showing that a single history satisfies the
Hausdorff property, in spite of our BST-style explanation of indeterminism

3 The argument does not specify with respect to which topology the Hausdorff property
fails; in particular, it does not relate to the so-called Bartha topology, put forward by
Belnap (1992) as a natural topology for BST. Since one may always produce a Hausdorff
topology on a set (e.g., discrete topology) we read the argument as saying that on every
natural topology, a branching relativistic spacetime is non-Hausdorff. We counter it by
showing that such a spacetime is Hausdorff with respect to the natural topology of BST,
the Bartha topology.
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in terms of branching.
The essay is organized as follows. §2 contrasts the two schools of thinking

about (in)determinism, Laplacean and Aristotelian. §3 introduces topology
for BST and shows that each BST history satisfies the Hausdorff property.
An important part of this task is the introduction of light-cones into the
abstract framework of BST. Then §4 proves that each single BST history (aka
spacetime) satisfies the Hausdorff property. §5 presents theorems exhibiting
necessary and sufficient conditions for a BST branching-histories model to
satisfy the Hausdorff property. And §6 lays out arguments that the topologies
discussed in this essay are natural topologies for BST. The essay ends with
Conclusions.

2 Two schools of (in)determinism

Innocent of the concept of computers or Turing machines, Laplace (1820) had
recourse to a powerful intelligence to explicate a concept of determinism, the
inspiration for which came from Newtonian mechanics. The intelligence is
supposed to have two kinds of data, first about an instantaneous state of
a system and second about a mathematical form of all forces acting in the
system. These data enable the intelligence to have the future as well as the
past of the system “present before its eyes.” One problem with this charac-
terization is that it is stated in epistemic terms. A natural move of replacing
the metaphorical “present before its eyes” by “to predict” or “to compute”
does not change this predicament. “De-epistemologizing” of Laplacean in-
determinism was achieved by Montague (1962), who defined a few versions
of Laplacean indeterminism in model-theoretic terms, and applied these def-
initions to mass point particle mechanics and Newtonian gravitation. Mon-
tague’s momentous decision was to take (in)determinism to be ascribable to
theories, a move that many philosophers have followed. What the successors
rarely appreciate, however, is that a theory was understood by Montague in
the logical sense, that is, as fully characterized by a (formal) language and a
set of axioms. Thus, to apply Montague’s machinery, one needs first to for-
mulate a given physical theory in some formal language, and then to select
an adequate set of axioms, that is, a set that would deliver truths and only
truths of the physical theory in question. A verdict of whether a theory is
deterministic is then based on the behavior of models (more precisely, partial
models) of the theory. Roughly, a theory is indeterministic iff whenever the
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initial segments of two of its partial models agree, the later segments of these
models agree as well. If we identify a theory with the class of its models,
we may derivatively say that such a class of models is deterministic or not.
We may further define a model to be deterministic iff it belongs to a deter-
ministic class of models. But it does not make sense on this approach to
primarily ascribe either determinism or indeterminism to a single model: In
a single model there is no structure capable of representing (in)determinism.
The need to present a living physical theory as a formal language with a set
of axioms (a formidable task indeed) is likely responsible for there being no
results (as far as we know) achieved in Montague’s framework (apart from
his own).

Philosophers turned instead to Lewis’s (1983) account, which takes inspi-
ration from Montague’s analysis,4 but is stated in terms of divergent possible
worlds rather than partial models of a theory, the logical notion of a theory
being replaced by a concept of laws of nature. He calls two worlds “divergent”
iff they are not duplicates but an initial segment of one world and an initial
segment of the other are duplicates (p. 359). Still, on Lewis’s analysis, laws
of nature bear a close affinity to a theory, since they are supposed to belong
to all the true deductive systems with a best combination of simplicity and
strength. (Hence, like a theory, they are linguistic objects.) Then Lewis’s
explication of determinism goes as follows:

First, a system L of laws of nature is Deterministic iff no two di-
vergent worlds both conform perfectly to the laws of that system.
Second, a world is Deterministic iff its laws comprise a Determin-
istic system. Third, Determinism is the thesis that our world is
Deterministic. (Lewis, 1983, p. 360)

Finally we quote an even more succinct formulation, due to Earman (1986,
p. 13). In contrast to Lewis’s formulation, it requires that two worlds agree
at a time rather than on initial segments.

The world w ∈ W is Laplacean deterministic just in case for any
w′ ∈ W, if w and w′ agree at any time, then they agree for all
times.

We now want to contrast Laplacean indeterminism with a modal concept
of indeterminism, the essence of which is alternative possible futures. Belnap
(1992) characterizes this concept as follows:

4Lewis gives full credit to Montague’s work in this paper.
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Let Our World be the set of point events that are “in suitable ex-
ternal relations” to us. Accommodate indeterminism by including
those point events that either are now future possibilities or were
future possibilities. A point event, e, is indeterministic if Πe [i.e.,
the set of possibilities open at e] has more than one member.
Otherwise, it is deterministic. Note that on this account it makes
perfectly good sense to locate indeterminism not metaphorically
in a theory, but literally in our world. It makes sense to say that
Our World was indeterministic in Boston yesterday, but might
not be so in Austin tomorrow.5

With this little collection of quotes, we can see the differences between
the two schools, which we organize as below:

External vs. internal. The Laplacean school describes (in)determinism
from an external standpoint, in an “eternal” language in which there are no
indexicals, and in particular no tenses. Accordingly, this language does not
allow one to draw a distinction between the possible and the actual, and
considers all possibilities to be on a par. In contrast, the other project uses
a language, in which an agent (a speaker) says things from her particular
perspective. The perspective has both spatial and temporal location, but
also a modal aspect, as it reflects what was/is/will be possible or actual—
from a given perspective.
Global vs. local. The first approach ascribes (in)determinism to large
structures (like theories or worlds), whereas the other puts indeterminism on
point events, and derivatively, on sets of point events.
Modally thin vs. modally thick. Each single object used in the defini-
tion of Laplacean indeterminism, be it Montague’s partial model, or Ear-
man/Lewis possible world, has in itself no structure to represent alterna-
tive possibilities. Each such object is, we say, modally thin. One gets
(in)determinism by considering a class of such structures. In contrast, a
model of the (axiomatic) BST theory (called Our World) typically has many
structures (called ‘histories’), to represent alternative possible courses of
events of Our World. A BST model is modally thick.
(In)determinism of theories or of a world? As a result of the above, the
first school ascribes (in)determinism to a theory or its class of models, or its

5Πe is defined as the partition of the set H(e) of histories containing e that is induced
by the relation ≡e on H(e), understood as “two histories are undivided at e”: h ≡e h′ iff
∃e∗(e∗∈h ∩ h′ ∧ e < e∗). For more details, see §3.
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laws of nature. Only derivatively can it ascribe (in)determinism to a single
possible world, by considering it a member of a relevant set of possible worlds.
In contrast, BST begins with defining (in)determinism of point events, and
then uses it to define (in)determinism of a set of point events, or even to
draw a distinction between deterministic vs. indeterministic models of BST.
Ensemble branching vs. BST branching. Current Laplaceans explicate
(in)determinism in terms of what Earman (2008, p. 188) calls “ensemble
branching.” An ensemble is a collection of models of a given theory, where
each model is a spacetime (typically, a differential manifold plus some ex-
tra structure) and these models are isomorphic at a time. (Isomorphism at
issue is understood here as the existence of appropriate diffeomorphism be-
tween the manifolds.) In contrast to the Laplaceans’ focus on many models
(=spacetimes) of a physical theory, a generic model of the theory of BST
contains more than one spacetime (aka possible history). Spacetimes branch
in BST, since they intersect, but, emphatically, there is no branching within
a single spacetime. A single branching spacetime is analyzed for instance by
Penrose (1979) or by McCabe (2005), but BST has nothing to say about this
concept. For more on ensemble branching vs. BST, cf. Placek and Belnap
(2010).

The differences run deep.6 For our task of investigating what a region
of indeterminism looks like, however, there is an affinity between the two
approaches. After all, two divergent worlds of Lewis’s are isomorphic over
some initial segments of them, with their larger initial segments being non-
isomorphic. Similarly, two branching histories overlap in some initial region,
and then branch off. We might be able to say more were we given the
details of an isomorphism on initial segments of possible worlds. This matter,
however, has not, as far as we know, been investigated in the Laplacean
school. The call for providing some details about the mentioned isomorphism
will be further reinforced by our results of §6.3 that show how natural a
construction of a branching model (though not necessarily a BST model)
out of a set of divergent worlds is.

We proceed now to investigate topological questions of indeterminism in
the framework of branching space-times.

6For more about the controversy over modal aspects of indeterminism, see Müller (2009)
or Placek and Belnap (2010).
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3 Topology of BST

“BST” stands for the theory of branching space-times as introduced in Belnap
(1992) and developed by several hands, as indicated in the References.

A model of BST is defined as a dense partial order OW = 〈W,≤〉 with-
out maxima that satisfies two simple conditions, conditions that are more
transparent if we use the following definition: A history in OW is a maximal
(upward) directed set; we use h for histories. h1⊥eh2 iff e is a “choice point”
for h1 and h2, that is, iff e is a maximum of h1∩h2. (1) Every lower bounded
chain has an infimum, and every upper bounded chain has a supremum in
every history that contains it; and (2) (prior choice postulate) where h1, h2

are histories in OW, let E be a chain in h1\h2. Then ∃e(e < E and h1⊥eh2).
7

Later we will indicate some illuminating conditions that can be added to BST
in order to make full contact with certain topological questions.

In addition to “history” and “choice point,” the following defined terms
prove invaluable in articulating the properties of BST.

Definition 1 (Histories). Hist is the set of all histories in OW. H(e) = {h ∈
Hist | e ∈ h} is the set of histories containing e.
h ≡e h′ (read as “histories h and h′ are undivided at e”) iff ∃e′(e < e′ ∧ e′ ∈
h ∩ h′). (Note that h ≡e h′ is provably an equivalence relation on H(e)).
h ⊥e h′ (read as “h and h′ divide (or split) at e”) iff e is a maximum in
h ∩ h′.
Two events e1, e2 ∈ W are space-like related, e1 SLR e2 iff they are incom-
parable and there is a history to which the two belong.

3.1 BST: the diamond topology

In this section we will introduce a topology for BST in order to investigate in
the next sections whether the Hausdorff property is satisfied in BST histories
and in BST models. Let us first recall the Hausdorff property:

Definition 2. Suppose that T is a topology on set X. Then T has the Haus-
dorff property iff for any two distinct e, e′ ∈ X there are disjoint sets U, V ∈ T

such that e ∈ U and e′ ∈ V .

7In considering probabilities in BST, Weiner and Belnap (2006) recorded a need (dis-
covered by Weiner) for a further natural postulate. It plays no role, however, in our current
investigation.
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We introduce now, following Bartha, what we claim to be a thoroughly
natural topology for BST.8 (See §6 for arguments for the naturalness.)

Definition 3 (diamonds). Let OW = 〈W,6〉 be a BST model. We define

d e1e2 := {y ∈ W | e1 < e2 ∧ e1 6 y 6 e2},

which we call “the diamond with vertices e1 and e2.”
Further, if want to stress that vertices e1, e2 belong to a certain maximal chain
t in W (t ∈MC(W )), we will write d e1e2t (= d e1e2), calling it “the diamond
oriented by t with vertices e1 and e2.”

The ‘diamond’ terminology reflects the fact that the above condition,
if applied to R2 ordered by the Minkowskian ordering, yields diamond-like
shapes.9

Definition 4 (the diamond topology on W ). Z is an open subset of W ,
Z ∈ T(W ), iff Z = W or for every e ∈ Z and for every t ∈ MC(W )
containing e there is a diamond d e1e2t ⊆ Z that is oriented by t with e strictly
between the diamond’s vertices e1 and e2.

Thus, Z ∈ T(W ) iff Z = W or

∀e∈Z ∀t∈MC(W )(e∈ t→∃e1, e2∈ t (e1<e<e2 ∧ de1e2t ⊆ Z)).

The condition of the above definition can be used to define the topology
T(h) on history h ∈ Hist as well:

Definition 5 (the diamond topology on a single history). Z ∈ T(h) iff Z = h
or

∀e∈Z ∀t∈MC(h)(e∈ t→∃e1, e2∈ t (e1<e<e2 ∧ de1e2t ⊆ Z)),

where MC(h) denotes the set of maximal chains in h.

Despite apparent similarity, the two topologies are different, as evidenced
by this fact:10

8Cf. “postprint” to BST1992, note 26.
9The Minkowskian ordering 6M on Rn+1 (n > 1) is defined as x 6M y iff x0 6 y0 and∑

16k6n(xk − yk)2 6 (x0 − y0)2, where x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn), and the
first coordinates are temporal.

10In fact, the topologies are different in a more significant manner than Fact 6 attests;
namely, T(h) may even be properly finer than the subspace of T(W ) on h. In other words,
some Z ∈ T(h) may not only fail to be in T(W ) itself, but also fail to have any Z0 ∈ T(W )
such that Z0 ∩ h = Z. We nonetheless omit a proof of this fact since it is less relevant
than Fact 6 to the purpose of this article.
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Fact 6. If Z ⊆ h for some history h ⊆ W contains a choice point for h and
some h′, then Z 6∈ T(W ). However, Z may belong to T(h).

Proof: Let Z ⊆ h and c ∈ h be a choice point for h and h′ and c ∈ Z.
There is thus t ∈ MC(W ) such that c ∈ t and ∀e(e ∈ t ∧ c < e → e 6∈ h).
Accordingly, there are no e1, e2 ∈ t such that e1 < c < e2 and de1e2t ⊆ h.
Hence for these t and c, there are no e1, e2 ∈ t such that e1 < c < e2 and
de1e2t ⊆ Z, which shows that Z 6∈ T(W ).

It follows that if W is a multi-history model, its histories are not open in the
topology T(W ). On the other hand, T(W ) is “coherent” with the family of
topologies T(h):11

Theorem 7. A ∈ T(W ) iff ∀h ∈ Hist A ∩ h ∈ T(h).

Proof: To the right: Note that if A ∩ h = ∅, then A ∩ h ∈ T(h). Pick thus
an arbitrary h ∈ Hist such that A∩h 6= ∅. Pick then an arbitrary e ∈ A∩h
and an arbitrary (i) t ∈MC(h) such that e ∈ t. Since MC(h) ⊆MC(W ) and
A ∈ T(W ), there are (ii) e1, e2 ∈ t such that (iii) de1e2t ⊆ A. Then e2 ∈ h (by
(i) and (ii)). Since histories are downward closed and de1e2t 6 e2, d

e1e2
t ⊆ h.

Together with (iii) this implies de1e2t ⊆ A ∩ h.
To the left: Choose an arbitrary e ∈ A. We need to show that for an

arbitrary t ∈ MC(W ) such that e ∈ t there is a diamond de1e2t ⊆ A. By the
definition of histories, for every t ∈MC(W ) there is some history h such that
t ⊂ h, so t ∈MC(h). Clearly, e ∈ A ∩ h and (by the premise) A ∩ h ∈ T(h).
It follows (since t ∈ MC(h)) that there are e1, e2 ∈ t such that e1 < e < e2
and de1e2t ⊆ A ∩ h, and hence de1e2t ⊆ A.

A significant consequence of this theorem will be discussed extensively in §6.3.
We need to check that indeed the families T(W ) and T(h) of open sets,

as defined above, form topologies. This means, in the case of T(h), that
∅ ∈ T(h), h ∈ T(h), if U, V ∈ T(h) then U ∩W ∈ T(h), and the union of
every family of sets from T(h) belongs to T(h). It is straightforward to see
that the first two conditions are satisfied, whereas the facts below show that
the remaining conditions are satisfied as well.

Fact 8. For any history h, if U, V ∈ T(h), then U ∩ V ∈ T(h).

11See, e.g., Willard (1970), pp. 68f., for coherent topologies.
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Proof: Suppose U, V ∈ T(h). If U = h then U ∩ V = V ∈ T(h); similarly if
V = h. So suppose U 6= h and V 6= h. We need to prove that
∀e ∈ U ∩ V ∀t∈MC(h) (e ∈ t→ ∃e1, e2 ∈ t (e1 < e < e2 ∧ d e1e2t ⊆ U ∩ V )).
To this end pick an arbitrary t ∈MC(h) that passes through e. Since each of
U, V 6= h is open, there are diamonds d a1a2

t ⊆ U and d b1b2t ⊆ V , with a1 < e <
a2 and b1 < e < b2. Put e1 := max{a1, b1} ∈ t and e2 := min{a2, b2} ∈ t.
Clearly, e1 < e < e2. Since d e1e2t ⊆ d a1a2

t ⊆ U and d e1e2t ⊆ d b1b2t ⊆ V ,
d e1e2t ⊆ U ∩ V .

Fact 9. For any history h, if Vα ∈ T(h) for every α ∈ I,
⋃
α∈I Vα ∈ T(h).

Proof: Suppose the antecedent. If Vα = h for some α ∈ I then
⋃
α∈I Vα =

h ∈ T(h). So suppose Vα 6= h for all α ∈ I. We need to prove that

∀ e∈
⋃
α∈I

Vα ∀ t∈MC(h) (e ∈ t→ ∃e1, e2 ∈ t (e1 < e < e2 ∧ d e1e2t ⊆
⋃
α∈I

Vα)).

Pick an arbitrary e ∈
⋃
Vα; then for some β ∈ I, e ∈ Vβ. Since Vβ 6= h is

open, for every t ∈ MC(h) such that e ∈ t there is a diamond, d e1e2t ⊆ Vβ,
with e1, e2 ∈ t and e1 < e < e2. But then obviously d e1e2t ⊆

⋃
Vα.

We thus proved that T(h) is a topology on h. Although the fact that
T(W ) is a topology on W can be analogously shown by a minor tinkering in
the proofs above, it also follows from the fact that T(h) are all topologies,
since Theorem 7 guarantees that Facts 8 and 9 imply their T(W ) versions:

Fact 10. If U, V ∈ T(W ), then U ∩ V ∈ T(W ).

Proof: For each h ∈ Hist, if U∩h, V ∩h ∈ T(h) then (U∩V )∩h ∈ T(h).

Fact 11. If Vα ∈ T(W ) for every α ∈ I,
⋃
α∈I Vα ∈ T(W ).

Proof: For each h ∈ Hist, if Vα∩h ∈ T(h) for all α ∈ I then
(⋃

α∈I Vα
)
∩h =⋃

α∈I(Vα ∩ h) ∈ T(h).

In what follows, we need a set of particularly simple open subsets of T(h)
(which may not be open subsets of T(W )), to be thought of as borderless
diamonds (Def. 23 below). To this end, we first need to introduce BST
light-cones.
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3.2 Light-cones in BST

To get a better grip on the diamond topology, we would like to single out some
particularly simple open subsets; ideally these subsets should form a base for
the diamond topology on a history. Given that topology, a natural candidate
for these subsets is borderless diamonds. A borderless diamond is a diamond
from which the surface of the future light-cone of its bottom vertex and
the surface of the backward light-cone of its top vertex have been removed.
Accordingly, to define borderless diamonds, we need to introduce light-cones
to BST. This task leads to parallel developments. On the one hand, we will
define light-cones in BST and assume some conditions to guarantee that they
behave at least somewhat like light-cones of spacetimes of physics. (With
reference to Figure 1, this is illustrated in items (i)–(v).) On the other hand,
these conditions are shown to play a topological role, entailing ultimately
that borderless diamonds indeed form a base for the topology T(h).

As a warm-up, let us look at some particular segments of maximal chains
asking whether they are nonempty and lower bounded. Consider first t>e1 :=
{x ∈ t | e1 6 x}, where t ∈ MC(h), e1 ∈ h, and assume it is not empty.
Then, since t>e1 is lower bounded by e1, it has an infimum. Consider next
t6e1 := {x ∈ t | x 6 e1}, where t ∈ MC(h), e1 ∈ h and assume it is not
empty. Since clearly t6e1 is upper bounded by e1, it has a history-relative
supremum suph (t6e1).

Definition 12 (light-cones). Let e1, e2 ∈ h for some history h ⊆ W . We
say that e2 lies on the forward light-cone of e1 in history h, e2 ∈ flch(e1), iff
∃t ∈MC(h) (e2 ∈ t ∧ e2 = inf(t>e1)).

And e1 lies on the backward light-cone of e2 in history h, e1 ∈ blch(e2), iff
∃t ∈MC(h) (e1 ∈ t ∧ e1 = suph(t

6e2)).

Note that by this definition e lies both on the backward light-cone as well as
on the forward light-cone of itself. Some further properties of the light-cones
are expressed in the following Fact:

Fact 13 (about light-cones). (1) If e2 ∈ flch(e1), then e1 6 e2; and
(2) if e1 ∈ blch(e2), then e1 6 e2.

Proof: (1) From the antecedent, ∃t ∈MC(h) e2 = inf (t>e1). Also, e1 6 t>e1

follows. Since e1 is the chain’s lower bound, we obtain e1 6 inf (t>e1) = e2.
The argument for (2) is analogous.
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With our definitions of lying on a light cone, we can accommodate one of
two orderings that are typically extracted from the structure of a relativistic
spacetime. They are called J and I orderings —cf. Wald (1967). To put it
simply, y is J-above x iff y is within and including the surface of the future
light-cone of x. Hence, an event on the surface of the future light-cone of x is
above x. In contrast, y is I-above x iff y is within but excluding the surface
of the future light-cone of x. Accordingly, an event on the surface of the
future light-cone of x is not above x. Since by Fact 13 (1–2), (the surface of)
the future light cone of e is above e, and (the surface of) the backward light
cone of e is below e, with our definitions of blc and flc, the BST ordering is
J , not I ordering.

It is still instructive to see why Minkowski space-time with I-ordering
does not yield a BST model. Consider Rn with Minkowskian I-ordering 6I

M

resulting from its irreflexive companion relation <I
M , the latter being defined

as:12

x <I
M y iff x0 < y0 ∧ (x0 − y0)

2 >
n−1∑
i=1

(xi − yi)2. (1)

Pick a vertical chain C = {(z0, 0, 0, 0) | 0 < z0} approaching O = (0, 0, 0, 0)
from above. O lower bounds C with respect to 6I

M , as does any x such that
x0 6 0 and

∑n
i=1 x

2
i 6 x2

0 . But O is not an infimum of C because it is not
(weakly) above lower bounds of C lying on the backward light-cone of O (i.e.,
such x’s that satisfy x0 < 0 and

∑n
i=1 x

2
i = x2

0). Furthermore, by applying
density of Rn, it is easy to note that no other element of Rn is an infimum
of C. Thus, 〈Rn,6I

M〉 is not a BST model.

It turns out that for interesting topological results in branching space-
times, one must add to the postulates of BST1992 a group of four properties,
C1, C2, C3, and C4, to be satisfied by each history of a BST model. With
the help of (i)–(v) below, look at Figure 1’s annotated picture of light-cones
in R2. One can hardly help “seeing” that the natural properties C1–C4 of
light-cones in Minkowski spacetimes (defined as Conditions 13, 15, 16, and
17 below) can be expressed in the order-theoretic vocabulary of BST.

(i) Visual verification of the propriety of Definition 12 of BST light-cones:

∃t1 ∈MC(R2)(e5 = inf(t>e11 ) iff e5 ∈ flch(e1))
12That is, x 6I

M y iff x <I
M y ∨ x = y.
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e1

e3

e4

e5 e2

t0t1

Figure 1: Visualization of light-cones and their properties C1–C4

∃t1 ∈MC(R2)(e4 = supR2t6e11 ) iff e4 ∈ blch(e1))

(ii) Reciprocity of flc and blc (implied by C1):

e2 ∈ flch(e1) iff e1 ∈ blch(e2)

(iii) Betweenness (C2):

if e2 ∈ flch(e1) ∧ e1 < e3 < e2 then e3 ∈ flch(e1) ∩ blch(e2)

(iv) Interior of light-cones (C3):

∃t0 ∈MC(R2)(e1 ∈ t0 ∧ t0 ∩ (flch(e1) ∪ blch(e1)) = ∅)

(v) Limits of light-cones (C4):
A limit of a chain lying on a light-cone lies on the light-cone as well (if
it exists).

Coming on top of Definition 12, the properties C1–C4 form a set that gives
us the minimum wherewithal for making a useful connection between the
order-based theory BST on the one hand, and standard Minkowski theory
on the other. We shall be introducing them one by one, and sometimes
considering them separately in order to tease out their several consequences;
one should bear in mind, however, that they form a package. We motivate
them individually by indicating what “goes wrong” in the absence of each.

Observe first the following odd fact:

15



Fact 14. In general, it is not true that e2 ∈ flch(e1) iff e1 ∈ blch(e2).

Proof: See Figure 2.

e2

e1

Figure 2: This pathological one-history BST1992 model is a part of the plane
to the left of the barred area (the heavy line is included in the history). e2
lies on the forward light-cone of e1, but e1 does not lie on the backward
light-cone of e2.

The gerrymandered history of Figure 2 suggests that there is not enough
space in it: There are no events SLR to e1 that are immediately to the right
of e1. The two conditions below are to ensure that there is always enough
space in every history:

Condition 15 (C1: enough space). Let h be a history. Then:

∀e1, e2 ∈ h(if e2 ∈ flch(e1), then ∃t ∈MC(h)(e1 ∈ t ∧ suph(t
6e2) = e1)),

∀e1, e2 ∈ h(if e1 ∈ blch(e2), then ∃t ∈MC(h)(e2 ∈ t ∧ inf(t>e1) = e2)).

To see that the infima and suprema occurring in this condition exist, note
that since e2 ∈ flch(e1) implies e1 6 e2, t

6e2 is nonempty; it is also upper
bounded by e2, so it has history-relative suprema. By a similar argument,
t>e1 has an infimum.

Lemma 16 (Reciprocity). Let a history h satisfy condition C1 of enough
space. Then e2 ∈ flch(e1) iff e1 ∈ blch(e2).
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Proof: Assume the LHS of the equivalence. This implies (by the first part
of C1) that there is t ∈ MC(h) such that e1 ∈ t ∧ suph(t

6e2) = e1. By
Definition 12, e1 ∈ blch(e2).
In the opposite direction, e1 ∈ blch(e2) implies, by the second part of C1,
that there is a t′ ∈MC(h) such that e2 ∈ t′ and e2 = inf(t′>e1). (Definition 12
then assures us that e2 ∈ flch(e1).)

An acquaintance with Minkowski spacetime suggests another requirement
on light-cones, which we may call a betweenness property:

Condition 17 (C2: betweenness property). Let h be a history and x, e ∈ h.
Then: If x ∈ blch(e), then ∀y (x < y < e→ y ∈ blch(e)).

And, if e ∈ flch(x), then ∀y (x < y < e→ y ∈ flch(x)).

Condition C2 entails that if x ∈ blch(e) and y ∈ blch(e), then for every
z between x and y, z ∈ blch(e). Clearly, if z = x or z = y, or z = e, then
z ∈ blch(e). If neither of the above, since by Fact 13 we have y 6 e, hence
x < z < e, so by C2: z ∈ blch(e). An analogous property holds for flch.

Condition C2 is independent of the BST axioms, which is shown by the
BST model exhibited in Figure 3. Every maximal path such as t′ that passes

x

y

t´ t

e

Figure 3: A pathological one-history BST model, the ordered elements being
linked by a line, with the convention that point x not higher on a line than
point y means x 6 y.
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through y has a segment above y that is below e, which proves that y 6∈
blch(e). On the other hand, path t passing through x guarantees that x ∈
blch(e).

The BST axioms together with conditions C1 and C2 do not guarantee
that there are maximal chains passing through an event that go only through
the “interior” of the event’s light-cones. To illustrate, Figure 2 shows a one-
history BST model, which is the R2 plane, with the shaded area on the
right removed. (The borders, however, are in the history.) The ordering is
Minkowskian. In this model every maximal chain passing through e1 stays
for some time on the surface of the future light-cone of e1. Condition C3
below prohibits such models.

Condition 18 (C3: interior of light-cones). Let h ∈ Hist. Then

∀e ∈ h∃t ∈MC(h) (e ∈ t ∧ t<e 6= ∅ ∧ t<e ∩ blch(e) = ∅ ∧ t>e ∩ flch(e) = ∅).

Note that we need the condition “t<e 6= ∅” above since our history might
have minimal elements; by the BST axiom of no terminal elements, however,
we do not need an analogous condition on t>e.

The final condition here considered concerns suprema (infima) of upper
(lower) bounded chains in future (backward) light-cones: Such suprema (in-
fima) should belong to future (backward) light-cones.

Condition 19 (C4: limits in light-cones). For every upper bounded chain
C ⊆ flch(e), where h ∈ Hist and e ∈ W : suph (C) ∈ flch(e), and
for every lower bounded chain C ⊆ blch(e), where h ∈ Hist and e ∈ W :
inf (C) ∈ blch(e).

It is no surprise that the conditions C1–C4 still permit strange or patho-
logical BST models, such as a real half-plane above (and including) the di-
agonal x = y, with Minkowskian ordering (this is a one-history model). We
say that such histories have brims. We do not in this paper attempt to give
a condition prohibiting brims. But we aim to give a definition of brims,
and put a simple fact relating brims and light-cones. We distinguish two
varieties of a history’s brim, lower and upper. The intuition underlying our
definition is this: If an event e lies on the upper (lower) brim, every maximal
chain passing through e has to go along the same path above (below) e—the
brim—for some period of time.
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Definition 20 (brims). e lies on an upper brim of history h, e ∈ ubh, iff
∃y (e < y ∧ ∀t∈MC(h)(e ∈ t→ ∀x (e 6 x 6 y → x ∈ t))).
And e lies on a lower brim of history h, e ∈ lbh, iff
∃y (y < e ∧ ∀t∈MC(h)(e ∈ t→ ∀x (y 6 x 6 e→ x ∈ t))).

Fact 21 (about brims). For e, e2 ∈ h, if e ∈ ubh and e < e2, then e 6∈ blch(e2).
Also, for e, e1 ∈ h, if e ∈ lbh and e1 < e, then e 6∈ flch(e1).

Proof: For the first assertion, let e, e2 be as in the premise and assume for
reductio that e ∈ blch(e2), which entails that for some t ∈MC(h), e ∈ t and
(∗) e = suph(t

6e2). On the other hand, e ∈ ubh means that there is a y such
that e < y and ∀t′(e ∈ t′ → ∀x (e 6 x 6 y → x ∈ t′)). Hence y ∈ t and
also y, e, e2 are comparable. If e < y 6 e2, then e 6= suph(t

6e2), contradicting
(∗). On the other hand, if e < y and e2 < y, then e2 ∈ t, and hence
suph(t

6e2) = e2, again contradicting (∗), since e < e2 by the assumption.
The second assertion is proved analogously.

Note that the proof above does not appeal to any of the conditions C1–C4,
which makes one wonder how the existence of brims is related to condition
C3. After all, C3 prohibits that every path going through event e cross the
surface of the future (past) light-cone of e, whereas a brim like diagonal x = y
seems to allow for exactly this. That is, we are tempted to read an event
e2 located on the brim and above e as belonging to the future light-cone of
e. The fact above orders us to resist this temptation, as such an e2 does not
belong to flch(e).

As the final topic related to light-cones, we next prove that although by
Definition 12 the relations of belonging to a future light-cone and of belonging
to a backward light-cone appear to depend on the history h, in fact each is
history-independent.

Fact 22 (History-independence). (1) If e2 ∈ flch(e1), then for all h′ ∈ Hist
containing e1 and e2, e2 ∈ flch′(e1).
(2) If e1 ∈ blch(e2), then for all h′ ∈ Hist containing e1 and e2, e1 ∈ blch′(e2).

Proof: Ad 1. For some t ∈ MC(h): (∗) e2 = inf (t>e1). Pick an arbitrary
h′ ∈ Hist such that e1, e2 ∈ h′. There is thus t′ ∈ MC(h′) such that e2 ∈ t′
and t6e2 = t′6e2 . If z ∈ t′ and z < e2, then z ∈ t, and by (∗) z 6> e1,
whence z 6∈ t′>e1 . By contraposition, if z ∈ t′>e1 , then z 6< e2, and hence
e2 6 z, so e2 lower bounds t′>e1 . Since e2 ∈ t′>e1 (by Fact 13 e1 6 e2), we get
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e2 = inf (t′>e1) and hence e2 ∈ flch′(e1).
Ad 2. Assume that e1 ∈ blch(e2); hence e1 = suph(t

6e2) for some t ∈MC(h).
By Fact 13, e1 6 e2. If e1 = e2, then e1 ∈ blch′(e2) because every event
lies on its own backward light-cone (in every history containing it). Suppose
instead that e1 < e2. We claim (†) t>e1 ∩ h′ 6= ∅. Suppose otherwise; then
t>e1 ⊆ h \ h′. So by PCP there is some c such that c < t>e1 and h ⊥c h′; but
c < t>e1 implies c 6 inf (t>e1) = e1 < e2 ∈ h∩h′, contradicting h ⊥c h′. Thus
(†). Therefore there are z ∈ t>e1 ∩ h′ and t′ ∈ MC(h′) such that t6z = t′6z.
Note that e1 ∈ t6z = t′6z and so e1 ∈ t′6e2 . We then claim (‡) t′6e2 6 e1.
Fix any x ∈ t′6e2 . If z < x then z < e2 and so z ∈ t6e2 , which implies
z 6 suph(t

6e2) = e1, contradicting z ∈ t>e1 ; thus z 6< x, and x 6 z since
z, x ∈ t′. Hence x ∈ t′6z = t6z, while x ∈ t′6e2 ; so x ∈ t6e2 and hence
x 6 suph(t

6e2) = e1. Therefore (‡), and so e1 ∈ t′6e2 is the largest element of
t′6e2 , which implies e1 = suph′(t

′6e2) since e1 ∈ h′. Thus e1 ∈ blch′(e2).

To summarize this section, the axioms of BST1992 were intended only to
characterize indeterminism in the sense of allowing events that admit multiple
possible historical continuations. As such, they tell us little about individ-
ual histories. In particular, the axioms alone do not impose the structure
of light-cones on a BST history. In contrast, the conditions C1–C4 concern
individual histories and ensure that flch(e) and blch(e) of Definition 12 be-
have like future light-cones and backward light-cones of a physical spacetime.
Further, flch(e) and blch(e) are history-independent. This means that our
definitions properly generalize the concept of light-cones from a non-modal
context of single space-time (history) to the modal context of branching pos-
sible histories.

In the sections to follow we will put the four conditions to topological
work. In Theorem 35, we will see that these conditions suffice for establishing
that each single history has the Hausdorff property, given the topology, T(h),
per Definition 5. Furthermore, Theorems 44 and 47 link the satisfaction of
the Hausdorff property in a many-history BST model with the conditions as
well as with passive indeterminism (cf. Definition 39).

3.3 Borderless diamonds

We are about to introduce borderless diamonds, and prove that such objects
are open sets of h in the topology T(h). (In general, they are not open sets
in the topology T(W )—cf. Fact 6.) We will prove that if a history h satisfies
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the conditions C1–C4 of §3.2, the set of borderless diamonds of h forms a
base for topology T(h). But first the definition:

Definition 23 (borderless diamonds). bde1e2 ⊆ h is a borderless diamond in
history h, bde1e2 ∈ BDh, iff there is a diamond de1e2 ⊆ h such that bde1e2 =
de1e2 \ (blch(e2) ∪ flch(e1)).
If we want to stress that vertices e1, e2 belong to a certain maximal chain t
in h, we will write bd e1e2t (= bd e1e2).

Borderless diamonds are open subsets of histories that contain them,
which follows from Lemmas 24 and 25 below. They involve 5(x) and 4(x),
that is, the future and past (without brims) of x.

Lemma 24. For any x ∈ W , let

5(x) := {z ∈ W | z > x ∧ z 6∈ flch(x)}.

If history h satisfies conditions C2 and C4, then 5(x) ∩ h ∈ T(h).

Proof: If x /∈ h then 5(x) ∩ h = ∅ ∈ T(h); so let us assume x ∈ h. Let us
pick an arbitrary e ∈ 5(x)∩h and some t ∈MC(h) such that e ∈ t. We need
to produce an oriented diamond dx

∗y∗

t ⊆ 5(x) ∩ h such that e ∈ dx
∗y∗

t . To
find a bottom vertex x∗, consider t>x ∩ flch(x). Observe first that inf (t>x)
is well-defined since e ∈ t>x and x 6 t>x. Since inf (t>x) > x and inf (t>x) ∈
flch(x), t>x ∩ flch(x) is non-empty. It is also upper bounded by e since e
is comparable with every z ∈ t>x ∩ flch(x) and e < z contradicts C2, as
z ∈ flch(x) but e 6∈ flch(x). Accordingly t>x ∩ flch(x) has a supremum-in-h
s = suph (t>x ∩ flch(x)) and s ∈ t. By C4, s ∈ flch(x). Moreover, s < e;
otherwise e ∈ flch(x), which is prohibited by the second conjunct of the
definition of 5(x). By density, we pick some x∗ ∈ t>x such that s < x∗ < e.
Hence x∗ 6∈ flch(x). Moreover, for every z ∈ h, if z > x∗, then z > x and
z 6∈ flch(x) (by C2), so z ∈ 5(x). Accordingly, for every y∗ ∈ t>e ⊆ h,
dx
∗y∗

t ⊆ 5(x) ∩ h.

Lemma 25. For any x ∈ W , let

4(x) := {z ∈ W | z < x ∧ z 6∈ blch(x) ∧ z is not minimal in W}.

If history h satisfies conditions C2 and C4 and moreover x ∈ h (which implies
4(x) ⊆ h and 4(x) ∩ h = 4(x)), then 4(x) ∈ T(h) .
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Proof: We proceed similarly to the proof for Lemma 24, picking an arbitrary
e ∈ 4(y) and some t ∈ MC(h), e ∈ t, and then looking for dx

∗y∗

t , with
e ∈ dx

∗y∗

t , this time concentrating on its top vertex y∗ ∈ t6y. We consider
t6y ∩ blch(y). Note that suph (t6y) is well-defined since e ∈ t6y and y > t6y.
Since suph (t6y) 6 y and suph (t6y) ∈ blch(y), t6y ∩ blch(y) is non-empty;
it is also lower bounded by e since for every z ∈ t6y ∩ blch(y), e and z are
comparable, and z < e contradicts C2. Accordingly there is an infimum f =
inf (t6y ∩ blch(y)) and f ∈ t. By C4, f ∈ blch(y). Moreover, e < f ; otherwise
e ∈ blch(y). By density, there is some y∗ ∈ t6y such that e < y∗ < f . Hence
y∗ 6∈ blch(y). Moreover, for every z ∈ h, if z 6 y∗, then z < y and z 6∈ blch(y)
(by C2), so z ∈ 4(y). Thus, for every x∗ ∈ t<e that is not minimal in W
(which exists since e ∈ 4(y) is not minimal in W ), dx

∗y∗

t ⊆ 4(y).

Note that 4(x) is simply {z ∈ W | z < x∧ z 6∈ blch(x)} if W satisfies C3
(or, in fact, if W has no minimal elements).

Lemma 26. Let history h satisfy conditions C2 and C4. Then the borderless
diamonds on h are open sets of h, that is, BDh ⊆ T(h).

Proof: Fix any bdxy ∈ BDh. No e ∈ bdxy is minimal in W since x < bdxy.
So, because bdxy ⊆ h, it is the intersection of 5(x) ∩ h and 4(y), both of
which are in T(h) by Lemmas 24 and 25. Hence bdxy ∈ T(h).

We have learned from Lemma 26 that borderless diamonds are particu-
larly simple open sets of history h. Do they form a base for topology T(h)?
The following lemma suffices.

Lemma 27. Let a history h satisfy conditions C1 and C3 and let A ∈ T(h).
Then for every e ∈ A, some borderless diamond contained in A contains e.

Proof: By C3 there is t ∈MC(h) such that both t<e and t>e are nonempty
and t<e ∩ blch(e) = ∅ and t>e ∩ flch(e) = ∅. If A = h, pick any e1 ∈ t<e,
e2 ∈ t>e and then e ∈ de1,e2t ⊆ h = A; on the other hand, if A 6= h, then
the openness of A implies that there are e1 ∈ t<e and e2 ∈ t>e such that
e ∈ de1,e2t ⊆ A. It follows that e1 6∈ blch(e) and e2 6∈ flch(e), and hence
e 6∈ (flch(e1) ∪ blch(e2)) (by C1). Accordingly, e is not on a border of de1e2t ,
so e ∈bde1e2 ⊆ A.

Theorem 28. Let h ∈ Hist satisfy conditions C1, C2, C3, and C4. Then
the set BDh of borderless diamonds on h forms a base for the topology T(h),
that is

∀A ⊆ h A ∈ T(h) iff ∃B⊆BDh

⋃
B = A.
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Proof: By Lemma 26, conditions C2 and C4 guarantee that borderless di-
amonds are open subsets of h. To construct B ⊆ BDh that has the above
property, let us put B := {bd ∈ BDh | bd ⊆ A}. To prove that

⋃
B ⊆ A, pick

bd ∈ B. Then by the definition of B, bd ⊆ A. Lemma 27, which requires C1
and C3, gives us the opposite direction.

Theorem 28 also means that if a history h satisfies conditions C1 through
C4, the set of 5(x)∩ h and 4(y) (for x, y ∈ h) forms a subbase for T(h). It
is also worth noting that Lemma 24 has the following corollary.

Corollary 29. 5(x) ∈ T(W ) if W satisfies conditions C2 and C4.

Proof: From Lemma 24 by Theorem 7.

We should note that, in contrast, Lemma 25 (which needs the assumption
that x ∈ h) fails to entail the4(x) counterpart of this corollary, in particular,
by Fact 6, when 4(x) contains a choice point.

4 Hausdorff property on a single spacetime

(history)

We next have a theorem relevant to the critical question whether a single
spacetime (BST history) has the Hausdorff property. We prove the theorem
with two little lemmas in addition to Lemma 24. The chief idea is to separate
two distinct points into 5(x) and

⊔∨(x), the regions inside and outside the
forward light-cone of some point x, which is possible due to Fact 33.

Fact 30. For any e1, e2 ∈ W and t ∈ MC(W ) with e2 ∈ t, if e1 66 e2 then
e1 66 x for some x ∈ t2>e2.

Proof: If e1 6 x for all x ∈ t2>e2 , then e1 6 inf(t2
>e2) = e2.

Lemma 31. For any x ∈ W , let⊔∨(x) := {e ∈ W | x 66 e ∧ e is not minimal in W}.

Then
⊔∨(x) ∩ h ∈ T(h) for any history h.

Proof: Fix any e ∈ ⊔∨(x) ∩ h and t ∈ MC(h) such that e ∈ t. Then Fact 30
implies x 66 y for some y ∈ t>e; moreover, x 66 z ∈ h for any z 6 y (since
y ∈ t ⊆ h). Therefore, for any z ∈ t<e that is not minimal in W (which exists
since e is not minimal in W ), we have z < e < y and dzy ⊆ ⊔∨(x) ∩ h.
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Note that
⊔∨(x) is simply {z ∈ W | z 6> x} if W satisfies C3 (or, in fact,

if W has no minimal elements). Note also that, like Corollary 29, Lemma 31
gives an open set of W :

Corollary 32.
⊔∨(x) ∈ T(W ).

Proof: From Lemma 31 by Theorem 7.

The following fact is a crucial element for the Hausdorff property of a
history. It is symmetrical to Fact 30 within a history but, unlike Fact 30,
does not extend to Our World (without a pathological assumption).

Fact 33. For any history h, e1, e2 ∈ h, and t ∈ MC(h) with e1 ∈ t and
t<e1 6= ∅, if e1 66 e2 then x 66 e2 for some x ∈ t<e1.

Proof: If x 6 e2 for all x ∈ t<e1 , then e1 = suph(t
<e1) 6 e2.

Lemma 34. Suppose that a history h satisfies C3 and that e1 66 e2 for
e1, e2 ∈ h. Then there is some x ∈ h such that x ∈ 4(e1) (which implies
e1 ∈ 5(x) if h satisfies C1) and e2 ∈

⊔∨(x).

Proof: Applying C3, pick t ∈ MC(h) such that e1 ∈ t and t<e1 6= ∅ but
t<e1 ∩ blch(e1) = ∅. Then by Fact 33 there is x ∈ t<e1 such that x 66 e2, that
is, e2 ∈

⊔∨(x), and moreover x ∈ 4(e1) since t<e1 ∩ blch(e1) = ∅.

Theorem 35. Let history h of a BST model OW satisfy conditions C1, C2,
C3, and C4. Then h satisfies the Hausdorff property (in the topology T(h)
introduced in Definition 5).

Proof: Pick any distinct e1, e2 ∈ h; because e1 6 e2 and e2 6 e1 would entail
e1 = e2, we may assume without loss of generality that e1 66 e2. By Lemma
34, C1 and C3 imply that e1 ∈ 5(x) ∩ h and e2 ∈

⊔∨(x) ∩ h for some x ∈ h,
where (5(x)∩h)∩ (

⊔∨(x)∩h) = ∅ by definition.
⊔∨(x)∩h ∈ T(h) by Lemma

31, whereas C2 and C4 entail 5(x) ∩ h ∈ T(h) by Lemma 24.

It may be worth noting that Theorem 35 can also be proved with 4(x)
and

d
∧(x) as in the following lemma (which, however, does not extend to Our

World in the way Lemma 31 extends to Corollary 32).

Lemma 36. For any x ∈ W , let

d
∧(x) := {e ∈ W | e 66 x ∧ e is not minimal in W}.

Then
d
∧(x) ∩ h ∈ T(h) for any history h such that x ∈ h.
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Proof: Fix any e ∈ d
∧(x) ∩ h and t ∈ MC(h) such that e ∈ t. Since e is not

minimal, t<e 6= ∅. So Fact 33 implies z 66 x for some z ∈ t<e; moreover,
for any y > z, y 66 x and y is not minimal. Without loss of generality we
may assume that z is not minimal (since if it is we can find some z′ ∈ t such
that z < z′ < e and hence z′ 66 x and z′ is not minimal). Therefore, for any
y ∈ t>e, we have z < e < y and dzy ⊆ d

∧(x).

To comment on the results of this section, each single history h (aka
space-time) of a BST model satisfies the Hausdorff property with respect to
the Bartha topology T(h), provided that h satisfies conditions C1–C4. In
turn, these conditions are needed in order that a light-cone in a BST history
have some typical properties required of light-cones of space-time physics.
This ultimately responds to an objections voiced by Earman (2008) that
space-times of BST are non-Hausdorff.

5 Hausdorff property on Our World

In this section we are after a completely different game: Instead of focusing
on single histories, we ask about a topological feature of Our World of many
branching histories.

To present our next theorem, we need to introduce a particular feature of
BST, called “passive indeterminism,” formerly labeled “indeterminism with-
out choice” (cf. BST1992) or “indeterminism with external choice.” It is
impossible to be both brief and precise. The rough intuitive idea, spelled out
in detail in Belnap (2005), is that there is a single initial event, I, serving
as the common initial of multiple contingent transitions, each with its own
event, Oj, as possible outcome. I must lie in the causal past of each Oj. If
I is a point event, e, and if O is an immediate outcome of e (no intervening
events), then the transition e → O is a causa causans or originating cause
that is not subject to further causal analysis. A causa causans might well
be labeled as a case of active indeterminism. In the more typical case, a
contingent transition, I → O is not a causa causans ; instead, it has its own
set of causae causantes external to it that provably form a set of inus condi-
tions in the sense of Mackie (1974): Each is an insufficient but nonredundant
(conjunctive) part of an unnecessary but sufficient condition of I→ O. Such
an I → O illustrates passive indeterminism, since the activity resides in its
causae causantes, the initials of which always lie in the past of O. For ex-
ample, suppose you have already placed your bet on the (future) decay of
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an α-particle. It may be that the transition from bet-placed to bet-won is
indeterministic, but what causes the win (if you win) is, say, the detection
of the decay of the α-particle.

Passive indeterminism can be cleanly characterized by considering various
ways in which two maximal chains t1, t2 ∈MC(W ) can form a Y -shaped fork.

Definition 37 (Y-fork). t1, t2 ∈MC(W ) form a Y-fork iff

1. t1 6= t2,

2. t1 ∩ t2 6= ∅,

3. ∀x ∈ t1 ∪ t2 (x ∈ t1 ∩ t2 ∨ t1 ∩ t2 < x).

Every Y-fork has its trunk t1 ∩ t2, and two arms t1 \ t2 and t2 \ t1. A
Y-fork may be entirely a spatio-temporal matter. In order to characterize
Y-forks that exhibit indeterminism, we define a “modal fork” as follows.

Definition 38 (modal-fork). t1, t2 ∈ MC(W ) form a modal fork iff they
form a Y-fork and ∃h1, h2 ∈ Hist t1 \ t2 ⊆ h1 \ h2 ∧ t2 \ t1 ⊆ h2 \ h1.

In the presence of Definition 37, the condition on modal forks is equivalent
to this claim:

∀x ∈ t1 ∪ t2 (t1 ∩ t2 < x→ x ∈ h1 \ h2 ∨ x ∈ h2 \ h1).

There is a simple topological test for whether or not a certain modal Y-fork
exhibits passive indeterminism. If its trunk, t1∩t2, has a (unique) maximum,
e, then e is the initial of two causae causantes, the left fork being one possible
outcome, and the right fork the other, and the indeterminism may be called
“active.” If, however, the trunk has no maximum, the Y-fork exhibits passive
indeterminism, and we must look elsewhere for the relevant causae causantes
(cf. Belnap (2005)). For our topological purposes, we convert this test into
a definition.

Definition 39 (passive indeterminism). A modal fork exhibits passive inde-
terminism in case its trunk has no maximum.

The upshot of these definitions is a three-fold classification of Y-forks.
A Y-fork may be modal or not, and if is modal, it either exhibits passive
indeterminism or not. Note that the essence of passive indeterminism is not
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a matter of lacking a choice event (this is impossible by the prior choice
principle of BST), but that every choice event is external to the modal fork
in question. The lemma that follows the fact below shows a crucial feature
of passive indeterminism:

Fact 40. (1) Let t1, t2 ∈ MC(W ) form a Y-fork. Then its trunk is upper
bounded by an element of each of t1 \ t2 and t2 \ t1. (2) And, if t1, t2 form a
modal fork, i.e., for some h1, h2 ∈ Hist, t1 \ t2 ⊆ h1 \h2 and t2 \ t1 ⊆ h2 \h1,
then ∀x ∈ t1 ∪ t2 (x ∈ h1 ∩ h2 → x ∈ t1 ∩ t2).

Proof: Ad 1. By Definition 37(1) and maximality of t1, t2, there is x ∈ t1\t2,
so x /∈ t1∩ t2, so t1∩ t2 < x by Definition 37(3); and similarly for t2\ t1. Ad 2.
The result follows by observing that t1∪ t2 = (t1∩ t2)∪ (t1 \ t2)∪ (t2 \ t1).

Lemma 41. The following two claims are equivalent, for t1, t2∈MC(W ):

1. t1, t2 form a modal fork and t1 ∩ t2 has no maximum;

2. there exist suph1(t1∩t2) and suph2(t1∩t2) and suph1(t1∩t2) 6= suph2(t1∩
t2) for some h1, h2 ∈ Hist.

Proof: From 1. to 2. Let us abbreviate Γ = (t1 ∩ t2), γ1 = suph1(Γ),∆1 =
(t1 \ t2), and similarly for γ2,∆2. We show that γ1 6= γ2.
Note that (Γ ∪∆1) = t1 by calculation, Γ 6= ∅ by Definition 37(2), ∆1 6= ∅
by Fact 40, and Γ < ∆1 by Definition 37(3). By Definition 38, ∆1 ⊆ h1 \ h2,
so Γ ⊆ h1 by downward closure of histories, so γ1 exists (by the BST axiom
of history-relative suprema) and Γ 6 γ1 6 ∆1. Since (Γ ∪∆1) = t1, density
and maximality of t1 imply that γ1 ∈ (Γ ∪ ∆1). If γ1 ∈ Γ, then γ1 would
be maximum in Γ, violating assumption (1) of the Lemma. So γ1 ∈ ∆1. An
exactly parallel argument yields γ2 ∈ ∆2. Since (∆1 ∩∆2) = ∅, γ1 6= γ2.
From 2. to 1. suph1(t1 ∩ t2) 6= suph2(t1 ∩ t2) implies that t1 ∩ t2 has no
maximum. It is straightforward to see that t1, t2 form a modal fork.

We are now ready to state our first theorem concerning the Hausdorff
property in the topology T(W ).

Theorem 42. Let OW be a BST model. If some modal fork in OW ex-
hibits passive indeterminism, then the Hausdorff property fails in OW (in
the topology T(W )).
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Proof: Let t1, t2 ∈MC(W ) form a modal fork exhibiting passive indetermin-
ism. Then by Lemma 41 there are histories h1, h2 such that t1 ∩ t2 ⊆ h1 ∩ h2

and e1 := suph1(t1∩ t2) 6= suph2(t1∩ t2) =: e2. Let e1 ∈ U and e2 ∈ V , where
U and V are arbitrary open subsets of W . Since U is open, there must be
x1 ∈ t1 ∩ t2 such that x1 < e1 and ∀x (x1 6 x 6 e1 → x ∈ U). For a similar
reason there is x2 ∈ t1∩ t2 such that x2 < e2 and ∀x (x2 6 x 6 e2 → x ∈ V ).
Thus, max (x1, x2) ∈ U ∩ V .

A natural question, answered by the lemma below, is, How ubiquitous is
passive indeterminism?13

Lemma 43. Let e be a choice point between histories h and h′ (to be written
as e ∈ CP (h, h′)) in a BST model and for some e′ 6= e, e′ ∈ flch(e) and
∀c (c ∈ CP (h, h′) ∧ c < e′ → c = e). Then there is passive indeterminism in
the model.

Proof: Clearly, e, e′ ∈ h and by Fact 13 (1) and the antecedent, e < e′.
Also (†) e′ 6∈ h′—otherwise e would not be a choice point for h and h′.
e′ ∈ flch(e) entails that (‡) ∃t ∈ MC(h) e′ = inf (t>e). Consider t6>e. Since
e 6 t>e, e 6= inf (t>e), and t is maximal, t6>e 6= ∅. Since it is upper bounded
by e′, it has a supremum and suph (t6>e) = e′ (by ‡). We next argue that
t6>e ⊆ h′. Otherwise for some e∗ ∈ t6>e, e∗ 6∈ h′ and hence e∗ ∈ h \ h′, so by
PCP, ∃c ∈ CP (h, h′) (c < e∗). But because e∗ ∈ t6>e, e 6< e∗. Hence c 6= e
and since c < e∗ 6 e′, we have a contradiction with the Lemma’s premise.
We may thus consider suph′ (t

6>e) = s. (†) then requires that s 6= e′.
We thus constructed a trunk t6>e of a modal fork, with two (different) history-
relative suprema. By Lemma 41 and Definition 39, the fork exhibits passive
indeterminism.

To comment on this Lemma, putting aside some pathological BST models,
if a BST model has more than one history, it exhibits passive indeterminism.
The pathology means that either for every choice point e, flch(e) = {e} for
any h such that e ∈ h,14 or each choice point between some h, h′ is a point

13The conclusion of this lemma, namely, the existence of passive indeterminism, can
be also proved by postulating No Modal Funny Business instead of the lemma’s second
premise, i.e., instead of ∀c (c ∈ CP (h, h′) ∧ c < e′ → c = e). For a definition of No Modal
Funny Business, cf. Def. 1-2 of Belnap (2003b).

14Note that this is satisfied in BT models, so these models do not exhibit passive inde-
terminism.
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of convergence of a sequence of choice points between h and h′. Combining
our Theorem 42 and Lemma 43, we obtain the following:

Theorem 44. Let e ∈ CP (h, h′) for some histories h, h′ in a BST model OW
and for some e′ 6= e, e′ ∈ flch(e) and ∀c (c ∈ CP (h, h′) ∧ c < e′ → c = e).
Then the Hausdorff property fails in OW (in the topology T(W )).

It is still interesting to learn what happens if a BST model has no passive
indeterminism, which is a subject of Theorem 47. Note however that no
passive indeterminism in a BST model means that either the model has one
history only, or (by Lemma 43) is pathological.

We can prove Theorem 47 using the same idea that we used to prove
Theorem 35, since Fact 33 carries over to OW in the absence of passive
indeterminism.

Fact 45. Suppose no modal fork in OW exhibits passive indeterminism.
Then, for any e1, e2 ∈ W and t ∈ MC(W ) such that e1 ∈ t and t<e1 6= ∅, if
e1 66 e2 then x 66 e2 for some x ∈ t<e1.

Proof: Suppose e1 66 e2 but that x 6 e2 for all x ∈ t<e1 . Pick any h1 ∈ H(e1)

and h2 ∈ H(e2); moreover, since t<e1 6 e2, there is t2 ∈ MC(h2) such that
t<e1 ∪ {e2} ⊆ t2. Then e1 = suph1

(t<e1) whereas suph2
(t<e1) 6 e2; hence

e1 66 e2 implies suph1
(t<e1) 6= suph2

(t<e1), which means that e1 /∈ h2, which
moreover entails t∩ t2 = t<e1 . Therefore, by Lemma 41, the modal fork t, t2
exhibits passive indeterminism.

Lemma 46. Suppose no modal fork in OW exhibits passive indeterminism,
that OW satisfies C3, and that e1 66 e2 for e1, e2 ∈ W . Then there is some
x ∈ W such that x ∈ 4(e1) (which implies e1 ∈ 5(x) if W satisfies C1) and
e2 ∈

⊔∨(x).

Proof: Similar to the proof of Lemma 34, using Fact 45 in place of Fact
33.

Theorem 47. Let OW be a BST model, in which every history satisfies con-
ditions C1, C2, C3, and C4. Then if no modal fork in OW exhibits passive
indeterminism, the Hausdorff property is satisfied in OW (in the topology
T(W )).
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Proof: Exactly similar to the proof of Theorem 35. Pick any distinct e1, e2 ∈
W ; without loss of generality we may assume e1 66 e2. By Lemma 46, C1
and C3 imply that e1 ∈ 5(x) and e2 ∈

⊔∨(x) for some x ∈ W , where
5(x) ∩⊔∨(x) = ∅ by definition.

⊔∨(x) ∈ T(W ) by Corollary 32, whereas C2
and C4 entail 5(x) ∈ T(W ) by Corollary 29.

The theorems of this section nicely contrast with our results concerning
single histories: With a few exceptions, a BST model 〈W,6〉 is non-Hausdorff
with respect to the Bartha topology on W .

6 Naturalness of the BST topologies

All our results above obtain with respect to specific topologies: the Bartha
topology T(h) on a BST history, and the Bartha topology T(W ) on a BST
model. This naturally raises a question about strength and relevancy of
these results. Aren’t perhaps the Bartha topologies some gerrymandered
and ad hoc constructions, cooked up just to to guarantee that the lemma
and theorems above hold? Against this objection in each of the next three
subsections we provide an independent argument that the Bartha topologies
on a BST model and its histories are natural topologies:

1. In appropriate cases, the Bartha topology on a single history (space-
time) agrees with the standard topology on Rn.

2. Both on a BST model and on a history thereof, the Bartha topology
naturally extends the BST structure.

3. The Bartha topology on Our World, an entire BST model, is canoni-
cally constructed from the Bartha topologies on its histories.

6.1 Extending the Minkowski structure

One simple criterion of “naturalness” of topology is whether it agrees with
the standard “ball” topology on Rn, if its base set is isomorphic to Rn. It is
easy to see that the criterion is satisfied by the Bartha topology on a history,
T(h). There is a particular class of BST models, called Minkowskian Branch-
ing Structures (MBS’s) and extensively studied by Müller (2002), Wroński
and Placek (2009), and Placek and Belnap (2010), in which histories are
isomorphic to Rn with Minkowskian ordering. More specifically, elements
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of an MBS’s base set are certain equivalence classes [σx], where σ ∈ Σ
for some index set Σ and x ∈ Rn, whereas the ordering generalizes the
Minkowskian ordering on Rn. Each history in an MBS is then identified
with set bσ = {[σx] | x ∈ Rn} for some σ ∈ Σ. To inquire what borderless
diamonds in history bσ are (recall that such diamonds form the base of the
Bartha topology on a history, T(bσ)), we get that they have the form:

bd[σx][σy] = {[σz] ∈ bσ | x <M z <M y ∧ z 6∈ flc(x) ∪ blc(y)},

where <M is the strict companion of the Minkowskian ordering on Rn and
flc(x), blc(x) are the future light-cone and the backward light-cone of x ∈ Rn.
A little reflection on the condition above convinces one that z is an element
of the borderless diamond in Rn, with x its bottom diamond and y its top
diamond. Such borderless diamonds are open in the standard topology on
Rn. Thus, the base for the Bartha topology on a Minkowskian Branching
Structure is provided by the sets of the form bd[σx][σy], whose “numerical”
parts are open sets in the standard topology on Rn.

6.2 Topological limits and BST limits

Two notions of limits are involved with BST and topology. One is an intrinsic
ingredient of BST, namely, inf and sup. The other is the convergence of
“nets” (a generalization of sequences) in topology—any topology gives rise to
a convergence relation between nets and points. Indeed, topologies are fully
characterized by convergence relations, in the sense that different topologies
give different convergence relations, and that any topology can be recovered
from the convergence relation it gives. Therefore any natural topology of
BST must give a topological limit (that is, a convergence) that extends the
BST limit (that is, inf and sup), in the sense that the two kinds of limits
agree whenever the latter makes sense. This is in fact the case with the
Bartha topology, as in Theorems 49 and 50 below.

A net is a function from a directed set (D,6) to a topological space X.15

A salient example is a sequence in X, that is, a map from (N,6) to X. The
formal concept of convergence of a net is a formalization (and generalization)
of the idea that a sequence may “get arbitrarily close” to a point x ∈ X. The
notion of closeness involved in this idea is abstractly captured by the topology

15In general, antisymmetry is not assumed on the order 6 on D. See, e.g., Willard
(1970), pp. 73–77.
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on X. On the other hand, the idea also involves a somewhat temporal aspect:
When f(n) is closer to x than f(m) is, whether the sequence f gets closer to
or farther from x between the two “stages” n and m hinges on whether n is
“after” m or not, which is expressed by the order on the domain D of a net.

The definition of convergence goes as follows. Given a net f : D → X
and a subset U ⊆ X, we say that f “eventually stays” in U if there is a ∈ D
such that f(b) ∈ U for every b > a. For instance, a sequence f : N → X
eventually stays in U ⊆ X if, “after” some stage n, f is always in U (meaning,
f(m) ∈ U for every m > n). Given this notion of eventually staying, and
given the topological abstraction of “closeness” (points in an open set U are
“closer” to x than ones outside U), the idea of “getting arbitrarily close” is
formalized as follows: A net f converges (in the given topology of X) to a
point x ∈ X if, for every open set U containing x, f eventually stays in U
(that is, there is a ∈ D such that f(b) ∈ U for every b > a).

As a particular case, a chain C in a BST model (W,6) can be regarded as
a net by taking the inclusion map i : C → W , which maps x ∈ C to x itself.
A warning may well be in order, that there is going to be possible confusion,
because the same points x ∈ C are serving once as points of the directed
domain (that is, as “stages”) of a net, and once as points of spacetimes or of
Our World, and because the same ordering 6 is used, once as the ordering
on the directed domain (the ordering of stages) of the net, and once as the
BST ordering (of causal past and future). To avoid confusion, we reserve the
temporal phrasing (“after”) for when we emphasize the order as the ordering
on the domain of a net, and, taking advantage of familiar pictures of Our
World, we say that a point x ∈ W is “below” or “above” y (if x 6 y or
y 6 x) to emphasize the order as the BST ordering.

A chain C in a BST model (W,6) can be regarded as an “ascending” net
(ascending in terms of the “above” phrasing we just introduced), by taking
the inclusion map i from (C,6) into W , which preserves the order; that is,
x 6 y in the domain (C,6) means that y is “after” x, whereas x 6 y in
(W,6) means that y is “above” x, so that C goes up and up. Therefore, C
(as an ascending net) converges in T(W ) to e ∈ W if, for every U ∈ T(W )
containing e, there is x ∈ C such that y = i(y) ∈ U for every y ∈ C “after”
x (meaning, y > x), that is, x ∈ C such that C>x ⊆ U .

C can also be regarded as a “descending” net, by taking the inclusion
map i from (C,>) into W , which reverses the order; that is, x > y in (C,>)
means that y is “after” x, whereas y 6 x in (W,6) means that y is “below” x,
so that C goes down and down. Therefore, C (as a descending net) converges
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in T(W ) to e ∈ W if, for every U ∈ T(W ) containing e, there is x ∈ C such
that y = i(y) ∈ U for every y ∈ C “after” x (this time meaning y 6 x), that
is, x ∈ C such that C6x ⊆ U .

Lemma 48. Fix a history h, and let X be either h or W . Then, given any
chain C ⊆ h, both of the following hold.

1. C regarded as a descending net converges in T(X) to inf(C) if it exists.

2. C regarded as an ascending net converges in T(X) to suph(C) if it
exists.

Proof: Ad 1. Suppose inf(C) exists. We show that C (as a descending
net) converges in T(X) to inf(C), which means that, for every U ∈ T(X)
containing inf(C), there is x ∈ C such that C6x ⊆ U .

Fix any U ∈ T(X) containing inf(C). If inf(C) is minimal in X then
U = X and hence C6x ⊆ U for any x ∈ C (C 6= ∅ since inf(C) exists); so
suppose inf(C) is not minimal in X. Since inf(C) 6 C, there is t ∈ MC(h)
containing both C and inf(C); therefore inf(C) ∈ U ∈ T(X) means that
there are z, y ∈ t such that z < inf(C) < y and dzy ⊆ U (such z exists since
inf(C) is not minimal in X). Then there is x ∈ C such that x 6 y (for
otherwise y 6 C and hence y 6 inf(C)). This and z < inf(C) 6 C imply
C6x ⊆ dzy ⊆ U . Thus C converges to inf(C) in T(X).

A proof that is symmetrical (except dropping the case of minimal inf(C))
would verify (2).

Note that a topology is Hausdorff if and only if every net in it converges
to at most one point. Therefore Lemma 48.2 with X = W gives another
proof that T(W ) fails to be Hausdorff when a modal fork t1, t2 (t1 ∈MC(h1),
t2 ∈ MC(h2)) exhibits passive indeterminism, because then the trunk C =
t1 ∩ t2 converges to two distinct points, namely, suph1

(C) 6= suph2
(C).

Theorem 49. Suppose a history h has no minimal elements. Then, given
any chain C ⊆ h and e ∈ h, both of the following hold.

1. C regarded as a descending net converges in T(h) to e iff e = inf(C).

2. C regarded as an ascending net converges in T(h) to e iff e = suph(C).
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Proof: Ad 1. The “if” direction is just Lemma 48.1. For the “only if”
direction, suppose C converges in T(h) to e.

Suppose for contradiction that e 66 C; then e 66 x for some x ∈ C. By
Lemma 36, e ∈ d

∧(x) ∩ h ∈ T(h) (since e is not minimal), whereas C6x 6 x
means (

d
∧(x)∩ h)∩C6x = ∅, contradicting C converging to e. Thus e 6 C.

The convergence of C entails C 6= ∅; so the lowerbounded C has inf(C). If
inf(C) 66 e, then e ∈ ⊔∨(inf(C)) ∩ h ∈ T(h) by Lemma 31, whereas inf(C) 6
C means (

⊔∨(inf(C)) ∩ h) ∩ C = ∅, contradicting C converging to e; so
inf(C) 6 e. Hence inf(C) = e, because e 6 C implies e 6 inf(C).

A symmetrical proof would verify (2).

Theorem 50. Suppose W satisfies C1–C4. Then, given any chain C and
e ∈ W , both of the following hold.

1. C regarded as a descending net converges in T(W ) to e iff e = inf(C).

2. C regarded as an ascending net converges in T(W ) to e iff e = suph(C)
for some history h.

Proof: Ad 1. The “if” direction is just Lemma 48.1. For the “only if”
direction, suppose C as a descending net converges in T(W ) to e, and pick
any histories h1 and h2 containing e and C, respectively. Applying C3, pick
t1 ∈MC(h1) such that e ∈ t1 and t1

<e 6= ∅ but t1
<e ∩ blch1(e) = ∅.

We first claim that, for any x ∈ C, if e 66 x then suph2
(t1

<e) 6 x.
Assuming e 66 x for x ∈ C, suppose for contradiction that t1

<e 66 x; that
is, e0 66 x for some e0 ∈ t1<e. Then t1

<e ∩ blch1(e) = ∅ implies e ∈ 5(e0)
by C1, whereas 5(e0) ∈ T(W ) by C2, C4 and Corollary 29. On the other
hand, C6x ∩ 5(e0) = ∅ because e0 66 x implies e0 66 y for every y 6 x.
These contradict since C converges to e. Therefore t1

<e 6 x. This implies
suph2

(t1
<e) 6 x since t1

<e 6= ∅ and x ∈ C ⊆ h2.
Now suppose for contradiction that e 66 C; that is, e 66 x for some

x ∈ C. Then, indeed, e 66 y for every y ∈ C6x; hence the claim we showed
above implies suph2

(t1
<e) 6 C6x. Therefore

⊔∨(suph2
(t1

<e)) ∩ C6x = ∅.
On the other hand, e ∈ ⊔∨(suph2

(t1
<e)) ∈ T(W ) (by Corollary 32), because

e = suph1
(t1

<e) 6= suph2
(t1

<e) 6 x implies suph2
(t1

<e) 66 e. These contradict
since C converges to e. Thus e 6 C.

The convergence of C entails C 6= ∅; so the lowerbounded C has inf(C). If
inf(C) 66 e then e ∈ ⊔∨(inf(C)) ∈ T(W ) (by Corollary 32), whereas inf(C) 6
C means

⊔∨(inf(C))∩C = ∅, contradicting C converging to e; so inf(C) 6 e.
Hence inf(C) = e, because e 6 C implies e 6 inf(C).
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Ad 2. The “if” direction is just Lemma 48.2. For the “only if” direction,
suppose C as an ascending net converges in T(W ) to e.

Suppose for contradiction that C 66 e; that is, x 66 e for some x ∈ C.
This means e ∈ ⊔∨(x) ∈ T(W ) (by Corollary 32), whereas x 6 C>x means⊔∨(x) ∩ C>x = ∅, contradicting C converging to e. Thus C 6 e.

The convergence of C entails C 6= ∅; so, for h ∈ H(e), C 6 e ∈ h implies
C ⊆ h and that suph(C) exists. Suppose for contradiction that e 66 suph(C).
Then, since e, suph(C) ∈ h, Lemma 34 implies by C1, C3 that e ∈ 5(x) and
x 66 suph(C) for some x ∈ h. By C2, C4 and Corollary 29, 5(x) ∈ T(W ),
whereas x 66 suph(C) implies x 6 y for no y ∈ C and hence 5(x) ∩ C = ∅,
contradicting C converging to e. Thus e 6 suph(C). Therefore e = suph(C)
because C 6 e ∈ h and suph(C) 6 e.

6.3 Branching for the Laplaceans

This subsection dwells on a consequence of Theorem 7, namely that the
Bartha topology T(W ) on Our World can be regarded as naturally con-
structed from the Bartha topologies T(h) on the histories h; so, to the extent
that T(h) are natural, the naturalness propagates to T(W ). This natural-
ness is based on “universal mapping properties,” and applies not just to the
theory of BST but also to the Laplacean diverging spacetimes, in the follow-
ing manner: Given an ensemble of spacetimes that comes with a criterion
of “identifying” points of different spacetimes, we can think of a branching
structure constructed by naturally gluing those spacetimes together at iden-
tified points. This branching structure is to the diverging spacetimes what
a BST structure W is to its histories h (we will show in which sense). Then
Theorem 7 points to how, given topologies on branching histories or diverging
spacetimes, to naturally construct from them a topology on the branching
structure, whether it is a BST branching or an ensemble branching.

We first lay out a natural construction in which to glue spacetimes (as
sets) together into one branching structure (as a set). Suppose, along the
line of “ensemble branching” (see §2), that we are given an ensemble Hist of
spacetimes h and a criterion for “identifying” points of different spacetimes
(for instance, sharing the same genuine physical magnitudes). Formally, take
the disjoint union

∑
h h of histories and write xRy to mean that x, y ∈

∑
h h

are “identified.” The disjoint union
∑

h h can simply be the union
⋃
h h if

all histories are mutually disjoint (as in Lewis’s “divergence”); otherwise, we
label points of histories and let

∑
h h = {(e, h) | e ∈ h ∈ Hist}. Finally,
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let W be the quotient of
∑

h h by the relation R.16 Let us call the set W
constructed in this way from a given ensemble Hist with a given relation R
(on

∑
h h) the branching structure for Hist and R; in short, W is an ensemble

Hist of spacetimes glued together at points identified by a relation R.
This “gluing” construction gives us the natural structure of branching, in

the following sense. Let us express the construction in terms of the following
two sorts of maps: One is the family of inclusion maps mh′ : h′ →

∑
h h, each

of which maps e ∈ h′ to (e, h′) (or to e itself if h are all disjoint). The other
is the quotient map q :

∑
h h→ W , which maps x ∈

∑
h h to the equivalence

class [x] of points identified with x. Then the construction of the branching
structure yields the following “universal mapping property”:17

Fact 51. Given a family Hist and a relation R on
∑

h h (which may or
may not be an equivalence relation), the branching structure W for Hist and
R, with maps mh : h →

∑
h h and q :

∑
h h → W , is the unique (up to

isomorphism) set that satisfies the following.

1. W identifies all that has to be identified; that is, if R identifies e1 ∈ h1

and e2 ∈ h2—in the sense that mh1(e1)Rmh2(e2)—then q ◦mh1(e1) =
q ◦mh2(e2) ∈ W .

2. For any set X and a family of maps fh : h → X (h ∈ Hist), if
the family fh respects R—in the sense that fh1(e1) = fh2(e2) whenever
mh1(e1)Rmh2(e2)—then there is a unique map f : W → X such that
f ◦ q ◦mh = fh for all h ∈ Hist.

This fact can also be put as follows:

Corollary 52. Let W be the branching structure for a family Hist of sets and
a relation R on

∑
h h. Then, for any set X, the families of maps fh : h→ X

(h ∈ Hist) that respect R correspond one-to-one to the maps f : W → X.

Proof: For the correspondence “to the right,” associate with a given R-
respecting family fh : h → X the map f : W → X as in Fact 51.2. “To
the left,” associate with given f : W → X the family f ◦ q ◦mh : h → X,
which respects R by Fact 51.1. And the correspondence is bijective by Fact
51.2.

16When R is not itself an equivalence relation, by “the quotient by R” we mean the
quotient by the equivalence relation that R generates.

17See Brown (2006), p. 100, for a proof (of essentially the same fact). The results that
follow are essentially ones laid out in Brown (2006), pp. 100f.
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These results mean the following. We may wish to assign some value (a
vector, for instance) to each point of every spacetime h; that is to take a
family of maps fh : h→ X (say, to a vector space X). Then, as long as this
assignment is coherent with the relevant criterion of identifying points of dif-
ferent spacetimes (for instance, assigning the same vector to points sharing
the same physical magnitudes), f : W → X as in Fact 51.2 gives an equiv-
alent description of the assignment—carrying all and only the information
carried by the family fh—in the form of a single map. And W is the only
set that provides the domain for such a corresponding map f .

It is worth noting that, given a BST model (W,6), the set W is (iso-
morphic to) the branching structure, in the sense we defined above, for its
set of histories Hist and the obvious relation R of identification (that is,
(e1, h1)R(e2, h2) iff e1 = e2); then each q ◦mh is just the inclusion map
ih : h → W , which sends e ∈ h to mh(e) = (e, h) to q(e, h) = e.18 In
short, W is “reconstructed” by first labeling events and then dropping the
labels. Hence, W with mh and q satisfies Fact 51 and Corollary 52 for its
histories Hist and the obvious R.

Let us now turn to Theorem 7. We can read it as follows: The Bartha
topology T(W ) on Our World, which is concretely defined in terms of di-
amonds dxy, can also be constructed from the family of Bartha topologies
T(h) on histories h ∈ Hist by setting T(W ) = {A ⊆ W | A ∩ h ∈ T(h)
for all h ∈ Hist}, or, in other words, as the finest topology on W that has
each inclusion map ih : h → W continuous (note that A ∩ h = ih

−1[A] for
A ⊆ W ; T(W ) is the finest because, if another topology T0 on W has all ih
continuous, then every A ∈ T0 has A ∩ h = ih

−1[A] ∈ T(h) for all h ∈ Hist
and hence A ∈ T(W ), that is, T0 ⊆ T(W )). This construction is a common
one in topology, a particular case of the construction of gluing several spaces
(not just as sets but as sets plus topologies) together into one.19

This construction can indeed be generalized and applied to any branching
structure W—not only of BST histories but also of divergent spacetimes—
by replacing the inclusion maps ih with maps q ◦mh in general, as follows.

18Strictly speaking, W is not itself the branching structure in the defined sense: W is
a set of events, whereas we take as the branching structure a set of equivalence classes of
event-history pairs; so q(e, h) is not e, but rather {(e, h′) | e ∈ h′ ∈ Hist} = {e}×H(e). Yet
W is isomorphic to the branching structure: e and {e}×H(e) are in an obvious one-to-one
correspondence.

19For a variety of such constructions, see, e.g., Willard (1970), pp. 59–69, and Brown
(2006), pp. 97–105.
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Let T(
∑

h h) be the “disjoint union topology,” that is, the finest topology
on
∑

h h that makes all mh continuous—more concretely, T(
∑

h h) = {B ⊆∑
h h | mh′

−1[B] ∈ T(h′) for all h′ ∈ Hist}. Then let T(W ) be the “quo-
tient topology,” that is, the finest topology on W that makes q continuous—
T(W ) = {A ⊆ W | q−1[A] ∈ T(

∑
h h)} = {A ⊆ W | (q ◦mh)

−1[A] ∈ T(h) for
all h ∈ Hist}. Thus any branching structure W , whether it is a BST one or
a diverging one, accommodates the gluing construction of T(W ) from T(h).
Let us call such T(W ) the branching topology for Hist, R and the family of
topologies T(h).

The branching topology T(W ) constructed on a branching structure W
in the manner above is the natural topology on W for the following reason.
Recall that, given any ensemble Hist of histories or spacetimes (whether it
comes from a BST structure or from divergence) and any relation R on

∑
h h

(that serves as a criterion for identifying points of different spacetimes), the
naturalness of the branching structure W for Hist and R is captured by the
correspondence stated in Fact 51 and Corollary 52. This correspondence, on
the level of sets and maps, extends to the topological level:

Fact 53. Let the set W be the branching structure (as a set) for a family Hist
of topological spaces and a relation R on

∑
h h; write T(h) for the topology on

h ∈ Hist. Given any topological space X and a family of maps fh : h → X
(h ∈ Hist) that respects R, consider the map f : W → X given by Fact 51.2.
Then T(W ) is the unique topology on W that satisfies: (∗) f is continuous
iff all fh are continuous (with T(h)).

Proof: The “only if” part of (∗) holds for T(W ) because fh = f ◦ q ◦mh while
the composition of continuous maps is continuous (q and mh are continuous).

For the “if” part of (∗) for T(W ), suppose fh are all continuous and fix
any open subset U of X. Then, for each h ∈ Hist, the continuity of fh implies
fh
−1[U ] ∈ T(h), whereas fh

−1[U ] = (f ◦ q ◦mh)
−1[U ] = (q ◦mh)

−1[f−1[U ]].
Thus (q ◦mh)

−1[f−1[U ]] ∈ T(h) for all h ∈ Hist, which means f−1[U ] ∈
T(W ) by the construction of T(W ).

For the uniqueness part, fix any topology T0 on W that satisfies (∗).
Let us take q ◦mh : h → W as fh : h → X; then f is the identity map
i : W → W . Since f = i is continuous from T0 to T0, the “only if” part
of (∗) for T0 implies that all fh = q ◦mh are continuous from T(h) to T0.
Therefore the “if” part of (∗) for T(W ) implies that f = i is continuous from
T(W ) to T0, which means T0 ⊆ T(W ) because i−1[U ] = U . On the other
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hand, the “if” part of (∗) for T0 implies that f = i is continuous from T0 to
T(W ), that is, T(W ) ⊆ T0. Thus T0 = T(W ).

While we may express assignment of values (or vectors, etc.) to points
of spacetimes h by a family of maps fh : h → X, it may then be desirable
to distinguish continuous assignments of values from non-continuous ones.
This distinction is made by the topologies T(h) (as well as by the topology
on X). Recall that, when such an assignment is coherent with the criterion
of identifying points of different spacetimes, it is equivalently described by
a single map f : W → X. Then Fact 53 means that T(W ) is the only
topology that agrees with the family T(h) regarding whether the assignment
is continuous or not.20

In sum, these facts establish that, given an ensemble Hist of histories
h and their topologies T(h), the branching structure W and the branching
topology T(W ) obtained with the gluing constructions are the natural struc-
ture of branching for Hist, whether the family Hist comes from a BST model
or from divergence. These two constructs are characterized by the two uni-
versal mapping properties expressed by Facts 51 through 53—one of them
assures a correspondence between maps f and families of maps fh, while the
other assures their agreement on continuity. The constructions are so natural
that any theory of branching, whether it is BST or of ensemble-branching
type, would have to admit them.

This does not mean that any theory of branching of spacetimes, if guided
by the requirement of naturalness, must satisfy the BST axioms and adopt
Bartha topologies. We merely claimed that the gluing constructions are natu-
ral in the sense that, given any histories h and topologies T(h) on them, their
branching structure W and branching topology T(W ) should be in a certain
relation with them. This has no consequences for other features of the the-

20It may be worth noting that the gluing construction can also be extended to orderings
on the histories h. Suppose we are given a set Hist of preordered sets (h, -h) and a
relation R on

∑
h h. (A preorder is a reflexive and transitive relation, that is, a partial

order without antisymmetry assumed.) On the branching structure W for Hist and R,
we can define the “branching order for the family -h” as the smallest preorder on W with
which all q ◦mh preserve order. Then the preorder version of Fact 53 is available. The
BST ordering on any BST model (W, 6) is in fact the branching order, in this sense, for
the family of its restrictions to histories h. We should however note that, in non-BST
cases, this construction works for preorders but not necessarily for partial orders: There
may be no partial order on the branching structure with which all q ◦mh preserve order
(whether -h are partial orders or just preorders).
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ory of BST—for instance, the prior choice principle. An ensemble branching
with a significantly different criterion R of identifying points of spacetimes,
or with significantly different topologies, although it has to construct W and
T(W ) by gluing, may end up with significantly different features of branching
and topology on W . In a slogan, branching is everywhere, though it might
be different from the BST branching.

7 Conclusions

We began this study by inquiring whether the BST1992 theory of branching
spacetimes satisfies the critical Hausdorff property. To ask a sensible question
required both a rigorous account of BST models 〈W,6〉 and a reasonable
topology for Our World, W , and for each of its histories, h. The definition
of BST models came from BST1992, and to satisfy the second requirement,
we adopted the “Bartha topology,” aka “the diamond topology,” as the best
choice, both for defining the class T(W ) of open sets of W and the class T(h)
of open sets of each history, h. Our Theorem 7 shows then a relation between
open sets of W and open sets of h.

Next we defined light-cones in BST models, and to guarantee that they
have properties similar to those of light-cones of space-times of physics, we as-
sumed four natural postulates C1–C4 on branching histories. We proved that
light-cones are history-independent, which provides evidence that our defini-
tions properly generalize the concept of light-cones from a single space-time
to a modal context of many branching histories. We showed that provided
we rule out certain pathological models by the addition of conditions C1–C4
to the postulates of BST1992, the set of “borderless diamonds” serves as a
base for the topology T(h) (Theorem 28).

With these materials in hand, we turned to our first question: Do BST
histories have the Hausdorff property? The most important result of this
investigation is that the answer turns positive when we ask if the four condi-
tions C1–C4 suffice for the Hausdorff property for individual BST histories
(Theorem 35). Since in our many-branching-histories representation of inde-
terminism, each BST history was intended to play the role of a spacetime,
and since most spacetime theorists believe that a topological understand-
ing of spacetime cries out for the Hausdorff property, Theorem 35, with its
intricate proof, was welcome indeed.

Turning to our central question of what regions of chanciness look like, we
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limited our attention to the study of the Hausdorff property in the world of
branching histories. Our main results, Theorems 42 and 47, relate the satis-
faction of the Hausdorff property in a BST model to the existence of passive
indeterminism in the model. Theorem 42 tells us that the failure of the Haus-
dorff property is a necessary condition of passive indeterminism. Theorem 47
tidies up our field of concepts by showing that given the conditions C1–C4,
the implication can be strengthened to an equivalence: Passive indetermin-
ism and the failure of the Hausdorff property stand or fall together. One
should infer that whereas the Hausdorff property rightly seems essential for
any reasonable theory of spacetime, on the other hand, it seems totally out
of place for a world consisting of a family of branching spacetimes.

The equivalence of a failure of the Hausdorff property and passive in-
determinism prompted our final question: Just how ubiquitous is passive
indeterminism? The answer is given by our Lemma 43: Excluding some
pathology, an indeterministic BST model (i.e, a model with choice points)
exhibits passive indeterminism.

We read these results as optimistic, especially for a future project of merg-
ing branching space-times with general relativity. Given physically realistic
conditions C1–C4, each history (or space-time) has the Hausdorff property,
which is physically important. Whether this property is satisfied by a whole
model of branching histories is neutral to current physics. One may thus at-
tempt to associate a differential structure to a BST model in such a way that
each history be a time-oriented manifold satisfying the Hausdorff property.21
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