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Abstract

It can be shown that certain kinds of classical deterministic descrip-
tions and indeterministic descriptions are observationally equivalent.
In these cases there is a choice between deterministic and indetermin-
istic descriptions. Therefore, the question arises of which description,
if any, is preferable relative to evidence. This paper looks at the main
argument in the literature (by Winnie, 1998) that the deterministic
description is preferable. It will be shown that this argument yields
the desired conclusion relative to in principle possible observations
where there are no limits, in principle, on observational accuracy. Yet
relative to the currently possible observations (the kind of choice of
relevance in practice), relative to the actual observations, or relative
to in principle observations where there are limits, in principle, on
observational accuracy the argument fails because it also applies to
situations where the indeterministic description is preferable. Then
the paper comments on Winnie’s (1998) analogy between his argu-
ment for the deterministic description and his argument against the
prevalence of Bernoulli randomness in deterministic descriptions. It
is argued that while there is indeed an analogy, it is also important to
see that the arguments are disanalogous in another sense.
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Figure 1: Observed positions of the particle at time 0, 1,..., 9, 10

1 Introduction

Consider the motion of a particle on a two-dimensional square. When one
observes this motion, one obtains a sequence of observations. Figure 1 shows
such a sequence, namely it represents the observed positions of the particle
at time 0, 1, ..., 9, 10. Science aims to find a model or description which
reproduces these observations and which enables one to make predictions
about the relevant phenomenon (in our example the position of the parti-
cle). One of the questions which arise here is whether the phenomenon is
best described by a deterministic or an indeterministic model. Intuitively
speaking, one might think that the data only allow for a deterministic or an
indeterministic description. However, as we will see, in general, this is not
so. In several cases, including our example of the position of the particle,
the data allow for a deterministic as well as an indeterministic description.
This means that there is a choice between a deterministic and an indeter-
ministic description. Hence the question arises: Is the deterministic or the
indeterministic description preferable? More specifically, does the evidence
favour the deterministic or the indeterministic description? If none of the
descriptions is favoured by evidence, there will be underdetermination.

This paper will critically discuss the main argument which purports to
show that the deterministic description is preferable. More specifically, Sec-
tion 1 will introduce the kinds of deterministic and indeterministic descrip-
tions we will be dealing with, namely measure-theoretic deterministic de-
scriptions and stochastic descriptions. Section 2 will present recent results



which show that, in several cases, the data allow for a deterministic and
indeterministic description, i.e., that there is observational equivalence be-
tween deterministic and indeterministic descriptions. Section 3 will point
out that this raises the question of which description is preferable relative
to evidence, and several kinds of choice and underdetermination will be dis-
tinguished. Section 4 will criticise Winnie’s (1998) argument for the deter-
ministic description. It will be shown that this argument yields the desired
conclusion relative to in principle possible observations where there are no
limits, in principle, on observational accuracy. Yet relative to the currently
possible observations (the kind of choice of relevance in practice), the ac-
tual observations, or the in principle possible observations where there are
limits, in principle, on observational accuracy the argument fails because it
also applies to situations where the indeterministic description is preferable.
Section 5 will comment on Winnie’s (1998) analogy between his argument
for the deterministic description and his argument against the prevalence of
Bernoulli randomness in deterministic descriptions. It will be argued that
while there is indeed an analogy, it is also important to see that the argu-
ments are disanalogous in another sense. Finally, Section 7 will summarise
the discussion and provides an outlook; as a part of this, an argument will
be sketched that, in certain cases, one of the descriptions if preferable and
there is no underdetermination.

2 Deterministic and Indeterministic Descrip-
tions

This paper will only deal with certain kinds of deterministic and indetermin-
istic descriptions — namely measure-theoretic deterministic descriptions and
stochastic descriptions. These descriptions can be divided into two classes.
Namely, either the time parameter varies in discrete steps (discrete-time de-
scriptions), or the time parameter varies continuously (continuous-time de-
scriptions). For reasons of simplicity, this paper concentrates on discrete-
time descriptions. However, all that will be said holds analogously also for
continuous-time descriptions. An intuitive characterisation of the discrete-
time descriptions will be given; for the technical details the reader is referred
to Werndl (2009a, 2011).



Deterministic Descriptions

According to the canonical definition of determinism, a description is deter-
ministic iff (if and only if) the state of the description at one time determines
the state of the description at all (i.e., future and past) times. Similarly, a
real-world system is deterministic iff the state of the system at one time
determines the state of the system at all (i.e., future and past) times.

This paper deals with measure-theoretic deterministic descriptions, which
are among the most important descriptions in science, and, for instance, in-
clude all deterministic descriptions of Newtonian theory. They are defined as
follows. A deterministic description consists of a triple (X, f;, P), where the
set X (called the phase space) represents all possible states of the system;
fi(z) (called the evolution functions), where t ranges over the integers, are
functions, which tell one that the state x evolves to fi(x) in ¢ time steps; and
P(A) is a probability measureE] assigning a probability to subsets A of X.
The solution through x represents the path of the system through z. For-
mally, it is the bi-infinite sequence (..., f_ao(x), f-1(x), fo(x), fi(2), fo(2), ...);
fi(z) is called the t-th iterate of x. Because the f;’s are functions, determi-
nistic descriptions thus defined are deterministic according to the canonical
definition given above.

When one observes a state x of a deterministic system, a value is ob-
served which is dependent on x but is usually different from it (because
one cannot observe with infinite precision). Hence an observation is mod-
eled by a function ®(z) : X — O (called the observation function) where
O represents the set of all possible observed values. This means that when
one observes a deterministic system over time, one sees the iterates coarse-
grained by the observation function. For instance, if one observes the sys-
tem starting in state x at times 0, 1, ..., 9, 10 one obtains the string
(D(fo(x)), (fi(2)), ..., P(fo(x)), P(fr0(x))). A finite-valued observation func-
tion takes only finitely many values. In practice, observations are finite-
valued; thus, in what follows, it will be assumed that observation functions
are finite-valued. Given two observation functions ® and ¥, W is called finer
than ® and ® is called coarser than W iff for any value o of ¥ there is a
value v of ® such that for all z € X if ¥(z) = o, then ®(x) = v, and there
are distinct values 01,09 of ¥ and a value w of ® such that for all x € X if

!There are various possibilities of interpreting this probability measure. For instance,
according to the popular time-average interpretation, the probability of A is defined as
the (long-run) proportion of time that a solution spends in A (see Werndl 2009b).
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Figure 2: The map f((x,y)) of the baker’s transformation
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Figure 3: The observation function ®4

U(z) = 01 or ¥(x) = 0y, then ®(z) = w.
The following two examples of deterministic descriptions will accompany
us throughout this paper.

Example 1: The baker’s transformation.
On the unit square X = [0, 1] x [0, 1] consider the map:

y+1

Flwy) = (@, 2) i 0§x<%; Cr-1, 2 0 i S <a<t ()

N —

As shown in Figure 2, the map first stretches the unit square to twice its
length and half its width; the rectangle obtained in then cut in half and
the right half is stacked on top of the left. For fi((x,v)) := f'((x,y)) (f
is applied t times) and for the uniform probability measure P on the unit
square, one obtains the deterministic description (X, f;, P) called the baker’s
transformation. This description models the motion of a particle subject
to Newtonian mechanics which bounces on several mirrors. More specifi-
cally, the description models a particle which moves with constant speed
in the direction perpendicular to the unit square. The particle starts in
initial position (x,y), then it bounces on several mirrors, which cause it
to return to the unit square at f((z,y)) (for more on this, see Pitowsky



Figure 4: Two hard balls moving in a box

1996, 166). Now consider the observation function ®14 with sixteen values

ey, ea, ..., e assigned as follows: ®6((x,y)) = (21‘%17 2]—;1) for £ <z < “jTl
and § <y < %, 1,7 € N, 0 <14,5 <3. Figure 3 shows this observation func-

tion. Suppose that the baker’s transformation is initially in (0.824,0.4125).
Then the first 11 iterates coarse-grained by the observation function ®4 are:
(D16(f0((0.824,0.4125))), P16(f1((0.824,0.4125))), ..., P16( f10((0.824,0.4125))))

((%’ %)7 (g’ g)’ (%’ %)a (27 g)v (%7 2)7 (%’ %)7 (g’ %)7 (%’ %)7 (%’ %)’ (%’ g)a (%7 %))
This is exactly the sequence shown in Figure 1. Hence the time series shown
in Figure 1 can arise by observing the baker’s system.

Example 2: Description of two hard balls in a boz.

Consider the continuous-time Newtonian mechanical description of two hard
balls with a finite radius and no rotational motion; the balls move in a three
dimensional box and interact by elastic collisions (see Simanyi 1999). Fig-
ure 4 visualises such a hard ball system. These hard ball descriptions are of
some importance in statistical mechanics because they are the mathemati-
cally most tractable models of a gas. Because the hard ball potential involves
strong idealising assumptions, it does not accurately describe the potential
of real gases. Despite this, in some contexts hard ball models are expected to
share properties of real gases, and for this reason they are relevant, e.g., in the
context of the H-theorem and the foundations of statistical mechanics. Now
suppose that one considers this continuous-time description at discrete time-
intervals, i.e., at time points nsgy, s € RT arbitrary, n € Z. Then one obtains
what will be our second main example, namely a discrete-time description
(X, fi, P) of two hard balls in a box. The phase space X represents all possi-



ble states of the system and is the set of all vectors consisting of the possible
position and velocity coordinates of the two balls. If the system is initially in
state x, then the evolution functions tell one that the system will evolve to
fi(z) after t.sp time steps. The meaning of the probability measure P is as
follows: For subsets A of the phase space, P(A) is the probability that the two
hard balls are in one of the states which are represented by A. Finally, the
solution through z is the sequence (..., f_o(x), f-1(x), fo(x), fi(2), fo(2),...),
which represents the path of the hard ball system which is initially in  (over
the time points nsg, n € Z).

Stochastic Descriptions

A description or a real-world process is indeterministic iff it is not determinis-
tic. The indeterministic descriptions of concern in this paper are stochastic
descriptions. They model probabilistic processes and are the most important
indeterministic descriptions in science. A stochastic description is denoted
by {Z;}. It consists of a family of functions Z; : Q — E, where t € Z, E
is a set (called the outcome space) representing all possible outcomes of the
process, and (2 is a set which encodes all possible paths of the process (i.e.,
each w € ) encodes a specific path in all its details but is usually unkown
in practice). The outcome of the process at time ¢ is given by Z;(w). Since
stochastic descriptions model probabilistic processes, there is a probability
distribution P(Z; € A), giving the probability that the outcome is in A at
time ¢ (for subsets A of F and any ¢ € Z). Similarly, there is a probability
distribution P(Z; € A and Z, € B), giving the probability that the outcome
is in A at time t and in B at time r (for subsets A, B of E and any t,r € Z);
and there is a probability distribution P(Z;, € A given Z, € B), assigning a
probability to the event that the outcome is in A at time t given that it is in
B at time r (for subsets A, B of E and any t,r € Z).

The typical situation is that given the present outcome of a stochas-
tic description, several possible outcomes can follow, and the likelihood of
these possible outcomes is measured by the probability distribution. Be-
cause several possible outcomes can follow, the description is indeterminis-
tic. A realisation of the stochastic description represents a possible path
of the stochastic process over time. Formally, it is a bi-infinite sequence
(s Z 9(w), Z_1(w), Zo(w), Z1(w), Za(w), ...) for an arbitrary w € .

Two stochastic descriptions will accompany us throughout this paper.



Example 3: Bernoulli descriptions.

The well-known tossing of an unbiased coin over time is a special case of a
Bernoulli description. Generally, for Bernoulli descriptions at each point of
time a (possibly biased) N-sided die is tossed, and each toss is independent
of the other ones. Formally, a Bernoulli description {Z;} is defined as follows:
(i) the outcome space consists of N (N € N) symbols £ = {ey,...,ex}; (ii)
the probability for the side e, is Qp, i.e., P(Z; = €y) = Qm, 1 <m < N, for
all times t € Z, where Q1 + ...+ Qy = 1; (iii) and the condition of indepen-
dence holds, i.e., P(Z, = e;,..., 2y, = ¢€;,) = P(Z;, = e;,)...P(Z;, = e;,)
for all e;,,...,e;, in E and all 7y,...,%, € Z, h € N. A realisation of a
Bernoulli description represents the sequence of the outcomes obtained (e.g.,
for the fair coin the sequence of heads and tails).

Ezxample 4: Markov descriptions.

Markov descriptions are probabilistic descriptions where the next outcome
depends only on the previous outcome. So, unlike Bernoulli descriptions,
Markov descriptions are history-dependent but only the previous outcome
matters. Markov descriptions are among the most frequently encountered
descriptions in science. Formally, a Markov description {Z;} is defined as fol-
lows: (i) the outcome space consists of N (N € N) symbols E = {ey,...,ex};
(i) and the next outcome only depends on the previous one, i.e., P(Z; = e
given Z,_1,Z;_o...,Z;) = P(Z; = ey given Zy_q) forall t € Z, all j <t —1
and all outcomes ey,.

An example of a Markov description is the description {W,}: There are
sixteen possible outcomes e;=(1/8,1/8),e2=(3/8,1/8),e3=(5/8,1/8),e4=
(7/8,1/8), 5= (1/8,3/8), e = (3/8,3/8), 7 = (5/8,3/8), 5 = (7/8,3/8), cg =
(1/8, 5/8), 610:(3/8, 5/8), 611:(5/8, 5/8), 612:(7/8, 5/8), 613:(1/8, 7/8), €14—=
(3/8,7/8),e15=(5/8,7/8),e16=(7/8,7/8). P(e;) = 1/16, 1 < i < 16. Each
present outcome can be followed by two other outcomes, where the proba-
bility that the present outcome is followed by any of these two outcomes is
1/2: e, is followed by e; or ey, ey by e3 or ey, ez by eg or e1g, €4 by €17 or eja,
es by ey or ey, eg by e3 or eq, er by eg or eqg, eg by e11 or eqa, eg by e5 or eg,
e1p by e7 or eg, e by e13 or e14, €12 by €15 or eqg, €13 by e5 or eg, e14 by e7 or
es, €15 by €13 or €14, €16 by e15 or e1g. In one of the realisations of {I¥;} the
entries from time 0 to 10 are: (es, €11, €14, €7, €9, €6, €3, €10, €8, €12, €16)- Lhis
is exactly the sequence shown in Figure 1. Hence the time series shown in
Figure 1 can arise from a Markov description. Recall that the time series
shown in Figure 1 can also arise from observing the deterministic baker’s
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transformation. This gives a first hint that there is observational equiva-
lence between deterministic and stochastic descriptions. The next section
will explain the results on observational equivalence between deterministic
and stochastic descriptions.

3 The Results on Observational Equivalence

Observational equivalence between a stochastic description, a deterministic
description and an observation function of the deterministic description as
understood in this paper means that the stochastic description gives the same
predictions as the deterministic description relative to the observation func-
tion. Note that observational equivalence in this sense is a relation between a
stochastic description, a deterministic description, and an observation func-
tion. That is, this notion of observational equivalence is relative to a specific
observation level. What does it mean that a stochastic description and a
deterministic description, relative to an observation function, give the same
predictions? The predictions obtained from the stochastic description are the
probability distributions over the sequences of outcomes (i.e., over the reali-
sations). Recall that there is a probability measure P defined on the phase
space of the deterministic description. Therefore, relative to the observation
function, the predictions derived from the deterministic description are the
probability distributions over the sequences of observed values (i.e., over the
solutions of the description coarse-grained by the observation function).
This means that a stochastic description {Z;} gives the same predictions
as a deterministic description (X, f;, P) relative to the observation function
® iff the following holds: The set of possible outcomes E of {Z,;} is identical
to the set of possible observed values of ®; and the probability distribu-
tions over the sequences of outcomes of {Z;} are the same as the probability
distributions over the sequences of observed values of (X, f;, P) relative to

o

Consider an observation function ® : X — O of a deterministic de-

2Here the paper follows the extant literature Suppes (1993), Suppes and de Barros
(1996) and Winnie (1998) in assuming that measure-theoretic deterministic and stochastic
descriptions are tested and confirmed by deriving probabilistic predictions from them.
That nonlinear models can be confirmed has been questioned (see Bishop 2008). This
is just to mention the controversy about confirmation of nonlinear models; a thorough
treatment would require another paper.
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scription (X, fy, P). Then {Z;} = {®(f;)} is a stochastic description. It
arises by applying the observation function ® to the deterministic descrip-
tion. Therefore, the set of possible outcomes of {Z;} is identical to the set of
possible observed values of (X, f;, P), and the probability distributions over
the sequences of outcomes of {Z;} and the probability distributions over the
sequences of observed values of (X, f;, P) are the same. From this it follows
that (X, fi, P), relative to @, is observationally equivalent to {®(1})}.

Let me explain this result with the example of the baker’s transformationf]
(Example 1). Suppose that the observation function ®4 is applied to the
baker’s transformation (see Example 1 for the definition of ®4). Then the set
of possible outcomes of the stochastic description {®14(f;)} is the same as the
set of possible values of @14, and the probability distributions of this stochas-
tic description are determined by applying ®6 to the baker’s transformation.
Consequently, the deterministic baker’s transformation, relative to ®4, and
the stochastic description {®4(f;)} are observationally equivalent. This ex-
ample is interesting because the stochastic description {®4(f;)} is actually
identical to the Markov description {W;} (see Example 4 for the definition
of {W,})[] Hence also the Markov description {W;} and the baker’s transfor-
mation, relative to g, are observationally equivalent. This explains why the
time series shown in Figure 1 can arise from both the baker’s transformation,
relative to @14, and the Markov description {IW;}. What is shown in Figure 1
sV = ((%7 %)v (%’ g)v (%’ %)7 (g’ %)7 (%’ %)7 (%’ %)’ (%’ %)v (%’ %)v (%’ %)7 (%’ %)7 (%7 %))

— the first eleven iterates of the baker’s transformation starting in state

3The baker’s transformation involves strong idealisations — in particular, that there
is no friction. Consequently, scientists do not derive probabilistic predictions from it to
compare it with the data. Because the example is so easy to understand, instead of
referring to another example, the reader is asked to pretend that scientists indeed use it
for this purpose.

4This is not hard to see. As shown in Werndl (2009a, Section 4.1), the baker’s trans-
formation (X, f;, P) is isomorphic via ¢ to the Bernoulli shift (Y, h:, Q) with values 0 and

1 (the states are bi-infinite sequences y=...y_2y_1Yoy1y2--., ¥i € {0 1}). For (Y, ht, Q)
define the observation function Z14 as fOHOWb It takes the value (é, 8) if y_1yoy1y2 = 0000,
(2,%) if y_1yoy1y2 = 0001, (3,3) if y_1yoy1y2 = 0010, (£, 3) if y_1y0y1y2 = 0011, (§ §)

if y_1y0y1y2 = 1000, (%é) if y_1yoy1y2 = 1001, (g%) if y_1yoy1y2 = 1010, (& §)
if y_1yoy1y2 = 1011, (5,3 58
oy

) if y 1y0y1y2 = 0100, (2,2) if y_1y0y1y2 = 0101, (2,7)
if y_1yoy1y2 = 0110, (%,%) if y_1yoy1ye = 1100, (8,5)
Y_1Yoy1y2 = 1101, (8, 8) if y_1yoy1y2 = 1110, (87 8) if y_1yoy1y2 = 1111. Since (Y, he, Q)
is a Bernoulli shlft {E16(h¢)} is a Markov description, which is easily seen to be identical
to {W;}. Because (X, f, P) is isomorphic via ¢ to (Y, h:, Q) and ®16(z) = E16(o(z)),
{P16(f1)} ={Z16(0(f1)) } ={Z16(ht(9)}; thus {P16(Sf;)} is also identical to {W;}.
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(0.824,0.4125) coarse-grained by ®16. But V = (es, €11, €14, €7, €9, €4, €3, €10,
es, €12, €16), which are the first eleven outcomes of a realisation of the Markov
description {W;}.

The Markov description {®y4(f;)}, which is identical to {IV,}, is clearly a
nontrivial stochastic description (a stochastic description is nontrivial iff it is
not trivial; for a trivial stochastic description the probability that any arbi-
trary outcome follows another arbitrary outcome is always 0 or 1). So there
are examples of deterministic descriptions which, relative to some observa-
tion functions, yield nontrivial stochastic descriptions. The question arises
whether there are general results to the effect that the stochastic descrip-
tion {®(f;)} is nontrivial. This is important: If {®(f;)} is trivial, then one
might argue that {®(f;)} (although mathematically a stochastic description)
is really a deterministic description; and hence that there is no observational
equivalence between deterministic and indeterministic descriptions. Several
general results show that {®(f;)} is often nontrivial. Let me state one result
(Proposition 1 in Werndl 2009a).

Theorem 1 Given a deterministic description (X, fi, P), suppose that there
isnmom € Nand G C X, 0 < P(G) < 1, such that f,(G) = G. Let
® : X — O be an arbitrary nontrivial finite-valued observation functiorﬂ
Then the stochastic description {Z,;} = {®(f;)} is nontrivial in the following
sense: For any arbitrary n € N and any t € Z, there exist an e; € O such
that for all e, € O, 0 < P(Zy1n, = ey, given Zy = ¢;) < 1ﬁ

Theorem applies to Example 1 of the baker’s transformation (see Werndl
2009a, Section 3.1) and to Example 2 of the description of two hard balls
(see Simanyi 1999). It also applies to many other descriptions which are im-
portant in science. For instance, it applies to descriptions of N, N > 2, hard
balls moving on a torus for almost all values (my,...,my,r), where r is the
radius of the balls and m; is the mass of the i-th ball (see Simanyi 1999 and

5 A nontrivial finite-valued observation function has at least two outcomes with positive
probability.

6Theorem 1 is equivalent to Proposition 1 in Werndl (2009a), but there are two minor
differences in the statement of the theorems. First, unlike Werndl (2009a), it is not required
that (X, fi, P) is ergodic because this follows automatically from the premises (ergodicity
is equivalent to the condition that there exists no G C X, 0 < P(G) < 1, such that
f1(G) = G; cf. Petersen 1983, 42). Second, it is stated here that 0 < P(Z4,, = €}, given
Zy = ;) < 1 for any arbitrary n € N and not only for n = 1 as in Werndl (2009a). This
stronger conclusion follows immediately from the weaker one because if the premises hold
for (X, fi, P), they also hold for (X, fi*, P) where f{* is the n-th iterate of f;.

12



2003; the motion of hard balls on a torus is mathematically more tractable
than the motion of balls in a box); to many billiard descriptions such as
billiards in a stadium (Chernov and Markarian 2006); and also to dissipative
descriptions (i.e., where the Lebesgue-measure is not invariant under the dy-
namics) such as to the Hénon description, which models weather phenomena,
for certain parameter values (Benedicks and Young 1993, Hénon 1976). It
is mathematically extremely hard to prove that descriptions satisfy the as-
sumption of Theorem 1. Therefore, for many descriptions it is conjectured,
but not proven, that they satisfy this assumption, e.g., for any finite number
of hard balls in a box or for the Hénon description for many other parameter
values (see Benedicks and Young 1993; Berkovitz et al. 2006).

So far we have focused on how to obtain stochastic descriptions when de-
terministic descriptions are given. There are also converse results about how
to obtain deterministic descriptions when stochastic descriptions are given.
For what follows later it is not necessary to go into the details of these results.
It suffices to say that the basic construction for these converse results is the
same: Given a stochastic description {Z;}, one finds a deterministic descrip-
tion (X, fy, P) and an observation function ® such that {Z;} is identical to
{®(f:)}. Moreover, several results show how, given stochastic descriptions
of the type used in science, one can find deterministic descriptions of the
type used in science which, relative to certain observation functions, are ob-
servationally equivalent to these stochastic descriptions. For instance, given
Markov descriptions (Example 4), one can find discrete-time Newtonian de-
scriptions which are observationally equivalent to these Markov descriptions
(see Werndl 2009a, 2011)[]

"There are other results in the literature which are based on quite different assumptions
but which could also be interpreted as results about observational equivalence between
deterministic and stochastic descriptions. An example is Judd and Smith (2001, 2004);
they present results under the ideal condition of infinite past observations of a deterministic
system and the assumption that there is observational error modeled by a probability
distribution around the true value. While these results are interesting, this paper will not
discuss them. They are based on different assumptions and hence are of limited relevance
for assessing the extant philosophical literature of concern here (i.e., Suppes 1993, Suppes
and de Barros 1996, Winnie 1998).
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4 Preference and Underdetermination

We have seen that, in certain cases, there is observational equivalence be-
tween a stochastic description {Z;} and a deterministic description (X, f;, P)
relative to an observation function ®. So the question arises: Is the stochastic
description or the deterministic description preferable relative to evidence?
If evidence equally supports both descriptions, this is a case of underdetermi-
nation. This section will differentiate between different kinds of choice and
underdetermination which could arise.

When asking which description is preferable, it is important to distinguish
between the cases where (i) the descriptions are about the same level of real-
ity; (ii) the descriptions are about different levels of reality. An example for
(i) is when both descriptions model the evolution of the positions and veloc-
ities of two hard balls in a box. An example of (ii) is a Boltzmannian and
Newtonian description of a gas. At the lower level there is the Newtonian de-
scription: The states are represented by the position and velocity coordinates
of the gas particles and the evolution is deterministic. At the higher level
there is the Boltzmannian description: The states are represented by values
of variables such as temperature, pressure and volume, and the evolution is
stochastic. The higher-level states are a function of the lower-level states
(this means that they are related by an observation function) (cf. Frigg 2008,
section 3.2). This paper will concentrate on case (i). The extant philosoph-
ical literature (Suppes 1993; Suppes and de Barros 1996; Winnie 1998) also
focuses on this case. The case (ii) of the descriptions about different levels
of reality is very different. For instance, here one might argue that there is
no conflict — reality might well be deterministic at one level and stochastic
at another level.

A first significant result is the following. Suppose one considers all in
principle possible observations where there are no limaits, in principle, on ob-
servational accuracy. (That is, although one will never be able to observe
infinitely precisely, in principle possible observations allow one to come arbi-
trarily close to these infinitely precise values.) It is assumed that it is not the
case that the deterministic description (X, f;, P) and all of the stochastic de-
scriptions {®(f;)} are disconfirmed by the in principle possible observations
(here none of the descriptions will be acceptable). Then, relative to these in
principle possible observations, there is no underdetermination: On the one
hand, if given any arbitrary finite-valued observation, one can always make
finer observations, the deterministic description will be preferable because
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only the deterministic description allows that one can always make finer
observations. On the other hand, suppose one can observe the values corre-
sponding to the finite-valued observation function ® and observations show
that there are no other states apart from these values. Then the stochastic
description {Z;} = {®(f;)} will be preferable because only this stochastic
description does not have more states and thus agrees with the observations.

Yet other kinds of underdetermination are not as easily dismissed. Most
importantly, first, consider the choice relative to currently possible observa-
tions (given the available technology). Here, if the observation function ®
is fine enough, it will not be possible to find out whether there are more
states than the values given by ®. Then the relevant predictions of the de-
terministic description and of the stochastic description {Z;} = {®(f;)} are
the same (the relevant predictions are those which can be tested by the cur-
rently possible observations). If these predictions are confirmed and other
evidence does not favour a description, there is underdetermination relative
to all currently possible observations. Arguably, of interest in practice is
this underdetermination relative to all currently possible observations (cf.
Laudan and Leplin 1991). A second case is the choice relative to the actual
observations which have been made. Here, if ® corresponds to an observa-
tion which is finer (or the same) than any of the observations which have
actually been made, the relevant predictions of the deterministic description
and of the stochastic description {Z;} = {®(f;)} are the same (the relevant
predictions are those which can be tested by the actual observations which
have been made). If these predictions are confirmed and other evidence does
not favour a description, there is underdetermination relative to the actual
observations. A third case is the choice relative to in principle possible obser-
vations where there are limits, in principle, on observational accuracy. Here,
if ® corresponds to an observation which is finer (or the same) than any in
principle possible observation, the relevant predictions of the deterministic
description and of the stochastic description {Z;} = {®(f;)} are the same
(the relevant predictions are those which can be tested by the in principle
possible observations). Again, if these predictions are confirmed and other
evidence does not favour a description, there is underdetermination relative
to in principle possible observations where there are limits, in principle, on
observational accuracy.

In what follows, to avoid a trivial answer, it will be assumed that the rel-
evant observations do not disconfirm the deterministic description and all of
the stochastic descriptions (here none of the descriptions will be acceptable).
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And whenever the concern is the choice relative to currently possible observa-
tions/actual observations/in principle possible observations where there are
limits, in principle, on observational accuracy, it will be assumed that ® is
fine-enough, viz. that it is currently not possible to find out/that the actual
observations do not allow to find out/that in principle possible observations
do not allow to find out whether there are more states than the ones given
by the observation function ®. Let us now turn to the main argument in the
literature against underdetermination.

5 The Nesting Argument

Winnie (1998) discusses the choice between Newtonian deterministic descrip-
tions and the stochastic descriptions obtained by applying an observation
function ® to these deterministic descriptions. He aims to identify sufficient
conditions under which the deterministic description is preferable. Let us
turn to his argument. For the deterministic description consider the ob-
servation functions of interest relative to the given kind of choice (i.e., the
observation functions which, according to the deterministic description, are
either in principle possible, or currently possible, or have actually been ap-
plied). Suppose that the observations corresponding to these observation
functions of interest can be made (i.e., that it is either in principle possible
to make them, or that it is currently possible to make them, or that they have
been made). Further, suppose that one finds that finer observations lead to
stochastic descriptions at a smaller scale (i.e., stochastic descriptions where
there is at least one outcome of the stochastic description at a larger scale
such that two or more outcomes of the stochastic description at a smaller
scale correspond to one outcome of the stochastic description at a larger
scale). Then this provides evidence that the phenomenon is deterministic
and that the deterministic description is preferable. Winnie endorses this
argument, which will be called the ‘nesting argument’:

To be sure, at any stage of the above process, the system may be
modeled stochastically, but the successive stages of that modeling
process provide ample—inductive—reason for believing that the
deterministic model is correct. [Winnie 1998, 315]

For instance, assuming that the motion of the two hard spheres (Example 2)
is really deterministic, the nesting argument establishes that the determinis-
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tic description is preferable.

Winnie does not explicitly state which kind of choice he is concerned with.
Suppose his concern is underdetermination relative to in principle possible
observations where there are no limits, in principle, on observational accu-
racy. As argued in Section [4] here it is straightforward which description is
preferable. Now consider the observation functions of interest for the determi-
nistic description, namely the observation functions which, according to the
deterministic description, are in principle possible. If the observations corre-
sponding to these observation functions can be made, then the deterministic
description is indeed preferable. This is so because only the deterministic de-
scription allows that always finer observations can be made, and hence only
the deterministic description will agree with the possible observations. And
then one automatically also finds that finer observations lead to stochastic
descriptions at a smaller scale. Hence the nesting argument yields the desired
conclusion ] Winnie may have well been concerned with the choice relative
to in principle possible observations where there are no limits, in principle,
on observational accuracy, and here his argument succeedsﬂ

Does the nesting argument deliver the desired conclusion for the other
kinds of choice discussed in Section [} viz. relative to currently possible ob-
servations, relative to actual observations, or relative to in principle possible
observations where there are limits, in principle, on observational accuracy?
It will now be argued that the nesting argument fails in these cases by giving
an example where the premises of the nesting argument are true but where
not the deterministic description is preferable. This is important because
Winnie develops his argument as a criticism of Suppes (1993) and Suppes
and de Barros (1996). These papers defend the claim that there is under-
determination: the stochastic description and the deterministic description
are equally well supported by evidence. Suppes (1993) and Suppes and de

8Still, the nesting argument seems a bit complicated because the reason why there is
no underdetermination is simply that only the deterministic description agrees with the
in principle possible observations.

9For in principle possible observations where there are no limits, in principle, on ob-
servational accuracy, the nesting argument succeeds in giving sufficient conditions under
which the deterministic description is preferable. Here it is also true that if the premises of
the nesting argument are not true, a stochastic description will be preferable. Then there
is an observation function ® such that the values corresponding to ® can be observed, but
where observations show that there are no other states apart from these values. Hence
only the stochastic description {Z;} = {®(f;)} agrees with the observations and is thus
preferable (cf. Section .
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Barros (1996) do not state explicitly which kind of choice they are concerned
with. Yet they say:

Remember you are not going to predict exactly. That’s very
important. It’s different when you identify the point precisely.
Then you have ideal observation points. You would not have a
stochastic situation. (Suppes and de Barros 1996, 200)

Because there are several comments in this direction (highlighting that stochas-
tic descriptions arise by coarse-graining the phase space), it is plausible that
they were not concerned with in principle possible observations. Rather, it
seems, they were concerned with choice relative to the currently possible ob-
servations (or something similar). If so, then Winnie’s criticism misses the
target because it fails for the kind of choice Suppes was concerned with.

This counterexample involves the idea of indirect evidence. This idea will
first be explained with an example. Consider Darwin’s theory about natural
selection; this theory is only about selection which is natural and not artifi-
cial. Nevertheless, data from breeders about artificial selection are generally
regarded as supporting Darwin’s theory of natural selection. How is this pos-
sible? The data from breeders provide indirect evidence for natural selection:
They support Darwin’s general evolutionary theory; and by supporting the
general evolutionary theory, they also support Darwin’s theory about natural
selection (even though the data are not derivable from this theory).

Laudan and Leplin (1991) and Laudan (1995) have argued that indirect
evidence can provide an argument against underdetermination. Namely, sup-
pose that the same predictions are derivable from the theory of natural selec-
tion than from another theory U, and that U is not derivable from Darwin’s
general evolutionary theory or any other more general theory. Because only
the theory of natural selection is additionally supported by indirect evidence,
the theory of natural selection, and not U, is preferable relative to evidence.
Consequently, there is no underdetermination. Thus the main insight here
is that even if two theories have the same observational consequences, one
theory may still be preferable based on observations because only one theory
is additionally supported by indirect evidence.

Okasha (1998) has criticised Laudan and Leplin as endorsing the view that
indirect evidence amounts to being derivable from the same statement, which
leads to the unacceptable consequence that any statement is confirmed by a

18



statementlr_o] Okasha (1998) is certainly right that such a definition of indirect
evidence is untenable. However, with a more sophisticated understanding of
indirect evidence, Laudan and Leplin’s insight that indirect evidence can
provide an argument against underdetermination holds (as also admitted by
Okasha 1998, 2002). Namely, in this paper statement A is understood to
provide indirect evidence for statement B (where A is not derivable from B)
when A is confirmed and A and B are unified by a well-confirmed theory.
Clearly, for the example of natural selection this unifying theory is Darwin’s
general evolutionary theory. With this understanding, the difficulty pointed
out by Okasha (1998) is avoided and Laudan and Leplin’s main insight that
indirect evidence can block underdeterminiation holds.

Now we can construct an argument based on indirect evidence for the
stochastic description, exposing the weakness of the nesting argument. First
of all, note that, relative to currently possible observations/actual observa-
tions/in principle possible observations where there are limits, in principle, on
observational accuracy there is a choice between a deterministic description
and a stochastic description obtained by applying an observation function ®
to the deterministic description where ® corresponds to an observation finer
or the same than any of the currently possible/actual/in principle possible
observations. Because ® is so fine, regardless of whether the stochastic or
deterministic description is correct, the following holds for the observation
functions which, according to the deterministic description, are currently
possible/have actually been applied/are in principle possible: The observa-
tions corresponding to these observation functions can be made, and for finer
observations one obtains stochastic descriptions at a smaller scale. That is,
the premises of the nesting argument are true.

Now suppose that the stochastic description {Z;} = {®(f;)} can be de-
rived from a well-confirmed theory T, but that the deterministic description
(X, fi, P) does not derive from any theory. Also, suppose that there are many
descriptions which support 7', which do not derive from (X, f;, P) or {Z;},
and which provide indirect evidence for {Z;}. It follows that the stochastic
description {Z;} is preferable relative to evidence because it is additionally
supported by indirect evidence.@ Hence the conclusion of the nesting argu-

1ONamely, A confirms A. Given any arbitrary statement B, both A and B are derivable
from A A B. From this it follows that A confirms B (see Okasha 1998).

"For example, consider the choice between a stochastic description in statistical me-
chanics of the evolution of the macrostates of a gas and the deterministic representation
(see Werndl 2009a) of this stochastic description. Then, at the level of reality of the
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Figure 5: Observation functions of the baker’s transformation: (a) ® yields
a Bernoulli description; (b) ®4 yields a Markov description

ment is not true. This argument also shows that, in certain cases, there is
no underdetermination. Thus Suppes’ (1993) claim that there is underdeter-
mination relative to the currently possible observations cannot be generally
correct.

To conclude, for the choice relative to in principle possible observations
where there are no limits, in principle, on observational accuracy, the nesting
argument delivers the desired conclusion. However, the nesting argument
fails for the choice relative to currently possible observations (and this is
the kind of choice of concern in practice) or relative to actual observations
or relative to in principle possible observations where there are limits, in
principle, on observational accuracy.

6 The Analogy to Bernoulli Randomness

One of Winnie’s (1998) main topics is randomness. He claims that his argu-
ment for the deterministic description is analogous to an argument he gives
against the prevalence of Bernoulli randomness. This section will critically
discuss this claim. This is important because, while there is indeed an anal-
ogy, it will be argued that the arguments are also disanalogous in another
sense.

First of all, Winnie’s argument against the prevalence of Bernoulli ran-
domness will be outlined. Winnie calls descriptions Bernoulli random when
they are probabilistic and when the next outcome of the description is in-
dependent of the previous outcomes; i.e., when the history is irrelevant. So

macrostates, the stochastic description can be preferable because of indirect evidence.
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Bernoulli random descriptions are simply Bernoulli descriptions (Example 3).
Winnie starts by asking the question of whether deterministic descriptions
(X, ft, P) can be Bernoulli random relative to some observation functions
®. The answer is affirmative: There are deterministic descriptions, includ-
ing deterministic descriptions of the kinds used in science, which give raise
to Bernoulli descriptions. For instance, consider the baker’s transformation
(Example 1) and the observation function ®5((z,y)) = 01 if 0 <y < 1/2 and
Oy((z,y)) = 0q if 1/2 < y < 1. Figure 5(a) shows this observation function
®,. It is not hard to see that the stochastic descriptions {Z;} = {®o(f;)}
is the Bernoulli descriptions of a fair coin (two outcomes ‘o;” and ‘o, with
probability 1/2); hence there is Bernoulli randomness. Similarly, also for the
deterministic description of two hard spheres in a box (Example 2) there
are observation functions ® such that the resulting stochastic description
{Z,} = {®(f,)} is a Bernoulli description (see Simanyi 1999)/7|

Winnie then goes on to emphasise that even if some observation func-
tions yield Bernoulli descriptions, there are always finer observation func-
tions which do not yield Bernoulli descriptions. For instance, for the baker’s
transformation recall the observation function ®44 (see Example 1 in Section
2), which is shown in Figure 5(b). @46 is finer than ®,, and we have already
seen that the stochastic description {W;} = {®14(f;)} is not a Bernoulli de-
scription but a Markov description (see the discussion at the beginning of
Section 3). Each outcome of this Markov description has equal probabilities
P(Z;, = e;) = 1/16, 1 < i < 16. There is history dependence because e; is
followed by e; or es, es is followed by ez or ey, etc.; as a consequence, for in-
stance, P(Z; = ey given Z; 1 = ey) = 1/2 #1/256 = P(Z, = e1)P(Z; = e3).

On this basis, Winnie criticises claims in the literature that determinis-
tic descriptions can be Bernoulli random relative to any finite-valued ob-
servation function, regardless how ﬁneE Winnie is correct to point out
that deterministic descriptions are always only Bernoulli random relative to
some finite-valued observation functions[”] But another question is left open.

12There are observation functions which lead to Bernoulli descriptions with equal prob-
abilities (fair dice), and also observation functions which lead to Bernoulli description with
non-equal probabilities (biased dice).

13Tt is questionable that the literature which Winnie criticises really claims this. But
we can set this issue aside because it will not be relevant in what follows.

14This point, Winnie argues, also underlies a wrong interpretation of Brudno’s theorem.
There is no need to go here into Brudno’s theorem because the basic conceptual point
is exactly the same: Brudno’s theorem does not tell us that all coarse-grainings lead to
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Namely, suppose a deterministic description is not Bernoulli random relative
to an observation function ®. Can there still be observation functions ¥ finer
than & such that the deterministic description is Bernoulli random relative
to W? This question is interesting because if the answer is negative, then,
for fine-enough observations of deterministic descriptions, there will never
be Bernoulli randomness. As has been proven by Werndl (2009¢), the an-
swer is indeed negative: Whenever {®(f;)} is not a Bernoulli description,
there exists no finer observation function ¥ such that {¥(f;)} is a Bernoulli
description ||

Now Winnie claims that there is the following analogy: Suppes’ argument
for underdetermination fails for the same reason as the claim that there is
Bernoulli randomness for all finite-valued observation functions. The follow-
ing quotes illustrate this.

[ shall begin by discussing a similar interpretation of [the argu-
ment about Bernoulli randomness]m and argue that it is mis-
leading. Then [...] T shall argue that Suppes’ interpretation is
similarly misleading. (Winnie 1998, 310)

As the earlier discussion of [the argument about Bernoulli ran-
domness] has shown, the fact that deterministic systems generate
stochastic behaviour under a given partitioning in no way under-
mines the fundamental determinism of such systems. (Winnie

1998, 317)

Winnie does not state in which exact sense the argument against the
prevalence of Bernoulli randomness and the argument against underdeter-
mination are analogous. He might have had the following analogy in mind:
The argument about Bernoulli randomness is that even if a deterministic

Bernoulli random sequences; all it tells us is that there are some coarse-grainings which
lead to Bernoulli random sequences.

15 The basic idea of Werndl’s (2009¢) proof is as follows. By assumption, there is an
observation function ® : X — @ of the deterministic description such that {®(f;)} is no
Bernoulli description. Now suppose that there exists an observation function ¥ : X — O
finer than ® such that {¥(f;)} is a Bernoulli description. Because ¥ is finer than ®, there
is a function I' : O — @ such that ® = I'(¥). But it is not hard to see that if {¥(f;)}is a
Bernoulli description, then {®(f;)} = {T(¥(f;))} is also a Bernoulli description. But this
contradicts the assumption that {®(f;)} is no Bernoulli description.

16The text in square brackets has been replaced by the terminology used in this paper.
I will use this convention throughout.
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description is Bernoulli random relative to some observation function @,
the deterministic description will cease to be Bernoulli random relative to
some observation functions which are finer than ®. Analogously, even if the
stochastic description {®(f;)} is observationally equivalent to the determinis-
tic description (X, f;, P) relative to the observation function @, the stochastic
description {®(f;)} is not observationally equivalent to (X, f;, P) relative to
some observation functions finer than @ (indeed all observation functions
finer than ®). Hence if, given any arbitrary finite-valued observation, it is in
principle always possible to make finer observations, then the deterministic
description is preferable (relative to the in principle possible observations
where there are no limits, in principle, on observational accuracy). This is so
because only the deterministic description allows one to always make finer
observations. So there is indeed an analogy.

However, it is also important to see that the cases are disanalogous in
another sense. Bernoulli randomness is not prevalent because even if deter-
ministic descriptions are Bernoulli random relative to some observation func-
tions, for fine-enough observation functions they will cease to be Bernoulli
random. The analogous argument for the choice between deterministic and
stochastic descriptions is as follows: Even if deterministic descriptions yield
nontrivial stochastic descriptions relative to some finite-valued observation
functions, for fine-enough finite-valued observation functions one would not
obtain nontrivial stochastic descriptions any longer. However, this is wrong.
As we have seen in Section [3| for many deterministic descriptions, relative to
any arbitrary finite-valued observation function, there is observational equiv-
alence to a nontrivial stochastic description. Hence, regardless of how fine
the observation functions are, one obtains nontrivial stochastic descriptions.
So there is no analogy in this sense. Because Winnie claims that the two
cases are analogous and this is an obvious potential analogy, it is important
to point out that there is no analogy in this sense.

7 Conclusion and Outlook

At the beginning of the paper we looked at a time series of observations of the
position of a particle moving on a square. Science aims to find a description
which reproduces these observations and yields new predictions. One of the
questions arising here is whether the phenomenon is better modeled by a
deterministic or an indeterministic description. Intuitively, one might think
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that the data only allow for a deterministic or an indeterministic description,
but as we have seen in Section |3 this is not the case. In several cases,
measure-theoretic deterministic descriptions are observationally equivalent
to stochastic descriptions at any arbitrary observation level. Therefore, the
question arises which description is preferable relative to evidence. If the
evidence equally supports a deterministic and a stochastic description, there
is underdetermination. Section [l discussed the different kinds of choice these
results pose, namely relative to in principle possible observations where there
are no limits, in principle, on observational accuracy, relative to currently
possible observations, relative to actual observations, or relative to currently
possible observations where there are limits, in principle, on observational
accuracy.

Section [5| discussed the following argument by Winnie (1998): Consider
the possible observation functions which, according to the deterministic de-
scription, one should be able to apply. Suppose that it is actually possi-
ble to make these observations and that one obtains stochastic descriptions
at a smaller scale when finer observations are made. Then, Winnie (1998)
claims, the deterministic description is preferable. It was argued that Win-
nie’s argument yields the desired conclusion relative to in principle possible
observations where there are no limits, in principle, on observational accu-
racy. Yet relative to the currently possible observations (this is the kind of
choice of relevance in practice), relative to the actual observations, and rela-
tive to in principle possible observations where there are limits, in principle,
on observational accuracy the argument fails because it also applies to sit-
uations where the stochastic description is preferable. Section [6] was about
Winnie’s claim that his argument against underdetermination is analogous
to the argument that even if a deterministic description is Bernoulli random
at some observation level, it will fail to be Bernoulli random relative to finer
observation levels. There is indeed an analogy — if a stochastic description is
observationally equivalent to a deterministic description at some observation
level, it will fail to be observationally equivalent for finer observation levels.
However, it was argued that these cases are disanalogous in an important
sense. While the deterministic description will cease to be Bernoulli random
for fine-enough observation levels, the deterministic description will be obser-
vationally equivalent to stochastic descriptions at any arbitrary observation
level.

Returning to the question of which description is preferable, we have
seen that none of the arguments discussed above is tenable relative to the
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currently possible observations (the kind of choice arising in practice), relative
to the actual observations or relative to the in principle possible observations
where there are limits, in principle, on observational accuracy. So which
description is preferable relative to evidence in these cases? An answer will
now be proposed when one has to choose between a deterministic description
(X, fi, P) derivable from Newtonian theory and a stochastic description {Z,}
which is not derivable from any theory (cf. Werndl 2009¢ and 2011). This
includes the particle that bounces off several mirrors (Example 1), the two
hard spheres moving in a box (Example 2) as well as the examples discussed
by the extant literature (Suppes 1993, Suppes and de Barros 1996, Winnie
1998).

This answer involves the idea of indirect evidence as discussed in Sec-
tion [5 The relevant predictions derived from the deterministic description
(X, fi, P) and the stochastic description {Z;} are the same (the relevant pre-
dictions are those which can be tested by the currently possible observations,
the actual observations or the in principle possible observations). Still, there
are many deterministic descriptions from Newtonian theory which do not
follow from (X, f;, P) or {Z;}, which are supported by evidence, and which
provide indirect evidence for (X, f;, P) but not for {Z,} (because these de-
terministic descriptions and (X, f;, P) are unified by Newtonian mechanics).
Thus the deterministic description (X, f;, P) is preferable because it is addi-
tionally supported by indirect evidence, and there is no underdetermination.
This means that the deterministic description is preferable for the particle
that bounces off several mirrors (Example 1) and the two hard spheres mov-
ing in a box (Example 2). Generally, because the relevant predictions derived
from (X, f;, P) and {Z;} are the same, one can escape the conclusion of un-
derdetermination only by appealing to other predictions; here these other
predictions are provided by the other Newtonian descriptions.

This argument can be generalised: Suppose that one of the descriptions
is additionally supported by indirect evidence because it is derivable from a
well-confirmed theory and that the other description is not derivable from any
well-confirmed theory. Then the description which is additionally supported
by indirect evidence is preferable. It is important to note that the preferred
description may be deterministic or stochastic. In the case of Newtonian
mechanical descriptions, indirect evidence leads one to prefer the determi-
nistic description. Yet in other cases the stochastic description might be
preferable. To conclude, the main point is that even if the relevant predic-
tions derived from the deterministic and stochastic description are the same,
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indirect evidence may still make one of the descriptions preferable.
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