
Abstract

There are two notions of abstraction that are often confused. The material view implies 
that the products of abstraction are not concrete. It is vulnerable to the criticism that 
abstracting introduces misrepresentations to the system, hence  abstraction is 
indistinguishable from idealization. The omission view fares better against this criticism 
because it does not entail that abstract objects are non-physical and because it asserts 
that the way scientists abstract is different to the way they idealize. Moreover, the 
omission view better captures the way that abstraction is used in many parts of science. 
Disentangling the two notions is an important prerequisite for determining how to 
evaluate the use abstraction in science.

I. Introduction 

! The west pediment of the Parthenon is a physical object that exists in space and 

time, but it is also triangular. We say that the west pediment is concrete, but that 

triangles are abstract. What accounts for this difference? The received view in 

philosophy of science is that an object is abstract when it is not concrete (e.g. Cartwright 

1994). Call this the material view of abstraction. The problem with the material view is 

that it implies that abstract objects are not physical. However, scientists often work with 

systems that are abstract but also physically instantiated. For example, experiments 

conducted in greenhouses abstract away from properties such as the color of the plants 

in question and whether or not they are subject to herbivory. Nonetheless, the plants in 

these experiments are concrete particulars like the west pediment of the Parthenon and 

unlike triangles. Moreover, the material view blurs the distinction between abstraction 

and idealization, as idealized objects are not concrete. For example, assuming that a 

population is infinite is common practice in models of population genetics, yet no actual 

population in the world is infinite. In this sense, infinite populations are like triangles 
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and unlike the west pediment of the Parthenon. The problem is that the main goal of 

proponents of the material view is to defend abstraction from critics who argue that 

both abstraction and idealization involve distortion, hence they are not distinct 

processes (e.g. Humphreys 1995). Unfortunately, the material view of abstraction 

undermines the force of their arguments against the critics.  

! Thomson-Jones defends a different view of abstraction where abstraction means 

the omission of irrelevant parts and properties from an object or system (Jones 2005).1 I 

will call this the omission view. Here, abstraction and idealization are distinct because 

idealization requires the assertion of a falsehood, while abstraction involves the 

omission of a truth (ibid). Thus, while both idealization and abstraction can result in the 

distortion of a system, the distortion is very different in each case. When we abstract, we 

do not describe the system in its entirety, so we are not telling the whole truth. 

However, when we idealize, we add properties to the system that it does not  normally 

possess. Therefore, our description of an idealized system contains falsehoods. 

! Both the material and omission views about abstraction are relevant to parts of 

scientific inquiry, but it is important to keep them distinct. If we fail to do so and lump 

abstraction together with idealization, we are in danger of trivializing an important 

aspect of science. I will argue that the notion of abstraction that is relevant to models, 

modeling, experiments, and target system construction (Godfrey-Smith 2006) is a 

version of the omission view. Specifically, this is the view that abstraction is the opposite 

of completeness. We start off with a complete object or system, one that has all its parts 
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and properties. When we abstract, we omit the parts and properties that are irrelevant 

for our purposes. An important implication of this view is that the outcomes of the 

process of abstraction can be concrete and physical. 

II. The use of Abstraction in Science

! The material view of abstraction is intuitive and deeply entrenched. Prime 

examples of abstract objects are mathematical objects such as numbers and triangles, 

which are not physically instantiated. Examples of abstract objects in other disciplines 

are concepts and ideas which are not tangible (e.g., fairness, evil, superego). 

Interestingly, in many of these cases, we can arrive at these objects through the process 

of omission. For example, we can start off with two roses, omit properties such as color, 

smell, photosynthetic capacity, chemical composition and so on, until we arrive at the 

number two. Historically, philosophers writing on abstraction (e.g. Aristotle and Locke) 

have held versions of the material view but explained how we arrive at abstract objects 

with the omission view (Rosen 2009, Cartwright 1994). It is not surprising, therefore, 

that the two views of abstraction are often lumped together as aspects of the same 

notion. 

! However, the use of abstraction in science is often quite different. Scientists often 

omit a number of parts and properties from a system, yet do not treat the resulting 

systems as immaterial or intangible. In the remainder of this section I will give some 

examples systems used by scientists that are both abstract and concrete. The first is an 

experiment from plant ecology, aimed at determining the cause of competition between 

two plants. In this experiment, Jarchow and Cook (2009) conducted a series of 
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experiments with the invasive aquatic cattail species Typha angustifolia and the native 

wetland species Bolboschoenus fluviatilis, which inhabit North American lakes. They took 

specimens from both species back to the greenhouse and grew them in a single 

controlled environment.  The results showed that T. angustifolia had a competitive 

advantage over B. fluviatilis because of allelopathy (the exudation of toxins from its 

roots). These toxins inhibit the growth of the native species (with a resulting 50% 

reduction in biomass) which allows the invader to soak up the limited nutrients in the 

soil. Above ground, the invader rapidly increases in size and shades the native species, 

which further reduces its growth rate. 

! It seems strange to think of this experiment as an abstract system, if we retain the 

idea that abstract objects are immaterial. The system of the plants in the greenhouse is 

as tangible and physically instantiated as the plants in the lake ecosystem. However, by 

bringing the plants into the greenhouse, the scientists are excluding all the other parts 

and properties of the lake ecosystem. The experiment, conducted in a simplified 

environment, allowed the scientists to identify the existence of competition between the 

two plants and to isolate the cause of the competitive advantage of T. angustifolia. They 

achieved this by being able to isolate the important factors from the system and 

omitting or parametrizing the other, irrelevant factors. In other words, the scientists 

started off considering a complete system with all its parts and properties (the lake 

ecosystem) and ended up with a system with fewer parts (fewer individuals from fewer 

species) and properties (the particular plants are not thought of as prey, or as 

contributing to the uptake of atmospheric CO2).  
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! Moreover, this example is not a one-off case. The very nature of experimentation 

in ecology is based on the idea that ecosystems are very complex and identifying the 

most important causal factors that lead to ecological phenomena involves controlling 

and parametrizing other factors. The same is true of experiments in evolutionary 

biology. Geneticists test mutation rates in populations of E. coli and Drosophila in 

controlled laboratory settings. The point of those experiments is to isolate the genetic  

factors that affect mutation rates, without the compounding or mitigating effects of 

developmental and environmental variation. Even further afield, experiments in 

psychology are conducted in controlled environments, with the aim of minimizing 

irrelevant effects. 

! Abstraction is also an important step in modeling. As with experimentation, 

when scientists model a particular phenomenon in a system, they do not model the 

entire system but a subset of parts and properties of that system. The identification of 

which parts of the system are important and the omission of those parts that are not, is 

another example of the process of abstraction. 

! I will illustrate with an example from population ecology. The marmots of 

Vancouver Island (Marmota vancouverensis) are classified as critically endangered. It is 

estimated that their population has dropped 80%-90% since the 1980’s and currently 

consists of roughly 200 individuals (Brashares et al. 2010). Ecologists studying these 

social rodents wish to understand how to bring back the population from the brink of 

extinction. In order to that, they must understand the causes of the decline in the 

marmot population. A good place to start is to look at a standard model of population 
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growth and check if the actual marmot population deviates from the model (this was 

the exact strategy undertaken by Brashares and colleagues) (ibid). There are a number 

of models in ecology which measure population growth; the logistic growth model 

(originally developed in 1838 by Pierre Verhulst) is often used in the early stages of a 

study, because it is not entirely unrealistic (as it takes into account the effect of density 

on population growth) but at the same time it is quite simple (Fig 1). 

! Fig 1. Logistic Growth Model

!

                                          dN                N                 ⎯  = rN (1- ⎯ )                        (1)                 dt                  K         

! (N) is the number of organisms in population. (r) is the intrinsic growth rate of the 
! population. (K) is the carrying capacity of the environment: the total number of organisms a 
! particular environment can support. 

!  This model measures how the growth rate of a population (N) is limited by the 

density of the population itself. (r) is the intrinsic growth rate, the maximum possible 

growth rate of the population. It is roughly equivalent to the number of deaths in the 

population subtracted from the number of births in that population.2  The second 

important component of the model is (K), the carrying capacity of the environment. (K) 

imposes the upper limit on population growth because it is the maximum number of 
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individual organisms that a particular environment can support. Factors that affect (K) 

are the environment’s resources, yet they vary across environments and species.3 !

! There are two sets of abstractions from the Vancouver Island (VI) ecosystem that 

need to occur so that the population growth of actual marmots can be compared with 

the prediction of the logistic growth model. The first is the elimination of parts that are 

not relevant. This includes the elimination of all units that are not relevant for 

measuring the population growth of marmots. The other animals, most of the plants on 

VI, and inanimate parts such as the marmot burrows will be omitted. The only other 

parts of the system that will be included are the plants that the marmots feed on (for 

example, cow parsnips, Kinnikinnick-fruit and huckleberries). The second set of 

abstractions concerns the properties that are relevant for the experiment or model. 

Properties such as eye color, fur length and fur color will not be relevant, because they 

do not affect short-term population growth. On the other hand, properties such as sex, 

time spent foraging and metabolic rate are relevant because they determine (r) the 

intrinsic growth rate of the marmot population. 

! With these abstractions in place, scientists were able to figure out that the growth 

rate of the marmot population on VI was falling, despite being far from close to the 

carrying capacity of the island. The reason for this is a phenomenon known as the Alee 

effect (named after Warder Clyde Allee who first described it). This effect occurs in 
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small populations when a fall in population density decreases the growth rate instead of 

increasing it. Brashares et al. found that this instance of the Allee effect was caused by a 

‘social meltdown’ (ibid). Unlike other marmots, VI marmots are very social and the 

decline in population leads to difficulty in finding mates, which reduces the growth rate 

even more. 

! This example is aimed at showing that abstraction is an integral part of modeling 

in science. In the paper, the logistic growth model is compared with the actual 

population of marmots, considered in isolation from the other parts of the ecosystem 

(ibid). There is no reason to think that the collection of marmots and the properties of 

their population is not concrete. Nonetheless, the population of VI marmots has fewer 

parts than the entire ecosystem on VI. In this second sense, it is more abstract that the 

entire VI ecosystem. 

! To recap the argument so far, there are two views of abstraction: the material 

view and the omission view. On the material view abstract objects are immaterial. On 

the omission view abstract objects are simply incomplete, and can be either material or 

immaterial. The two views are easily confounded because immaterial abstract objects 

result from the process of omission. However, there are a number of examples in science 

where the process of omission leads to physical objects or systems. Thus, the material 

view cannot account for all the objects or systems that arise from the process of 

omission. In contrast, the omission view accounts for all systems that result from 

omission, irrespective of whether or not they are concrete. Thus, if we want a single, 

unified notion of scientific abstraction, then we should opt for the omission view.
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III. Abstraction and Idealization 
!
! In the introduction, I mentioned another criticism of the material view of 

abstraction, namely that abstraction and idealization are not distinct concepts and they 

can be used interchangeably to signify any distortion in the scientific representation of a 

phenomenon. This view, endorsed explicitly by some (Humphreys 1995) and implicitly 

by many more (McMullin 1985), implies that there is no real or interesting distinction 

between abstraction and idealization. The two processes are thought to be inextricably 

linked, if not identical, and attempting to separate them results in confusion. The main 

proponent of the material view of abstraction is Paul Humphreys, who argues that in 

order to talk about abstract systems we usually have to represent them in some manner, 

and this representation will not be concrete (Humphreys 1995). However, idealized 

systems are also representations that are not concrete. According to Humphreys, the 

two types of representations are, therefore, not easily distinguishable. 

! This diagnosis is quite apt. Cartwright (the main proponent of the material view) 

states that when we idealize, we start off with a concrete object and “mentally rearrange 

some of its inconvenient features -some of its specific properties- before we try to write 

down a law for it” (Cartwright 1994 187). In contrast, when we abstract, we strip away 

properties from a system “in our minds” (Cartwright 1994). Thus, for example, when 

we omit all the irrelevant properties from the west pediment of the Parthenon, we are 

left with the shape of a triangle. This shape cannot be a true triangle though, as it is not 

a perfect geometrical shape. This is because the west pediment contains imperfections 

which are retained in the process of abstraction. According to Cartwright, this does not 
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really matter, as we can pretend that the abstract shape is a true triangle. The 

imperfections are already present in the real system and are not the result of our 

abstraction. In addition, these imperfections are themselves insignificant, and for all 

intents and purposes the abstract triangle is close enough to a true triangle. Thus, 

despite the imperfections retained in the process of abstraction, we are close enough to 

the real systems that we are entitled to pretend that our abstract shape is a true triangle.

! The problem, as Humphreys points out, is that once we start pretending what a 

system is like, we blur the lines between abstraction and idealization. We cannot 

legitimately focus on the triangle’s geometrical properties because an imperfect concrete 

triangle will remain imperfect after we abstract. If we want our abstract triangle to have 

geometric properties, then we have to add them to abstract triangle. In the case of true 

abstraction all the properties of the abstract object already exist in the real world. Hence, 

as soon as we start pretending, we are adding properties to our system that the material 

triangle does not have. In other words we are misrepresenting, or distorting the system. 

If this is the case, then abstraction and idealization seem very similar. To put the point 

differently, adding geometrical properties to a triangle is very much like assuming that 

a population in biology is infinite. No triangle in the actual world is perfect, just as no 

population of organisms in the world is infinite. In both cases, misrepresenting the 

system by adding properties is extremely useful, as it helps us model the system with 

the use of mathematics. Nonetheless, misrepresentation of a system, according to 

proponents of the material view, counts as idealization.
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! I agree with Humphreys that this is an important problem for the material view 

of abstraction. As soon as we disassociate abstract objects from concrete objects, then we 

are abstracting ‘in our minds’ and representing them imperfectly. However, this 

criticism loses its force when pitted against the omission view of abstraction. On this 

view, abstraction is ‘mere omission’, i.e., we only abstract properties that are irrelevant 

for our system (Jones 2005). In the case of the west pediment, these properties are the 

pediments color, the fact that it contains statues, that is made of marble. What we are 

left with is a  concrete shape that is also triangular. Importantly, this triangular shape is 

not a true triangle, it is simply approximates a true triangle. Mere omission cannot give 

rise to an immaterial true triangle from the imperfect and concrete pediment. 

! On the omission view, abstracting from the west pediment is like abstracting 

parts and properties from the VI ecosystem in order to explain the population size of 

the VI marmots. In the case of VI, the ideal population is represented by the model 

which is compared to the size of the actual population of marmots. Similarly, a true 

triangle can be compared to the actual approximately triangular shape of the west 

pediment. The difference between the material and omission views is that in the latter, 

there is no pretending. On the omission view, we can identify differences are between 

the abstract and ideal systems. Hence abstraction and idealization can be kept distinct. 

! A distinct criticism which does bear against the omission view attempts to 

assimilate abstraction to idealization because both fundamentally involve distortion.4 

The idea is that omitting aspects of a system results in the misrepresentation of the 
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system. Consequently, abstraction is a special case of idealization. In other words, no 

parts or properties of a system are strictly speaking ‘irrelevant’, hence they cannot be 

omitted from without the system being distorted. Omission necessarily results in 

distortion, because systems in nature are irreducibly complex. For example, ecosystem 

ecology is subfield of ecology that advocates holistic approach that views ecosystems as 

wholes or even individuals (Odenbaugh 2007). This is in direct contrast to the subfield 

of population ecology, where population dynamics are thought to capture and explain 

ecological phenomena. The big difference between the two approaches is that 

population ecologists work with more abstract models, as they omit a number of factors 

(especially abiotic factors) as irrelevant. On the other hand, ecosystem ecologists think 

that omitting abiotic factors from complex ecosystems results in overly simplistic 

models. The problem with that is that various processes which involve abiotic factors 

are themselves omitted or misrepresented, which in turn gives a distorted view of the 

way an ecosystem functions. In other words, it is the omission of factors from the 

system that leads to its misinterpretation.

! Thomson-Jones attempts to avoid this problem by restricting abstraction to 

precisely those omissions that do not result in misrepresentation (Jones 2005). As stated 

above, a ‘mere omission’ does not misrepresent a particular feature of a system because 

it retains ‘complete silence’ with respect to whether the system contains the feature 

(ibid). So if an omission results in a misrepresentation, then it is not the type of omission 

that is part of abstraction. The problem is that the criticism presented here is much 

stronger. The criticism denies the possibility of ‘mere omission’ altogether.  
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! I agree with the critics that omission can be thought of as distortion. Still, I do not 

think that it should undermine the importance of abstraction in science. For the 

remainder of this section I will put forward some preliminary proposals which show 

how the omission view can help distinguishing between abstraction and idealization. 

The first point is that denying the possibility of ‘mere omission’ altogether is too strong. 

Phenomena in the world have a very large number of parts and properties and 

scientists always omit some of them in their experiments and models. Some of these 

properties do not have an effect on the study. For example, one of the properties of the 

VI marmots is eye color. The paper does not make any reference to this property, 

because the scientists did not think that it was relevant for population growth. I think it 

is safe to say that the property of eye color which was present in the system, was 

‘merely omitted’ from the model. 

! The upshot is that abstraction and idealization are distinct processes that give 

rise to different types of phenomena. Therefore the norms that govern these processes 

should also be different. There is a substantial literature that deals with the 

methodology and evaluation of idealizations (see for example Giere 1988, Weisberg 

2007a). An idealization misrepresents a factor that is considered important for the 

phenomenon of interest, by adding properties to it or changing some of its properties. 

For example, scientists may assume that a population is infinite, in order to construct an 

evolutionary model that is computationally tractable. In order to be successful, the 

idealized system must be informative about the real system, despite the 

misrepresentations. This can be achieved if the idealized system is to some extent 
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isomorphic to its real-world counterpart, or if it is sufficiently similar to it (van Fraassen 

1980, Weisberg 2007b). 

! The case of abstraction is different. Phenomena in nature have many more parts 

and properties than one can include in an experiment or model. Hence, when scientists 

abstract they want to preserve only those parts and properties that are relevant for the 

phenomenon they are studying. These omissions help them make sense of the 

phenomenon so they can study it. In many cases it might be impossible to study a 

phenomenon without omitting a large number irrelevant factors. As stated above, when 

abstracting, scientists aim for ‘mere omission’. Therefore, the evaluation of an 

abstraction should focus on whether the it is a case of ‘mere omission’ or not. To my 

knowledge, there is no account that fully specifies a method for the evaluation of 

abstractions.5 It is usually left to the discretion of the scientist.  

! It unlikely that the methods used to evaluate idealizations (such as isomorphism 

or similarity) can be applied to the evaluation of abstraction. Abstract systems are 

already very similar to their real-world counterparts, because they are concrete and real.  

The differences between concrete systems at different levels of abstraction are much 

more fine-grained than differences between idealized and real systems. Also, an abstract 

system can be to a large extent isomorphic to a complete system, yet lack a relevant 

property. For example, an experiment that looked at competition between T.angustifolia 

and B.fluviatilis, which focused only on above-ground competition and did not take into 

account below-ground competition would be isomorphic to the real-world ecosystem, 
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yet it would also be missing relevant aspects of complete system.6 Thus, it seems that a  

different method is needed for a full and generalized evaluation of abstraction in 

science. This account will have to wait for another paper. The purpose of this paper was 

to show that before any such account is possible, the omission view must be distanced 

from the material view of abstraction and hence from idealization.  

IV. Conclusion: Abstract and Complete

! The two notions of abstraction captured by the material view and the omission 

view respectively, are easily confused. The examples that are usually used to illustrate 

discussions of abstraction exacerbate the situation, as they are often taken from 

mathematics and mathematical objects are seen as paradigm examples of abstract 

objects. While the distinction might not be necessary in mathematics, it is very 

important for science, especially biology. Failing to distinguish between the two notions 

undermines the role that abstraction plays in scientific experimentation and modeling, 

as it is often subsumed under the concept of idealization. Keeping these two concepts 

separate will give us a more accurate picture of scientific methodology and will help in 

the formulation of a generalized account for the evaluation of the process of abstraction. 
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