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Preface

The true path is along a rope,
not a rope suspended way up in the air,
but rather only just over the ground.
It seems more like a tripwire than a
tightrope.

Franz Kafka

The cause of our confusion is often that the solution to the problem at hand is so near
to us that we cannot help but trip over it, and then assume it to be part of the problem
itself. So, it will be argued, is the case of the problem of time in canonical gravity.
Moreover, as we shall see, the realisation essential to understanding the true role of time
in canonical gravity is that we have failed to notice that the solutions – in the sense of the
true dynamical paths – lie in precisely the direction that is perpendicular to where we are
accustomed to looking.

The following work is constituted by the confluence of a variety of different ideas, is-
sues and questions that grow out of the interconnected tasks of interpreting and quantising
the general theory of relativity. Essentially its focus is on both the classical and quantum
facets of the problem of time in canonical gravity and, as such, much attention is given
to ideas – both technical and conceptual – targeted directly or indirectly at unpicking the
Gordian knot of this multifaceted problem. For all that, as intimated above, in essence
our analysis relies on a single, fundamental realisation which we can state in concise but
technical terms: the null directions associated with the Hamiltonian constraints of canon-
ical general relativity must be understood as dynamical not unphysical directions. The
formal and conceptual basis behind this statement, as well as the relevant qualifications
and implications, will be detailed at length during the body of our discussion. Before then
it will be useful to give some historical background to our problem.

To understand the history of the problem of time in canonical gravity we must first
understand the history of the canonical formulation of gravity itself. Thus, in placing our
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project in its proper context it is necessary to go back to the physics of the late nineteen
fifties and principally the work of Paul Dirac and Peter Bergmann.1 Dirac’s contribution is
particularly significant since both the general constrained Hamiltonian formalism (Dirac
(1958a)) and the first application of this formalism to general relativity (Dirac (1958b))
can be traced back to him. A few years later Arnowitt, Deser and Misner (Arnowitt
et al. (1960, 1962)) were able to simplify the formalism and it is their ‘ADM’ action
that we shall study below. The motivation for much of this early work was to find a
canonical path towards a quantum theory of gravity. It was expected that if we could gain
a good understanding of: i) how to quantise constrained Hamiltonian theories in general
terms; and ii) how to formulate general relativity as a constrained Hamiltonian theory,
then we would have gone a long way towards the holy grail of a quantum theory of
gravity. Unfortunately, things turned out not to be so simple and, despite some admirable
progress, half a century later the canonical quantisation program is still beset by severe
technical and conceptual problems.

The particular problem that we will be considering in great detail here was identified
early on in its classical manifestation and is connected to the fact that the local Hamilto-
nian functions responsible for generating evolution within the canonical theory are first
class constraints. According to the the Dirac prescription (Dirac (1964)), all the first
class constraints that occur within constrained Hamiltonian theory should be understood
as generating infinitesimal transformations that do not change the physical state; thus we
have that time is in some sense unphysical! A directly analogous problem can be found
within the definition of observables (see Bergmann (1961)). According to Bergmann’s
definition (which follows from Dirac’s prescription) these are represented by phase space
functions which have a (weakly) vanishing Poisson bracket with the first class constraints.
Since the Hamiltonian is a constraint this means that the observables cannot have any dy-
namical evolution. Thus, we have two aspects to the classical problem of time; the prob-
lem of change and the problem of observables. Below we will consider two strategies
which have been developed over the last twenty years and which address these prob-
lems by either modifying the Dirac-Bergmann prescriptions or rejecting them outright.
Understanding the ontology implied by either of these strategies involves tackling much
conceptually challenging terrain and one of the key tasks of this project will be to provide

1This is not to discount the notable contributions of others, in particular James Anderson and Arthur
Komar. For an early paper which deals with aspects of the problem of time from a non-canonical perspective
see Misner (1957). For a fascinating account of the little known 1930s work on constraint theory by Léon
Rosenfeld see Salisbury (2007, 2010).
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clear guidance as to how the relevant interpretational frameworks should be thought to sit
together.

Perhaps more starkly problematic is the quantum mechanical manifestation of the
problem of time. In his work on the quantisation of constrained Hamiltonian systems
Dirac constructed a technique for canonical quantisation that can be successfully applied
to theories such as electromagnetism. Since in that case this Dirac quantisation is found
to lead to the hugely successful theory that is quantum electrodynamics one would expect
that the technique itself has solid mathematical foundations. However, when applied to
canonical general relativity Dirac quantisation, which involves the promotion of all first
class constraint functions to operators annihilating the wavefunction, leads directly to the
Wheeler-de Witt equation (DeWitt (1967)) – ‘Ĥ | ψ〉 = 0’2. This ‘wavefunction of the
universe’ gives at best probability amplitudes on three dimensional spatial configurations.
Thus, the application of standard quantisation techniques to canonical gravity leads to a
quantum formalism that is in a fundamental sense without time.

The question is then: how can we reconcile ourselves to a formalism that represents
reality as frozen in an energy eigenstate when our phenomenology abounds with change?
Much work over the last few decades has focused upon recovering the impression of
dynamics from within the frozen formalism (see Anderson (2010) for a recent review).
Here we will develop an entirely different approach whereby it is a problem with the
Dirac quantisation technique itself that has led to an unphysical timelessness within the
conventional canonical quantum gravity formalism. For a class of non-relativistic models
we will offer an alternative methodology which involves modifying the Dirac technique
such that we are able to retain dynamics. For the full case of general relativity, however, it
is not entirely clear how one should proceed towards quantisation whilst retaining dynam-
ics. This is in part due to the various subtleties involved in the two different formulations
of canonical general relativity according to the two strategies for solving the classical
problem of time mentioned above.

It is in the context of attempting to get a better understanding of the relationship be-
tween the problem of quantising gravity and the problem of reconciling two very different
formulations of the classical theory, that the lengthly digression into the philosophy of sci-
ence in the final quarter of this thesis should be seen. There we will examine the extent
to which a generic problem of metaphysical underdetermination in science might be seen

2The inverted commas are because, as we shall see, this expression is far from well defined.
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to motivate a structuralist view as to the ontology of physical theory. The particular case
that is most relevant to canonical gravity is when this underdetermination is driven by
the existence of multiple formulations of a theory, and we shall find suggestive evidence
that – given we are dealing with a classical theory – quantisation may be able to give
us key insights into what structures are most significant. The final key idea that will be
introduced below is that we may be able to invert this idea of quantisation as a guide to
structure and use the isolation of common structure between different formulations of a
theory as a heuristic towards finding the correct quantisation methodology. Thus, by re-
solving the underdetermination in the case of our two formulations of classical canonical
general relativity, we may be able to gain an invaluable insight into the correct way to
proceed towards the quantum theory.

The genesis of this thesis can be traced back to a suggestion made to me by Oliver
Pooley during my undergraduate studies at Oxford that it would be interesting to con-
sider the comparison between Julian Barbour’s and Carlo Rovelli’s timeless approaches
to quantum gravity as a topic for my fourth year thesis. Whilst working on that earlier
project, and during the completion of my masters dissertation at Imperial College London
(supervised by Jonathan Halliwell), I spent some time grappling with the various argu-
ments surrounding the treatment of the Hamiltonian constraints of canonical gravity as
generators of unphysical transformations. Although I was aware of the Barbour-Kuchar̆
line that such a gauge generating interpretation of the Hamiltonian constraints was inco-
herent and unfounded, I was still broadly convinced that the mathematical evidence (as
well as the ‘received’ opinion) was against them. During the early stages of my doctoral
work at the University of Sydney (supervised by Huw Price and Dean Rickles) I returned
to this issue and was prompted to reconsider my earlier opinions by a combination of the
then recently posted article Barbour and Foster (2008) and several, much appreciated, dis-
cussions with Hans Westman. What, in the end, was for me the key realisation – and what
is one of the ideas central to this thesis – is that if we think about the theory of constrained
systems in geometric terms then the gauge generating interpretation of the Hamiltonian
constraints (within both gravity and non-relativistic models) amounts to moving to a re-
duced phase space with trivial dynamical structure. Further discussions with Hans, Dean
Rickles, Maki Takahashi, Pete Evans and Julian Barbour himself served to cement this
key observation in my mind and provided the basis for much of the formal and interpre-
tational material presented below. Moving beyond purely classical theory, I decided to
investigate the extent to which this negative conclusion with regard to reduction might
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be seen to impact upon the conceptual basis of quantum Hamiltonian constraints. The
results of this project then led to a collaboration with Sean Gryb (and also initially Tim
Koslowski) aimed at finding an alternative method of quantisation which was not pred-
icated upon a problematic reduced space. For non-relativistic models we were able to
establish what we believe to be a consistent procedure for achieving a relational quan-
tisation that respects the dynamical role of Hamiltonian constraints (the details of this
results are included in Chapter 9 below).

To all the above named people I am much grateful for the interactions and discus-
sions that were essential to the completion of this project – and also added greatly to the
enjoyment of the entire process! Additional valuable, and again highly enjoyable, inter-
actions have come from the audiences of the numerous talks that I have given on many
of the topics covered below – to the the attendees of the weekly Centre for Time gradu-
ate meetings, in particular, I am grateful for their patience and philosophical enthusiasm.
For help with proof reading large sections of the text below I am grateful to Pete Evans,
Dean Rickles, Julian Barbour, Huw Price, Sam Baron and Zahir Thébault. I am also
extremely grateful to two of the examiners for their insightful and constructive critical
appraisal of the original submitted version of the thesis – many substantial improvements
and clarifications have been made based upon their suggestions. I would also like to thank
the various friends, family members (in particular my parents) and funding bodies whose
support I most certainly would not have been able to do without. Finally, I am much in-
debted to Gordon Belot, Carlo Rovelli and Thomas Thiemann for their insightful writings
on canonical gravity and the problem of time – in particular Belot (2007); Rovelli (2004);
Thiemann (2007), these lengthly treatments are notably of great pedagogical as well as
technical and philosophical value.

In this vein, and proceeding to a summary of what follows, much of the material
within the Part I of this thesis is presented with the aim of providing the reader with a
concise review of the substantial amount of mathematics and physics that will prove nec-
essary in our later discussion. An additional aim of Part I is to introduce some of the
important connections between the interpretation of classical theories without Hamilto-
nian constraints (what we shall call standard gauge theories) and the quantisation of these
theories. Chapter 1 will provide a concise introduction to relevant ideas from differential
geometry (§1.1), Lagrangian (§1.2), Hamiltonian (§1.3), symplectic (§1.4) and presym-
plectic mechanics (§1.5). Chapter 2 will focus upon the philosophical and interpretational
stances that can be attached to the various mathematical structures. Chapter 3 principally
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consists of an introduction to the three quantisation methodologies which will be most
significant to our project: geometric quantisation (§3.1), constraint quantisation (§3.2)
and path integral quantisation via a Faddeev-Poppov methodology (§3.3). Chapter 4 then
presents an interpretative analysis of the relationship between the quantisation techniques,
in particular the sense in which they are conceptually, if not formally, predicated upon the
viability of classical reduction (§4.1). We then consider the extent to which this facet
of quantisation then justifies a reductionist type line of the interpretation of the classical
theory (§4.2).

The basic structure of Part II is as follows. We begin in Chapter 5 by first giving
both a Lagrangian (§5.1) and Hamiltonian (§5.2) description of an extended version of
mechanics where time is promoted to a configuration variable. We then proceed to the
Jacobi formulation of mechanics within which temporal structure is eliminated altogether
(§5.3). The final, and crucial, section of Chapter 5 (§5.4) will then introduce an argument
against the applicability of standard gauge techniques (in particular symplectic reduction)
to the case in hand. Chapter 6 introduces two non-standard strategies for representing time
and observables within non-relativistic reparameterization invariant theory: the emergent
time strategy (§6.1) and the correlation strategy (§6.2). Chapter 7 will then consider some
of the key interpretational consequences of our discussion in general (§7.1) and of these
strategies in particular (§7.2). Chapter 8 will offer some general and introductory ideas
about the nature of time in conventional approaches to quantum theory, before we pro-
ceed, in Chapter 9, to the introduction of quantum mechanical non-relativistic problem of
time. This problem will be seen to have two facets, the first stemming from the reduction
issue (§9.1) and the second from the specific exclusion of quantum relational clocks by
standard quantisation techniques (§9.2). The nature of these problems is further illustrated
by toy model examples (§9.3). We then offer a new proposal for the quantisation of (glob-
ally) reparameterisation invariant theories via an intermediary formalism (§9.4) which we
will argue to solve the non-relativistic quantum problem of time as we have defined it. We
will then consider the structure of the observables of the intermediary formalism in order
to demonstrate their ability to be interpreted as representing the physical degrees of free-
dom on the original theory (§9.5), before finally discussing some outstanding interpretive
issues implied by the ideas introduced (§9.6.

Part III concerns the full relativistic problem of time. We begin in Chapter 10 with
a concise presentation of the canonical formulation of general relativity (§10.1), that is
supplemented by an analysis of the relationship with its covariant counterpart (§10.2) and
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an examination of the role of the Hamiltonian constraints in particular (§10.3). We then
proceed to detailing the substance of our first denial of time, first in the context of a mo-
tivation taken from standard gauge theory (§11.1) and then in the context of a motivation
from reductive spacetime relationalism (§11.2). An argument against the first denial on
the basis of dynamical trivialisation will then be presented, together with a rebuttal of the
principal line of reasoning that has been employed in its favour (§11.3). Chapter 12 will
then present the substance of our second denial on the basis of Machian temporal relation-
alism (MTR) and the emergent time strategy with which it is assoiacted. After presenting
MTR in general terms we will isolate the source of a key problem within its application
to canonical general relativity (§12.1). Two possible solutions to this problem will then
be evaluated, the first in terms of sophisticated temporal relationalism (§12.2) and the
second in terms of a scale invariant formulation of gravity called shape dynamics (§12.3).
Chapter 13 will introduce the third denial which is based upon the complete observables
scheme that has already been introduced for the non-relativistic case. After a brief re-
statement of essence of this correlation strategy (§13.1), we proceed to first consider the
additional ideas necessary for an application to canonical general relativity (§13.2) and
then the philosophical implications with regard to the relative ontological status of space
and time (§13.3). Chapter 14 then considers both the implications of the failure of clas-
sical reductionism for a Dirac style quantisation of gravity. Chapter 15 consists of some
preliminary work towards the application of the ideas of Chapter 9 to the full theory of
relativity.

The philosophy of science discussion of Part IV begins, in Chapter 16, with a number
of introductory sections. First, we review the two major frameworks for analysing the
structure of a physical theory (§16.1). Next, we consider how one of these frameworks
may be used to precisely characterise what it is about a physical theory that could be
said to be underdetermined (§16.2). Of particular importance will be the specific case
within which the underdetermination is driven by multiplicity within the formalisation of
a physical theory. We then introduce the position of scientific realism and explain why
one might think it to be specifically threatened by underdetermination cases (§16.3). The
next section details the various ways our scientific realist may attempt to break the under-
determination by appeal to external criteria (§16.4), before we introduce the alternative
position of ontic structural realism (OSR) within which the ontological bite of the un-
derdetermination is supposedly undercut (§16.5). We will also examine both OSR and
scientific realism in the context of the historically grounded undermining of ontology that
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motivated by the argument from pessimistic meta-induction, and from this analysis place
a set of conditions on an application of OSR being both consistent and substantive. With
these conditions in mind, the final section of this chapter (§16.6) will present a scheme
for thinking about formulation underdetermination and OSR in the context of quantisa-
tion. The following three chapters will then represent case studies for the analysis of
the proceeding ideas within three examples of classical formulation underdetermination.
Chapter 17 will examine the Lagrangian and Hamiltonian formulations of Newtonian
mechanics, and then Chapter 18 will examine the reduced and unreduced formulations of
standard gauge theory, before finally, in Chapter 19, we return our discussion to our two
rival formulations of canonical gravity. We conclude, in Chapter 20 with a summary of
our project together with an analysis of the relevant implications and prospective research
avenues that have been illuminated.
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Part I

Standard Gauge Theory

1



Guide to Part I

In the first part of this thesis we will conduct a review of the classical and quantum me-
chanical structure of what we call standard gauge theories. Although, for simplicity, in
our treatment we will assume that we are dealing with finite dimensional systems, the
class of standard gauge theories properly includes all gauge theories within which the as-
sumption of an external time parameter is made. Thus, although unfortunately we shall
not have space to demonstrate this explicitly, the essential points made within the follow-
ing discussion are expected to be relevant within both electromagnetism and Yang-Mills
theories.3 We therefore have that at least three of the four fundamental forces of nature
can be broadly understood as being described by standard gauge theories.

Importantly, however, many of the details discussed in this part, and the related philo-
sophical conclusions, are not applicable to general relativity or its non-relativistic toy
models. Foreshadowing one of the central arguments of this thesis, many aspects of the
problem of time will be shown to derive from the misapplication of standard gauge theory
techniques to the non-standard gauge theory that is general relativity. However, there is
much groundwork that must be done before we get to this crucial point.

Chapter 1 will provide a concise introduction to relevant ideas from differential geom-
etry (§1.1), Lagrangian (§1.2), Hamiltonian (§1.3), symplectic (§1.4) and presymplectic
mechanics (§1.5). Chapter 2 will focus upon the philosophical and interpretational stances
that can be attached to the various mathematical structures. Chapter 3 consists of an in-
troduction to the three quantisation methodologies which will be most significant to our
project: geometric quantisation (§3.1), constraint quantisation (§3.2) and path integral
quantisation via a Faddeev-Poppov methodology (§3.3). Chapter 4 then presents an in-
terpretative analysis of the relationship between the quantisation techniques, in particular
the sense in which they are conceptually, if not formally, predicated upon the viability of
classical reduction (§4.1). We then consider the extent to which this facet of quantisation
then justifies a reductionist type line of the interpretation of the classical theory (§4.2).

3For explicit treatment of these theories (including some important technical subtleties) refer to Sunder-
meyer (1982); Marsden and Weinstein (1982); Parrinello and Jona-Lasinio (1990). Belot (2007, §5) gives
more general details of the geometric structure of standard gauge field theories.
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Chapter 1

Geometry, symmetry and constraints

1.1 Elements from differential geometry

Here we give a brief introduction to some of the mathematical concepts essential to our
discussion below. For further introductory material on differential geometry the reader is
suggested to refer to Baez and Muniain (1994) or Butterfield (2007).

A Lie group, G, is a group4 that is also a differentiable manifold5 with the property
that the product and inverse operations are smooth (i.e., have continuous derivatives).
The action of a Lie group on a manifold, Φ(g, x) or g · x where x ∈M , is a smooth map
Φ : G×M → M that implements the identity and associative aspects of the group. The
orbit of the action through a point on a manifold is a set of points [x] := {g · x : g ∈ G}.
Under certain conditions the action ofG onM is to define a foliation ofM with the orbits
as the leaves of the foliation.6 We can form a set N = M/G known as the quotient7 of
M by the group G by considering the set of orbits of the action of G for every point in M
i.e., N := { [x] : ∀x ∈M}.

The simplest Lie group is the additive real group R. It defines an R-action Φ : R ×
M → M and we associate it with a one parameter group of diffeomorphisms from M to
M called a flow {αt} through the relation αt(x) = Φ(t, x) for x ∈ M . If the flow is well
defined for all t ∈ R it is global, otherwise it is local. Every R-action on M induces a
unique assignment of a tangent vector, X ∈ TxM , to every point in M and thus allows us

4A set of elements, g, with an identity element, e, within which an operation of combining elements to
get another element also in the set (i.e., g3 = g1 ◦ g2 and g = g ◦ e) is defined such that it is associative and
within which each element has an inverse (i.e., g ◦ g−1 = e)

5A space that is locally similar enough to Euclidean space for us to be able to do calculus on it.
6See Souriau (1997, p.38 and p.49).
7The quotients we will deal with in this thesis will be manifolds, see §1.5 for details. The general

conditions for a quotient to be a manifold can be found in Souriau (1997, pp.13-14).
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§1.2 Lagrangian mechanics 4

to define a unique tangent vector field, X : x ∈ M 7−→ X(x) ∈ TxM . Conversely we
can think of a given vector field as generating both an R-action and a flow (the latter we
write simply asX t). Given a vector field on a manifold we can define a family of integral
curves as smooth maps, γx(t) : I → M , from a real open interval I ⊂ R to U ⊂ M ,
by considering the local flows (global if I = R and U = M ) generated through every
point in the manifold (i.e., γx(t) : t 7−→ Φt(x) ∀x ∈M ). These curves are such that each
point in M lies on exactly one such curve and the parameterisation of each curve up to
a choice of origin is fixed.

Given a vector field, X , on a manifold, M , we can define the Lie derivative, LX :

f 7−→ LXf , as an operation on scalar functions, f : M → R, that gives us the rate of
change of f along X .8 Given another vector field, Y , also on M , we can then consider
the commutator between the two relevant Lie derivatives, LXLY −LYLX ≡ L[X,Y ]. This
defines the vector field [X, Y ] which we call the Lie bracket of the fields X and Y . The
Lie bracket is equivalent to Lie derivative of Y along X and so is also written LXY . In
effect, it measures the non-commutation of the flowsX t and Y t. Since the Lie bracket can
be understood as constituting the suitable binary operation over a vector space it defines
an algebra. This algebra is one instance of a special type of algebra called a Lie algebra.

1.2 Lagrangian mechanics

We start with the specification of the set of n independent variables, qi where i = 1...n,
which serve to characterise the properties of a mechanical system. These variables are
elements of a manifold which we call the configuration space, C0.9 At a given point
q ∈ C0 we can define a tangent space TqC0. The disjoint union of all the tangent spaces
of C0 is called the tangent bundle TC0. The elements of the tangent bundle are pairs (q, q̇)

of configuration variables q and vectors tangent to those variables q̇. For formulations of
mechanics with a fixed parameterisation the parameter with which the tangent vectors are
defined is unique and may be interpreted as time t (this will prove not to be the case for
the theories of mechanics considered in §4). Thus we have (q, q̇) ∈ TC0 with q̇ = ∂q

∂t
.

A curve within the tangent bundle, γ0 : R → TC0, will correspond to a history of a

8Explicitly, (LXf)(x) := d
dt |t=0f(Xt(x)) ≡ X(x)f ∀x ∈M , where f(Xt(x)) is the value of f for a

given evaluation of the flow generated by X at x ∈M .
9The subscript 0 is used to distinguish the objects introduced here from those of the extended description

of mechanics given in §5.
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system – a sequence of configurations and velocities. The parameterisation of the curve
will be fixed up to a choice of origin and unit by the distinguished time parameter t. This
parameter can be taken to vary monotonically along each curve in configuration space.
Clearly, for this picture to match up with the physics of the real world we need some
restriction on which histories are nomologically possible. This is achieved by defining
the Lagrangian, L0 : TC0 → R, and the action, I[γ0] =

∫
γ0
L0[qi, q̇i]dt =

∫
γ0

(T − V )dt,
where T and V are kinetic energy and potential energy respectively. The extremisation
of the action, δI[γ0] = 0, according to the principle of least action leads to the Euler-
Lagrange equations, d

dt

(
∂L0

∂q̇i

)
= ∂L0

∂qi
, that specify a set of parameterised solutions,

{γPS} ⊂ {γ0}, which uniquely determine the physically possible histories of the system
given an initial point in TC0.

1.3 Hamiltonian mechanics

An alternative formulation of mechanics in terms of first order equations is achieved by
moving to the cotangent bundle of our configuration manifold, the phase space Γ0 =

T ∗C0. This is the disjoint union of all the cotangent spaces T ∗q C0 which are themselves
defined as spaces of linear functionals on TqC0 (i.e., the duals of the tangent spaces). A
point in phase space, (q, p), consists of a point in our original configuration space, q ∈ C0,
paired with a covector at q, p ∈ T ∗q C0. These covectors, which we call the conjugate
momenta, are given by the Legendre transformation, FL : TC0 → T ∗C0, which is the
map between the configuration-velocity space and the phase space. It can be explicitly
constructed using the definition of the canonical momenta, pi = ∂L

∂q̇i
. To fix the dynamics

we introduce the Hamiltonian functional, H0[qi, pi] = piqi − L = T + V , and derive
Hamilton’s equations, ṗi = −∂H0

∂qi
and q̇i = ∂H0

∂pi
. The relevant parameterised solutions

γ̄PS describe the system’s dynamics uniquely in the phase space Γ0 and are isomorphic to
the solutions γPS in the configuration-velocity space TC0.

1.4 Symplectic mechanics

An elegant and powerful characterisation of mechanical systems is provided by the sym-
plectic approach (Abraham and Marsden (1978); Arnold et al. (1988); Souriau (1997)).
Symplectic is a Greek word first introduced in this context by Weyl (1939). It means
roughly ‘plaited together’ or ‘woven’. A symplectic approach to mechanics involves the
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generalised description of the phase space used above in terms of a natural geometric lan-
guage with the canonical momenta and configuration variables explicitly represented as
woven together.

Above we defined a covector as the dual of a tangent vector, similarly we can define a
cotangent vector field or one-form as the dual of a tangent vector field. We can generalise
these objects to define a k-form as a smooth section of the kth exterior power of the
cotangent bundle, Ωk(T ∗M), of a manifold M . Of particular interest are two-forms
which are functions Ω(x) : TxM × TxM → R that assign to each point x ∈ M a
skew-symmetric bilinear form on the tangent space TxM to M at x (Marsden and Ratiu
(1994)). We can transform a k-form into a k + 1-form by the action of the exterior
derivative, d : Ωk(T ∗M) → Ωk+1(T ∗M). It is such that df = df , d(dα) = 0 and
d(fα) = df ∧ α + fdα where α is a k-form and df is the differential of f . Here we
have introduced the totally anti-symmetric wedge product, ∧, which for a pair of one
forms θ, φ ∈ Ω1(T ∗M) can be simply expressed in terms of the usual tensor product as
φ ∧ θ = φ⊗ θ − θ ⊗ φ.

Given a general cotangent bundle, T ∗M , we can always define a corresponding Poincaré
one-form10, θ, in terms of a sum of wedge products between a covector and the total dif-
ferential of the vector it is paired with. Thus for our phase space, Γ0, the Poincaré one
form is θ = pidq

i. If we then take the exterior derivative we get a two-form:

Ω0 = dθ = d(pidq
i) = dpi ∧ dqi (1.1)

This two-form is called a symplectic two-form and is both closed (dΩ0 = 0) and non-
degenerate (if Ω0(Xf , Xg) = 0 for all Xf ∈ TM then Xg = 0). A manifold endowed
with a symplectic two-form constitutes a symplectic geometry (M,Ω0). Significantly, if
we are given a smooth function, f , on a manifold endowed with a symplectic two-form
then we immediately define uniquely a smooth tangent vector field Xf through the map
f 7−→ Xf given to us by Ω0(Xf , ·) = df . The uniqueness of the vector field is guaranteed
by the non-degeneracy of Ω0.

The relation between symplectic geometry and the Hamiltonian theory of mechanics

10See Westenholz (1978, pp. 392-4) for more details.
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outlined above can be seen immediately since Hamilton’s equations can be written:

(q̇1, ..., q̇n, ṗ1, ...ṗn)

(
0 I

−I 0

)
=

(
∂H0

∂q1

, ...,
∂H0

∂qn
,
∂H0

∂p1

, ...,
∂H0

∂pn

)
(1.2)

where I is the n× n identity matrix. This expression is an unknown vector multiplied by
a matrix and set equal to known vector. It is equivalent to

Ω0(XH0 , ·) = dH0 (1.3)

which is an unknown tangent vector field (the Hamiltonian vector field XH) contracted
with a two-form and set equal to the exterior derivative of the Hamiltonian, H . Thus we
can see Hamilton’s equations have an immediate connection with symplectic geometry.
The dynamics of a system can be totally specified by the triple (Γ0,Ω0, H0), where Γ0 is
our phase space manifold (cotangent bundle), Ω0 is the symplectic two form, and H0 is
the Hamiltonian function on Γ0. Together these three elements fix the value of the Hamil-
tonian vector field, XH0 . It is the integral curves of this vector field that correspond to the
parameterised phase space solutions γ̄PS that we associated with the physical histories
above.

The Hamiltonian vector field that we have just defined is unique. This implies that
it will generate a unique R-action on phase space. This Hamiltonian R-action, and the
associated Hamiltonian flow11, are what we conventionally identify as temporal evolution
since they take us from a point in phase space (instantaneous state of a physical system)
to a second point (state) that is t units along a solution (physical history). Thus, we see
that there is a intimate connection between the Hamiltonian and time.

This connection is made even more explicit by the introduction of the Poisson bracket,
which is a special case of the Lie bracket, that can be defined via the symplectic two-form
for any pair of functions, f, g ∈ C∞(Γ0), as {f, g} := Ω0(Xf , Xg). The Poisson bracket
can be related to the action of a vector field on a smooth function {f, g} = Xg(f) ≡
df(Xg) ≡ LXg(f). This means that if we take the Poisson bracket of the Hamiltonian
with an arbitrary smooth function we will get the change of this function along the flow

11It is important to note here that the word flow will always be used in the precise mathematical sense
given in §1.1 and has only a tenuous relationship with the (arguably ill-defined) metaphysical notion that
goes under the same name. See Price (2009) for discussion of the problems with the metaphysical notion
of flow.
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defined by the Hamiltonian vector field. This is equal to the variation of the function with
respect to the flow parameter of XH0 which is, of course, how change with respect to time
is represented:

{f,H0} = XH0(f) =
df

dt
= ḟ (1.4)

Conversely, the commutation condition {f,H0} = 0 indicates that a function is conserved
– it does not change with respect to time.

1.5 Presymplectic geometry and symplectic reduction

A physical system within which a Lie group, G, acts on the tangent bundle, TC0, such
that the Lagrangian, L, is invariant and the group is local (i.e., it can be parameterised
in a natural way by a family of arbitrary functions on space-time) is said to display a
gauge symmetry. In such systems the assumption that the Legendre transformation is
an isomorphism which was implicit in our construction of mechanics above no longer
holds. This is because the bijectivity of the map FL : TC0 → T ∗C0 is dependent on the
Lagrangian being such that it determines tangent vectors q̇ uniquely through the defini-
tion of the canonical momenta. Gauge symmetries g ∈ G manifestly subvert this since
we have that L(q′, q̇′) = L(gq, gq̇) = L(q, q̇) for ∀g ∈ G. In phase space terms the
existence of a gauge symmetry group corresponds to the pi’s and qi’s not all being inde-
pendent - there exists some functional relationship between them of the form φ(p, q) = 0.
We call such functions constraints. These particular constraints are often called pri-
mary constraints following the terminology introduced by Dirac and Bergmann. Primary
constraints are distinguished as being those resultant directly from the fact that the conju-
gate momenta are not independent functions of the velocities, rather than the secondary
constraints which result from the application of consistency conditions that ensure the
primary constraints are conserved. Such subtitles will not will not be important to our
purpose. The reader is referred to the classic discussion of Dirac (1964) for more details.

Geometrically we can understand the collection of all the constraints, φj where j =

1, ...m, as defining an (2n − m)-dimensional sub-manifold, Σ = {(p, q) ∈ Γ0|∀j :

φj(p, q) = 0}, within phase space, Γ0, that we call the constraint surface. Given the
definition of this surface we can the make the crucial distinction between first class con-
straints, which have a vanishing Poisson bracket with all the other constraints when re-
stricted to the constraint surface, and second class constraints, which do not. Here we



§1.5 Presymplectic geometry and symplectic reduction 9

will assume that all constraints are first class – this is justified by the fact that we have
explicitly assumed their origin to be within a local symmetry group.

The phase space itself will, as in the unconstrained case, have a symplectic geom-
etry characterised by the pair (Γ0,Ω) – where Ω is again a closed and non-degenerate
two-form constructed by taking the total differential of the Poincaré one form θ = pidq

i.
However, points in this space which do not lie on the constraint surface will not corre-
spond to physically possible states since they constitute solutions which violate the gauge
symmetry. These points are inaccessible or merely unphysical in the language of Rickles
(2008, p.177) and their identification as representing physical states would represent a vi-
olation of the law of nature that the gauge symmetry encodes. It is the geometry particular
to the class of points lying on the constraint surface that is nomologically significant.

We can characterise the geometry of the constraint surface explicitly by first restricting
θ to Σ to get a new characteristic one form, θ̃ = θ|Σ . The total derivative of θ̃ will then give
us a two-form ω = dθ̃ which endows the constraint manifold with the geometry (Σ, ω).
This new two-form will be closed but whether it is degenerate or not depends on the
particular properties of the constraint surface itself. In cases where it is non-degenerate
we again have a symplectic geometry and the dynamics is as described above only now
with the triple (Σ, ω, H̃0) defining the system (where H̃0 : Σ→ R is the restriction of H0

to Σ).

In the case that ω is degenerate, however, we have a presymplectic geometry and our
regular description of dynamics is no longer available to us. This is because presymplectic
geometries have a degenerate structure that does not allow us to associate a unique vector
field with every smooth function. This means that we are not provided with a straight-
forward characterisation of time evolution either via a unique R-action or by the usual
Poisson bracket with the Hamiltonian. Even more worryingly, the existence of local sym-
metry groups allows for indeterministic or underdetermined12 evolution since at a given
point the degeneracy of the Hamiltonian vector field allows for multiple mathematically
distinct but dynamically equivalent solutions irrespective of the path leading up to that
point. Thus, it would seem that the degeneracy inherent in presymplectic geometries is
of a pernicious variety such that we can no longer establish a direct representational rela-

12This sense of underdetermined should not be confused with the metaphysical notion of underdetermi-
nation that will be considered in part IV. Whereas in that case we have the possibility of different kinds
of ontologies, here we rather have the possibility of different future ontologies (of the same kind) given a
shared past ontology.
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tionship between the relevant mathematical and ontological objects – there is no longer a
one-to-one correspondence between the phase space solutions and the physical histories
which are distinguished by unique values of the action and so our theory is underdeter-
mined.

To get a better hold on the nature of this degeneracy we can define the null tangent
vector space Nx ⊂ TxΣ as the collection of vectors that satisfy the equation ω(X, ·) =

0. This is equivalent to the null space or kernel, Ker(ω), of the presymplectic form.
A kernel of dimension greater than zero is characteristic of the non-trivial structure of
the presymplectic form just as a kernel of dimension equal to zero is characteristic of
the trivial structure of the symplectic form. An equivalence relation between two points
x, y ∈ Σ can be defined based upon the condition of being joined by a curve, γ̄ : R→ Σ,
with null tangent vectors. Sets of points for which this equivalence relation holds are sub-
manifolds called gauge orbits, [x], and we say that the action of our presymplectic form
is to partition phase space into these orbits. Equivalently we can say that the orbits are
defined by the integral curves of the null vector fields of ω. The non-uniqueness that we
understood in terms of the existence of gauge orbits is, therefore, also characterised by
Ker(ω).

Critically for our purposes the quotient ΠR = Σ/Ker(ω) will necessarily be both
symplectic and a manifold. The first is assured since the quotient is with respect to a
sectional foliation.13 The second is assured because the quotient is of a presymplectic
manifold with respect to the kernel of its own presymplectic form and it can be shown
that this implies that the resulting quotient manifold will be endowed with a closed two-
form with a kernel of zero dimension – i.e., it will have a symplectic geometry.14 We can
now represent evolution in terms of a unique R-action defined in ΠR. We call ΠR the
reduced phase space and using the projection map π : Σ→ ΠR can define the symplectic
geometry (ΠR,ΩR, HR) where ΩR is the two-form whose pullback to Σ by π is ω (i.e.,
ω = π∗ΩR where π∗ : ΠR → Σ). An equation of the form ΩR(XHR , ·) = dHR then
gives us a unique Hamiltonian vector field along with the associated Poisson bracket and
R-action that allows us to uniquely represent both time and the physical histories uniquely
within our formalism.

The pullback by π also allows us to consider the properties that smooth functions on

13See Souriau (1997, p.42 and pp. 82-3). It is a sectional foliation because the orbits which partition Σ
constitute manifolds which are suitably transverse.

14See Souriau (1997, theorem 9.10).
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the reduced phase space will have with respect to the constraint manifold. Given such
a function, fR ∈ C∞(ΠR), we can define fΣ ∈ C∞(Σ), by fΣ = π∗fR. Since points
connected by a gauge orbit on Σ will be represented by a single point on ΠR we have
that fΣ will be constant along such gauge orbits. We can also talk about functions on
the full phase space as being constant along gauge orbits. Since the constraints are by
definition functions of the form φj : Γ0 → R the symplectic form on phase space will
associate them each with a vector field Xφj . If we then take the Poisson bracket between
them and an arbitrary function, f ∈ C∞(Γ0), we will have {f, φj} = Ω(Xf , Xφj). On
the constraint surface it must be the case that the Xφj coincide with the null vector fields
N – the integral curves of which are the gauge orbits. So, given that on the constraint
surface f must be a function which is unchanging along the gauge orbits, the definition
of the Poisson bracket implies that the expression {f, φj} must vanish on the constraint
surface – i.e., we have that {f, φj} ≈ 0, where the weak equality is understood to mean
vanishing upon the constraint surface.

We can therefore distinguish a class of functions on phase space, Dirac-Bergmann
observables, by the satisfaction of three equivalent conditions:

(i) Constancy along gauge orbits on the constraint manifold

(ii) Weakly commuting with all the constraints

(iii) Equivalence to a function on the reduced phase space

The name observable seems sensible since it is only these functions that are specified
uniquely for every value of the flow parameter defined by the vector field generated by the
reduced Hamiltonian, HR. Thus, given our reliance on an underlying symplectic structure
to define time, precise restrictions are placed upon the mathematical objects with which
we would want to associate physical quantities.

This idea of passing from a presymplectic to a symplectic manifold by quotienting
with respect to the kernel of the presymplectic form is what we will call symplectic reduc-
tion and has an important connection15 with Dirac’s theory of constraints. In particular,
in cases (such as those considered in the next section) where there is only one primary
constraint (and no secondary constraints) the application of symplectic reduction is iden-
tical to following the Dirac procedure in that it leads to the same conditions on observable

15See Gotay et al. (1978); Pons et al. (1999) for explicit examination of this connection.
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functions we have just outlined. A theory in which all the primary constraints that are
first class (i.e., have a weakly vanishing Poisson bracket with all the other constraints) are
gauge generating is said to obey Dirac’s theorem (Barbour and Foster (2008)) and we can
therefore say that the applicability of symplectic reduction is equivalent to satisfaction of
Dirac’s theorem in all theories with a single primary constraint. There is also a very close
connection between symplectic reduction and the Dirac interpretation of first class con-
straints for theories with multiple primary and secondary first class constraints. Although,
in such cases the formal definition of the reduced phase space is much more subtle (see
Gotay et al. (1978) for the full procedure), we may still think of the reduced phase space
as a space of gauge orbits constructed via something analogous to the quotienting out the
null directions associated with the first class constraints.



Chapter 2

Reductionism, gauge symmetry and histories Haecceitism

The identification between gauge theories treated according to Dirac’s constraint proce-
dure and the re-construction of such theories in terms of reduced phase spaces arrived at
via symplectic reduction has important interpretational consequences. As we have seen
above conventional Hamiltonian mechanics can be characterised in terms of a phase space
which has a symplectic geometry and within which solutions (the integral curves of the
Hamiltonian vector field) are in one-to-one correspondence with physical histories. In
these circumstances it seems natural to identify the phase space as a possibility space
since each point can be considered to represent a distinct possible instantaneous physical
state and each curve a distinct possible physical history. On the other hand, when we have
a constrained Hamiltonian system the relevant phase space is clearly not a suitable candi-
date for a possibility space it contains inaccessible points (i.e., those not on the constraint
surface) which can not be thought of as representing physically possible states. Further-
more, even if we exclude such points and focus on the physical section of phase space
(i.e., consider only points on the constraint surface) then we again do not have a natural
candidate for a possibility space since the weaker presymplectic geometry only equips us
with an equivalence class of solutions corresponding to each physical history. This leaves
the theory open to pernicious underdetermination which is such that if points are identi-
fied as representing distinct instantaneous states, then specifying an initial sequences of
states fails to uniquely determine future states.

Given a standard gauge theory, such as electromagnetism, which is manifestly deter-
ministic in the sense of giving unique predictions for all measurable quantities, a literal
interpretation of the physical phase space as constituting a possibly space would then nat-
urally lead to the conclusion that there were physically real quantities that are not measur-
able. For the case of electromagnetism this would mean that even though the theory only
allows for the values of the electric and magnetic fields to be measured, one should still

13
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interpret the value of the vector potential seriously as a physical magnitude. As pointed
out by Belot and Earman (2001, p.222) such an approach seems rather strange and would
require us to construct a highly unorthodox account of the concept of measurement. How-
ever, such a version of physical phase space literalism still constitutes a consistent option
and we must investigate the viability of the other options before (potentially) dismissing
it.

An alternative would be to retain phase space literalism, but to deny that the difference
between phase space points should be cashed out in terms of real but unmeasurable quan-
tities. Rather, we can take the difference between instantaneous states (as represented by
gauge related points in phase space) to be grounded in terms of the differing roles that
these states play in the context of the histories (i.e., phase space curves) of which they are
part.

Following Lewis (1983), we can designate as Haecceitists those who admit ‘nonqual-
itative determinants of cross-identification’ (p.19) between entities or objects in distinct
worlds or structures. To adopt such a position is to allow for real differences which are
only with respect to which objects play which role within the structure; since one is al-
lowed to cross-identify each of a pair of qualitatively identical objects whose roles are
permuted between two structures, we may ground a non-qualitative differentiation of the
structures in terms of the cross-identification of the objects.

A literal way of interpreting a possibility space – i.e., each point represents a distinct
instantaneous state – can then be understood in terms of a histories Hacceitism position
that does not include real but unmeasurable quantities. We can seen this since: i) The
literal interpretation involves us considering as distinct two histories represented by se-
quences of points which differ solely with respect to a gauge transformation; ii) Such a
difference is only with regard to which instantaneous states (represented by points) play
which roles; iii) This means that if we take a history to be the relevant structure and instan-
taneous states (labelled by the points to which they correspond) to be the relevant objects,
then the ontological difference between gauge related histories in the literal interpretation
can be naturally cashed out in terms of our notion of histories Hacceitism.

(This is not to imply that there many not be other methodologies to ground such dif-
ferences. For example Butterfield’s (Butterfield (1988)) response to the hole argument
in general relativity makes use of counterpart theory rather than histories Haecceitism to
establish a non-qualitative yet ontologically significant difference between gauge related
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histories. One might also, of course, seek to ground Hacceitistic differences in terms
of objects within the relevant instantaneous states or histories. This more conventional,
more theory specific approach will be introduced in the specific context of space and time
within Chapter 7.)

Now, although histories Haecceitism clearly does not, by definition, allow for inde-
terminism with regard to (unmeasureable) qualitative quantities à la our original version
of physical phase space literalism, it does, again by definition, allow for a species of on-
tological indeterminism: Two sequences of instantaneous states can initially coincide but
then differ in a real but non-qualitative manner as determined by a purely haecceitistic
differentiation between the histories. Given we are dealing with classical, deterministic
theories, one might wish to construct a position such that what we treat as the ontology is
entirely deterministic, and histories Haecceitism clearly will not allow this.

An anti-Haecceitist will deny the possibility of non-qualitative determinants of cross-
identification and so will disavow exactly the haecceitistic differentiation that allows for
two gauge related sequences of points in a possibility space to represent distinct struc-
tures.16 Thus, by adopting histories anti-Haecceitism we can relieve ourselves of the
burden of having to endorse ontological indeterminism by instituting a many-to-one re-
lationship between gauge related sequences of points on the constraint surface and the
unique sequences of instantaneous states they represent.

We thus have three possible interpretations of the physical phase space of a standard
gauge theory. The first leads us to allow for real but non measurable quantities, and consti-
tutes a literal, qualitatively ontologically indeterministic interpretation of physical phase
space. The second (histories Haecceitism) leads us to allow for real difference with regard
to which instantaneous states play which roles within histories, and constitutes a literal,
non-qualitatively ontologically indeterministic interpretation of physical phase space. The
third (histories anti-Haecceitism) leads us to deny difference with regard to which instan-
taneous states play which roles within histories, and constitutes a non-literal, entirely on-
tologically deterministic interpretation of physical phase space. The third options seems
to my mine the most attractive (not least on grounds of ontological parsimony), however
there is not in principle reason to exclude any of them.

Although providing space for an attractive interpretation of the possibility space struc-
ture found in gauge theory the anti-Haecceitist approach does nothing about removing

16They need not, however, also deny primitive identity of the objects concerned (i.e., instantaneous states)
since such primitive identity may be conceived of contextually. See Ladyman (2007) on this point.
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what would seem like superfluous mathematical structure – to dispense with this surplus
structure we need to move to the reduced phase space. Now, this space has obvious inter-
pretational benefits since, as seen above, if all goes well the reduced space will be a sym-
plectic manifold with the integral curves of the reduced Hamiltonian vector field naturally
identified as representing physical histories and points as representing physically distinct
instantaneous states. Thus the reduced space will, by definition, not feature any underde-
termination associated with gauge symmetry and if we endow it with the privileged status
as our fundamental possibility arena we reap the reward of recovering the ability to use
our conventional representational scheme for theories which display gauge symmetry.
Since we have regained a one-to-one correspondence between possibility space points
and physically distinguishable instantaneous states the applications of notions, such as
histories Haecceitism/anti-Haecceitism discussed above, becomes unnecessary. The su-
periority of, when possible, reduction as an interpretational stance has been advocated
principally by Gordon Belot and John Earman (Belot (2000, 2003); Earman (2003); Belot
and Earman (1999, 2001)). We will call it the reductionism with regard to constrained
Hamiltonian theory and a close association can be made between it and Dirac’s theorem
as defined above – in fact, it would seem fair to say that the reductive philosophical stance
is the natural interpretational consequence of a strict reading of Dirac’s theorem. In the
next chapter we shall consider three methodologies for the quantisation of standard gauge
theories. The connection between these and reductionism will then be considered in §4.2.

A seeming alternative to reductionism that also leads to a deterministic yet literal
phase space formalism is to apply a gauge fixing such that we consider as our physical
phase space a manifold defined by the constraint surface and second manifold of the same
dimensionality. The gauge fixing is picked such that the intersection surface is a sub-
manifold within which exactly one representative from each gauge orbit is present. Since
the gauge orbits are in a many-to-one representative relationship with distinct instanta-
neous states instituting a one-to-many relationship between them and points in our space
will fix these points as providing a representation with a one-to-one correspondence to our
ontology. We thus see that gauge fixing can achieve an almost identical job to reduction.
This should be no surprise however since, as discussed in §3.3.3, when made precise any
viable gauge fixing methodology will be closely conceptually and mathematically related
to symplectic reduction. Thus, gauge fixing does not properly considered constitute a dis-
tinct alternative but to reductionism; this point will become significant within the quantum
context, to which we now turn.



Chapter 3

Quantisation of gauge Theories

3.1 Geometric quantization

The objective of the geometric quantisation programme (Echeverria-Enriquez and Munoz-
Lecanda (1999)) is to find a correspondence between the sets of pairs constituted by: sym-
plectic manifolds (M,Ω) together with smooth real functions C∞(M), on the one hand;
and complex Hilbert spaces H together with self-adjoint operators A(H), on the other.
We define the full quantisation of a classical system (M,Ω) as a pair (HQ, A) under cer-
tain conditions on HQ and the map, A, which takes us between classical and quantum
observables. Explicitly we require that: 1)HQ is a separable complex Hilbert space. The
elements | ψ〉 ∈ HQ are the quantum wavefunctions and the elements | ψ〉C ∈ PHQ are
the quantum states where PHQ is the projective Hilbert space; 2) A is a one to one map
taking the classical obervables f ∈ Ω0(M) to the self adjoint operators Af on HQ such
that: i) Af+g = Af + Ag ii) Aλf = λAf ∀λ ∈ C iii) A1 = IdHQ; 3) [Af , Ag] = i~A{f,g}
(i.e., A is a Lie algebra morphism up to a factor); 4) For a complete set of classical ob-
servables {fj},HQ is irreducible under the action of the set {Afj}.

We can see this quantisation programme as consisting essentially of the construction
of a Hilbert space HQ on which the Lie algebra of classical observables can be repre-
sented irreducibly in terms of a set of self-adjoint operators A(HQ) – the elements of
this set are the quantum observables. When combined with the symplectic reduction pro-
cedure outlined above, geometric quantization gives us a methodology for quantising a
system with first class constraints – i.e., first reduce then geometrically quantise the re-
duced phase space making use of the symplectic structure that our reduction procedure
guarantees. Explicitly, what we do is consider the reduced phase space with geometry
(ΠR,ΩR) and set of reduced observable functions OR to be our classical pairing and find
the corresponding Hilbert space HR and self-adjoint operators ÔR(HR). If the symplec-

17
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tic reduction procedure runs through successfully we are ‘virtually guaranteed’ to be able
to construct the quantum equivalent.17

3.2 Constraint quantisation

The first step in Dirac’s constraint quantisation approach (Dirac (1964); Henneaux and
Teitelboim (1992)) is to quantise the extended phase space Γ. As we have seen this
space will have a symplectic structure. We can therefore promote smooth phase space
functions, f ∈ C∞(Γ), into Hermitian operators, f̂ , and the Poisson bracket relation,
{f, g} = Ω(Xf , Xg), into commutation relations with the appropriate i~ factors. This
essentially amounts to a partial application of the geometric procedure above. The Hilbert
space that results is called the auxiliary Hilbert space Haux and we can define a class of
auxiliary state vectors | ψaux〉. We then impose the (first class) constraint functions as
operators onHaux restricting the physical state vectors φ̂j | ψphys〉 = 0. The Hilbert space
that is constructed by taking the physical states is the physical Hilbert space Hphys of the
quantum theory. We are provided with a set of quantum observables Ô by considering the
set of self-adjoint operators which commute with the constraints and map physical states
to physical states.

Formally the quantisation procedure we have just sketched suffers from a number
of difficulties and ambiguities not least: 1) the quantisation of the classical constraint
functions on phase space is not unique due to a factor ordering ambiguity; 2) extra input
is needed to define a Hilbert space structure on the physical states in particular an inner
product; 3) solving the constraints at the quantum level is non-trivial and may lead to
inconsistent results.18

17There are here numerous qualifications and extra subtleties regarding geometric quantization that might
have been discussed in more detail. We have not, for example, ventured into discussion of Van Hove the-
orem, pre-quantisation polarisation, or other formal features that imply that symplectic structure is not on
its own sufficient to guarantee a viable quantization. Although significant in of themselves, such compli-
cations are not directly relevant to our investigation and thus their neglection is appropriate. See Gotay
(1980); Woodhouse (1997).

18There is also the additional problem that if the constraints depend non-polynomially on the field vari-
ables then it may prove impossible to find a rigorously defined representation of them on the Haux. This
issue is particularly pressing for the constraints of canonical general relativity and leads, in that case, to
the introduction of Ashtekar variables. However, neither this formal issue, nor the structure of the new
variables, have any particular bearing on the our more conceptual concerns regarding the nature of quantum
Hamiltonian constraints. Their discussion can, therefore, be reasonably neglected for the purposes of this
non-explicit treatment.
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A number of modern strategies are available that allow us to formalise the Dirac quan-
tisation scheme such that these issues can be overcome or at least diminished. The two
that we will briefly consider here are the group averaging methodology (as used in refined
algebraic quantisation) and the direct integral approach (as applied in the master con-
straint programme). These two techniques are particularly significant for our purposes
since a combination of them is utilised in the loop quantum gravity approach to quantis-
ing general relativity (Thiemann (2007)).

3.2.1 Refined algebraic quantisation

Refined algebraic quantisation (Giulini and Marolf (1999b,a)) (RAQ) is a methodology
for addressing the ambiguities of the Dirac quantisation scheme whilst still staying within
the broad outline of ‘quantise first, constrain second’. As per the original Dirac approach,
we first construct a Hilbert space representation of the operator algebra of functions on
the extended phase space. The constraints are then taken to be represented as Hermitian
operators acting on this Haux. Crucially, we require that the commutator algebra of the
quantum constraints forms a Lie algebra (this will always be the case provided the classi-
cal Poisson bracket constraint algebra closes with structure constants) – exponentiation of
the constraint operators will then yield a unitary representation U(g) of the corresponding
Lie group G. Let us then define some subspace Φ ⊂ Haux together with its algebraic dual
Φ? (i.e., the space of complex valued linear functions f on Φ). If the space Φ is chosen
such that the constraint operators map it into itself then a well defined dual action of these
operators is also available.19 Solutions of the constraints are then elements f ∈ Φ? for
which U(g)f = f ∀g ∈ G. Physical observables can then be defined as self adjoint oper-
ators Ô(Haux) which include Φ in their domain, map Φ to itself and (crucially) commute
with the group action on Φ.20

The pivotal move is the definition of the rigging map which is an anti-linear map
η from Φ into Φ? such that: its image solves the constraints; it is real and positive; it
commutes with the observables. The RAQ scheme then provides us with a methodology
for constructing the physical Hilbert space since an inner product is provided to us by the
rigging map: 〈η(ϕ1), η(ϕ2)〉phys = η(ϕ1)[ϕ2]. This new inner product is defined on Φ and
it leads us to the physical Hilbert spaceHphys via taking the quotient of Φ by the sub-set of

19i.e., we have that U(g)f [ϕ] = f(Ug−1ϕ), ∀ϕ ∈ Φ
20ÔU(g) | ϕ〉 = U(g)Ô | ϕ〉, ∀g ∈ G, ϕ ∈ Φ
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zero norm vectors it defines. The physical observables will then be automatically defined
as operators onHphys and the correspondence between the RAQ definition of observables
and the original Dirac one given above, becomes explicit.

Clearly, the success of RAQ depends on our ability to find a suitably unique rigging
map. This can be done subject to the restriction that G is a locally compact Lie group
with a Haar measure µH .21 In these circumstances (and for the case that the group is
unimodular, see Giulini and Marolf (1999a) for the non-unimodular case) then the group
averaging methodology defines the rigging map simply as:

η | ϕ〉 := 〈ϕ |
∫
dµHU(g) (3.1)

That this rigging map solves the constraints is guaranteed by the invariance of the Haar
measure and that it is real and commutes with the observables is guaranteed by the fact
that it is invariant under g → g−1.

3.2.2 The Master Constraint Programme

The Master Constraint Programme (Thiemann (2006, 2007); Dittrich and Thiemann (2006))
(MCP) for the quantisation of constrained systems constitutes more of a departure from
the Dirac scheme than RAQ since it leads us to a different representation of the constraint
functions even at a classical level. It is still of the Dirac quantisation genus, however,
since these reformulated constraints are again only imposed after quantisation. A partic-
ular strength of the MCP approach is that it remains well defined even for systems where
the Poisson bracket algebra of the constraints closes only with structure functions. This
is particularly important feature for our purposes since the Hamiltonian constraints of
canonical general relativity are associated with an algebra of exactly this type.

The essential idea is to re-write the classical constraint functions, φj(p, q) = 0, in
terms of a single equation which will be satisfied under the same conditions. This new
single constraint is then the Master Constraint. A simple example is given by taking a
positive quadratic two-form Kij and constructing the equation:

M := Kijφiφj = 0 (3.2)

21A right (left) Haar measure is a positive measure on a group invariant under right (left) translations.
For the uni-modular case which we are restricting ourselves to, the left and right Haar measures agree.
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This equation is satisfied if and only if all the individual constraint functions are vanishing
and thus defines the same physical phase space Σ that we had before. We can recover our
observable condition for the extended phase space by considering the class of functions
such that:

{{M,O},O}|M=0 = 0 (3.3)

i.e., those functions which have a vanishing double Poisson bracket with the master con-
straint on the constraint surface. The geometric interpretation of this condition on classical
observables is subtly, yet importantly, different to the standard one given above. Strictly,
it is a restriction that implies that the observable functions generate finite symplectomor-
phisms which preserve Σ, rather than the usual condition that the observables are constant
along the null directions generated by the constraints on Σ. However, it can be straightfor-
wardly demonstrated that the two conditions are equivalent Thiemann (2006). Thus the
intuitive connection between these observables and the OR of §2.1 is retained. We may
therefore think about the O as corresponding to functions projected up from the reduced
phase space.

Moving on to quantisation, we look for a representation of the Poisson algebra of
functions on the extended phase space, f , in terms of commutator algebra of operators, f̂ ,
on a (separable) kinematic Hilbert spaceK. We then require that the Master Constraint M
is represented as a positive, self-adjoint operator M̂. This is possible even if the classical
constraints cannot themselves be represented in such a way – i.e., when they fail to form
a Lie algebra under the Poisson bracket operation. Following Thiemann (2006, 2007),
since Haux is by assumption a separable Hilbert space it can be represented as a direct
integral of separable Hilbert spacesH⊕aux(λ), λ ∈ R, subordinate to M̂ according to:

Haux =

∫ ⊕
R
dν(λ)H⊕aux(λ) (3.4)

where although the measure ν and Hilbert spaces H⊕aux(λ) are not uniquely determined,
different choices will give rise to unitarily equivalent Hilbert spaces. Crucially, we can
show that, for such a direct integral decomposition, we will have that M̂ acts onH⊕aux(λ)

by multiplication by λ. We can then define a physical Hilbert space Hphys := H⊕aux(0)

which automatically comes equipped with a well defined inner product and upon which
we can consider, if the uniform limit exists, a prospective class of observables in terms of



§3.3 Path integral quantisation 22

the ergodic mean of the f̂ , :

[f̂ ] = lim
T→∞

1

2T

∫ T

−T
dteitM̂f̂ e−itM̂ (3.5)

The existence of this object is guaranteed by the Birkhoff ergodic theorem since the uni-
tary evolution operator, U(t) = eitM̂, is a one-parameter measure preserving transforma-
tion on the Hilbert space (see Walters (1981, §1.6)). From this definition we have that the
[f̂ ] will both preserve the physical Hilbert space and induce a self-adjoint operator on that
space. Furthermore, provided the spectral projections of the bounded operator [f̂ ] com-
mute with those of M̂ (which we may expect) the ergodic mean can be seen to constitute
a member of the class of strong observables, Ôs . These observables are defined to be
functions such that relevant commutator with the master constraint vanishes identically:
[Ôs, M̂] ≡ 0. Strong observables form a sub-set of the weak observables Ô defined via
the quantum equivalent of the condition given by equation (3.3).

It is important to note that despite the impressive improvements in formalising the
Dirac quantisation programme that the RAQ and MCP approaches enable, these advances
have come at the cost of removing our quantum formalism far from physical intuition.
The most obvious way to ensure we have constructed more than just a mathematical ed-
ifice would be to demonstrate that both schemes have the appropriate classical limit. In
particular, a proof that the quantum observables reproduce their classical analogues in the
appropriate limit would be highly desirable. Alternatively, one might seek to anchor these
‘quantise first, reduce second’ techniques by a formal, or at least conceptual, correspon-
dence with the less intuitively opaque ‘reduce first, quantise second’ alternatives. It is to
this task will turn in §4.1.

3.3 Path integral quantisation

3.3.1 Feynman path integral quantisation in phase space

Before we introduce the Faddeev-Popov methodology for the path integral quantisation of
a standard gauge theory, a few brief remarks concerning the origins of the Feynman path
integral formulation of quantum theory are necessary. We will confine ourselves here to
particle mechanics. Expressions corresponding to the extension of these ideas to infinite
dimensional field theories can be found in (for example) Peskin and Schroeder (1995).
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Consider an unconstrained classical system with S[q(t)] =
∫
γ
L(q, q̇)dt defined in the

usual 6n-dimensional velocity-configuration space. We can take the path γ as defining
an arbitrary path in configuration space between an initial configuration qi and a final
configuration qf . Classically we know that only one such path is physically realisable
- that corresponding to extremisation of the action. However, in the quantum realm we
know that there can be multiple paths that can be physically realised - this is manifestly
demonstrated by real world quantum systems such as that described by the famous two
split experiment. There, not only are multiple paths found to be possible given a fixed
identical configuration but also for fixed initial and final configurations - we can block
either slit and still get a detector reading in the same place. In this case, and in general we
know - by the superposition principle - that the total amplitude for any process is equal
to the coherent sum of the amplitudes for each of the possible ways this process can be
realised. It is precisely for the calculation of this total amplitude that the path integral
expression is designed.

From standard Schrödinger quantum mechanics in the position representation we have
that the time evolution operator is simply e

−iHT
~ where T is some finite time. Thus we can

write the amplitude for transition between a initial positional state | qi〉 and a final posi-
tional state | qf〉 as 〈qf |e−

i
h
H(tf−ti)|qi〉. If we write the amplitude for each path as a pure

phase the superposition principle leads us to consider the intuitively sensible heuristic
expression:

〈qf |e−
i
h
H(tf−ti)|qi〉 =

∑
all paths

ei.(phase) (3.6)

Getting from here to the full Feynman path integral expression involves two steps cor-
responding to replacing ‘phase’ and ‘sum over all paths’ with mathematics such that the
result coheres with experiment. We achieve the first via the physically well motivated
postulation that since e

i
h
S[q(t)] will give us the appropriate classical limit it is the correct

expression for the quantum amplitude of a path.22 The second requires us to introduce the
formal machinery of functional integration. Considering the path integral between two
points qf and qi we break the time interval T = tf − ti into discrete infinitesimal pieces
ε and label the spatial coordinates of each successive slice by the suffix K which runs up

22This is Feynman’s second postulate in his original derivation of the path integral formulation (Feynman
(1948)) and derives its origin from remarks due to Dirac (1933) concerning the relation between the classical
action and quantum theory. The framing of this postulate in terms of a rigorous conceptual basis is an
outstanding and intriguing question which unfortunately falls outside the remit of our current project.
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to N − 1. We can then define the sum over all paths in an intuitively sensible manner as:

∑
all paths

=

∫
Dq(t) ≡ 1

C(ε)

∫
dx1

C(ε)
...

∫
dxN−1

C(ε)
=

1

C(ε)

N−1∏
K

∫ ∞
−∞

dxk
C(ε)

(3.7)

Following Peskin and Schroeder (1995) we can fix the constant C(ε) for the case of a
particle mass m moving in a one dimensional potential by considering the particular in-
finitesimal time slice in which t goes from T − ε to T . Sending ε to zero, expanding in
a power series and then performing the necessary Gaussian integrals allows us to show
that:

C(ε) =

√
2π~ε
−im (3.8)

and therefore obtain an explicit form of the path integral (for the one particle case):

〈qf |e−
i
h
H(tf−ti)|qi〉 = lim

ε→0

( m

2iπ~ε

)N
2

N−1∏
K

∫ ∞
−∞

dxke
i
h

∫ T
0 L(q,q̇)dt (3.9)

which is such that it can be explicitly shown to reproduce normal Schrödinger evolu-
tion. We can express this relationship between the path integral formulation and the
Schrödinger formulation of quantum mechanics by writing:

U(qi, qt;T ) = 〈qf |e−
i
h
HT |qi〉 =

∫
Dq(t)e ihS[q(t)] (3.10)

i~
∂

∂T
U(qi, qt;T ) = U(qi, qt;T ) (3.11)

This path integral expression describes quantum mechanical behaviour in a configuration
space. For our purposes we need a more general expression corresponding to a path
integral for phase space. This requires us to consider a functional measure relevant to
this space rather that that for configuration space which we have just considered. Above
we took the configuration space functional measure Dq(t) to be such that it weighted
the contribution from each infinitesimal section of each path equally. We take a similar
approach to arrive at a functional measure for phase space and make the hypothesis that
we should be looking for a Dq(t)Dp(t) such that the integration will extend over all
physically distinct configurations, and weight each by the same trivial factor of unity
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(Unz (1986)). This means that the phase space path integral,

〈qf |e−
i
h
H(tf−ti)|qi〉 =

(∏
i

∫
Dq(t)Dp(t)

)
e
i
h

∫ tf
ti

dt(
∑
piq̇

i−H(q,p)) (3.12)

will have the general and simple form:

〈qf |e−
i
h
H(tf−ti)|qi〉 =

∏
i,t

∫
dp(t)idq(t)i

(2π~)n
e
i
h

∫ tf
ti

dt(
∑
piq̇

i−H(q,p)) (3.13)

Since our view as to its meaning is essential in the discussion that follows let us briefly
consider the interpretational consequences of using this expression as the fundamental
description of a physical system. In a classical system we take phase space to provide
us with a representation such that points correspond to instantaneous physical states and
curves correspond to dynamical histories. Dynamical histories correspond to curves such
that they are the integral curves of the Hamiltonian vector field and we can thus think of
the Hamiltonian as generating physical evolution between instantaneous states. Quantum
mechanically instantaneous physical states are represented by vectors in a Hilbert space
and dynamical evolution is represented in terms of a unitary operator in that space and,
as assumed above, in general this operator takes the form e

−iHt
~ where H is the quantum

mechanical Hamiltonian operator and t is the time parameter.

What the canonical path integral expression gives us is the probability for transition
between two quantum mechanical states in the position basis, |qi〉 and |qf〉 – there is no
inherent temporal ordering in this transition but we can label the states initial and final
for practical convenience. The construction of the path integral is such that this transition
probability is calculated by considering possible transition through each distinct unit of
classical phase space weighted by the exponential of its quantum action. Thus, in effect
what we are doing is considering every classical phase space curve – i.e., those corre-
sponding to dynamical histories and those not – and then applying a quantum weight
such that the probabilities will match those of normal Schrödinger evolution. Thus there
is a sense in which the representation of dynamics in this formalism rests upon a form of
ontological equality between each and every instantaneous physical state as represented
classically by points in phase space. In of itself this is an intriguing situation that war-
rants deep and careful philosophical analysis. However, such an investigation does no
accord with the task at hand which is a philosophical analysis of the interpretation and
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quantisation of gauge theory. Rather what concerns us is the degree to which this im-
plied ontological equality is transferred over to systems whose phase space representation
is of the constrained and degenerate form discussed in the previous chapters. To frame
this question we will introduce a path integral formulation designed for canonical gauge
theories – that due to Faddeev and Popov (1967).

3.3.2 Faddeev-Popov path integral quantisation

Let us consider a generic constrained Hamiltonian theory with extended phase space a
symplectic manifold (Γ,Ω) and physical phase space a presymplectic manifold (Σ, ω)

defined by satisfaction of the set of set of first class constraints, φα(q, p) = 0 for α =

1, ...,m. A naive path integral quantisation of this theory simply using the general canon-
ical expression defined in the last section applied to Γ would rest upon us assuming a
equality between classical phase space points. Since the set of points in the complement
of Σ relative to Γ are unphysical this naive approach approach is clearly incorrect. Fur-
thermore, even a path integral purely defined upon Σ will still not give us a sensible result
since it would involve counting as representing distinct physical states points which lie on
the same gauge orbit and are therefore only different up to the unphysical gauge transfor-
mations. Rather we need to adjust the measure in our path integral such that we are only
counting with respect to a unique representation of the classical ontology.

One consistent way of doing this, as was realised by Faddeev and Popov, is to change
the functional measure such that rather than integrating over all possible phase space
points we instead integrate over a subspace, ΠGF , of the physical phase space which is
such that it intersects each gauge orbit exactly once. Such an integral will only count
one point out of each gauge orbit as representing a distinct ontological object and would
therefore be expected to lead us to a quantum theory in which only the physical classical
degrees of freedom have been quantised. Thus in intent this approach is closely related
to the reductive quantisation methodologies discussed previously. We will explore this
interpretive connection more fully once we have introduced the necessary mathematical
formalism.

First of all, we need to define our subspace. This can be done by first considering
a gauge fixing sub-manifold, ∆, within the extended phase space by satisfaction of the
conditions χα(q, p) = 0 with i) {χα, χβ} = 0 and ii) det||{χα, φβ}|| 6= 0. The condition
i) will prove crucial to our ability to introduce convenient canonical co-ordinates and the
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condition ii) fixes the geometrical relationship between ∆ and the gauge orbits on Σ in a
precise manner - which we will detail shortly.

The intersection of ∆ and Σ is then exactly the subspace, ΠGF , we are looking for.
Since we know that m first class constraints equate to 2m excess degrees of freedom in
the extended phase space, then since the dimension of ΠGF is (2n − m) − m = 2n −
2m, it clearly has the correct dimensionally. Our second condition on the χα(q, p) =

0 can then be expressed in terms of ΠGF being a transversal integral manifold of the
distribution of zero norm vectors defined by the kernel of the presymplectic form ω on Σ

(Faddeev 1969). This imposes a condition on χα and φβ such that the gauge fixing only
selects a single member of each gauge orbit and thus that ΠGF is nowhere parallel to the
null vectors which define the gauge direction. Further to this we also impose the global
requirement; iii) ΠGF intersects the gauge orbits exactly once. Together ii) and iii) ensure
that the space’s representational relationship with instantaneous states is uniquely defined
- exactly one point per gauge orbit is present so exactly one physically distinct state is
represented.

The kernel of brilliance behind the Faddeev-Popov methodology (FPM) (Faddeev and
Popov (1967); Popov and Faddeev (2005); Popov (2010)) is to define the relevant path
integral in Γ leaving the specification of ∆ – beyond our conditions i), ii) and iii) – free.
This allows us to implicitly consider a standard canonical path integral in ΠGF in a re-
duced set of canonical coordinates without having to explicitly construct this space by
fixing the χα. The important step is the definition of the functional measure dµ(q(t), p(t))

in the expression:

〈qf |e−
i
h
H(tf−ti)|qi〉 =

∫
e
i
h

∫∞
−∞ dt(

∑
piq̇

i−H(q,p))
∏
t

dµ(q(t), p(t)) (3.14)

The Faddeev-Popv Ansatz is that it should take the form:

dµ(q(t), p(t)) =
∏
i,α

δ(χα)δ(φα)det||{χα, φβ}||
dpi(t)dqi(t)

(2πh)n−m
(3.15)

Each element of this can be justified on an intuitive basis. The two functional delta func-
tions restrict our integration to the gauge fixing surface and constraint surface respectively
– we can think of each of them as an infinite product of delta functions, one for each phase
space point. The determinate then gives a weighting factor (which we know by ii) to be
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non-zero) based upon the geometrical relationship between ∆ and the gauge orbits as-
sociated with the constraints. The precise geometrical basis behind this Faddeev-Popov
determinate is complex but can in fact be traced to the metric structure of the reduced
phase space discussed earlier. For details see Babelon and Viallet (1979); Ordóñez and
Pons (1992).

Combing this functional measure with our general path integral expression then gives:∫
e
i
h

∫∞
−∞ dt(

∑
piq̇

i−H(q,p))
∏
i,t,α

δ(χα)δ(φα)det||{χα, φβ}||
dpi(t)dqi(t)

(2πh)n−m
(3.16)

which is the Faddeev-Popov path integral for a constrained Hamiltonian theory subject to
gauge fixing conditions χα.

3.3.3 Classical reduction and Faddeev-Popov quantisation

As has been suggested by a number of remarks above the FPM can understood as be-
ing grounded upon a distinct stance as to the representational structure of classical gauge
theory. In particular, as highlighted above, precisely what we are looking for in the re-
strictions we make on the gauge fixing functions and our construction of the measure is
a methodology for picking out a sub-manifold within which exactly one representative
from each gauge orbit is present. Since the gauge orbits are in a many-to-one representa-
tive relationship with distinct instantaneous states instituting a one-to-many relationship
between them and points in our space ΠGF will fix these points as providing a represen-
tation with a one-to-one correspondence to our ontology. Thus, the basis of the F-P path
integral could be argued to rest upon a reductive interpretation applied to the classical the-
ory – in that ΠGF has an identical representational role to the reduced phase space, ΠR,
which we have defined previously. An immediate question is then whether we should con-
fer upon the FPM some degree of formal or representational equivalence with the reduce
first, quantise second, geometric approach discussed above.

Thanks to some elegant work by Faddeev (1969), one can in fact explore the relation-
ship quite clearly by introducing a new set of canonical coordinates on phase space which
are such that ΠGF is itself canonical coordinatised.23 Continuing with the notation above,
let us define the new set of canonical coordinates on Γ as {qα, Qa, pα, Pa}. We require

23That such a set of coordinates is always available is guaranteed by the condition i) imposed on the χα
above.
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that they are are such that χα(q, p) = pα. Clearly a = 1, ..., r where r = n −m. Since
we have that det||∂φα

∂qβ
|| 6= 0 we can solve the constraints for the qα and define ΠGF in

terms of the expressions pα = 0 and qα = qα(Qa, Pa). We will then have that (Q,P ) are
independent coordinates on ΠGF .

We can now demonstrate a pair of fundamental and powerful equivalences. Firstly,
consider a standard canonical Feynman path integral of the form∫

e
i
h

∫∞
−∞ dt(

∑
PaQ̇a−H(Q,P ))

∏
a,t

dPa(t)dQa(t)

(2πh)r
(3.17)

This expression gives us a quantum theory based upon the classical physical phase space
ΠGF and is thus equivalent to a geometric quantisation of that space – at least to the ex-
tent that path integral quantisation is equivalent to geometric quantisation in general (see
relevant discussion in §16.3). Furthermore, as shown by Faddeev (1969), this expression
is formally equivalent to one of the standard Faddeev-Popov form – i.e.,∫

e
i
h

∫∞
−∞ dt(

∑
piq̇

i−H(q,p))
∏
t

dµ(q(t), p(t)) (3.18)

with the measure as defined above. This means that application of the FPM is equivalent
to geometric quantisation of the space ΠGF (again up to the equivalence between path
integral and geometric methods).

Next we can show explicitly that functions on ΠGF are connected to those on ΠR. As
discussed above, we can associate every fR ∈ C∞(ΠR) with an observable phase space
function O which is such that {f, φα}|Σ = 0. Now crucially, according to Faddeev (1969
pp.4-5), a Poisson bracket of phase space functions evaluated on Σ is equivalent to that
defined with respect to the new canonical functions on ΠGF . Expressing these functions
explicitly as fGF = f(qα(Qa, Pa), Qa, 0, Pa) this means that we have that:

{f, g}|Σ =
∑

(
∂fΠGF

∂Pa

∂gΠGF

∂Qa

− ∂fΠGF

∂Qa

∂gΠGF

∂Pa
) (3.19)

where fΠGF = f(qα(Qa, Pa), Qa, 0, Pa). We can therefore assert that there is a fundamen-
tal connection between the Poisson bracket algebra of classical observables defined within
the reduced and gauge fixed formalisms. In fact, we can make the specific statement that
between the algebra’s there exists a symplectic isomorphism. Such connections will be-
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come important to our discussion in Part IV and we will refer back to the philosophical
importance of this result then.



Chapter 4

Quantisation, reduction and ontology

4.1 Representative commutation between quantisation and reduction

Provided we assume that the Poisson bracket algebra of the classical constraints closes
with structure constants (and several further restrictions are imposed), we can often prove
formally that a Dirac type procedure of quantising and then imposing the constraints at the
quantum level is equivalent to first symplectically reducing and then geometrically quan-
tising. This is a specific case of what is commonly referred to as the Guillemin-Sternberg
conjecture Guillemin and Sternberg (1982). For examples of proofs of the conjecture for
various degrees of generality see Gotay (1986); Duistermaat et al. (1995); Conrady and
Freidel (2009). The crucial results established in such commutation proofs is that: i) the
physical Hilbert space constructed through a Dirac type approach, Hphys, can be shown
to be unitarily isomorphic to that (i.e., HR) achieved by quantising the symplectic man-
ifold constructed by a classical reduction of the action of the constraints; and ii) the two
quantization procedures result in an equivalent set of observables to the extent that the iso-
morphism in i) also entwines the representations of the two sets of quantum observables
(both of which can be connected back to the same set of gauge invariant classical observ-
ables). We can thus assert, in certain circumstances, that quantisation does commute with
reduction and assert physical equivalence in a strict sense.

What will be important for our discussion below is that the constraints of canonical
general relativity are of such formidable complexity that the theory lies well outside any
of the existent commutation proofs. With this future issue in mind we will introduce here
a conceptual notion of commutativity which can be established in cases where formal
arguments are not available. Such a weaker notion of commutativity will allow us to
tackle the important task of exploring the somewhat unclear conceptual foundations of
quantum theories constructed via a Dirac type methodology. In particular, it will give us a
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basis in which to examine the extent to which mathematical structures which they present
us with are in correspondence with a reasonable physical ontology.

To establish a conceptual notion of commutativity we do not need to look for the exis-
tence of a suitable observable entwining isomorphism existing betweenHphys andHR but
rather establish correspondence between both the Hilbert spaces and the observables on a
representative level. We can flesh this idea out in terms of how the two approaches treat
the relevant symmetries, observables and degrees of freedom of a given theory. What in-
terests us is the extent to which the imposition of the constraints at a quantum level should
be understood as implementing the same reduction from an otiose to a unique represen-
tative structure that we enact via classical reduction. The key features of the classical
symplectic reduction procedure that we must require to be replicated at a quantum level
are: 1) quotienting by the same gauge group; 2) reduction by the same number of degrees
of freedom; and 3) the quantum observables defined via the two routes are equivalent to
the extent that we are justified in thinking of them as representing the same underlying
ontology. If we are satisfied as to equivalence in these three senses then we are justified
in asserting that the two quantisation procedures produce representationally equivalent
structures and that representative commutation between quantisation and reduction holds.
Clearly, this notion of commutativity in terms of representative equivalence should be
implied by that defined in terms of unitary isomorphism but not visa versa. However, its
potential significance is not purely interpretive since, given a case where we believe the
classical reduction to lead to a physically unrealistic reduced phase space, establishing
representative commutation will then provide us with grounds to doubt the physical ba-
sis of the theory quantised along the Dirac lines. Thus, what we have constructed is a
heuristic tool as well as an interpretative criterion of equivalence.

Let us consider the case of a theory where: i) the constraints are associated with a
Poisson bracket algebra with structure constants such that we can represent their action
quantum mechanically via a set of unitary operators on an auxiliary Hilbert space; and
ii) classically we can construct a reduced phase space with a symplectic geometry and a
non-trivial Hamiltonian operator. In these circumstances, we can apply RAQ to produce
a quantum theory via the Dirac type approach or alternatively proceed with a geometric
quantisation of the reduced space. The key to evaluating our notion of representative com-
mutativity is to examine the degree of correspondence between the quantum and classical
reduction procedures. Immediately, we can see a prima facie correspondence between
the classical gauge orbits defined by the constraints on the physical phase space and the



§4.1 Representative commutation between quantisation and reduction 33

quantum orbits defined by the action of the unitary representation of the Lie group gen-
erated by the constraints, U(g), on the auxiliary Hilbert space. Further to this, we can
also see an intuitive correspondence between a) the quotienting of the orbits in the clas-
sical theory to enable passage to the reduced space and b) the group averaging over the
quantum orbits that is used to construct the rigging map which projects into the physical
Hilbert space. However as pointed out by Corichi (2008) we must be wary of taking these
resemblances too seriously. Unlike in the classical case, the orbits are not generically
equivalence classes of physical states – this is to be expected since in the quantum case
we do not make any restriction to a physical yet degenerate sub-space of the auxiliary
Hilbert space which would be analogous to the physical phase space. Furthermore, the
rigging map defined by group averaging will – unlike the map to the reduced phase space
– in general take us to a state which is not part of the quantum orbit. Thus, the two
quotienting procedures are clearly different in an important sense.

Nevertheless, despite these differences the two procedures are equivalent in terms of
quotienting out the same gauge group. Since the constraints form a Lie algebra they are
associated with a Lie group,G, at a classical level. It is the action of this group that we are
removing from the physical phase space via symplectic reduction. This is the same group
that we represent in RAQ in terms of unitary operators on Haux and that we quotient out
via the rigging map defined by group averaging in order to constructHphys.

To see the correspondence in terms of degrees of freedom reduction we have to con-
sider the nature of the group averaging procedure a little more carefully. Clearly, if all
we were doing in RAQ was the quantum equivalent of classical reduction on an uncon-
strained space then we would have a mismatch in terms of number of degrees of freedom
removed – in the classical procedure half the excess degrees are removed by restriction
to the physical phase space and half by the reduction itself. Rather, we must be able to
understand the group averaging procedure as achieving both steps at once. We have, in
fact, already considered the essence of the answer – the rigging map does not just reduce
out equivalence classes it projects onto physical states. If we start out with an unphysical
state then it will take us to a physical state. If we start out with a solution to the constraints
then, because the orbit is trivial, group averaging will keep us at the same point. Thus,
as well as quotienting out the same gauge group we also have the quantum equivalent of
restriction to the physical phase space and the desired correspondence in terms of degrees
of freedom reduction is guaranteed.

Since the quantum observables of the RAQ scheme are defined such that they com-
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mute with the group action on the relevant sub-space ofHaux, there is also a clear intuitive
relationship between them and the classical observables on the physical phase space O:
both are in a sense ‘constant along the gauge orbits’ – although of course as we have
seen the quantum gauge orbits are of a very different character to the classical ones. A
stronger relationship can be established between the observables on the reduced phase
space OR and the quantum observables of RAQ since both are well defined with respect
to a non-degenerate and physical representative structure (i.e., ΠR andHphys). Moreover,
since there is a correspondence between the way states are represented in ΠR and Hphys

respectively, there is also a direct connection between the representational roles of the
observables: in each case points in the respective spaces can be given analogous repre-
sentative roles as corresponding to unique instantaneous states, and this then means we
can establish a relationship between the observables defined via functions/operators de-
fined over the state spaces. In this context, we can then consider the associated reduced
quantum observables ÔR defined onHR to precisely parallel (in a representational sense)
the RAQ observables when defined simply as operators onHphys.

It would therefore seem clear for the class of theories within which RAQ and sym-
plectic reduction are applicable, representative commutativity of reduction and quantisa-
tion will hold. The important question of whether our condition also holds for theories
within which RAQ is not applicable, and the master constraint programme for quantisa-
tion has been applied, will be considered in the context of the Hamiltonian constraints of
canonical general relativity in §14.2. For the moment we will focus our discussion upon
the interpretational consequence which we can attach to the establishment representative
commutation for standard gauge theories.

4.2 Quantisation and reductionism

In §3.3.3 we detailed how and why the Faddeev-Popov quantisation methodology can be
understood in reductive terms – in effect, when we consider a Faddeev-Popov path integral
we are considering a Feynman path integral on a reduced phase space. This means that
Faddeev-Popov quantisation is equivalent to reduced phase space quantisation up to the
(incomplete) equivalence between geometric and Feynman path integral quantisation.

In the previous section we established an argument that in the wide class of theories
for which the RAQ refinement of Dirac quantisation is available, such a route towards
quantisation should be understood as representationally equivalent to a quantisation of
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the reduced space. Together one might see these details as giving motivation for us to
argue that the quantisation of standard gauge theory in general is predicated upon the
quantisation of the classical reduced phase space. To make such an argument would, in
effect, to be to argue that the doctrine of classical reductionism is in some way always
implicit in the quantisation of standard gauge theories.

There are a number of problems with this argument from the structure of quantisation
to reductionism24. First, since the classical and quantum theories are strictly distinct, a
quantum based argument in favour of the reductionist stance does not necessarily impinge
upon the classical debate. Second, there exist quantisation methodologies for standard
gauge theories that go beyond those we have considered so our analysis is in this sense
incomplete. Furthermore, it is arguable that, given the example of the BRST technique
(Henneaux and Teitelboim (1992)), such additional techniques may amount to enlarging
rather than reducing the phase space. Third, when non-reductive techniques lead to the
same quantum theory as reductive techniques we could also argue that the quantum for-
malism that they lead to is the fundamental one and so that anti-reductionism is implicit
in quantization. Fourth, to the extent that the two methodology types lead to formally
different quantum theories there is still scope (over and above representative equivalence)
to argue that one may be true and one false – and it may in fact be an empirical matter to
decide which one is correct.

With regard to the second of these points, one may argue that BRST technique is
in essance a more mathematically sophisticated version of Faddeev-Popov technique –
where the F-P determinate is expanded in terms of ghost fields – and therefore that in-
terpretationally BRST too can be understood in terms of a Feynman path integral on the
reduced space. Thus, detailed consideration may allow the rebuttal of at least one of the
criticisms of our argument. However, that still leaves three more, and it seems unlikely
that a convincing answer can be found to them all. Rather, we might more reasonably
assert that quantisation merely transfers the reductionism/anti-reductionism debate to the
another level – there is no fundamental sense in which it can be evoked to settle it (this
situation of underdetermination in standard gauge theory will be discussed in Chapter
17).

On the other hand, although problematic, the idea of connecting quantisation to reduc-
tionism undoubtably latches onto a key kernel of truth. In particular, there seems ample

24Many of these points are found in a similar form within Rickles (2008).
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scope for running a negative rather than positive argument. For a case in which (clas-
sical) reductionism proves to be philosophically or conceptually problematic, we have
good cause to re-examine any quantisation technique which implicitly endorses its via-
bility. If reductionism proves incoherent and the reduced phase space fails to correctly
parameterise the classical system then any quantisation procedure which is equivalent to
quantising the reduced space will rest on dubious foundations. This argument will prove
crucial when we are considering the quantisation of a non-standard gauge theory in Chap-
ter 9.



Part II

The Non-Relativistic Problem Of Time
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Guide to Part II

In the second part of this thesis we will make our first foray into the class of non-standard
gauge theories within which time no longer plays the role of an external background
parameter. The particular case which we shall consider is that of non-relativistic repa-
rameterisation invariant theories. Such theories are represented canonically in terms of
a constrained Hamiltonian formalism within which the Hamiltonian itself is a first class
constraint. As we shall see below, it this feature that when combined with the application
of standard gauge theoretic techniques leads to the most acute form of the non-relativistic
problem of time: the disappearance of dynamics at both classical and quantum levels. The
key to avoiding this acute problem is the insistence that novel techniques must be applied
to the theories in question. Detailing the structure and interpretation of such non-standard
techniques will be one of the major preoccupations of the following five chapters. As
well as its evident intrinsic value for the understanding of the physically interesting mod-
els at hand, our non-relativistic investigation shall prove an invaluable foundation for the
analysis of the relativistic case in part three.

The basic structure of Part II is as follows. We begin in Chapter 5 by first giving both a
Lagrangian (§5.1) and Hamiltonian (§5.2) description of an extended version of mechan-
ics where time is promoted to a configuration variable. We then proceed to the Jacobi
formulation of mechanics within which temporal structure is eliminated altogether (§5.3).
The final, and crucial, section of Chapter 5 (§5.4) will then introduce an argument against
the applicability of standard gauge techniques (in particular symplectic reduction) to the
case in hand. Chapter 6 introduces two non-standard strategies for representing time and
observables within non-relativistic reparameterisation invariant theory: the emergent time
strategy (§6.1) and the correlation strategy (§6.2). Chapter 7 will then consider some of the
key interpretational consequences of our discussion in general (§7.1) and of these strate-
gies in particular (§7.2). Chapter 8 will offer some general and introductory ideas about
the nature of time in conventional approaches to quantum theory, before we proceed, in
Chapter 9, to the introduction of quantum mechanical non-relativistic problem of time.
This problem will be seen to have two facets, the first stemming from the reduction issue
(§9.1) and the second for the specific exclusion of quantum relational clocks by standard
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quantisation techniques (§9.2). The nature of these problems is further illustrated by toy
model examples (§9.3). We then offer a new proposal for the quantisation of (globally)
reparameterisation invariant theories via an intermediary formalism (§9.4) which we will
argue to solve the non-relativistic quantum problem of time as we have defined it. We will
then consider the structure of the observables of the intermediary formalism in order to
demonstrate their ability to be interpreted as representing the physical degrees of freedom
on the original theory (§9.5), , before finally discussing some outstanding interpretive
issues implied by the ideas introduced (§9.6.





Chapter 5

Reparameterisation invariant mechanics

5.1 Extended Lagrangian mechanics

The description of mechanics and gauge symmetry given thus far has made use of a dis-
tinguished background parameter; time t. Within the Lagrangian scheme this parameter
was associated with both the tangent vectors or velocities, q̇ = ∂q

∂t
∈ TC0, and with the

preferred parameterisation of the solutions, γPS : R→ TC0. An alternative methodology
for constructing a mechanical theory is to instead treat time as an additional coordinate,
q0 = t, in a n + 1 dimensional extended configuration space, C = R × C0. Velocities
in this space are then defined for all of the qµ ∈ C by differentiation with respect to an
arbitrary parameter τ so we have that q′µ = dqµ

dτ
, (qµ, q

′
µ) ∈ TC. This arbitrary param-

eter is also taken to vary monotonically along curves in extended configuration space,
γ : R → TC. Following Lanczos (1970, §5)25 we can use an extended Lagrangian ,
Lex[qµ, q

′
µ] : TC → R to define an action of the form:

I =

∫
γ

dτLex[qµ, q
′
µ] =

∫
γ

dτ(
T̄

q′0
− q′0V ) (5.1)

where T̄ = q′20 T and all masses are set to unity.

An important property of the extended Lagrangian is that it is homogenous of degree
one in the extended set of velocities q′µ: for some positive number k the transformation
q′µ → kq′µ implies Lex[qµ, q′µ] → kLex[qµ, q

′
µ]. This means that the action of our theory

will be invariant under re-scalings of the parameter τ . Theories which display such a dy-
namic insensitivity to parameterisation are said to be reparameterisation invariant. The
interpretation of this theory will be non-standard since reparameterisation is a symmetry

25Also see Johns (2005, §11-12) and Rovelli (2004, §3.1)
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of the action which maps between distinct solutions in the extended configuration space –
this is because the velocities are parameterisation dependent. Thus these solutions cannot
be used to provide a straightforward characterisation of physical histories as in §1.2.

5.2 Extended Hamiltonian mechanics

In correspondence with §1.3 we can define an extended phase space as the cotangent
bundle to our extended configuration manifold, (qµ, pµ) ∈ Γ = T ∗C =T ∗(R × C0), with
pµ = ∂Lex

∂q′µ
. The relevant Hamiltonian functional, Hex[qµ, pµ] : Γ→ R takes the form:

Hex[qµ, pµ] = pµq′µ − Lex[qµ, q′µ] (5.2)

which is homogenous of degree one in the set of extended velocities and defines a repa-
rameterisation invariant action

I =

∫
γ

dτ(pµq′µ −Hex[qµ, pµ]) (5.3)

By definition we have that the momentum conjugate to time is:

p0 =
∂Lex
∂q′0

= L0 −
∂L0

∂q̇i

q′i
t′

= −H0 (5.4)

which means the extended Hamiltonian is equivalent to:

Hex[qµ, pµ] = t′(p0 +H0) (5.5)

= 0

The Hamiltonian is therefore a (first class primary) constraint and the dynamics of our the-
ory will be defined upon a surface within extended phase space, Σ = {x ∈ Γ : Hex(x) =

0}. The geometry of the constraint surface is given (as above) by taking the restriction of
the relevant Poincaré one form, θ = pµdq

µ, to Σ:

θ|Σ = pidq
i −H0dt (5.6)

and taking the total differential to get a two form ω̃ = d(θ|Σ) with highly non-trivial
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structure.26

Significantly, this two form is closed and degenerate. Thus the dynamics of extended
mechanics is framed within a presymplectic geometry, (Σ, ω̃). That this should be the
case can be seen quite simply since our definition of a degenerate two form is equivalent
to Hamilton’s equations of motion with a zero Hamiltonian:

ω̃(X, ·) = dHex (5.7)

= 0 (5.8)

The immediate consequence of the degeneracy is that no unique Hamiltonian vector
field is defined within the constraint surface and thus that we cannot define a unique
Hamiltonian R-action or flow. Correspondingly, our equation of motion (5.8) is only
solvable up to an arbitrary factor27 meaning that the dynamical solutions can only be
unparameterised curves in the tangent bundle γ̄UPS .

The question is then; can we now simply follow a symplectic reduction procedure and
then avail ourselves of the standard description of time, change and observable functions?
Or does reparameterisation have some unusual feature that necessitates a different ap-
proach? To tackle these issues we need to take a closer look at the physical interpretation
of both time and its conjugate momentum and in doing so construct a more elegant and
general version of reparameterisation invariant mechanics.

5.3 Jacobi’s principle and timeless theory

We can associate the time coordinate t (q0) in extended mechanics with the value taken
by a clock external to our mechanical system. In the case of an open system such an
interpretation would seem appropriate; but what about if the system is a closed subsystem
of the universe? – or even the universe as a whole? In this case there is clearly no physical
basis for an external clock and as such we would look to eliminate t as an independent
variable. We can do this by the process of Routhian reduction28 which serves to eliminate

26This should come as no surprise as this two form must encode the full structure of the constraint and,
since this constraint is the Hamiltonian, therefore the dynamics.

27This is because (5.8) can be thought of as a linear homogenous equation which only determines the
velocities up to a scaling factor applied everywhere along a solution.

28A fuller discussion of Routhian reduction in general, and in this case in particular, is given in Lanczos
(1970, §5) and Arnold et al. (1988, §3.s2).
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a cyclic independent variable (i.e., one which only appears in the Lagrangian as a velocity)
by using the equations of motion to set its conjugate momentum equal to a constant.
Since we have seen above that the conjugate momentum to time is equal to minus the
un-extended Hamiltonian of the system we will give the physical interpretation of the
constant involved as minus the total energy, E, of the system. Setting the energy as equal
to a constant is of course justified for a closed system.

Let us go back to our original Lagrangian formulation of parameterised particle dy-
namics defined by Lex : TC → R

Lex =
T̄

t′
− t′V (5.9)

where, as above, t′ = dt
dτ

and T̄ = t′2T . By definition the momenta conjugate to t is:

p0 =
∂Lex
∂t′

= − T̄
t′2
− V = −T − V (5.10)

Now, since Lex contains t only as a velocity (it is cyclic in t) we can fix the value of p0 to
some constant c0 = −E by virtue of the relevant Euler-Lagrange equation:

∂

∂τ

(
∂LPPD
∂t′

)
=

∂LPPD
∂t

= 0 (5.11)

∂

∂τ
(p0) = 0 (5.12)

p0 = −E (5.13)

This means we can now express t′ as a function of T̄ , V and E:

t′ =

√
T̄

E − V (5.14)

We can now pass to the Routhian functional:

R = Lex + Et′ (5.15)

=
T̄

t′
− t′V + Et′ (5.16)

= 2
√
T̄ (E − V ) (5.17)
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We find that extremizing R leads to the same Euler-Lagrange equations as were defined
on our original tangent bundle TC0 but with τ still playing the role of an arbitrary change
parameter:

∂

∂τ

(
∂R

∂q′i

)
=
∂R

∂qi
(5.18)

If we take this action and this space as in fact defining our dynamics (with T̄ now simply
taken to be the kinetic energy and so written as T ) then we have achieved a Routhian
reduction and arrived at a Jacobi type action principle:

I =

∫
dτ2
√

(E − V )T (5.19)

=

∫
dτLJ(q, q′)

This action can be understood as defining geodesics in configuration space without mak-
ing any reference to time or parameterisation. As such it is reparameterisation invariant.
If we then proceed to define a function called the lapse as:

N =

√
T

(E − V )
(5.20)

we can construct conjugate momenta (defined in T ∗C0) according to the simple form

pi =
q′i
N

(5.21)

The Jacobi Hamiltonian, HJ : T ∗C0→ R can then be expressed as:

HJ =
∑
i

pi.q
′
i − LJ = Nh (5.22)

where
h =

1

2

∑
i

pi.pi + V − E = 0 (5.23)

This is again a first class primary constraint. In fact it is the same constraint as was en-
countered in extended mechanics merely with p0 replaced by −E and the multiplier t′

replaced by N . Thus, reparameterisation invariant theories of mechanics have a Hamilto-
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nian of the form
H = Nh (5.24)

where N is a arbitrary multiplier, the choice of which determines the parameterisation,
and h is some function of the conjugate variables that is equal to zero. Such timeless
theories will inevitably be constrained Hamiltonian theories with the Hamiltonian itself
playing the role of the constraint. Thus the geometry of the constraint surface will be
dictated by the two form ω = dθ = d(θ|Σ) where Σ = {x ∈ Γ : H = 0}.

This two form will in general be closed and it will also be degenerate since it has a null
direction associated with the Hamiltonian constraint. The integral curves of this vector are
the gauge orbits of ω on Σ. However, since this null vector field on the constraint surface
is generated by the Hamiltonian we could also argue that ω(X) = 0 is the equation
of motion.29 Since the integral curves of the kernel of the presymplectic form can be
shown to be unique solutions we have the strange situation in timeless mechanics where
the gauge orbits correspond to the physical histories! The question of how we are to
interpret such a perplexing description of mechanics, where degeneracy and dynamics are
so closely interwoven, is far from trivial and shall occupy us for much of the remainder
of this chapter. To go forward, however, we must go back and reconsider the connection
between presymplectic geometry and local symmetry groups.

5.4 Degeneracy, indeterminacy and triviality

In our initial discussion of presymplectic geometry we associated the degeneracy encoun-
tered with a group of local or gauge symmetries arising on the tangent bundle to some
configuration space, TC. These symmetries were taken to be such that they allow for
multiple points to be associated with the same value of the Lagrangian and thus ensured
that the Legendre map, FL : TC → T ∗C, was not an isomorphism (a bijective homomor-
phism) since in such a situation it will generically neither be injective nor surjective. In
the case of reparameterisation invariant theory the relevant symmetry group is of course
that of reparameterisations. It can be seen to be different to the generic gauge group con-
sidered in §1.5 in two important respects. First, since it relates curves that differ in terms
of parameterisation it is strictly a symmetry of the action rather than the Lagrangian. Sec-

29This can be explicitly seen for the case of the simple pendulum system used by Rovelli (2004) to
illustrate both extended mechanics (§3.1 pp. 104-5) and Jacobi’s theory (§3.2 pp.109-11) – n.b. he refers to
the latter non-standardly as relativistic mechanics.
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ond, although it also leads to a Legendre transformation that is again not bijective (since
it is not injective) the action of the reparameterisation group is such that the conjugate
momenta are not affected by rescaling the parameter. Thus, distinct points on the tangent
bundle which can be mapped from one to another by the action of the reparameterisa-
tion group will correspond to single points on the cotangent bundle. The structure of our
phase space is therefore such that paths through it are invariant under reparameterisations.
The degeneracy present does not then lead to the type of pernicious underdetermination
which was encountered in the construction of presymplectic mechanics considered in
§1.5. Rather it takes us between vector fields that are equivalent up to scaling by a mul-
tiplicative factor corresponding to the parameterisation. Our primary motivation for the
application of the symplectic reduction procedure is therefore removed since there is no
possibility of pernicious indeterminism.

We still, however, have the problem of representing change within the presymplectic
constraint surface (Σ, ω) – one would like to be able to associate the Hamiltonian with
a unique vector field and therefore be able to establish a unique flow with which we can
associate evolution. The most obvious way to do this would be to find an underlying sym-
plectic manifold within the timeless theory – thus it may be worth trying to symplectically
reduce such theories even without a pressing theoretical need to. However, as pointed
out above, timeless theories have a geometry such that what we would normally call the
gauge orbits (since they are the sets of points connected by parameterisation rescalings)
are also the usual candidates for the solutions in phase space (since they are generated
by the Hamiltonian). Thus, the reduction procedure whereby we quotient out the orbits
of ω, will leave us with a reduced phase space, ΠR = Σ/Ker(ω), without any meaning-
ful notion of evolution – it consists of unconnected points each of which can only gain
meaning when referred back to the entire history on the constraint surface to which they
correspond. Moreover, since the space is equipped only with a trivial Hamiltonian func-
tion there is no sense in which the reduced phase space symplectic form, ωR, found in
reparameterisation invariant theories of mechanics can play any meaningful role – even
in generating maps between points in the reduced space. Thus, representationally ΠR

alone is only equipped to describe trivial universes consisting of one static configuration
(Maudlin (2002) makes a similar point). Furthermore, since ωR is defined only in virtue
of the constraint surface via ω = π∗ωR there is a sense in which it could be said to have
no more than a purely formal existence.30

30Rovelli’s (Rovelli (2004)) treatment introduces ωR as ωph (p.111) but fails to make any use of it.
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It could be argued Belot (2007, p.78) in this context that points in the reduced phase
space should be taken to describe entire dynamic solutions and therefore that the space is
not representationally trivial. In normal circumstances it is reasonable to interpret the re-
duced phase space, ΠR, resulting from the application of symplectic reduction as a space
of instantaneous initial data states, I. This follows from the fact that for any curve γPS
in the space of gauge invariant solutions to the Euler-Lagrange equations SR we can de-
fine a set of isomorphisms between ΠR and SR such that for each value of the curve’s
parameterisation there will be a map uniquely picking out a point in ΠR with correspond-
ing value of the Hamiltonian flow parameter.31 However, for the case of nonrelativistic32

timeless theory there is only a single canonical isomorphism defined between points in
the reduced phase space and the unparameterised gauge invariant solutions, γUPS . Thus
we can see why one might think the representational role of ΠR should be modified such
that it becomes identical to that of SR. But such a move has highly nontrivial conse-
quences for how we must interpret the unreduced phase space and is therefore difficult to
countenance. In particular, if xR ∈ ΠR is a solution then given a point on the constraint
manifold in the unreduced phase space, x ∈ Σ, we must interpret the relevant ‘gauge’
orbit, [x] : Σ → R, as an equivalence class of solutions. This interpretation cannot hold
since these orbits are equivalent to solutions themselves rather than equivalence classes of
solutions. Thus, in nonrelativistic timeless theory at least, the representational role of the
reduced phase space cannot be in describing entire histories – we cannot treat it as a prim-
itive arena for representing our fundamental ontology. Rather, any status it can be given
as a history space is purely parasitic on the pull-back map to the unreduced space and it
is fallacious to argue that the isomorphism that exists between SR and ΠR must confer
representational equivalence between these two very different mathematical structures.

It would seem therefore that we have established two examples of mechanical theory
within which the presence of a first class constraint does not indicate that a symplectic
reduction is appropriate. This means that Dirac’s theorem (first class constraints generate
gauge symmetry) does not hold for the timeless theories considered and is therefore not
generally valid in its original form.33

31The geometric structure of such a reduced space of solutions as well as its connection with the Hamil-
tonian framework is extensively discussed in Belot (2007)).

32In this respect general relativity would seem to be identical to nonrelativistic theory. Belot’s argument
(which was designed for application to GR) is explicitly re-examined for the case of relativistic theory in
§11.3

33Rather we should say that first class constraints indicate the presence of gauge symmetries but need not
necessarily be identified as the relevant generators. This point is in full agreement with Barbour and Foster
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(2008).





Chapter 6

Representing change and observables in timeless
mechanics

The essential point established by our argument thus far is that the unreduced phase space
of a timeless system (i.e., one in which the Hamiltonian is a constraint) is such that we
cannot interpret it using the conventional machinery of constrained Hamiltonian mechan-
ics. Although, as in the generic case, points not on the constraint surface must be clas-
sified as inaccessible states, it has been demonstrated that, unlike in the generic case,
the difference between points connected by the orbits generated by the constraint on the
constraint surface itself cannot be classified as purely unphysical gauge without trivialis-
ing the theory. Thus, the geometric structure of timeless theories leads us into an acute
problem of representing change since we cannot avail ourselves of the conventional tem-
poral machinery provided by a reduced phase space. The definition of a Dirac-Begmann
observable also becomes ambiguous within timeless theory since by application of the
third condition from §1.5 observable functions can only be equivalent to single points on
any dynamical history that is represented on reduced phase space – and this would seem
to trivialise them. Furthermore, the first condition (constancy along gauge orbits on the
constraint manifold) can only be satisfied in the case of phase space functions which are
constant along entire histories of the system and it is difficult to see how such functions
– perennials in the terminology of Kuchař (1992) – could be used to represent dynamic
physical quantities since they cannot change along the solutions defined by the Hamilto-
nian on the constraint surface. Thus we are also presented with a problem of representing
observables. This chapter will outline and evaluate two methodologies each designed to
meet our two problems for the case of nonrelativistic theory.
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6.1 The emergent time strategy

That the Hamiltonian constraint in reparameterisation invariant theories should be thought
of as generating genuine change is a position that has been notably defended by Kuchař
(Kuchař (1991b, 1992)) and Barbour (Barbour (1994, 2009)); more recently it has been
outlined explicitly in Barbour and Foster (2008). We shall call it the Kuchař-Barbour-
Foster (KBF) position with regard to change. In keeping with our discussion above, it is
an explicitly non-reductive strategy since it involves our treating the differences between
points on the integral curves corresponding to the Hamiltonian vector field as genuine
physical change. Parallel, although logically independent, to this position with regard
to change is the view that observable functions need not commute with the Hamiltonian
– we shall call this view the KBF position with regard to observables. This explicitly
non-reductive strategy characterises observables as full functions on the unreduced phase
space which are allowed to break all three of the Dirac-Bergmann criteria. Essential to
the practical viability of this position is the possibility of quantifying the change of an
observable in a gauge invariant manner and we shall here outline the methodology for
doing this uniquely by using an emergent notion of time following Barbour and Foster
(2008).

From above we have that a generic timeless Hamiltonian will be of the form:

H = Nh (6.1)

h(p, q) = 0 (6.2)

If we take a function on phase space g(p, q) which we would like to interpret as cor-
responding to some physical quantity then, since the full phase space is a symplectic
manifold, we can define the Poisson bracket of this function with the Hamiltonian func-
tion, {g,H}. This is equivalent to the Lie derivative of the function with respect to the
Hamiltonian vector field, LXH (g). Since the Lie derivative is an operation on scalar func-
tions that gives us the change of the function along a vector field LXH (g) is equivalent to
a real number representing the rate of change of g along the Hamiltonian vector field with
respect to an arbitrary parameter τ :

δg

δτ
= {g,H} (6.3)
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Thus an infinitesimal change in the function along the vector field is equivalent to:

δg = δτ{g,H} (6.4)

= δt{g, h} (6.5)

where we have introduced the temporal increment δt = Ndτ . Crucially, we have from the
invariance of the canonical action that Ndτ must be invariant under reparameterisations.
Since the Poisson bracket must be a real number δg must itself also be a reparameteri-
sation invariant quantity. However, it cannot yet be taken to represent the change in a
physical quantity; we have not made any restriction to the constraint surface so we have
not excluded change that takes us from accessible to inaccessible states. To resolve this
we introduce the weak inequality and the infinitesimal change of a dynamic variable along
a physical history can be then represented as:

δg ≈ Ndτ{g, h} (6.6)

We can put this result in the context of our geometric discussion since we have that:
i) The Hamiltonian can be taken to generate an equivalence class of vector fields, XNh

upon phase space34; ii) The integral curves of each of the vector fields will correspond to
the same set of solutions only with a differently scaled parameter τ marking out change
along them; iii) A reparameterisation is then the map between one vector field and another
(between one solution and another) by re-scalings of τ . Such a change is between different
objects both generated by H but is not strictly generated by H itself. Thus it should come
as no surprise that there is a viable methodology for gauge invariantly using the vector
fields associated with the unreduced Hamiltonian to solve our problem of representing
both change and observables in timeless theory.

Although we now have a valid methodology for representing the change of a function
along a timeless solution there does still seem to be a problem. If we were to consider as-
tronomers in two nonidentical isolated sub-systems each using these equations to describe
the dynamics of their solar system, they would end up arriving at two different measures
of change since each will have to make an arbitrary choice in the form of the lapse and
parameter τ . However, if we make the restriction that we are dealing with closed sys-
tems of fixed energy then we are justified in fixing the form of the lapse in accordance

34We get an equivalence class rather than a unique field because the multiplier N is arbitrary.
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with Jacobi’s theory – i.e., such thatN =
√

T
(E−V )

. This Jacobi lapse allows us to define a

uniquely distinguished and reparameterisation invariant Newtonian temporal increment35:

δt =

√
T

(E − V )
dτ (6.7)

Furthermore, this Newtonian temporal increment is such that it can be defined based
purely upon change in the configuration variables as:

δt =

√
δqi.δqi

2(E − V )
(6.8)

and we can therefore represent the change in a function along a solution without reference
to the parameterisation. This means that we can treat time as something which naturally
emerges from the dynamics and is thus ontologically secondary to the change of configu-
ration variables.

6.2 The correlation strategy

An alternative, and perhaps more radical, methodology for representing change and ob-
servables in timeless mechanics places emphasis on the idea of correlations and may be
traced back through a linage featuring famous names such as DeWitt (1967), Bergmann
(1961), and (arguably) Einstein (1916). Here we will present a particular implementation
of the correlation strategy which follows on from Rovelli’s (Rovelli (1990, 1991, 2002b,
2004)) complete and partial observables methodology and is due to Dittrich (2006, 2007)
and Thiemann (2007). We shall focus initially on this correlation strategy as address-
ing the problem of representing observables in isolation from the problem of representing
change and shall designate the position outlined as the Rovelli-Ditterich-Thiemann (RDT)
observables position.

An essential element of this scheme is the move away from a representation of change
in an observable as the variation of a phase space function along a history. Rather, we
focus upon the configuration variables themselves (the partial observables) and assert that
the quantities we should be interested in endowing with physical meaning are the relations

35As pointed out by Barbour (1994, §4) this privileged time measure derivable from dynamics of a closed
system is equivalent to the astronomers notion of ephemeris time.
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between configuration variables (the gauge invariant complete observables).

Change in an observable can then be represented as the reparameterisation invari-
ant specification of the value of one configuration variable with respect to another – as
correlations between partial observables. The complete observables are the families of
correlation functions which individually give the value of one of the partial observables
when the other (the clock variable) is equal to some real number.

There is some debate as to how we should interpret the partial observables. In some
of his later treatments Rovelli seems to imply that they can be considered to have some
independent physical reality – they are ‘the quantities with the most direct physical in-
terpretation in the theory’ (Rovelli, 2002b, p.124013-7) and, moreover, ‘we can associate
[them with] a (measuring) procedure leading to a number’ (p.124013-2). However, the
viability of this interpretation has contested by both Thiemann (2007, p. 78) and Rickles
(2008, pp.154-68) principally on the grounds that it is difficult to see how such quantities
could be understood as physical magnitudes within a gauge invariant framework. A par-
ticular problem is how we can understand a measurement of a single partial observable as
possible independent of anything else – surely it makes more sense to view a measurement
itself as a complete observables (i.e., a correlation between the values of two quantities).
Furthermore, by definition a theory cannot make any predictions with regard to partial
observables, so it seems difficult to motivate endowing them with any empirical signifi-
cance. In what follows we shall follow Thiemann, Rickles and early Rovelli in holding
that it should only be the complete observables that are taken to be physically meaningful,
and associated with possible measurements (see Rovelli (2007) for further discussion of
this point indicating that his current view seems to be that although both approaches are
consistent there are practical advantages to the later position).

A simple example will illustrate the important elements of the complete observables
scheme. We can consider a system described by two configuration variables (partial ob-
servables) q1 and q2 which together with their conjugate momenta obey a Hamiltonian
constraint of the form H[q1, q2, p1, p2] = 0. The phase space, (q1, q2, p1, p2) ∈ Γ, will as
usual have a symplectic structure. We can use the relevant symplectic form to define the
action of the Hamiltonian vector field on an arbitrary function, XH(f) = ω(Xf , XH) =

{f,H}. The flow, ατH , generated by this vector field can then be defined for every x ∈ Γ

and we can see this flow as acting on a phase space function, ατH(f)(x), such that it takes
us along the solutions. For our system therefore we calculate ατH(q1)(q1, q2, p1, p2) and
ατH(q2)(q1, q2, p1, p2). We then designate one of our variables as a clock variable and
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seek to invert an expression of the form Tx(τ) = ατH(q1)(x) such that solving Tx(τ) = s

for s ∈ R will give us an expression for τ in terms of s and q1. In general this inversion
will only be possible for a specific interval – thus the clock variables are typically going
to be at best locally well defined and so are unlikely to be continuous on phase space and
this means that the scheme will be difficult to implement in practice. We can then insert
the inverted expression into the second flow equation ατH(q2)(x) by substituting for τ ,
and produce an expression which (within the interval specified) gives us the value of q2

when q1 takes the value s. This complete observable represents a family of functions (one
for each s) each of which expresses the correlation between our two partial observables
without reference to parameterisation.

Let us explicitly calculate the expression for such a complete observable given a toy
model double pendulum system with Hamiltonian constraint of the form:

H[q1, q2, p1, p2] =
1

2
(q2

1 + q2
2 + p2

1 + p2
2)− E = 0

The Dittrich methodology involves taking the configuration variables and explicitly con-
structing the flow generated by the action of the constraint on each of these variables. For
our system therefore we are looking to calculate ατH(q1)(q1, q2, p1, p2) and ατH(q2)(q1, q2, p1, p2).
To do this we expand the action of the flow in terms of a power series:

ατH(f)(x) := eτLXH (f) =
∞∑
r

τ r

r!
{H, f}r(x)

where {g, f}(0) := f , {f, g}(n+1) := {g, {g, f}(n)} is the iterated Poisson bracket. For
our Hamiltonian this gives:

ατH(q1)(q1, q2, p1, p2) = q1 cos(τ)− p1 sin(τ)

=
√
q2

1 + p2
1 sin

(
τ − arctan(

q1

p1

)

)
ατH(q2)(q1, q2, p1, p2) = q2 cos(τ)− p2 sin(τ)

=
√
q2

2 + p2
2 sin

(
τ − arctan(

q2

p2

)

)
As above we then: i) Designate one of our variables as a clock variable Tx(τ) = ατH(T )(x);
ii) Seek to invert the expression so that solving an equation of the form Tx(τ) = s for
s ∈ R will give us an expression for τ in terms of s and the configuration variables; iii)
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Insert the inverted expression into the second flow equation, fx(τ) = ατH(T )(x), and pro-
duce an expression for the value of one partial observable when the other takes the value
s:

F[f,T ](s, x) = ατH(f)(x)|ατH(T )(x)=s

Designating q1 as the clock variable and focusing on the interval [−π
2

+ arctan( q1
p1

), π
2

+

arctan( q1
p1

)] leads us to invert ατH(q1)(x) = Tx(τ) = s to get:

τ = arcsin

(
s√

q2
1 + p2

1

)
+ arctan(

q1

p1

)

Inserting this into ατH(q2)(x) gives:

F[q2,q1](s, x) = ατH(q2)(x)|ατH(q1)(x)=s

=
√
q2

2 + p2
2 sin

(
arcsin

(
s√

q2
1 + p2

1

)
+ arctan

q1

p1

− arctan
q2

p2

)

For the interval specified, this expression gives us the value of q2 when q1 takes the value s.
As such this complete observable represents a family of functions each of which expresses
the correlation between our two partial observables without reference to parameterisation.
A more general expression can be defined based on translations from our original interval
by kπ and 2kπ for k ∈ Z – see Dittrich (2007, p.1898). If we then project down into the
configuration space (q2, q1) ∈ C using the map P : Γ → C given by x 7→ (q1(x), q2(x))

for x ∈ Γ then the phase space flows will map into flows in C. The image of these
flows define unparameterised curves in configuration space and for our example these can
be shown to be ellipses. This explicitly demonstrates correspondence between Dittrich’s
methodology and that originally applied to this system by Rovelli (1990).

Both in this specific case, and in general, we can see that not only are complete
observables families of reparameterisation invariant objects, but the functions on phase
space that each correlation defines will commute with the Hamiltonian constraint. This
means that they explicitly fulfil the second condition for a Dirac-Bergmann observable
and demonstrates the fundamental difference between the RDT and KBF positions with
regard to observables. We can consider the extent to which the complete observables
satisfy the other two criteria. The first condition was that Dirac-Bergmann observables
are functions which are constant along the orbits generated by the constraint on the con-
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straint surface. By definition the flows generated by the Hamiltonian constraint in the
phase space and the integral curves of the relevant null vector field will coincide on the
constraint surface. Since each of the correlations that make up a complete observable are
defined for a specific value of the flow parameter these functions do not vary along this
flow and are therefore constant along gauge orbits. But it must be noted that the sense in
which these functions satisfy this condition is somewhat different from the generic case
in two senses. First, in a typical gauge theory an observable would be constant along
gauge orbits but it would also vary between them – it is this variation off the orbits that
we would normally consider physical change. Second, the sense in which they are con-
stant on gauge orbits is almost trivial – they are each defined for a particular value of the
flow parameter so in effect they establish the correlation at a particular point along an
orbit. Clearly such a specification is valid all the way along the orbit only in the same
strange sense that ‘in Sydney in 2011 AD, Caesar crossed the Rubicon in 49 BC’ is a
valid statement concerning modern Australian history.

Application of the third Dirac-Bergmann condition is more acutely problematic. Since
for a given dynamical solution the functions that define the observables cannot, by def-
inition, vary between gauge orbits, the complete observables relevant to an individual
solution are each equivalent to single points rather than functions on the reduced phase
space. This means that if we take the symplectic reduction ontologically seriously (i.e.,
treat the reduced phase space as primitive) we will, for any given dynamical solution,
only be left with a single correlation specified by each complete observable rather than
an entire family of correlation functions since it is only through the pull back to the con-
straint manifold that these correlations are defined. It would seem, therefore, that there is
some motivation for setting aside the Dirac-Bergmann notion of an observable altogether
– complete observables are defined in such a way that it is no longer fully appropriate
and the RDT position should be seen as a distinct alternative rather than a innovative
application of the orthodoxy.

We can now finally turn the problem of change. Here we appear to have a prob-
lem since Rovelli and Dittrich hold both that evolution generated by the Hamiltonian
is gauge36 and that the entire orbit it generates is what should be considered physically
real.37 If we dispense with the first proposition (which clearly must contradict the non-

36See Rovelli (2004, p.127) and Dittrich (2007, p.1892). Thiemann’s Thiemann (2007, p.75) position
with regard to this point is more nuanced and is specifically targeted to the case of general relativity.

37See Rickles (2008, pp.182-6) and Dittrich (2007, p.1894).
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reductive stance taken by these authors) and focus on the second, then a coherent but
highly radical position emerges. In particular, if we consider the implications of the
change in the notion of the physical state that seems to have been made, then it appears
that the RDT position with regard to change in nonrelativistic reparameterisation invariant
mechanics amounts to a denial of the need for any fundamental concept of time at all.

Rovelli (2002b) distinguishes the ‘physical phase space’ as the ‘space of orbits gener-
ated by the constraints on the constraint surface’ (p3) and Dittrich (2007) similarly defines
the physical state as an ‘equivalence class of phase space points’ which ‘can be identified
with an n-dimensional gauge orbit’ (p 1894). For a theory where the Hamiltonian is it-
self a constraint this constitutes a redefinition of the structure of our dynamics such that
the basic ontological entity is an entire history rather than an instantaneous configuration.
In typical gauge theories points on the constraint surface connected by a gauge orbit are
classified as the same state because the difference between them is taken to be unphysi-
cal – we can then proceed to a symplectically reduced phase space within which we can
characterise the change between two instantaneous states without problem. This interpre-
tation of change drawn from the complete observables scheme on the other hand leads us
to classify two such points as the same state because the word ‘state’ is redefined such
that in includes all points on the orbit. This is not to classify time or evolution as gauge
since that would indicate that the trivial reduced phase space of single initial data points
was the arena of true physical significance. Rather, it is to adopt a position such that any
notions of evolution and time in a conventional sense are redundant within reparameteri-
sation invariant theory. Adoption of a correlation strategy has then the capacity for radical
philosophical implications for the nature of time in physical theory – the next section will
examine these in more detail as well as considering the emergent time strategy in a more
philosophical context.





Chapter 7

Interpretational implications

The objective of Chapter 5 was to demonstrate that, unlike standard gauge theories, time-
less nonrelativistic theories are such that the constraints cannot be considered as gauge
generators without trivialisation and that a reduced phase space with a symplectic ge-
ometry cannot be considered as both a viable and autonomous representative structure.
In Chapter 6 we examined two strategies for representing observables and change in the
unreduced phase space and considered some of the implications of each scheme. What
now concerns us are the interpretational consequences we should attach to our conclu-
sions. In particular, it is interesting to consider how we should place the existence of: 1)
gauge theories with phase spaces such that passage to a representatively viable reduced
space is not available; and 2) our two strategies for representing change without an ex-
plicit notion of time; in the context of the debates over both relationalism/substantivalism
with respect to time and reductionism/non-reductionism with respect to the interpretation
of gauge theories.

7.1 The relationalist vs substantivalist dispute with regard to time

The long standing relationalist/substantivalist dispute with regard to space and motion in
nonrelativistic mechanics contains many important lessons for the parallel dispute with
regard to time. In particular, modern treatments in terms of analytical mechanics allow
us to characterise precisely a number of refinements to the traditional binary distinction –
we will very briefly introduce the ideas key for our purpose, a more exhaustive analysis
can be found in Rickles (2008).

Let us define a substantivalist as someone who is committed to the existence of space
(or space-time) as an entity in its own right, over and above the relations that hold be-
tween material bodies. The position of straightforward substantivalism then involves a
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commitment to the existence as distinct possibilities, spatial (or space-time) models which
differ only by the application of an element of the Euclidean (Galilean) group of global
symmetry transformations. The difference between the two models is naturally cashed
out in Haecceitistic terms since it rests upon the non-qualitative cross-identification be-
tween spatial points as the means of differentiation between the distinct possibilities in
question. In terms of the Hamiltonian formulation of mechanics (where the models are
represented by curves in phase space) straightforward substantivalism involves insisting
that sequences of points in phase space which are related by symmetry transformations
can represent distinct sequences of instantaneous states since they differ Hacceistically in
terms of the differing roles that spatial points play between gauge related instantaneous
states.

A sophisticated substantivalist is someone who maintains the commitment to the on-
tological fundamentality of space (or space-time) but insists that models related by Eu-
clidean (Galilean) symmetry transformations are not distinct possibilities. The most natu-
ral way of securing this reduction in possibilities is to adopt a position of anti-Hacceitism
such that we do not allow non-qualitative determinants of cross-identification, and there-
fore differences between spatial models solely as to which spatial points play which roles
are not allowed: models that differ solely Haecceitisticly are counted as the same possi-
bility. There is a natural implementation of sophisticated substantivalism within Hamilto-
nian mechanics grounded upon anti-Hacceitism: one can insist that sequences of points in
phase space which are related by symmetry transformations cannot represent possibilities
since they refer to sequences of instantaneous states which differ solely as regard to which
spatial points play which roles.

The relationalist on the other hand, wants to deny that space (space-time) is a funda-
mental entity and is therefore committed to denying that models which differ only with
regard to space (space-time) symmetries constitute distinct possibilities. They can ground
this reduction in possibilities without having to endorse anti-Haecceitism, since because
they deny that there are spatial (space-time) points, they automatically have that models
related by Euclidean (Galilean) symmetry transformations constitute the same possibility
since there simply are no individuals to ground even a Haecceitistic difference. Space
(space-time) relationalism can be naturally implemented within a Hamiltonian system of
mechanics either by focusing upon the original phase space and identifying as the same
possibility instantaneous states which differ solely with regard to the application of a Eu-
clidean (Galilean) symmetry transformation, or by moving to a quotient space where all
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points related by elements of the relevant symmetry group are reduced to single points.
The latter approach amounts to recovering phase space literalism within a reduced phase
space and, for reasons that shall become important later, will be considered as a distinct
position of reductive relationalism (like reductionism with respect to gauge theory, it is
notably advocated by Belot (1999, 2000)). There is of course nothing to preclude a so-
phisticated substantivalist from also adopting the formalism of the reduced phase space
since they count possibilities in an identical fashion.

With these distinctions in hand, and the existence of a connection between reduction-
ism and relationalism already apparent, we can turn our attention to the ontological status
of time within our timeless theories of nonrelativistic mechanics. We can define a tempo-
ral substantivalist as someone who asserts the existence of time as a basic entity in its own
right over and above the relations that exist between the instantaneous states of material
systems (be they relationally defined or not). Such a position is a natural reformulation
of the Newtonian concept of absolute time; in particular, it seems to implement that no-
tion of time defined in the influential Scholium section of his Principia.38 Now, it could
be argued that, at least as nonrelativistic mechanics is concerned, substantivalist time is
inherently connected to the use of an external temporal dimension and on this basis a sub-
stantivalist would have a very hard time dealing with Jacobi’s theory. However, what is
essential to temporal substantivalism – under our reading of it at least – is that time can be
asserted as a basic entity parameterising change that is not parasitic on the motion of the
bodies that are doing the changing. Thus, Jacobi’s theory does not in principle exclude
temporal substantivalism since change is parameterised (albeit non-uniquely) in terms of
τ . Moreover, unlike its Newtonian counterpart (as well as parameterised particle mechan-
ics) Jacobi’s theory offers a level playing field for matching the temporal substantivalist
against their relationalist foe since it is a mechanical framework free from the fundamental
presumption of preferred parameterisation or external time that would inherently favour a
substantivalist reading.

A straightforward (i.e., Haecceitist) temporal substantivalist reading of Jacobi’s the-
ory could then proceed as follows. Just as the reality of space indicates that there is a real
but non-qualitative difference between two sequences of instantaneous states related by a
spatial symmetry transformation, the reality of time indicates that there is a real but non-

38‘Absolute, true, mathematical time, of itself, and from its own nature, flows equably without relation
to anything external, and by another name is called duration: relative, common time, is something sensible
and external (whether accurate or unequal) measure of duration by which the means of motion, which is
commonly used instead of true time’ Newton (1962).
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qualitative difference between two sequences of instantaneous states related by a temporal
symmetry transformation. In the first case this difference is represented by sequences of
points in velocity-configuration/phase space differing only with regard to the application
on an element of the Galilei group of global space-time symmetries. In the second it is
represented by two sequences of points in velocity-configuration/phase space differing
only with regard to an application of an element of the reparameterisation group. In each
case this non-qualitative difference can be understood precisely in Haecceitistic terms be-
cause it is established via inter-structure cross-identification of individual instantaneous
states (they play different roles in the different structures). That these models are con-
nected by an element of the local symmetry group of time reparameterisations does not
mean that they fail to be distinct because, even though such a symmetry means that there
can be no empirical difference between worlds which differ only with respect to their pa-
rameterisation, our acceptance of Haecceitism allows us to say that there is an ontological
difference. Thus, the straightforward substantivalist type position with respect to time in
Jacobi’s theory leads us to endow parameterisation of solutions with a stamp of physical
reality. We can thus see straightforward temporal substantivalism as a direct application
of the histories Hacceitism introduced in Chapter 2.

Correspondingly, Jacobi’s theory, at least as formulated in §5.3, leaves open the con-
ceptual space for a sophisticated (i.e., histories anti-Haecceitist) form of temporal substan-
tivalism whereby time is still asserted as a basic ontological entity but the fundamental
temporal structure of a sequence of instantaneous states is multiply realised in terms of
the different parameterisations of a solution – a single fundamental notion of time is un-
derstood as being represented by the equivalence class of parameterisations. We do not
have an inflation of possibility within the representation of histories since the difference
between two parameterisations of a solution is understood to be merely of the excluded
histories Haecceitist variety (it is only which instantaneous states play which roles that is
different).

A temporal relationalist can be defined as someone who treats time as a non-fundamental
or derived entity. Such an anti-Newtonian position is typically seen to have originated
with the work of Descartes, Leibniz and perhaps also Huygens (Barbour (2009)). but is
contained in the most direct form within the ideas of Mach.39. Here we will characterise
temporal relationalism as an ontological position such that the basic ontology excludes

39‘It is utterly beyond our power to measure the changes of things by time. Quite on the contrary, time is
an abstraction, at which we arise by means of the change of things’ Mach (1960).
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temporal structure beyond an ordering of instantaneous states.

(n.b. Such a definition is currently in full accordance with the more minimal notion of
a ‘Leibnizian relationalist’ with respect to time (Pooley and Brown (2001)). However, its
Machian aspect will be further developed as a more positive position of Machian tempo-
ral relationalism during our discussion of relational clocks in §9.2 as well as during the
relativistic treatment in §12.1. In essence the emergent time strategy is a realisation of
exactly the type of Machian temporal relationalism that shall be considered later.)

With regard to Jacobi’s theory temporal relationalism should be understood as an in-
sistence that the parameterisation of a solution is non-fundamental since the temporal
separation between two instantaneous states is excluded from the basic ontology and thus
parameterisation – which represents this separation – must be treated as merely an ab-
straction.

Just as the spatial relationalist was committed to two points in either the velocity-
configuration space or phase space which are connected by spatial symmetries represent-
ing the same possiblity, the temporal relationalist is committed to two parameterisations
of a solution within the relevant space representing the same thing. This would seem,
prima facie, to leave open the option for either reductive variant of temporal relationalism
whereby we quotient out the relevant symmetry group to leave a reduced space with the
requisite reduced set of possibilities are represented literally.

So far the debate seems to resemble closely that for space/space-time. However there
are two new and interesting complications that we must consider. The first stems from
the fact that the reparameterisation symmetry of Jacobi’s theory is, unlike the global sym-
metries that feature in the space/spacetime debate, manifestly local. The locality of the
symmetry means that a straightforward substantivalist who sticks with Haecceity and an
unreduced possibility space could be left open to pernicious indeterminism in their ontol-
ogy of the type discussed in chapter 2 when we considered the generic variant of histories
Hacceistim. Such a development has been key to the perceived derailment of straight-
forward substantivalism for the case of general relativity which features local space-time
symmetries40 and may be expected for this case also. Our straightforward temporal sub-
stantivalist is understood to be committed to (histories) Haecceitism in that that they ad-
mit cross-identification of temporally relabelled instantaneous states between histories as
represented by curves related by reparameterisation. Thus, the differently parameterised

40This is in fact the essence of the hole argument, see Rickles (2008, Chapters 4-5) for a more extensive
discussion.
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curves are taken to represent ontologically distinct structures. Such an ontological dis-
tinction between objects differing by the application of the action of a local symmetry
group has the potential to generate ontological indeterminism since the two curves may
initially coincide and then diverge. Since Jacobi’s theory is an empirically determinis-
tic theory this potential for ontological indeterminism seems unattractive and could be
taken to drive us away from the straightforward variant of temporal substantivalism on
the grounds of the commitment to Haecceitism involved.

However, the case of Jacobi’s theory is particularly interesting because although per-
nicious (ontological) indeterminism is possible within the velocity-configuration space of
Jacobi’s theory – since the velocities are dependent on parameterisation – it is not pos-
sible within the phase space since reparameterisations are symmetries on the canonical
momenta. This means that provided they confine themselves to the constraint manifold,
a temporal substantivalist can stick to a completely literal reading of phase space built
upon histories Haecceitism – i.e., such that each point represents a distinct instantaneous
state and each solution representing a distinct dynamical history – without the possibly of
ontological underdetermination.

Explicitly we have that: On the one one hand, within a generic gauge theory’s phase
space along with histories Haccesitism, inevitably goes the possibility of ontological in-
determinism – an initial specification of an ontology may have multiple possible contin-
uations corresponding to different gauges. On the other hand, within Jacobi’s theory’s
phase space one can adopt straightforward substantivalism and therefore (histories) Hac-
cesitism without such a problem – an initial specification of an ontology (which includes
parameterisation) always provides for a deterministic continuation. Thus even though Ja-
cobi’s theory can be classified as a gauge theory in that it features first class constraints, it
has a phase space that can unproblematically accommodate an ontological deterministic,
non-reductive interpretation without any recourse to anti-Haecceitism or relationalism. In
this respect it constitutes a notable counter-example to accounts of the interpretation of
gauge theories (such as that presented by Belot and Earman (2001)) which are presumed
by their authors to hold generically.

The second point that marks the substantivalism vs relationalism dispute with regard
to time in Jacobi’s theory distinct from both the case of global symmetries in Newto-
nian mechanics and local symmetries in generic gauge theories is that the reductionist
position is no longer available. As discussed extensively above, the structure of Jacobi’s
theory is such that the application of symplectic reduction will lead to a reduced phase
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space which has a trivial dynamical structure such that it can only be made sense of by
reference back to the unreduced space. This renders a reductionist reading of the the-
ory inadequate since to get off the ground it would require the utilisation of exactly the
otiose structure (gauge related points on the constraint manifold) the elimination of which
was its supposed benefit. Moreover, the reductionist desire to construct a reduced phase
space which can be interpreted along literal lines manifestly fails since on its own the
relevant reduced space can only be read as representing isolated instantaneous states cor-
responding to dynamically trivial universes. Thus, with regard to time in Jacobi’s theory
at least, any viable form of relationalism is going to have to be non-reductive. Let us then
consider the relationalist credentials of our two non-reductive strategies for representing
change and observables.

7.2 An ontology of timeless change?

As discussed above the emergent time strategy explicitly makes use of the Hamiltonian
constraint as the generator of evolution. A point on the constraint manifold is taken to rep-
resent an instantaneous state and the dynamical change between this state and the next is
represented in terms of the null vector corresponding to the flow generated by the Hamil-
tonian at that point. Similarly, an observable is represented by a function of the constraint
manifold and the change in an observable is represented by the change in that function
along the Hamiltonian flow. Now, it has been argued by Belot and Earman (1999, 2001)
that for the case of general relativity treating the relevant Hamiltonian constraint in such
a manner (in particular allowing for observables that do not commute with the Hamilto-
nian constraint) is the hallmark of a Heraclitean position that asserts the fundamentality
of time within the theory. Conversely, according to this viewpoint, there is an equiv-
alence between treating the Hamiltonian constraint as gauge generating (and therefore
implementing the Dirac-Bergmann criteria for observability) and relationalism. Clearly,
adopting such a classification scheme for Jacobi’s theory would seem to suggest that we
should think about the emergent time strategy in terms of temporal substantivalism.

Pooley (2001) argues that we should adjust this classification scheme such that how
we treat the relevant constraints of general relativity is now thought of as a guide to de-
ciding between ‘straightforward substantivalism on the one hand and the disjunctive set
of sophisticated substantivalism and anti-substantialism relationalism on the other’ (p.
15). Thus, under Pooley’s scheme the emergent time strategy for understanding change
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in Jaocbi’s theory would be classed as a straightforward substantivalist one with respect
to time. However, as has been argued for the case of general relativity Rickles (2008,
p. 170) the assertion of such definite connections between the treatment of the observ-
ables/Hamiltonian constraint and substantivalist/relationalist distinctions is not in fact jus-
tified. There is more potential for metaphysical underdetermination within the formalism
than would appear at first sight.

The crucial factor informing Pooley’s distinction is the reduction in possibility en-
tailed by how we interpret objects within structures connected by the relevant symmetry.
For the case of Jacobi’s theory – and actually also in GR itself (§10.3) – this turns on
how we understand solutions related by the relevant gauge symmetry and not points con-
nected by the action of the Hamiltonian constraint. In Jacobi’s theory one can happily
avoid straightforward substantivalism whist still denying that the Hamiltonian constraint
generates gauge so long as one describes the change of observables (which themselves
may fail to respect the Dirac-Bergmann criteria) without reference to parameterisation
– it is change in parameterisation that we want to call unphysical not the change that
is parameterised! The emergent time strategy is temporally relational since it has re-
moved fundamental temporal structure altogether and allows us to describe change, both
of observables and states, without reference to parameterisations. Moreover, since within
a Hamiltonian formalism it can make use of a one-to-one representational relationship
between points and instantaneous states, on the one hand, and solutions uniquely param-
eterised via the Newtonian temporal increment and dynamical histories, on the other it
can be understood to proceed via an entirely literal interpretation of the phase space. As
such it is in fact an irresistibly temporally relational mechanical framework since there
is simply no temporal entity available for the substantivalist to reify – in effect a reduc-
tion of the possibilities entailed by the multiplicity of parameterisations has been enacted.
However, this reduction is done by use of the Newtonian temporal increment rather than
by a direct geometric reduction of the relevant symmetry.

The correlation strategy is distinguished by providing a reparameterisation invariant
description of the change of observables which satisfies the second Dirac-Begrmann crite-
rion of commuting with the constraints but does not make explicit recourse to the reduced
space à la reductionism. However, as discussed at the end of the last section it leads us
to a notion of change which constitutes a radical departure from that used in conventional
physical theory. The notion of an instantaneous state is dispensed with and the observ-
ables are smeared non-locally along an entire solution as constituted by the gauge orbit of
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the Hamiltonian constraint on the constraint surface in phase space. The fundamentally
original manoeuvre is to redefine the idea of a state such that it is closer to the idea of
a history than its original meaning. How should we see the correlation scheme in the
context of our various forms of relationalism and substantivalism? Clearly it cannot be
interpreted in terms of temporally substantivalist ontology since time or even change in
the traditional sense do not feature in the relevant formalism. Furthermore, it does not
fit naturally into the relationalist picture, as we have defined it, since there is not even an
order sequence of instantaneous states within its basic ontology.

Rather, we must consider the possibility that the correlation strategy cannot be natu-
rally interpreted in terms of either a relationalist or substantivalist ontology. If we take
the issue of primacy between temporal structure and the relations between instantaneous
states of a material system to demarcate the distinction between temporal relationalism
and substantivalism then clearly a theory in which there are no instantaneous states or
temporal structure will transcend our system of classification. If we define temporal rela-
tionalism to mean simply ‘not temporally substantivalist’ then we can happily think of the
correlation scheme as relationalist – but if we are to think more constructively about tem-
poral relationalism in terms of its Machian philosophical underpinnings with the concept
of time parasitic on relational change, then the correlation scheme is certainly not relation-
alist with regard to time since even a derived, relational notion of time or instantaneous
state cannot be found within the formalism.

One must note here that if one adopts the later Rovelli’s interpretation of the correla-
tion strategy (i.e., that of Rovelli (2002b)), in which the partial observables are treated as
physical magnitudes, then it could be argued to be appropriate to understand the scheme
as a species of temporal relationalism – or perhaps even (following Belot and Earman’s
categorisation scheme) substantivalism (Rickles, 2008, p.165). However, as discussed in
at the start of §6.2, there are good reasons to move away from such an interpretation,
and rather see only the complete observables as fundamental. In these circumstances,
it seems clear that it is inappropriate to understand the complete observables scheme as
relational since, not only is there no methodology to derive the relevant sequence of (or-
dered) instantaneous states available (the reasons for this will become explicit within the
discussion of Chapter 9), but the fundamental entities defined within the scheme are by
definition temporally non-local. The temporal non-locality of the complete observables
means that there is no scope for a recovery of an ontology which changes in a substantive
sense, over and above the idea of locally parameterising the elements of our ontology in
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terms of families.

So, what kind of ontology should we give to the correlation scheme then if not a tem-
poral relationalist one? The most obvious option would be to take a starkly Parmenidean
one – time is purely an illusion and not even a derived or emergent phenomena. There is
no change or evolution, merely correlations and timeless states corresponding to histories
which cannot be temporally decomposed into instants. In the context of nonrelativistic
mechanics adopting such a radical notion of timelessness would seem undesirable given
the viability of other options and this, together with the issue of practical applicability,
would seem to push us away from adopting the correlation strategy. For addressing the
problem of representing change and observables in nonrelativistic timeless mechanics the
emergent time strategy clearly provides us with a better option since its interpretation
consequences are far more palatable. The case of general relativity, however, is another
matter, and in that arena radical timelessness may become a necessity. Since a number of
complications within this more powerful theory must be considered in detail before our
arguments can be reconstructed, we will defer this discussion to Part III



Chapter 8

Time in ordinary quantum mechanics

Within a non-relativistic, non-gauge quantum system reached via canonical quantisation,
the evolution of a quantum observable can be constructed in terms of the commutator
between an arbitrary observable Â ∈ A and the quantum Hamiltonian function Ĥ (which
is also a quantum observable):

i~
dÂ

dt
= [Â, Ĥ] (8.1)

Alternatively, thinking in terms of the Schrödinger picture we can consider the evolution
of a state vector ψ ∈ H (an element of the Hilbert space) in terms of the time dependent
Schrödinger equation:

i~
∂

∂t
ψ = Ĥψ (8.2)

Assuming the Hamiltonian is not a function of time leads us to a wavefunction that takes
the form ψ = ϕ(q)e

−iEt
~ where ϕ(q) is the solution to the time independent Schrödinger

equation:
Ĥϕ = Eϕ (8.3)

In either picture we have the basic dynamics represented in terms of a unitary trans-
formation which evolves the states/observables in terms of the unique Newtonian back-
ground time that has been inherited from the classical formalism. However, the equations
above are not the full story. Depending upon the interpretation of quantum mechan-
ics which one takes, there is scope for further, non-unitary evolution. For example, in
the Copenhagen interpretation the reduction of the state vector upon measurement surely
must be a process that takes place in time and if so, since it can evolve superpositions into
pure states, it must be non-unitary. More concretely dynamical collapse models explicitly
supplement unitary time evolution with some form of non-unitary decay process. We will
not consider at all notions of time related to these additional interpretational structures –
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to do so properly would involve entering into a detailed discussion of the measurement
problem and this would stretch the already wide remit of this project. Rather our investi-
gation of time in quantum mechanics will be restricted entirely to temporal notions within
the basic formalism and not within any particular interpretation.

8.1 Ideal quantum clocks and internal time

What is particularly important for the understanding of time in conventional quantum
mechanics is the extent to which we can define and utilise an internal notion of time
within the formalism. We can define a quantum clock system in terms of a system which
features canonical clock variables τ̂i which are such that they, together with their canonical
momenta η̂i, satisfy the commutation relations:

i~Îδij = [τ̂i, η̂j] (8.4)

0 = [τ̂i, τ̂j] = [η̂i, η̂j] (8.5)

i~Î = [τ̂i, Ĥ] (8.6)

where Î is just the identity operator. The first two expressions merely assert that the (τ̂i,η̂i)
are canonical variables. More significant is the third equation which enforces the clock
variables must be linear functions of the external time parameter since by (8.1) we have
that:

dτ̂i
dt

= Î (8.7)

and therefore that
τ̂i = τ̂ 0

i + Ît (8.8)

where τ̂ 0
i is an operator defining the zero of the clock.

In practice we can find a number of systems with the requisite properties to be quan-
tum clocks. The fundamental choice is between using linear and cyclic system with an-
gles playing the part of the clock variables in the latter (for more details see Hilgevoord
(2005)). Importantly, it is found that in concrete constructions the physical viability of a
quantum clock systems depends upon us considering it as isolated – otherwise the energy
that can be taken out of the clock system is unbounded since the energy spectrum of an
ideal quantum clock ranges from −∞ to +∞. Thus, although a ideal quantum clock
provides us with an notion of time that is based upon the motion of a system it still relies
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upon some degree of externality. We divide out part of the world, call it the clock system
and then treat it as external from everything else. Such a notion of time is undemocratic
in the sense that it is the motion of a particular privileged system that defines time rather
that the collective motion of all the bodies in the universe. Nevertheless it does provide us
with a representation of time in quantum mechanics that can be associated with Hermitian
operators on a Hilbert space and this is key to understanding the energy/time uncertainty
relations to which we now turn.

8.2 Time/energy uncertainly relations

We know that classically the Poisson bracket between the position and momenta variables
is just {qi, pj} = δij . Quantisation involves the substitution {, } → i~[, ] so we now have
the commutation relation between the canonical variables now represented as operators :

[q̂i, p̂j] = i~Îδij (8.9)

Textbook quantum mechanics leads from this relation to the famous position/momentum
uncertainty relation:

∆ψqi∆ψpi ≥
1

2
~ (8.10)

where ∆ψ stands for the standard deviation of the relevant expectation value relative to
a state vector ψ. Since the derivation is insensitive to which Hermitian operators we are
using we have that for any pair of quantum canonical variables with continuous spectrums
a version of the uncertainty relation will hold. This of course includes our clock variables
and their canonical conjugates that we defined above (at least in the linear clock case). So
for them we also have that:

∆τ̂i∆η̂i ≥
1

2
~ (8.11)

Significantly, we also have that i~Î = [τ̂i, Ĥ] which means (again only for the linear
clock, there are some technical complications in the cyclic case) we can derive

∆τ̂i∆Ĥ ≥
1

2
~ (8.12)

which a time/energy uncertainty relation since the expectation value of the Hamiltonian is
an energy. Of course the τ here is not external time t. It is the internal time measured by
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our ideal quantum clock. In fact, contrary to many treatments there is no implied uncer-
tainty as to the measurement of any observable (including energy) in terms of the external
time parameter within the quantum formalism. External time within quantum mechanics
is not represented in terms of an operator (again see Hilgevoord (2005)) and observable
quantities can be determined with respect to it to an arbitrary degree of accuracy.

8.3 Space vs. time vs. spacetime

The final few sentences of the last section could be taken to indicate a deficiency within
quantum theory. In a sense we do have operators and uncertainty relations relating to
space in terms of the position operators q̂ and their relationship with the momentum oper-
ators. Thus, it may seem that quantum theory introduces an asymmetry between space and
time that is not only conceptually unsatisfactory but also contrary to the basic principles
underlying special relativity.

However, as pointed out by Hilgevoord (2005), we must be careful to distinguish
between the position operators q̂ and the spatial coordinates. Classically, the q refer to the
positions of point particles which are classical observables and therefore represented by
operators quantum mechanically. On the other hand spatial coordinates x are not strictly
classical observables and therefore quantum mechanically too they are not observables.
Of course we can use the q to define an internal spatial reference system and therefore
can quantum mechanically consider a internal notion of space in quantum mechanics as
defined via operators. However, this is simply analogous to the internal representation of
time provided by quantum clocks as discussed above.

Quantum mechanics deals with space and time in an equitable manner; although con-
cepts can be represented internally in terms of operators, the external notions are not quan-
tised. Instead we have a classical spacetime background which provides an un-quantised
reference system for the quantum dynamics. Making the theory consistent with special
relativity would not involve the quantisation of time or space.

Rather the motivation for eliminating external time from quantum mechanics come
from Machian arguments towards the type of temporal structure a theory of mechanics
should have. In particular, we will see (in §9.2) that a desire for an equitable, purely
internal notion of time drives us towards attempting to construct a quantum analogue to
the classical Jacobi type theory that we have been investigating. However, as we shall
see in the next chapter, the task of quantising Jacobi’s theory such that we can retain the
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full classical theory in the appropriate limit and construct dynamics with respect to an
internal, relational clock is highly non-trivial. In order to accomplish it we will need to
construct new techniques.





Chapter 9

Relational quantisation and the quantum problem of time

The logical starting point of this chapter – which chiefly gives an account of ideas de-
veloped in Gryb and Thébault (2012)41 – has been established already within our current
discussion (in particular §5.4). The reader should, by now, be convinced that the physical
origin of the Hamiltonian constraints that feature in globally reparameterisation invariant
theories is such that their phase space action must be treated as a physical transformation.
In fact, we have seen that they generate precisely the transformations associated with
time evolution. In this context, usual gauge theory methodologies become inapplicable:
since the integral curves of the null directions associated with Hamiltonian constraints
are solutions rather than equivalence classes of identical instantaneous states what we
would normally call gauge orbits are actually sequences of dynamically ordered physi-
cally distinct states. The ordering information is specifically encoded in the positivity the
multiplier associated with the constraint defined as the lapse above.

In such circumstances the passage to a reduced phase space (where the null directions
are quotiented out) will lead to an initial data space without sufficient structure for the
reconstruction of dynamics. Here we will give a further argument that this is because in
order to construct a solution from an initial data point it essential to also have the ordering
information that is abandoned in the reduction procedure (or equivalently through gauge
fixing). Formally we can understand this facet of the classical reduction problem in terms
of the pull back of the projection to the reduced space not telling us how to parameterise
paths in the unreduced space. This point will be further developed by use of the Hamilton-
Jacobi formalism for the general case in §9.1.2 and for a free particle model in §9.3.2.

41The arguments and mathematics detailed below have entirely joint authorship between myself, S. Gryb.
The text of §9.1-9.4 is largely adapted from the published version of the paper (with the material from that
paper relating to gravity found within Chapter 15 of this thesis.) The text of §9.5 is based upon my own
draft notes the extension of which will from the basis of a further paper. The input of Tim Kowslowski was
of great importance in developing these ideas.
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In light of the above it is clear that a quantisation procedure predicated upon the re-
duced phase space correctly parameterising the full classical dynamics will be inapplica-
ble for theories with Hamiltonian constraints. This can be show explicitly by consider-
ation a path integral quantisation. See §9.1.1 for the general treatment and §9.3.1 for a
pendulum model.

In addition to these arguments stemming from the problem of reduction there is good
cause to re-evaluate standard quantisation techniques on the grounds of the the problem
of relational time. As we have seen in §6.1, classical reparameterisation invariant theories
can be equipped with an internal and equitable duration measure leading to a fundamen-
tally relational notion of time. Since there are strong conceptual and epistemological
arguments in favour of physical models with relational time we would like to be able to
construct a quantum theory with relational dynamics. However, as shown in §9.2, stan-
dard gauge theory techniques exclude the use of relational clocks and thus temporally
relational quantum theories have as yet proved impossible to construct.

In §9.4 we will detail a formal procedure for retaining the essential dynamical or-
dering information through the introduction of an auxiliary field, and its momenta, that
parameterise the classical trajectories and define a relational time. The introduction of
these variables is achieved via the extension of the phase space of the original theory in a
precise geometrical manner. We then show that the application of standard quantisation
techniques to the extended theory will lead to a quantum theory that correctly captures
the full dynamics of the original theory we started with. Furthermore, as shown in §9.4.2,
in addition to allowing us to retain the full dynamical path integral, the quantisation of the
extended theory is such that it leads to a quantum dynamics with respect to a relational
time. Our solution is applicable to all theories with global Hamiltonian constraints and
thus constitutes a general solution to the global problem of time. §9.5 will explore the
implications of relational quantisation for our understanding of observables within repa-
rameterisation invariant theories, and §9.6 will consider some outstanding interpretive
issues.
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9.1 Diagnosing the problem of time i: the problem of reduction

9.1.1 Gauge invariance versus dynamics: quantum

Globally reparametrization invariant theories feature action functionals in which the inte-
gration is performed with respect to an arbitrary change parameter λ rather than a fixed
Newtonian background time. The invariance of these theories under re–scalings of this
parameter leads to the defining feature of their canonical representation: that the Hamilto-
nian is replaced with a constraint H, often called the Hamiltonian constraint. Assuming
that all other first class constraints have been gauge–fixed using the method described
above,42 the remaining structure is a phase space Γ(q, p) (possibly corresponding to a
gauge fixed surface in a larger phase space), a symplectic 2–form, Ω, and a Hamiltonian
constraint,H.

We now state the fundamental difference between reparametrization invariant theories
and standard gauge theories: the classical solutions are defined as the integral curves of
the Hamilton vector field of the constraint H. Because they are the dynamical solutions
of the classical theory, the elements of the integral curves of vH are no more physically
indistinguishable from each other than this moment is from the big bang. Thus, the leaves
of the foliations of the constraint surface, Σ, defined by H ≈ 0 can no longer be reason-
ably identified as gauge orbits - rather they are dynamical solutions. We will now show
that, if one turns a blind eye to this fact, one is led to a quantum theory that, in general,
cannot contain the appropriate classical limit.

Performing the gauge fixing procedure outlined in §3.3.2, we treat each classical
history on the constraint surface as an equivalence class of physically indistinguishable
states. We then seek a gauge fixing condition ρ ≈ 0 satisfying

det |{H, ρ}| 6= 0 (9.1)

that selects a single element of each of these foliations. However, because the Hamiltonian
is just given by the constraint H, its associated flow is everywhere parallel to the gauge
orbits. Thus, this procedure completely trivializes the dynamics since there is no way
to flow in any direction on the gauge fixed surface. In addition, the interpretation of
the gauge fixed surface is now completely different from the case described in §3.3.2.

42Crucially, this is the step that can be performed in shape dynamics that is highly non–trivial in the
ADM formulation of general relativity.
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ΠGF contains a single element of each integral curve of vH. Since each integral curve is
itself a possible classical solution, ΠGF actually represents a space of initial data for all
possible classical evolutions on the constraint surface. Thus, the space, by construction,
necessarily excludes any (non-trivial) set of points on the constraint surface corresponding
to a classical history. We therefore have that the path integral

I =

∫
DqµDpµδ(H)δ(ρ) det |{H, ρ}| exp

{
i

∫
dλ [q̇µp

µ]

}
(9.2)

restricted to ΠGF cannot contain any particular solution to the classical evolution problem.
It, therefore, can not be a quantisation of the original classical theory. This is equivalent
to the statement that the Feynman path integral on the reduced space, which is canonically
isomorphic to ΠGF, fails to capture the classical evolution. In Section 9.3.1, we give an
explicit example illustrating this point.

A simple dimensional argument can already be seen indicate this failure to capture the
full classical dynamics. In a typical gauge theory there are two excess degrees of freedom
per first class constraint. Quantisation according to a gauge fixed path integral eliminates
this degree of degeneracy since it can be understood as equivalent to the construction of
a normal Feynman path integral on the sub-manifold defined by the intersection between
the constraints surface and the gauge fixing surface – by definition this sub-manifold has a
dimension of two times the number of constraints less than the original phase space. Now,
reparameterisation invariance is not a typical gauge symmetry. It corresponds to a free-
dom in how we label the paths in phase space, results from a symmetry of the action and
is also a symmetry of the momenta. It does not, therefore, correspond to a typical gauge
symmetry and should not, therefore, be expected to correspond to an excess in the number
of degrees of freedom within that space in the usual straightforward manner. Most, im-
portantly, as we have seen, it is no longer correct to think of the phase space as containing
null directions that can be treated as unphysical. Formally the only requirement that repa-
rameterisation invariance places upon the phase space is that dynamics be restricted to the
constraint surface – and this only equates to reduction by one degree of freedom. One
conventionally is justified in removing a further degree of freedom (per constraint) only
on the grounds of further surplus representational structure existing within the constraint
surface: distinct points that are connected by the action of a local symmetry. No such
structure is found in the theories in question, so if we press head with the implementation
of a procedure that removes two degrees of freedom, then we are removing one of them
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without warrant. Thus, application of a standard gauge fixing quantisation to a reparam-
eterisation invariant theory featuring a single first class Hamiltonian constraint should be
expected to lead to a quantum theory in which one of the physical degree of freedom is
missing. This quantum theory will therefore be unable to reproduce the correct behaviour
at the classical limit since it is dimensionally deficient for this purpose.

One key problem we will solve in this chapter will be establishing a consistent quan-
tisation procedure for globally reparametrization invariant theories that does contain the
appropriate classical limit. We are faced with a dilemma: on one hand, we need to restrict
our path integral to a proper symplectic manifold where the Hamilton vector field of H
is well defined on the constraint surface; but, on the other hand, such a restriction must
be such that the constraint ρ ≈ 0 runs parallel to the foliations of H. Unfortunately, this
would imply

det |{H, ρ}| = 0 (9.3)

and we no longer have a natural candidate for the measure of the path integral. The
solution that we will propose in Section 9.4 involves extending the phase space in a trivial
way so that the desired classical solutions are indeed contained in the initial value problem
of the extended theory. Thus, a standard gauge fixing on this extended theory corresponds
to a consistent quantisation of the original theory. Before describing this procedure in
detail, we will show how the argument presented above is paralleled in the classical theory.

9.1.2 Gauge invariance versus dynamics: classical

In the semi–classical approximation, the wavefunction of a system is given by the WKB
ansatz

ψ = eiS, (9.4)

where S solves the Hamilton–Jacobi (HJ) equation. When the dynamics is generated by
a constraint, the HJ equation takes the form

H(qµ,
∂S

∂qµ
) = 0. (9.5)

Hamilton’s principal function S = S(qµ, P
a) is a function of the configuration variables,

qµ, and the separation constants, P a. These separation constants are obtained by solving
the partial differential equation (9.5). In general, there will be one for each ∂S

∂qµ
but these
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will not all be independent because (9.5) acts as a constraint. This is the reason for
labeling P with the index a, which runs from 1 to d− 1.

The equations of motion are obtained by treating S as a generating function for a
canonical transformation from (qµ, p

µ) → (Qa, P
a) that trivializes the evolution. The

canonical transformation can be determined by computing

Qa =
∂S(q, P )

∂P a
(9.6)

pµ =
∂S(q, P )

∂qµ
. (9.7)

S is defined such that the relations (9.7) simply reproduce the Hamiltonian constraint
through (9.5). If the system of equations (9.6) can be inverted for qµ then the equations of
motion for qµ can be determined by using the fact that

Q̇a = 0 Ṗ a = 0. (9.8)

There is, however, an immediate obstruction to this procedure since the system of
equations (9.6) has, in general, a one dimensional kernel and, thus, no unique solution.
This obstruction can be overcome in two ways:

(i) A gauge can be fixed by imposing a gauge fixing condition of the form

f(qµ, Qa, P
a, λ) = 0. (9.9)

f must be chosen such that, when the condition f = 0 is imposed, the system of
equations (9.6) is invertible.

(ii) The solution space can be parametrized by one of the q’s, chosen arbitrarily. This
allows us to write

qa = Fa(Qa, P
a, q0). (9.10)

The first method is the one exclusively employed to conventional gauge theories (i.e.,
those without Hamiltonian constraints) and is the natural classical analogue of standard
methods for dealing with gauge symmetry at a quantum level, in particular the standard
Faddeev-Popov gauge fixing methdology of §3.3.2. The gauge fixing (9.9) reduces the di-
mension of the system. This is natural in standard gauge theory because the map between
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the original and reduced phase spaces contains no physical information. It is, therefore,
reasonable to make the equations of motion invertible by quotienting away the infor-
mation contained in this map. This does not kill the dynamical information because a
non–trivial Hamiltonian survives the quotienting.

For globally reparametrization invariant theories on the other hand, the information
contained in the kernel of (9.6) contains all the dynamical information. Thus, we must
use the second method for reproducing the classical solutions. This is natural, because
the relations (9.10) are precisely the integral curves of null directions of the presymplectic
form on the constraint surface H = 0. In must be noted here that, with regard to this par-
ticular point, our analysis is not controversial: method 2 precisely coincides with Rovelli’s
(Rovelli (2004)) treatment of Newtonian particles (see pp.113-4) and is consistent with
how HJ theory is used to reproduce the ADM equations of motion in general relativity –
on this see Gerlach (1969). The reader is referred to these sources, and references therein,
for more details on this standard treatment. In Section 9.3.2, we will apply methods 1 and
2 to a simple model to illustrate how to implement the formal procedure presented here.

Method 2 is also at least partially related to the correlation scheme discussed in §6.2,
since both rely – in subtly different ways – on our ability to isolate one of the variables
as providing an internal parameterisation of solutions. Method 2 does not however, entail
the interpretation of physical observables as temporally non-local in the non-trivial and
conceptually problematic sense of that was discussed in our analysis of the correlation
scheme of chapter 6. Moreover, there is no reason to connect the internal parameterisa-
tion idea common to both method 2 and the correlation scheme, with the definition of
observables as commuting with Hamiltonian constraint – that idea, which, is central to
the Rovelli-Dittich-Thiemann notion of observable, should more properly be understood
as being implement within the HJ formalism by method 1.

A powerful argument can be made in favour of method 2 over method 1, when dealing
with reparametrization invariant theories. In method 1, the pullback under the projection
doesn’t contain the complete dynamical information. Only in method 2 is it possible to
retain information about the temporal ordering of events along the gauge orbits. This a
necessary requirement for theories with Hamiltonian constraints because there must be a
way to distinguish between the past and the future.43 This is already implicit in requiring
that the lapse, N , should be positive. The fact that only Hamiltonian constraints have this

43This distinction constitutes a temporal orientation rather than a temporal direction, which would imply
an arrow of time.
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requirement is an indication that they should be treated differently from the constraints
arising in standard gauge theories.

We see that there is a substantive difference between the way the HJ formalism is used
in conventional gauge theory and in globally reparametrization invariant theories. This
difference is exactly mirrored in the quantum theory. The arguments given in Section 9.1.1
reflect what happens in the classical theory when method 1 is used: the information about
the dynamics is lost by quotienting with respect to the null directions of the Hamiltonian
flow. A requirement for consistency for the classical and quantum theories is that the
method used in the classical theory is reflected in that used in the quantum theory. In light
of this requirement and the necessity of using method 2 classically for reparametrization
invariant theories, we will present a relational quantisation procedure in Section 9.4.

9.2 Diagnosing the problem of time ii: the problem of relational time

9.2.1 Relational clocks

There is, without doubt, practical utility in the use of a time parameter disconnected from
the dynamics of a physical system. Such an external notion of time is an essential element
of both Newtonian systems and conventional approaches to quantum theory. Yet, the ex-
istence of such a temporal background is inconsistent without the structure of the physical
theory that most accurately describes the behaviour of clocks: general relativity. Within
this theory, time is an inherently internal notion, parasitic upon the dynamics. Thus, there
is empirical motivation to search for a general procedure for consistently constructing an
internal notion of time that can be used in both classical and quantum theories.

In addition, there are strong conceptual arguments against external time – many of
which predate general relativity. Ernst Mach, in particular, criticized external notions
of time on epistemic grounds. In the most general system, we only have access to the
internal dynamical degrees of freedom. Thus, it is ‘utterly beyond our power to measure
the changes of things by time’ Mach (1960). Rather, according to Mach, any consistent
notion of time must be abstracted from change such that the inherently interconnected
nature of every possible internal measure of time is accounted for. According to the
Mittelstaedt–Barbour (Mittelstaedt (1976); Barbour (1995)) interpretation of Mach, we
can understand this second Mach’s principle as motivating a relational notion of time
that is not merely internal but also equitable; in that it can be derived uniquely from the
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motions of the entire system taken together. Thus, any isolated system – and, in fact,
the universe as a whole – would have its own natural clock emergent from the dynamics.
Significantly, for a notion of time to be relational in this sense, it is not enough to be
merely internal – it must also be unique and equitable. We cannot, therefore, merely
identify an isolated subsystem as our relational clock, since to do so is not only non–
unique but would also lead to an inequitable measure, insensitive to the dynamics of the
clock system itself.

Within classical non-relativistic theory, relational clocks of exactly the desired type
have already been constructed and utilized. As has been pointed out by Barbour, the
astronomical measure of ephemeris time, based upon the collective motions of the solar
system, has precisely the properties discussed above. In Section 9.3, we give an explicit
expression for the ephemeris time for a large class of physically relevant finite dimen-
sional models. Quantum mechanically, we run into a problem when attempting to con-
struct a suitably relational notion of time. As we shall discuss in the next section, it is
precisely the relational sub-set of internal clocks that are excluded under conventional
quantisation techniques. The logic of the next section is as follows: first we establish a
general theory for describing evolution in timeless systems in terms of an internal clock
as constituted by an isolated subsystem; then, we show that such clocks can never be fully
adequate precisely because they are not fully relational.

9.2.2 Internal clocks

We will now detail a method for expressing the path integral (9.2) in terms of evolution
with respect to an internal clock constructed from an isolated subsystem. In essence this is
an initial attempt to construct the quantum mechanical analogue what we called ‘method
2’ when discussing the Hamilton-Jaocbi formalism in §9.1.2,. Consider any splitting of
the Hamiltonian constraint of the form:

H = H‖ +H⊥. (9.11)

Our ability to make this splitting depends principally upon the existence of a sufficiently
isolated clock. In practice, the split need only be approximate to some desired order of
accuracy. Effectively, we require a clock of the form treated in great detail in Marolf
(1995). For more details on the use of internal clocks as a way of modelling relational
dynamics and some of the difficulties encountered see Marolf (2009); Giddings et al.
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(2006); Bojowald et al. (2011); Hilgevoord (2005). Given that we have an approximate
splitting of the form (9.11), we are in the situation treated in the above references and we
can perform a canonical transformation Π

Π : (qµ, p
µ)→ (Qi, P

i, τint, H‖) (9.12)

generated by the type–2 generating functional F (qµ, P
a, H‖)

F (qµ, P
a, H‖) =

∫
dqµ p

µ(qµ, P
a, H‖). (9.13)

The index i runs from 1, .., d− 1. The functions pµ(qµ, P
a, H‖) are obtained by inverting

the relations

P a = P a(qµ, p
µ)

H‖(qµ, p
µ) = H(qµ, p

µ)−H⊥(qµ, p
µ). (9.14)

The functions P a(qµ, p
µ) are arbitrary provided the above equations are invertible for

pµ. Because H‖ is fixed by the splitting (9.11), the canonical transformation Π has a
(d−1)–parameter freedom parametrized by the functions P a(qµ, p

µ). Up to this freedom,
Π singles out an internal time variable τint which can be obtained from

τint(qµ, p
µ) =

∂F

∂H‖

∣∣∣∣
Pa=Pa(qµ,pµ),H‖=H‖(qµ,pµ)

. (9.15)

We say that H‖ singles out an isolated subsystem of the universe whose motion is used
as an internal clock parametrizing the motion of the rest of the system. The remaining
configuration variables are given by

Qi(qµ, p
µ) =

∂F

∂P i

∣∣∣∣
Pa=Pa(qµ,pµ),H‖=H‖(qµ,pµ)

. (9.16)

If we chose to label curves in Γ by the arbitrary parameter λ then, in terms of the
transformed coordinates, the natural gauge fixing condition

ρ = τint − f(λ) ≈ 0 (9.17)

splits Γ into the two symplectic submanifolds Γ = ΠGF(Qa, P
a) × Φ(τint, H‖). From
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this, it is clear that the freedom in defining τint through Π corresponds to the unavoidable
freedom in making arbitrary canonical transformations on ΠGF. Using the simple choice
f(λ) = λ, the measure is 1. A short calculation shows that the path integral, I , of (9.2)
becomes

I =

∫
DQiDP i exp

{
i

∫
dτint

[
Q̇aP

a −H⊥(Qa, P
a)
]}

(9.18)

after integrating over τint and H‖. As expected, it is equivalent to a Feynman path integral
on the reduced phase space coordinatized by (Qa, P

a). This path integral also corre-
sponds to the quantisation of a standard time–dependent Hamiltonian theory in terms of
the variables Qa and momenta P a with the Hamiltonian H = H⊥(Qa, P

a). It leads to a
wavefunction satisfying the time–dependent Schrödinger equation

i
∂Φ

∂τint
= Ĥ⊥Ψ. (9.19)

Furthermore, this is equivalent to applying Dirac quantisation to the Hamiltonian con-
straint (9.11) after applying Π.44

The quantum theory given by (9.18) has a well known classical limit. It is the Hamilto-
nian theory described by the integral curves of H⊥ parametrized by τint. Different choices
of f(λ) correspond to different parametrizations of these integral curves. Although this
freedom to reparametrize the classical solutions is a feature we require, the classical solu-
tions we obtain are not equal (or equivalent) to the integral curves of H. Instead they are
the integral curves of the part projected out of vH along Φ(τint, H‖). Thus, the only way
to obtain the desired classical limit is to impose H‖ = 0. However, with this choice the
above method fails since the relations (9.14) become non–invertible. This is another way
of understanding the problem of reduction: gauge fixing such that we follow the integral
curves of vH leads to a zero measure in the path integral. Thus, as it stands, the internal
clock methodology is not a true quantum analogue to method 2 of §9.1.2, since it fails to
capture the full set of trajectories of the formalism in the semi-classical limit.

In addition to the problem of excluding classical trajectories, this restriction on inter-
nal clocks is such that it specifically excludes relational clocks of the kind considered in
the previous section. In phase space, the classical ephemeris time is precisely the variable
canonically conjugate to the full Hamiltonian of the system. In the following section we
demonstrate this explicitly in a simple model.

44See Henneaux and Teitelboim (1992) p.280 for a analogous case.
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9.3 Toy models

We will now make our formal arguments concrete by applying them to specific models.
These models will also help to motivate our new quantisation procedure. We will consider
models of the form

S =

∫
dλ
√
gµν(q)q̇µq̇ν , (9.20)

where g is some specified metric on configuration space. The variation of this action with
respect to q implies that it is a geodesic principle on configuration space. Thus, (9.20) is
invariant under λ → f(λ), which is the reparametrization invariance we require. These
models are useful gravitational models because they include the mini–superspace approx-
imation and contain many key features of general relativity and shape dynamics (See
Chapter 15). The fact that these simple models can capture so many features of gravity
is often under-appreciated. Indeed, because they correspond to mini-superspace models
they are, in fact, genuine symmetry reduced models of quantum gravity. Furthermore, be-
cause they are also equivalent to non-relativistic particle models, they have considerable
heuristic value.

We will treat the case where gab is conformally flat. Identifying the conformal factor
with 2(E − V (q)), the Hamiltonian constraint is

H =
δµν
2
pµpν + V (q)− E ≈ 0. (9.21)

It is important to note that the origin of this constraint can be traced back to the reparametriza-
tion invariance of the action (9.20). As such, its interpretation is crucially different from
that of the gauge generating constraints discussed in Part I.

The classical theory corresponding to the Hamiltonian (9.21) is just that of non–
relativistic particles under the influence of a potential V (q) with total energy E and mass
m = 1. The classical equations of motion are easily seen to lead to√

E − V
T

d

dλ

(√
E − V
T

dqµ
dλ

)
= − ∂V

∂qµ
, (9.22)

where T = δµν
2
pµpν is the kinetic energy. If we define the reparametrization invariant
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quantity

τeph ≡
∫
dλ

√
T

E − V (9.23)

then (9.22) becomes
d2qµ
dτ 2

= − ∂V
∂qµ

, (9.24)

which are Newton’s equations with τeph playing the role of absolute time. Newton’s theory
is then given by the integral curves of (9.21) parametrized by the ephemeris time label τeph.

9.3.1 Example: double pendulum

Consider the double pendulum consisting of 2 particles q1 and q2 in 1 dimension under
the influence of a potential

V (q) =
1

2

(
q2

1 + q2
2

)
(9.25)

corresponding to 2 uncoupled harmonic oscillators whose spring constants k have been
set to 1. The Hamiltonian constraint is45

HHO =
1

2

(
p2

1 + p2
2 + q2

1 + q2
2

)
− E. (9.26)

Its Hamilton vector field vH is

vH = pµ
∂

∂qµ
− qµ

∂

∂pµ
(9.27)

and the constraint surface is the S3 boundary of the 4–sphere of radius
√

2E. The integral
curves on H = 0 are circles when projected into the (qµ, p

µ)–planes as is familiar from
the usual harmonic oscillator.

Performing a standard gauge fixing, as described in §3.3.2, and following the proce-
dure described in Section 9.2.2, we split the Hamiltonian constraint into the pieces

H‖ =
1

2

(
p2

1 + q2
1

)
H⊥ =

1

2

(
p2

2 + q2
2

)
− E. (9.28)

Using this splitting, we can single out particle 1 as an internal clock for the system. We
perform a canonical transformation that takes us to the internal clock variables for particle

45In this section we will sometimes write the coordinates of p using lower case indices for convenience.
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1 and leaves particle 2 unchanged. The relations (9.14) become

p2 = P2 (9.29)

H‖ =
1

2

(
p2

1 + q2
1

)
. (9.30)

Inverting these, we are led to the generating functional

F =

∫
dq1

√
2H‖ − q2

1 + q2P2. (9.31)

The transformedQ2 coordinate is q2 as expected and the internal time variable canonically
conjugate to H‖ is

τint =
∂F

∂H‖

∣∣∣∣
H‖=

1
2(p2

1+q2
1)

= arctan

(
q1

p1

)
. (9.32)

As can be seen from the definitions of τint and H‖ in terms of q1 and p1, this canonical
transformation takes us to polar coordinates on the (q1, p1)–plane of phase space.

The transformed Hamiltonian is

H = H‖ +
1

2

(
P 2

2 +Q2
2

)
− E. (9.33)

Its Hamilton vector field is

vH = P2
∂

∂Q2

−Q2
∂

∂P2

+
∂

∂τint
. (9.34)

The constraint surface is a cylinder along the τint direction about the (q2, p2)–plane of
radius E − H‖. The integral curves of vH are helices along the τint–direction and wrap
around the H‖–direction implying that H‖ is a classical constant of motion (see Figure
(9.1)).

If we impose the gauge fixing condition τint = λ, the path integral (9.18) takes the
form

IHO =

∫
DQ2DP2 exp

{
i

∫
dτint

[
Q̇2P2 −

1

2

(
P 2

2 +Q2
2

)
+ E

]}
, (9.35)
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Figure 9.1: The left hand graphic shows the constraint surface H‖ = 0, the vector field vH and
three examples of classical solutions (integral curves of vH). The right hand graphic shows, as
a dashed line, a sample path that is included in the integral (9.35), but, by definition, is nowhere
parallel to the classical solutions.

which leads to the time–dependent Schrödinger equation

i
∂Ψ

∂τint
=

(
−1

2

∂2

∂Q2
2

+
1

2
Q2

2 − E
)

Ψ. (9.36)

This is the same theory we would have obtained had we quantised the 1D harmonic os-
cillator in the usual way. However, the freedom in redefining τint = f(λ) allows us
the freedom to reparametrize the paths in phase space arbitrarily. Although this is the
reparametrization freedom we want, it doesn’t give the freedom to reparametrize the full
set of classical solutions.

An easy way to see that these paths will be excluded is to realize that these paths will
contribute to the path integral with zero measure because the determinant det |{H, τint}|
is zero for these paths. On the other hand, the paths that are captured in the integration
are the ones corresponding to the 1D harmonic oscillator when projected down to the
(q2, p2)–plane. This fact is reflected in our final result. In other words, this gauge fixing
has effectively quantised the reparametrization invariant 1D harmonic oscillator, not the
2D oscillator we started with.

9.3.2 Example: relational free particle

In this section, we will solve for the classical trajectories of the relational free particle
using the HJ formalism. We will compare methods 1 and 2, presented in Section 9.1.2, to
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show why conventional gauge theory methods should not be used in this case.

For the free particle, the Hamiltonian constraint (9.21) takes the form

H =
δµν
2
pµpν − E ≈ 0. (9.37)

Thus, the HJ equation reads
δµν
2

∂S

∂qµ

∂S

∂qν
− E = 0. (9.38)

This equation can be explicitly solved by introducing the d − 1 separation constants P a.
The solution is

S(qµ, P
a) = qaP

a ±
√

2E − P 2q0, (9.39)

where P 2 = δabP
aP b. We can solve the classical equations of motion by solving for Qa

and pµ, then by inverting these relations in terms of qµ. Differentiating S gives

Qa =
∂S

∂P a
= qa ∓

δabP
b

√
2E − P 2

q0 (9.40)

pa =
∂S

∂qa
= P a (9.41)

p0 =
∂S

∂q0

= ±
√

2E − P 2. (9.42)

We recover the Hamiltonian constraint, (9.37), immediately from the last two relations
for pµ. As expected, (9.40) is non–invertible for qµ.

There are two possible ways to deal with the non–invertibility of (9.40):

• Method 1: Impose the gauge fixing condition

q0 = λ. (9.43)

Then,

qa(λ) = Qa ±
δabP

b

√
2E − P 2

λ. (9.44)

This does not represent the full set of classical solutions. The reason for this is
that, when a gauge fixing is performed, the information about the gauge fixing
condition itself is lost. This must be the case, otherwise the theory would not be
gauge invariant. Thus, these solutions give curves in the space of qa’s, not the space
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of qµ’s. What is lost is the dynamical information of the gauge fixed variable q0.

• Method 2: We can parametrize the solutions for qa in terms of q0, giving

qa(q0) = Qa ±
δabP

b

√
2E − P 2

q0. (9.45)

These are indeed the correct classical solutions as they represent straight lines
on configuration space with parameters specified by initial conditions. The two
branches of the solution represent the ambiguity of specifying an arrow of time,
since our formalism is indifferent to the direction in which time is increasing.

We can straightforwardly see that method 2 is the correct way of reproducing the classical
trajectories. However, this method is not compatible with standard techniques used for
dealing with gauge systems. This is because gauge invariance requires that the gauge fixed
theory is ignorant to the details of the gauge fixing itself. This information, however, is
necessary for determining the classical trajectories. Thus, it can not be the case that
applying standard gauge theory methods to reparametrization invariant theories will lead
to the appropriate quantum theory.

9.4 Solving the problem of time: relational quantisation

In the preceding discussion, we have shown how and why standard gauge theory tech-
niques fail to deliver the appropriate quantum theory when applied to theories with global
Hamiltonian constraints. According to our diagnosis it is this inappropriateness of the
standard canonical quantisation techniques that leads to the problem of time. Our pro-
posed solution to the problem is not to abandon these techniques altogether – to do so
would be to deny ourselves access to number of important mathematical results. Rather,
we will outline a formal procedure for modifying an arbitrary globally reparametrization
invariant theory such that existing gauge methods can be applied and lead to the appro-
priate quantum theory. In doing so, we will also allow for the construction of a class of
quantum theories featuring dynamics with respect to a relational time.
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coordinatized by ε and its conjugate momentum τ (i.e.
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fibre, Γ is the base space, Γe is the fibre bundle itself, and πe is
a continuous surjection πe : Γe→ Γ.
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fixed.

� Define the central element, ε , of the Poisson algebra as an
observable that commutes with all functions on Γ.

� ε is a constant of motion, provided we fix its value by
observation, can be added to the Hamiltonian without
affecting the theory: H →H + ε .

Karim Thebault Relational Quantum Theory

Standard gauge theory
Problem of reduction

Problem of relational time
Relational quantization

Formal procedure
Formal procedure
Solving the global problem of time
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ΩF = dε ∧dτ).
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fibre, Γ is the base space, Γe is the fibre bundle itself, and πe is
a continuous surjection πe : Γe→ Γ.

Karim Thebault Relational Quantum Theory

Figure 9.2: This picture shows the fibre bundle structure of the extended theory. The base space
is the phase space of the original theory, Γ(q, p), and the fibres are two dimensional symplectic
manifolds coordinatized by ε and τ .

9.4.1 Formal procedure

Consider the general reparametrization invariant theory T on the phase space, Γ(q, p),
with symplectic 2–form, Ω = dq ∧ dp, and Hamiltonian constraint, H. We assume that
all other first class constraints have been gauge fixed according to the procedure outline
in §3.3.2. We define the central element, ε, of the Poisson algebra as an observable that
commutes with all functions on Γ. As such, ε is a constant of motion. Thus, provided
we fix its value by observation, it can be added to the Hamiltonian without affecting the
dynamics of the theory: H → H + ε. In our particle models the central element is
simply the total energy of the system and is therefore certainly an observable that can
be experimentally fixed. In general relativity, as we will see in Chapter 15, the central
element is the cosmological constant.

Now consider the two dimensional symplectic manifold (F,ΩF ) coordinatized by ε
and its conjugate momentum τ (i.e., ΩF = dε ∧ dτ ). We can construct the fibre bundle
(Γe,Γ, πe, F ) where F is the fibre, Γ is the base space, Γe is the fibre bundle itself, and πe

is a continuous surjection πe : Γe → Γ. For our purposes, it will be sufficient to consider a
trivial bundle structure so that Γe is simply the direct product of Γ with F . The symplectic
structure on Γe is, thus, given by the non–degenerate symplectic form Ωe = Ω×ΩF , which
endows Γe with a Poisson structure. The overall picture is illustrated in Figure (9.2). We
propose that the fibre bundle Γe is the phase space, Γe(q, p, τ, ε), of an extended theory
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Te that, when quantised with conventional gauge theory methods, leads to a quantum
theory that: a) correctly describes the classical solutions of T in the semi–classical limit
without any additional assumptions, and b) describes quantum dynamics with respect to
a relational notion of time.

We can establish a) as follows. First, consider Te = {Γe,Ωe,He} where He is the
extended Hamiltonian constraint

He = H′ + ε, (9.46)

whereH′(q, p, τ, ε) is the pullback ofH(p, q) under the bundle projection. Next, consider
the constraint surface Σ defined by He = 0 and the closed degenerate two form ωe ≡
Ωe|Σ. The null direction of ωe is generated by the Hamilton vector field vHe(·) = {·,He},
where the Poisson structure on Γe is used to compute the brackets. This vector field spans
the kernel of ωe and is a codimension 1 submanifold of Σ. Crucially, the kernel of ωe

does not, by definition, contain any physically relevant dynamical information because
the null directions have a trivial parametrization given by v(τ) and are, thus, associated
with the physically trivial extension procedure. Thus, a gauge fixing (eg., τ = const) on Σ

corresponds simply to a section on the bundle. Such a gauge fixing selects a gauge fixed
surface ΠGF that is non–degenerate by construction. It is important to observe that ΠGF

has the same dimension as the original phase space since the constraintHe and the gauge
fixing condition each reduce the phase space degrees of freedom by one, thus eliminating
the original auxiliary degrees of freedom τ and ε. Since the reduced phase space is iso-
morphic to a section on the bundle, it is also isomorphic to the base space. The classical
solutions are contained, therefore, in the reduced phase space because the projection πe

maps
πe : vHe → vH, (9.47)

which is the Hamilton vector field of the original Hamiltonian. In Section 9.4.2, we shall
first show how relational quantisation is achieved in practice by considering an explicit
example and then give a physical interpretation of our result.

9.4.2 Proposed solution

We can establish b) as follows. The path integral for this theory is defined using the
methods outlined §3.3.2 and using boundary conditions for τ that are consistent with the
value of ε determined observationally. Note thatHe is already in the formH = H‖+H⊥.
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Using H‖ = ε and H⊥ = H′, we can treat τ as an internal clock by imposing the gauge
fixing condition τ = λ. Thus, τ is an ephemeris clock for the theory T as it is canonically
conjugate toH under the bundle projection. The gauge fixed path integral is

I =

∫
DqDτDpDεδ(He)δ(τ − λ) det |{He, τ − λ}| exp

{
i

∫
dλ (q̇p+ τ̇ ε)

}
(9.48)

Integration over τ and ε leads to:

IT =

∫
DqDp exp

{
i

∫
dτ

[
dq

dτ
p−H′

]}
, (9.49)

which obeys the differential equation

i
∂Ψ

∂τ
= Ĥ′Ψ. (9.50)

Thus, we obtain a time–dependent Schrödinger equation where the Hamiltonian is the
Hamiltonian of the original theory and the time variable τ has a classical analogue cor-
responding to the total change of the system. We have, therefore, passed to a quantum
theory where evolution is with respect to a relational notion of time. Although a con-
venient gauge choice has been made to write this result there is still freedom to use an
arbitrary reparametrization τ = f(λ) as the path integral is invariant under the choice
of gauge fixing functions. This implies that the fundamental symmetry of the classical
theory is still respected quantum mechanically.

As an example, we can apply this quantisation procedure to the toy model of Sec-
tion 9.3. The central element ε is identified with the negative of the total energy E of the
system. We now extend the phase space to include ε and its conjugate momentum τ and
E → −ε in the Hamiltonian,

He =
δµν
2
pµpν + V (q) + ε. (9.51)

Using the gauge fixing τ = λ, the quantum theory is given by the path integral

I = DqµDpµ exp

{
i

∫
dτ

[
dqµ
dτ

pµ −
(
δµν
2
pµpν + V (q)

)]}
. (9.52)
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This corresponds to the time–dependent Schrödinger theory

i
∂Ψ

∂τ
=

[
− ∂2

∂q2
µ

+ V (q)

]
Ψ = ĤΨ. (9.53)

In the semi–classical limit, (9.53) reduces to the HJ equation for the phase, S, of the
wavefunction

δµν
2

∂S

∂qµ

∂S

∂qν
+
∂S

∂τ
+ V (q) = 0. (9.54)

We can do a separation ansatz of the form

S(q, τ ;P, ε) = W (q, P )− Eτ, (9.55)

where W (q, P ) solves the equation

δµν
2

∂W

∂qµ

∂W

∂qν
+ V (q) = E. (9.56)

We, thus, recover the usual HJ formalism. This procedure, however, is invariant under
λ→ f(λ) so that we maintain the required reparametrization invariance.

In essence, our proposal is that, for a given reparametrization invariant theory with
a single Hamiltonian constraint, we can derive the correct quantum theory by applying
the standard quantisation techniques to an extended version of the original theory. It is
important to note that this extended theory is merely an intermediary formalism: the re-
lational quantum theory that is derived should be understood as constituting the quantum
analogue of the original classical theory and not the extended classical theory.

For the simplest class of reparametrization invariant models (including our toy model)
– often called Jacobi’s theory – relational quantisation is equivalent to treating the stan-
dard quantisation of a parameterised particle model as the quantum analogue to the clas-
sical Jacobi’s theory – i.e., the parameterised particle model plays the role of the inter-
mediary formalism.46 Thus, mathematically, the quantum formalism we arrive at is in
fact equivalent to that derived (for instance) by Henneaux and Teiteboim Henneaux and
Teitelboim (1992) (again see p.280) when considering the quantisation of a parameterised
particle theory. However, physically our result is importantly different since such authors,

46For an elegant treatment of both Jacobi and parameterised particle models the reader is referred to
Lanczos (1970)
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following the standard approach, consider the quantum analogue of Jacobi’s theory to be
a Wheeler–DeWitt theory without fundamental temporal structure. As shall be explained
in Chapter 15, this difference of interpretation with regard to the correct quantisation of
simple reparameterisation invariant particle models has important implications within the
gravitational context.

Furthermore, in of itself the interpretational shift implied by relational quantisation
has subtle but important implications for our understanding of energy within the context
of particle models. Whereas, in conventional understandings of Jacobi’s theory, energy
is interpreted as a constant of nature, and therefore the same for all solutions; within our
understanding it becomes a constant of motion that can differ between solutions and is
determined experimentally for each solution. This reinterpretation has no classical exper-
imental difference, but rather leads to a quantum formalism that, unlike its conventional
rivals, retains the full classical solutions in the appropriate limit.

Our choice is thus between, on the one hand, a conventional quantisation procedure
that leads to a quantum formalism with only one energy eigenstate and does not allow
us to recover Jacobi’s theory in the classical limit. And on the other hand, the relational
quantisation procedure which leads to a quantum formalism with a classical limit that is
operationally indistinguishable from Jacobi’s theory, but implies a subtly different inter-
pretation of energy at the classical level. Clearly, on this basis one is justified in asserting
that it is the relational quantisation option that more faithfully represents a quantum ana-
logue of the classical theory.

It might still be claimed, however, that the formalism we arrive at is merely the quan-
tisation of the extended theory – and our identification of it as corresponding the original
theory is not justified. In the following section this point will be dealt with by explicitly
showing that the functions treated as observables within the quantisation of the interme-
diary formalism can be understood as representing the dynamical degrees of freedom of
the original theory.

9.5 Observables and the intermediary formalism

In this section we will considerer the structure of the observables within the classical
reparameterisation invariant theories T and Te above. This treatment will to elucidate the
role of the intermediary formalism, in particular with regard to the physical observables
which it defines.
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Consider a generic reparametrization invariant theory T : {Γ(q, p),Ω,H(q, p) = 0}
and define:

− Real phase space functions: f ∈ C∞(Γ) : Γ→ R

− Poisson bracket structure: {f, g} = Ωab∂af∂bg

− Constraint surface: Σ = {(q, p) ∈ Γ|H(q, p) = 0}

− Weakly vanishing Poisson bracket: {f, g} ≈ 0↔ {f, g}|H=0 = 0↔ {f, g}W = 0

− Dirac functions: d ∈ C∞(Γ) such that {d,H}W = 0

There are three algebras that it is interesting to consider for T :

(i) Poisson algebra P : (f, {, })

(ii) Dirac algebra D : (d, {, }W )

(iii) Kuchar-Babour-Foster algebra KBF : (f, {, }W )

Only the third group can be considered a viable candidate to represent the physical
observables of T . This is because even though all three groups contain a representation
of the Hamiltonian function, the Poission and Dirac algebras render its action either un-
physical (in the first case) or trivial (in the second).

Explicitly, within KBFT we have that for any f there is an evolution function ḟ =

{f,H}W and that ḟ 6≡ 0 (i.e., there are always some non-trivial evolution functions).
Thus the Kuchar-Barbour-Foster algebra can represent non-trivial dynamics. One should
of course also restrict the functions to the constraint surface to ensure only physical states
are represented.

Now consider an extended version of our original reparameterisation invariant theory
Te : {Γe,Ωe,He = 0} where we define:

− The central element of PT : ε ∈ C∞(Γ) such that {ε, f} ≡ 0

− The conjugate variable to ε : τ
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− 2D symplectic manifold: (F,ΩF ) with ΩF = dε ∧ dτ

− Extended phase space Γe(q, τ, p, ε) as the fibre bundle: (Γe,Γ, πe, F ) with the bun-
dle projection being πe : Γe → Γ

− Extended symplectic two form: Ωe = Ω + ΩF

− Real extended phase space function: fe ∈ C∞(Γe) : Γe → R

− Extended Poisson bracket: {fe, ge}e = Ωab
e ∂afe∂bge

− Extended Hamiltonian constraint: He = H + ε = 0

− Extended constraint surface: Σe ∈ Γe|He(q, ε, p, τ) = 0}

− Weakly vanishing extended Poisson bracket: {fe, ge}e ≈e {fe, ge}e|Σe = {fe, ge}eW =

0

− Extended Dirac functions: de ∈ C∞(Γe) such that {de,He}eW = 0

Again for Te there are three algebras of interest:

(i) Poisson algebra Pe : (fe, {, }e)

(ii) Dirac algebra De : (de, {, }eW )

(iii) Kuchar-Barbour-Foster algebra KBF e : (fe, {, }eW )

Our central claim is that the Dirac algebra of the extended theory is equivalent to the
physical observables of the unextended theory – these we identify with the relevant KBF
observables. In order to evidence this claim it would seem reasonable that we must estab-
lish first that the relevant functions have the relevant relationship in general, and second
that there is a robust notion of evolution that is preserved between what we are arguing
to be representations of the same physical structure. This first issues is fundamentally the
question as to whether the Dirac algebra of the extended theory,De, is symplectically iso-
morphic to the Kuchar-Babour-Foster algebra of the unextended theory,KBF . This holds
trivially since the bundle projection can be understood as defining the relevant structure
persevering map definition.

The key second step is then showing that the bundle projection also preserves weak
Poisson bracket structure such that the action of the unextended Hamiltonian on extended
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Dirac obervables projects onto its action on arbitrary unextended functions when evalu-
ated on the original constraint surface:

ḟ = {f,H}W = πe({de,H}eW ) (9.57)

We can show this as follows. First we have

0 = {de,He}eW (9.58)

= {de,H}eW + {de, ε}eW (9.59)

{de,H}eW = −{de, ε}eW (9.60)

We also have that:

{de, ε}eW ≈e {de, ε}e =
∂de
∂qµ

∂ε

∂pµ
− ∂de
∂pµ

∂ε

∂qµ
+
∂de
∂τµ

∂ε

∂εµ
− ∂de
∂εµ

∂ε

∂τµ
(9.61)

=
∂de
∂qµ

∂ε

∂pµ
− ∂de
∂pµ

∂ε

∂qµ
(9.62)

So

{de,H}eW ≈e −
∂de
∂qµ

∂ε

∂pµ
+
∂de
∂pµ

∂ε

∂qµ
(9.63)

=

[
−∂de
∂qµ

∂ε

∂pµ
+
∂de
∂pµ

∂ε

∂qµ

]
H+ε=0

(9.64)

=
∂de
∂qµ

∂H
∂pµ
− ∂de
∂pµ

∂H
∂qµ

(9.65)

= {de,H} (9.66)

Thus, since πede ≈ f ,

πe({de,H}eW ) = πe({de,H}) (9.67)

≈ {f,H} (9.68)

= {f,H}W (9.69)

Thus the relevant requirement is met and our interpretation of the classical Dirac ob-
servables of the extended theory as representing the physical observables of the unex-
tended theory is justified. Since it is precisely these observables which the relational
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quantisation procedure treats as fundamental to the quantum formalism (they will be op-
erators on the relevant physical Hilbert space) it is clear that our identification this for-
malism with the original unextended theory is well justified.

Here we can also note that there is a clear relationship between the definition of clas-
sical observables within relational quantisation and the stances with regard to observables
in reparameterisation invariant theories discussed in Chapter 6: The classical observables
defined in the extension procedure used within relational quantisation are precisely those
of the Kuchař-Barbour-Foster approach to observables which we discussed in the context
of the emergent time strategy of Chapters 6 and 7.

9.6 Outstanding interpretive issues

Certain key aspects of the implications of the positive results of the last few sections are
not completely clear. In particular, it is not entirely apparent what meaning we should
assign to either our ephemeris time parameter or our modified TDSE in a quantum cos-
mological setting. Moreover, given that equitable duration emerges as a purely classi-
cal notion – through the correspondence between our ephemeris time parameter and its
classical analogue at the semi-classical limit – our analysis may provide insight into the
interpretation of classical observations in quantum theory. Furthermore, as in any quan-
tum formalism, there are difficulties in understanding or interpreting both the Born rule
probabilities and the relationship of superpositions of states to our phenomenology. Thus,
the aspects of the ‘problem of time in quantum theory’ which are related to the broad cat-
egory of ‘the measurement problem’ are still troublesome within our relational quantum
formalism.

These interesting and important issues are outside the scope of our current project and
will therefore not be further investigated here. So far as non-relativistic theory goes, the
above approach does solve the ‘quantum problem of time’ to the extent that this problem
is a problem of how to consistently deal with global Hamiltonian constraints, dynamics,
and relational time at a quantum level. The challenge of Part III is to apply what we have
learnt to the full theory of general relativity.



Part III

The Relativistic Problem of Time
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Guide to Part III

Part III sees our discussion progressing to the relativistic problem of time. Here we will
seek to apply the ideas developed within of Parts I and II to full theory of canonical general
relativity. At a classical level the major thrust of our analysis will be an examination of
the relationship between the fundamental diffeomorphism symmetry of the theory and the
ontological status of a linear one-dimensional notion of temporality. It is in this context
that we will introduce the constraints of the formalism and within which we shall present
three interpretational stances which, in different senses, will amount to denials of time. As
in the non-relativistic case an important connection shall be established between a failure
of reductionism and the quantum aspect of our problem.

We begin in Chapter 10 with a concise presentation of the canonical formulation of
general relativity (§10.1), that is supplemented by an analysis for the relationship with
its covariant counterpart (§10.2) and an examination of the role of the Hamiltonian con-
straints in particular (§10.3). We then proceed to detailing the substance of our first denial
of time, first in the context of a motivation taken from standard gauge theory (§11.1) and
then in the context of a motivation from a notion of reductive space-time relationalism
(§11.2), that builds of the closely related discussion of chapter 7. An argument against
the first denial on the basis of dynamical trivialisation will then be presented, together
with a rebuttal of the principal line of reasoning that has been employed in its favour
(§11.3). Chapter 12 will then present the substance of our second denial on the basis
of Machian temporal relationalism (MTR) and the emergent time strategy with which
it is assoiacted. After presenting MTR in general terms we will isolate the source of a
key problem within its application to canonical general relativity (§12.1). Two possible
solutions to this problem will then be evaluated, the first in terms of sophisticated tem-
poral relationalism (§12.2) and the second in terms of a scale invariant formulation of
gravity called shape dynamics (§12.3). Chapter 13 will introduce the third denial which is
based upon the complete observables scheme that has already been introduced for the non-
relativistic case. After a brief restatement of essence of this correlation strategy (§13.1),
we proceed to first consider the additional ideas necessary for an application to canon-
ical general relativity (§13.2) and then the philosophical implications with regard to the
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relative ontological status of space and time (§13.3). Chapter 14 then considers both the
implications of the failure of classical reductionism for a Dirac style quantisation of grav-
ity (§14.1), and the prospectus for an alternative route towards quantisation based upon
the ideas of the foregoing discussion (§14.2). Chapter 15 consists of some preliminary
work towards the application of the ideas of Chapter 9 to the full theory of relativity.



Chapter 10

General relativity and the problem of time

10.1 The canonical theory

Consider the covariant formulation of Einstein’s general theory of relativity (in vacuo)
according to the Einstein–Hilbert action:

S =
1

κ

∫
M
d4x
√
|det(g)|R =

∫
M
d4xLEH (10.1)

whereM is a four-dimensional manifold that we assume to be spatially compact without
boundary and to have arbitrary topology, gµν is a metric tensor field of Lorentzian signa-
ture and R is the Ricci scalar. Variation of this action according to the principle of least
action leads to the Einstein field equations, the solution of which leads to an expression
for the metric tensor. This tensor equips the manifoldM with a geometry, and thus we
arrive at the set of Riemannian four-geometries (M, gµν) that we understand as repre-
senting the spacetimes which are nomologically admissible under the theory. As well as
providing us with the solutions, the action also gives us a precise methodology for defin-
ing the fundamental symmetries of the theory in terms of the Lagrangian LEH and the
Noether symmetry condition:

δLEH = ∂µ(εµLEH) (10.2)

which is satisfied for any active variation of the gravitational field variable (i.e., the metric
tensor) induced by the infinitesimal coordinate transformations xµ → xµ− εµ(x). The set
of all such infinitesimal coordinate transformations forms the group of diffeomorphisms
of the manifoldM that we will take to constitute the fundamental local symmetry group
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of the covariant formalism.47 Each of these two basic elements to the theory (i.e., solutions
and symmetry group) are four dimensional and are understood as corresponding to four-
dimensional concepts: spacetimes and symmetries of spacetime. As such, the analysis
of either is unlikely to fully elucidate the specific role of time within the theory. Rather,
we are better placed to understand the temporal structure of general relativity by passing
from the covariant formulation to one that is predicated on space and time rather than
spacetime. We shall achieve this by focusing on the canonical formulation of general
relativity.

The canonical formulation of general relativity has its origin in the work of Paul Dirac
and Peter Bergmann towards towards the construction of a quantum theory of gravity. Im-
portant early work can be found in Bergmann (1949) and Dirac (1950), the crucial result
was first given in Dirac (1958b) (according to Salisbury (2012) the same Hamiltonian was
obtained independently at about the same time by B. DeWitt and also by J. Anderson).
Here the formalism will be concisely presented according to the formulation of Arnowitt
et al. (1960, 1962). We first make the assumption that the manifold M has a topology
which is such thatM ∼= R × σ, where σ is a three-dimensional manifold with arbitrary
topology that we will again assume to be spatially compact and without boundary.48 What
philosophical significance, if any, we should attach to this non-trivial topological require-
ment will be discussed in the following subsection. Next we define the foliation of M
into hypersurfaces Λt := Xt(σ), where t ∈ R and Xt : σ →M is an embedding defined
by Xt(x) := X(t, x) for the coordinates xa on σ. What we are interested in specifically
is the foliation of a spacetime,M, into spacelike hypersurfaces, Λt – so we must restrict
ourselves to arbitrary spacelike embeddings. The lengthly process of decomposing the
Einstein–Hilbert action in terms of tensor fields defined on the hypersurfaces and the co-
efficients used to parameterise the embedding (the lapse and shift below) then leads to a
Lagrangian formulation of general relativity in terms of space and time rather than space-
time (see Thiemann (2007) for a full treatment). Finally, recasting this ‘3+1’ Lagrangian

47As pointed out by Pons et al. (2010), general relativity actually admits the larger symmetry group of
field-dependent infinitesimal coordinate transformations, and so Diff(M) is properly a sub-group of the
fundamental symmetry group. This difference will not be important for our purposes.

48Although fairly standard, this choice of boundary conditions can be seen to have significant impact
upon nature of the problem at hand. Under an alternative choice where we assume asymptotically flat
spacetimes, the situation with regard to symmetries and the constraints is found to be quite different from
that considered below (e.g., Arnowitt et al. (1960)). See Lusanna (2011) and future work for more detailed
discussion of this point.
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formalism into canonical terms gives

S =
1

κ

∫
R
dt

∫
σ

d3x{q̇abP ab − [NaHa + |N |H]} (10.3)

Here qab is a metric tensor field on σ, and P ab its canonical momentum defined by the
usual Legendre transformation; N and Na are arbitrary multipliers called the lapse and
shift; Ha and H are constraint functions of the form

Ha := −2qacDbP
bc (10.4)

H :=
sκ√
det(q)

[qacqbd −
1

2
qabqcd]P

abP cd −
√
det(q)

R

κ
(10.5)

with D a covariant derivative with the requisite geometrical properties (see Thiemann
(2007)). Here κ is the gravitational coupling constant (κ = 8πG in units where c = 1)
and s is metric signature (i.e., s = −1 for Lorentzian signature and s = +1 for Euclidian
signature). These are called the momentum and Hamiltonian constraints respectively and
(like typical constraints) can be understood as defining a physical phase space Σ in terms
of a sub-manifold (the constraint surface) within the full phase space Γ(q, P ):

Σ = {(qab, P ab) = x ∈ Γ|Ha(x) = 0;H(x) = 0} (10.6)

Beyond their uncontroversial role in defining this sub-manifold, the interpretation of these
constraints is a subtle business. In a typical constrained Hamiltonian theory (e.g., see
Dirac (1964)), it is assumed that if, as in this case, the constraints are first class (i.e., have
a Poisson bracket that vanishes weakly on the constraint surface with all the other con-
straints) then they should be taken to generate unphysical transformations of the canonical
variables and to have their origin directly in the local symmetries of the covariant formal-
ism. The extent to which canonical general relativity is not a typical constrained Hamil-
tonian theory in these senses, as well as the consequent interpretation of the constraints,
is the decisive issue that will inform much of our discussion.

10.2 Canonical vs. covariant formalisms

To what extent does the canonical formalism capture the same content as the covariant
formulation? We can split this question into two parts: i) is an equivalent set of solutions
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represented in the space and time formalism as was fixed by the spacetime formalism?;
and ii) are an equivalent set of local symmetry transformations implemented on the canon-
ical phase space as were found to hold within the covariant configuration space (i.e., the
space of four-metrics)?

Focusing on the first question first. Following Isham (1992) we have the following
result: given a Lorentzian spacetime as represented by the geometry (M, g), then if the
constraints (4) and (5) are satisfied on every spacelike hypersurface g will also satisfy the
Einstein field equations. Conversely, we can also show that given a (M, g) that satisfies
the Einstein field equations then the constraints will be satisfied on all spacelike hyper-
surfaces ofM. This means that the solutions given by the two formalism are equivalent
provided the covariant spacetime can be expressed in terms of a sequence of space-like
hypersurfaces. This requirement is equivalent to insisting that the spacetimes in question
are restricted to be globally hyperbolic (see Geroch (1970)) and is of course directly con-
nected to the topological restrictionM∼= R×σ that was made in setting up the canonical
formalism.

At first sight, this might seem to render the canonical formalism fundamentally inad-
equate for describing spacetime ontology when compared with the covariant formalism.
However, this objection that the requirement of globally hyperbolicity renders the canon-
ical formulation of general relativity representatively deficient in comparison with the
covariant formalism should not be overstated. By insisting that our spacetime is globally
hyperbolic we are only requiring the existence of a Cauchy surface inM, meaning that
the only solutions that have been excluded are those inconsistent with the basic notions of
causality and determinism that we would prima facie have expected to hold within a clas-
sical theory anyway. The physical content of non-globally hyperbolic solutions seems
hard to countenance since they include strange objects such as closed time-like curves,
and in terms of the well confirmed empirical content of the theory nothing has been lost
since all observational data from currently observed regions of the universe is consistent
with the exclusive existence of globally hyperbolic solutions.49

Within quantum gravity there is the possibility that one may need access to different
kinds of topologies – or, in fact, perhaps even topology changes! However, the reasoning
behind lifting the topological requirement at a quantum level does not impinge on its
classical status. To the extent to which the solutions of covariant general relativity can be

49For an analysis of the connection between non-globally hyperbolic spacetimes, closed time-like curves
and the possibility of time machines see Smeenk and Wuthrich (2009).
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understood as representing ‘physically reasonable’ spacetimes, the solutions of canonical
general relativity can equally be thought of representing these spacetimes (albeit in terms
of space and time).

Still, it is true that canonical general relativity is well defined on a set of solutions that
is a subset of those of covariant general relativity. This means that in moving from one
formalism to the other we are removing from our theoretical toolkit the ability to represent
a class of nomologically possible worlds. Furthermore, although these worlds might seem
unreasonable because of their strange causal structure, to exclude them in principle from
a philosophical analysis of the nature of time in general relativity would be seriously
begging the question – we cannot merely appeal to a view on the nature of time to fix our
view on the nature of time! Asserting a causal censorship condition that excludes the non-
globally hyperbolic solutions as an additional law of nature is a highly non-trivial move
which we will not here propose to make. Rather, one straightforward option is to invert
the supposed deficiency into a strength and make global hyperbolicity a prediction rather
than a restriction. Such a move depends on our ability to see the canonical formalism on
an equal footing to its covariant counterpart, and not as purely parasitic upon it. This we
can do by pointing to the fact that – as shown by Hojman et al. (1976) – it is possible to
derive canonical general relativity without passing through the covariant formalism. Such
a manoeuvre will be crucial to the assessment of our second denial of time and will be
further discussed in §12.3. Alternatively, we can simply fall back on a weakened stance:
this analysis and its conclusions with regard to the nature of time carry with them a global
parenthesis of given the restriction to the globally hyperbolic subset of solutions. Since
our principal object is to examine issues relating to diffeomorphism symmetry and the
ontological status of a linear one-dimensional notion of temporality, our discussion can
bear this qualification without any undue burden or inconsistency.

More significant to our purpose is the relationship between the respective local sym-
metry transformations of the two formalisms. Whereas, as discussed above, the covari-
ant action is invariant under the full set of spacetime diffeomorphisms Diff(M), in the
canonical formulation it is only a subset of these that is realised. This subset can be shown
(e.g., Pons et al. (2010)) to be infinitesimal coordinate transformations xµ → xµ − εµ(x)

such that
εµ(x) = nµ(x)ξ0 + δµa ξ

a (10.7)

where nµ = (N−1,−N−1Na), and here the ξµ are taken to be arbitrary functions of the
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coordinates. From the perspective of the derivation of canonical from covariant general
relativity, the origin of this discrepancy between the symmetry transformations realised
in the two formalisms is well understood – it can be explained in terms of the spacelike
nature of the otherwise arbitrary embedding (see Isham and Kuchař (1985b)) or (relatedly)
in terms of incomplete projectability between the symmetry transformations defined in the
relevant tangent and cotangent bundle structures (see Pons et al. (1997)).

Alternatively, we can consider the elegant and important derivation of these canonical
symmetry transformations purely in terms of a deformation algebra pertaining to space-
like hypersurfaces embedded in a Riemannian spacetime (Teitelboim (1973); Hojman
et al. (1976)). This treatment gives us a basis for the canonical symmetry transformations
independent of the covariant theory and implies that we can understand them as encoding
physical content not purely parasitic upon four-dimensional diffeomorphism symmetry.
Crucially, this treatment also makes clear the deep connection between the form of the
constraints and the nature of the symmetries. In fact, what is shown is that this canonical
symmetry group (known as the Bergmann–Komar group BK) is and must be generated
by constraints of the specific form (10.4-5), which will inevitably satisfy the constraint
algebra

{ ~H( ~N), ~H( ~N ′)} = −κ ~H(LNaN
′
a) (10.8)

{ ~H( ~N), H(N)} = −κH(LNaN) (10.9)

{H(N), H(N ′)} = sκ ~H(F (N,N ′, q)) (10.10)

whereH(N) and ~H( ~N) are smeared versions of the constraints (e.g., ~H( ~N) :=
∫
σ
d3xNaHa)

and F (N,N ′, q) = qab(NN ′,b −N ′N,b). The presence of structure functions on the right-
hand side of (10.10) means that strictly BK is not a group (and the constraint algebra is
not technically an algebra) and of course emphasises that Diff(M) 6= BK.

Despite these important differences, the symmetries of the covariant and canonical
formalisms can in fact be shown to be physically equivalent since given a solution to
the equations of motion within the canonical formalism the action of BK will coincide
with that of Diff(M) (for diffeomorphisms connected with the identity). Thus, at the
classical level at least there is no detectable difference. We can in fact explicitly construct
a canonical symmetry generator acting on the space of solutions that maps between the
same diffeomorphically related spacetimes that we take to be symmetry related in the
covariant formalism (see Pons et al. (2010) and references therein for more details). Thus,
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so long as we are concerned with globally hyperbolic solutions, the two formalisms admit
identical symmetry relations.

10.3 Time and the riddle of the Hamiltonian constraints

In the discussion above, the constraints of the canonical formalism were found to be in-
volved in fixing both the dynamics and symmetries in accordance with the physics of co-
variant general relativity. This dual symmetry/dynamics aspect leads to much confusion
and complexity with regard to the constraints – in particular the Hamiltonian constraint
– and is at the root of the problem of time in canonical gravity. Whereas the momen-
tum constraints can be understood unambiguously as implementing infinitesimal three-
diffeomorphisms on phase space, the role of the Hamiltonian constraints in this context is
far more opaque. We can see this explicitly by considering the form of the Poisson brack-
ets between each constraint and the canonical variables. For the momentum constraints it
takes the form

{ ~H( ~N), qab} = κ(L ~Nqab) (10.11)

{ ~H( ~N), P ab} = κ(L ~NP
ab) (10.12)

The appearance of the Lie derivative on the right-hand side of each equation indicates that
these constraints can be understood as generating purely infinitesimal diffeomorphisms of
the phase space variables. In fact, it means that, on their own, these constraints can be
understood as implementing the Lie group of diffeomorphisms of σ (Isham and Kuchař
(1985b)).

The Hamiltonian constraints in, stark contrast, have a phase space action that seems,
prima facie, manifestly dynamical. For any specification of the lapse, they effect an
infinitesimal phase space transformation from the canonical variables that characterise a
given three-geometry to those describing a second three-geometry which is dynamically
subsequent. More careful analysis however reveals a dual role within which the seeds of
our conceptual enigma are sown. We can consider the explicit action of the Hamiltonian
constraints on an embedded canonical momentum variable. Such a variable is so called
because it is the canonical conjugate of a metric variable qµν , which is a tensor field
(the first fundamental form) defined on the embedded hypersurface Λt. This new metric
variable can be expressed purely in terms of spatial vector fields on Λt and the usual metric
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variable on σ, qab (see Thiemann (2007, Eq. 1.1.16)). The new momentum variable can
be written in terms of qµν together with it and another spatial tensor field on Λt (the
second fundamental form). An elegant calculation by Thiemann (2007, pp.54-6) yields
the explicit expression

{H(N), P µν} =
qµνNH

2
−N

√
‖q‖[qµρqνσ − qµνqρσ]R4

ρσ + LNnP
µν (10.13)

with R4
µν the Ricci 4-tensor. The first term on the right hand side is zero on the physical

phase space (defined by satisfaction of the constraints) and is therefore unimportant. The
second is zero for solutions to the equations of motion, and thus we have that on shell the
Hamiltonian performs the role of generating infinitesimal diffeomorphisms. Whereas the
diffeomorphisms associated with the momentum constraints can be understood as purely
kinematical symmetries of the three geometries σ (irrespective of whether the equations
of motion hold), those associated with the Hamiltonian constraints are symmetries not
only of entire spacetimes, but of spacetimes that are solutions.

For a given solution and an embedded hypersurface, the constraints generate a local
deformation of the hypersurface. Collectively such an action is equivalent to the refolia-
tion of spacetime and therefore to the generation of a different unphysical splitting of the
spacetime into space and time. However, the solutions themselves are consequences of
the dynamical role that the Hamiltonian constraints play in the context of three-geometries
considered on their own rather than as embedded in a spacetime. Thus, to maintain both
the fundamental symmetry of the theory and the dynamics we must appreciate the dual,
context dependent role of the Hamiltonian constraints.50 In the remaining discussion, we
will explore the narrow path that traverses the folly of failing to appreciate either side of
this duality and, after observing the perils of falling into the abyss below, we will come
upon a fork that forces us to choose between retaining a weaker Machian notion of time
at the cost of global scale and dispensing with time altogether.

50It is important to note that this key aspect to our analysis represents a departure from both the received
and dissenting view on this matter (although it is close to the spirit of Pons et al. (2010)). Whereas, the
received view is that the Hamiltonian constraints purely generate unphysical transformations (e.g., Rovelli
(2004)), the dissenting view (which could be understood as being defended in Barbour and Foster (2008)
and also associated with Kuchař (1991b, 1992)) is that the constraints’ action is purely physical in character.
Barbour, however, ‘suspects that the action of the Hamiltonian constraints in GR is part physical and part
gauge’ (Julian Barbour, personal communication 2012).





Chapter 11

Denial I: reductive temporal relationalism

11.1 Gauge theory and indeterminism

Motivation for a particularly influential (but ultimately unpersuasive) argument towards
the denial of time in canonical general relativity derives from the consideration of the
otiose representative structure constituted by the Hamiltonian formulation of a standard
gauge theory of the type considered in Part I. We will briefly repeat some of the material
already given §1.5 to refresh the readers mind of the relevant general argument, with-
out making any particular reference to the Hamiltonian constraints of canonical general
relativity and the important subtleties that go along with them.

Consider a constrained Hamiltonian theory constituted by a phase space Γ parame-
terised by n canonical coordinates (p, q), a Hamiltonian functional H(p, q) and a set of m
first class constraints φi(p, q) = 0. Such a theory corresponds to a physical system with
gauge freedom if and only if the action is invariant under some local symmetry group.
Geometrically we can characterise such a generic constrained Hamiltonian theory in term
of a phase space Γ with a symplectic geometry (Γ,Ω) and an n − m dimensional sub-
manifold Σ = {(p, q) ∈ Γ|∀i : φi(p, q) = 0} with a presymplectic geometry (Σ, ω) called
the constraint surface or physical phase space. The degenerate structure of the latter can
be understood in terms the integral curves of the vector fields that make up the null vector
space (or kernel) of ω partitioning Σ into a set of transverse sub-manifolds called gauge
orbits. In physical terms, each of these orbits are assumed to have the significant feature
that all of its constituent points are physically indistinguishable – they correspond to an
identical value of the Hamiltonian functional (accompanied by equal value for all other
measurable quantaties). Furthermore, paths in the physical phase space that differ by a
transformation along a gauge orbit will necessarily correspond to identical values of the
canonical action and will therefore also be indistinguishable.

115
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Given that we make the usual interpretation of points in the (physical) phase space
as representing distinct instantaneous physical states, the above feature is a form of inde-
terminism (or underdetermination) since given an initial specification of physical states
the formalism does not fix a unique continuation. This would seem unsatisfactory for
the case of classical theories, including general relativity, where the relevant measurable
quantities are manifestly deterministic. The natural response to such circumstances is to
point to inadequacy within our representative formalism rather than the characterisation
of the connection between what is real and what is measurable within our theories. We
assert that there is ‘surplus structure’ within our formalism as embodied precisely by the
directions defined by the gauge orbits. The most obvious methodology for controlling this
excess is to classify these directions as unphysical and use points in the space of gauge or-
bits to give us a unique representation of physical states.51 Formally we may construct this
space of gauge orbits or reduced phase space in terms of the quotient manifold that results
from the application of a symplectic reduction procedure to the physical phase space Σ.
For simple constrained Hamiltonian theories, this reduction is effected simply by taking
the quotient Σ by the kernel of ω – see Gotay et al. (1978) for the more complex case.
Either way, it can be proved for a large class of cases (Souriau (1997)) that the space of
gauge orbits that results from the application of symplectic reduction to the physical phase
space has a symplectic geometry (ΠR,ΩR) and inherits a Hamiltonian functional from the
physical phase space. Since we have removed the null directions ΠR has a non-degenerate
structure and is not, therefore, afflicted with the kind of indeterminism mentioned above.
If we assign to points in the reduced phase space the role of representing unique physical
states, then the formalism is now such that any initial specification will also imply the
provision of a unique continuation.

By passing to the reduced phase space of a constrained Hamiltonian theory, we reap
the reward of a formalism trimmed of any superfluous representative structure. This has
led some authors to argue that we should endow the reduced space with a privileged status.
In particular Gordon Belot and John Earman (Belot (2000, 2003); Earman (2003); Belot
and Earman (1999, 2001)) have argued that we should consider the reduced phase space as
the fundamental dynamical arena of a gauge theory. As applied to a generic gauge theory,
this form of reductionism, although open to a number of philosophical objections (see

51Less obviously we might instead weaken the representative relationship between points and states via
the introduction of some notion of anti-haecceitism. This strategy will be examined carefully within the
particular context of time in canonical general relativity as discussed in §12.2
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Chapter 2), is a viable option and is to a large degree supported by the various techniques
of canonical quantisation for gauge theories – all of which might be seen to be predicated
on the reduced phase space (see Chapters 3 and 4). However, for the specific case of
the Hamiltonian constraints that feature in canonical general relativity (and as we have
seen for non-relativistic reparameterisation invariant theory) such reductionism rests on
an inappropriate interpretation of the Hamiltonian constraints as pure gauge generators.
We will examine this crucial issue more carefully after first giving a second motivation
for symplectic reduction that is specific to canonical general relativity and is based on a
form of relationalism appropriate to the spacetime concepts found within the theory.

11.2 Reductive spacetime relationalism

Again reiterating key material from above (in particular Chapter 7) for the convenience
of the reader. The philosophical doctrine of relationalism with regard to space and time
has its roots in the early modern natural philosophy of Descartes, Leibniz and Huygens
but (arguably) takes its most precise form in the work of Mach and Poincaré (Barbour
(2009)). In essence, it is a position as to the relative ontological status of relations between
material bodies and the entities or objects constituted by space and time themselves. A
relationalist is taken to hold that the relations are primary and that space and time are
merely derived or abstracted from them. In the context of a theory containing a concept of
dynamical spacetime such as general relativity, it is not entirely clear what relationalism
as it was originally conceived should be taken to mean, and the modern philosophical
discussion is replete with positions that are taken to be either pro- or anti- some version of
relationalism. Our purpose here will not be to survey this literature or explicitly analyse
its connection with the indeterminism issue of the previous section in terms of the famous
hole argument.52 Rather, we will concern ourselves with the notion of reductive spacetime
relationalism that is presented by the relevant authors in their argument towards our first
denial of time. A second, importantly different notion of temporal relationalism will be
discussed in Chapter 12.

Among others, Belot and Earman (1999, 2001) hold that the essence of spacetime
relationalism within general relativity should be taken to be the denial of a fundamen-

52In essence the hole argument relates to the indeterminism born of the four-dimensional diffeomorphism
invariance and is constructed within the covariant formulation of general relativity. See Norton (2011),
Rickles (2008) and references therein.
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tal ontological role for spacetime points. Such points are of course represented within
a covariant formalism by the coordinatisation of the manifold M and will therefore be
given distinct representations within different coordinatisations. If we assume that cross
identification between points within qualitatively identical spacetime models – i.e., with
the same geometry – can be taken to ground a real difference between these models (i.e.,
they may differ solely haecceitistically), then relationalism can be understood in terms
of the denial of exactly such difference on the grounds that spacetime points do not have
a fundamental ontological status.53 A spacetime relationalist is thus someone who will
‘deny that there could be two possible worlds with the same geometry that differ only
in virtue of the way that is geometry is shared out over existent spacetime points’ (Belot
and Earman (2001, p.18)). In the context of the covariant formalism, this means that two
geometries (M, gµν) and (M ′, g′µν) that solve the Einstein field equations and are related
by an element of Diff(M) are considered to be the same physically possible situation.
This is because the difference between them is exactly in terms of the coordinatisations
rather than the geometrical structure; therefore the ontologies which they are taken to rep-
resent can differ (if they differ at all) only with respect to the role played by the spacetime
points. By endorsing such a Leibniz equivalence type principle, Belot and Earman dis-
avow this difference.54 Furthermore, by cutting down the class of distinct possibilities to
include only geometries that are members of different diffeomorphically related equiva-
lence classes we have implicitly performed a reduction with respect to our fundamental
representative space. Rather than considering the space of Riemannian four-geometries
corresponding to four-metrics that solve the Einstein field equations as our basic arena for
representing the world, we instead should consider the quotient of that space by the group
of four-dimensional diffeomorphisms. Thus, we can see Belot and Earman’s arguments
as leading us from relationalism to reduction: they are reductive relationalists.

What does this reductive form of spacetime relationalism mean in the context of the
canonical formalism? If we focus our attention on the role of spatial points, then we
have a clear answer. In analogy to the spactime case, spatial points are represented in
terms of the coordinatisation of a manifold, in this case the three-dimensional manifold σ.
Furthermore, the action of the theory is invariant under the group of three-dimensional dif-
feomorphisms of this manifold, Diff(σ), and so a reconstruction of the argument above

53We will, for the time being, defer the discussion of histories anti-haecceitist variant of relationalism.
See §12.2.

54There are, of course, other ways of formulating such a principle that do not have the same implications
for ‘possibility reduction’. For instance, that suggested by Saunders (2003)
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can be made for this case. Explicitly, since two canonical solutions that differ solely on
the basis of the application of an element of Diff(σ) are physically identical, asserting
the existence of spatial points will violate a Leibnizian type principle of equivalence of
exactly the same type as that introduced via the quote from Belot and Earman (2001)
above. Thus, a reductive relationalist with regard to space will endorse a reduced space of
three-geometries as representatively fundamental within the canonical formalism. Since
Diff(σ) is implemented on phase space by the action of the momentum constraints (see
discussion surrounding equations 10.11 and 10.12 within §10.3), we know that precisely
the reduced space we are looking for can be achieved by quotienting out the gauge orbits
associated with those constraints according to a symplectic reduction procedure above.
This, in fact, leads us directly to the phase space equivalent of Wheeler’s superspace (see
Wheeler (1968); Giulini (2009)) – ‘super-phase-space’, on which a formulation of canon-
ical general relativity would be constituted according to this brand of spatial reductive
relationalism.

With regard to time things are, as ever, far more complicated. One might hope to
translate a position of spacetime relationalism as expressed in terms of the covariant for-
malism into a position of spatial relationalism plus temporal relationalism as expressed
in terms of the canonical formalism. Building on the ideas of the previous paragraph, we
would hope to disavow the fundamental status of temporal points by enforcing ontological
equivalence between solutions that differ only as to the way in which the four-dimensional
geometrical structure is ‘shared out’ over these points. Thus, we would in effect perform
a reduction of paths in super-phase-space such that those that differ only as to how time
is labelled are classified as the same path; we would arrive at a new doubly reduced
representative space. Unfortunately, such a naive implementation of reductive temporal
relationalism is neither possible nor adequate to our purpose.

Although we have assumed that the spacetime manifold M has a topology which
is such that M ∼= R × σ and therefore that the temporal dimension is represented in
terms of the real line, the complication of foliation invariance means that the arbitrariness
with regard to time is not fully captured merely by global temporal relabelling – i.e.,
by the one-dimensional diffeomorphism group Diff(R). Furthermore, unlike spatial
diffeomorphisms, these ‘temporal diffeomorphisms’ have no representation at the level of
constraints acting on phase space points or for that matter even phase space paths, and so
it is impossible (in the conventional formalism) to frame this naive temporal relationalism
simply in terms of a reduction procedure.
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Foliation invariance means that the theory is invariant under the set of local temporal
relabellings of each point on each space-like hypersurface. The global temporal rela-
bellings discussed above form only a subset of these. To be consistent with the notion of
reductive spacetime relationalism defined above, it is the temporal points that constitute
these local labellings that must be excluded from our ontology via a Leibniz equivalence
inspired quotienting operation. In the case of local temporal relabelling (unlike the global
case), we do have a canonical constraints that can be associated with the relevant symme-
try: the Hamiltonian constraints. However, as discussed in §10.3 above, the connection
between these constraints and refoliation symmetries can only be made precise in the
context of spacetimes (corresponding to paths in the physical phase space) that are also
solutions to the equations of motion. In the context of their action on phase space, the
Hamiltonian constraints generate evolution. Thus, although it might seem at first sight
that reducing out the action of the Hamiltonian constraints (on the cotangent bundle over
superspace – i.e., super-phase-space) will achieve the object of reductive spacetime re-
lationalism within the canonical formalism, our understanding of the constraints’ dual
role leads to immediate scepticism on this count. The object of reductive relationalism
with regard to time is to construct a representative arena in which the distinct possibili-
ties entailed by the existence of temporal points have been removed. Within the context
of canonical general relativity, such a reduction makes sense (at least in principle) at the
level of entire histories related by a refoliation symmetry. However, it is difficult to see
how it can possibly be achieved by a reduction of phase space since such symmetries
cannot be represented in terms of the relationship between points on this space. It is ex-
actly this kind of phase space reduction with regard to the Hamiltonian constraints that
Belot and Earman argue implements their reductive spacetime relationalism within the
canonical formalism and to which we now turn.

11.3 Dynamical trivialisation and the isomorphism argument

We thus have two distinct but connected motivations for enacting a symplectic reduction
of the phase space of canonical general relativity with regard to the Hamiltonian con-
straints. Firstly, we have the argument from indeterminism and surplus structure – it is as-
sumed that as for the case of other theories with first class constraints, the sub-manifolds
defined by the integral curves of the null vector fields associated with the Hamiltonian
constraints will form gauge equivalence classes. Thus, as for the generic case, the unre-
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duced formalism will possess an excess representation of physical states such that an ini-
tial specification of phase space points will admit multiple physically identical but math-
ematically distinct continuations. By reducing out the action of these constraints we will
remove both this indeterminism and the redundant representative structure that enables
it. Secondly, we have the motivation from reductive spacetime relationalism – we wish
to reduce our possibility space such that differences entailed by distinct coordinatisations
of the same fundamental geometrical structure are no longer encoded. Specifically, in
addition to removing the representation of spatial points, via reduction with respect to the
momentum constraints, we also want to remove the local temporal labellings that play the
role of representing temporal points as basic structures within the theory (this second mo-
tivation is of course directly connected to the reductive temporal relationalism discussed
in the context of non-relativistic theory within Chapter 7).

It is for both these reasons that Belot and Earman (2001, 17-18) advocate the use of a
literal reading of the reduced phase space of general relativity – it is the use of this space
that they claim allows us to both ‘avoid indeterminism’ and, in doing so, ‘deny that there
could be two possible worlds with the same geometry which differ only in virtue of the
way that this geometry is shared out over existent spacetime points’. They explicitly make
the claim that, modulo positions built upon anti-haecceitism (e.g., sophisticated substan-
tivalism. See §7.1), ‘one must be a [reductive] relationalist in order to give a deterministic
interpretation of general relativity’. Thus, Belot and Earman’s reductive spacetime re-
lationalism is directly connected to the interpretation of the reduced phase space as the
fundamental dynamical arena. In a canonical context it is claimed to be a position such
that only the distinct possibilities entailed by the existence of spacetime points have been
removed. If ‘points of the reduced phase space are just the equivalence classes of diffeo-
morphic models of general relativity’ then, prima facie, the only temporal structure we
have removed in passage to the reduced space should be the temporal points – and this
would not make for a particularly strong denial of time. However, closer analysis reveals
that the reduction has in fact removed far more temporal structure from our formalism
and thus that the reductive spacetime relationalism of Belot and Earman inevitably leads
to a far stronger denial of time.

Like in other gauge theories, the construction of a reduced phase space involves quo-
tienting out of the action of the first class constraints and thus, for the gravitational case,
would involving treating the phase space action of H(N) as purely symmetry generating.
However, as detailed in §10.3 and mentioned above the role of the Hamiltonian constraints
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within canonical general relativity is essentially a dual one. When considered as acting
on purely on a three geometry (as represented by a phase space point) they generate dy-
namical evolution and when considered as acting on space-like hypersurface embedded
within a solution they generates infinitesimal diffeomorphisms. The latter role means that
the constraint can be considered responsible for generating refoliation symmetries and al-
lows us to understand how the four dimensional diffeomorphism symmetry is (to a certain
extent) implemented canonically. However, the former role cannot be discounted since
without it the solutions within which the hypersurfaces are embedded cannot be defined.
Moreover, the gauge orbits associated with the constraints action on phase space are in
fact closer in character to solutions themselves and are explicitly not equivalence classes
of solutions since a point with the orbit is associated with a three not four dimensional ob-
ject. Still, by (erroneously) classifying all phase space points within these sub-manifolds
as representing the same state we will ensure that any pair of three geometries which are
contained within solutions related by a refoliation symmetry will be (again, erroneously)
classified as equivalent. Thus symplectic reduction will remove the indeterminism re-
lated to that symmetry. It will, of course, therefore additionally mean that the reductive
temporal relationalist desire to pass to a representative space that excludes distinct local
temporal labellings will also have been achieved.

In addition to these two primary goals, however, this reduction has the dire unintended
consequence that all dynamically related three geometries are classified as representing
the same state. This is because the orbit that is quotiented is, as it must be the nature
of the Hamiltonian constraints phase space action, composed of every state that can be
accessed via the ‘many fingered’ time evolution the theory allows for in terms of the
action of the Hamiltonian and the arbitrariness of the lapse function. By reducing the
representative capacity of the orbit down to a single state we pass from many fingers to no
fingers – and not one finger! Furthermore, since we have not respected the dynamical role
of the Hamiltonian, in a phase space context by passing to the reduced space we will have
classified states which are physically distinct members of a given solution as identical.
This is exactly to treat the current state of the universe and its state just after the big bang
as identical (contra the claims of Belot (2007, p.78)).

We can establish that the reduced phase space of general relativity has the described
structure explicitly by considering the following argument based upon an extension of
the geometric formalism introduced in §1.5 and reiterated above (for more details of the
formalism in question see (Rovelli, 2004, §3.3.2 and §4.3):
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• I) The physical phase space of canonical GR will have a presymplectic geometry
(Σ, ω) and like in a typical gauge theory this structure contains characteristic ‘null
directions’ the ‘integral curves’ of which we usually identify as gauge orbits.

• II) Since general relativity is a field theory the geometric structure we are dealing
with is a little more complex than that introduce before: motions are now four-
dimensional surfaces with a quadritangent X (made up of the tensor product of
four independent tangents) defined at each point. Thus, the part of ‘null direction’
is now played by the a specific quadritangent and that of ‘integral curve’ by an
integral surface. ω is still a presympletic form but now it is a five, rather than two
form; derived as it is from a canonical four, rather than one form.

• III) More significantly, and in stark contrast to the standard gauge theory case, if
we define the gauge orbits of canonical general relativity explicitly in terms of the
four dimensional surfaces γ̄ in Σ such that the quadritangent to the orbit X is in the
kernel of ω (i.e., ω(X) = 0), then we can identify the γ̄ with the set of (globally
hyperbolic) solutions of the Einstein field equations (Rovelli, 2004, p.157).

• IV) Since these orbits are precisely those which we would normally classify as
gauge equivalence classes a symplectic reduction procedure would (in principle)
lead to a reduced phase space within which, prima facie, dynamics has been gauged
out.

• V) Furthermore, since this reduced space is only equipped with a trivial Hamilto-
nian function there is no hope of recovering dynamical evolution in terms of trans-
formations between points in the reduced space.

Reductive relationalism thus amounts to a far stronger denial of time than may have
been anticipated – it is not just the point structure that is dispensed with, but also our abil-
ity to represent any more than one distinct spatial configuration per universe: the inter-
pretation has rendered the formalism dynamically trivial since we can no longer represent
change.

A single line of argument is available in defence of total constraint reduction in canon-
ical general relativity against the charge of dynamical trivialisation. Belot (2007, p.78)
argues that rather than seeing the reduced phase space as dynamically trivial in the sense
outlined above, we should instead reinterpret it as a space of diffeomorphically invariant
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histories. Thus, we would enable both reductive temporal relationalism and the avoidance
of indeterminism but without the cost of trivialising our dynamics. Belot’s argument re-
lies on the existence of a canonical isomorphism between the fully reduced phase space
and a space of diffeomorphically invariant spacetimes defined via the covariant formal-
ism; we shall therefore dub it the isomorphism argument. Because of its importance we
shall quote the relevant text in its entirety:

If one approaches the problem of time via a focus on the transition from
the space of initial data to the reduced space of initial data, the problem can
appear especially urgent. For in passing from the space of initial data to the
reduced space of initial data, one identifies initial data sets that correspond to
distinct Cauchy surfaces within a single solution. Prima facie, this involves
treating the current state of the universe and its state just after the Big Bang as
the same state. Moral: according to general relativity, change is an illusion.

But this is too hasty. For of course the reduced space of initial data is
canonically isomorphic to the reduced space of solutions. 55 And in this latter
space, some points represent worlds in which there is change (e.g., worlds
which begin with a Big Bang) and some represent changeless worlds (e.g.,
world modelled by Einsteins static solution). So it is hard to see how general
relativity teaches us the moral announced.

In the well-behaved theories of section 5 the space of initial data and the
space of solutions are symplectically isomorphic, but we nonetheless think
of these two spaces as having distinct representational functionsroughly and
heuristically speaking, one is suited to represent possible instantaneous states
while the other is suited to represent possible worlds. This distinction is
grounded by the fact that relative to a slicing one finds that for each t ∈ R, the
map TΣt that sends a solution to the initial data that it induces on the instant
Σt ⊂ V defines a distinct isomorphism between the space of solutions and
the space of initial data. This makes it natural to think of points of the latter
space as representing states (universals) that can occur at distinct times and
to think of points in the space of solutions as representing possible worlds
composed out of such states. The elements of this story survived more or less
unscathed the introduction of various complicating factors in section 6. But

55Belot’s Footnote: ‘Under the map that sends [q, π] to [g] if (q, g) describes the instantaneous state on
some Cauchy surface of (V, g).’ Where V is a space-time.
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in the case of cosmological general relativity we have only a single canonical
isomorphism between the reduced space of initial data and the reduced space
of solutions. In this context, it is difficult to deny that the reduced space of
solutions and the reduced space of initial data are representationally equiv-
alent. And it seems straightforward that we should interpret points in the
reduced space of solutions as representing general relativistic worlds rather
than instantaneous states – so we should say that same thing about points in
the reduced space of initial data. Thus, we should resist any temptation to
think of the reduction procedure as telling us to think of an early state of the
universe and a late state of the universe as being the same instantaneous state.

The ‘isomorphism argument’ contained in this passage essentially runs as follows.
Consider a system that does not display any gauge freedom. It’s dynamics can be de-
scribed in terms of a space of solutions to the Euler–Lagrange equations, S, or in terms
of set of curves in a phase space, I, with the usual symplectic structure. Although there
exists an isomorphism between points in these two spaces, they have distinct representa-
tional roles – a point in γ ∈ S represents an entire history of our system, while a point
in I represents an instantaneous state of the system. According to Belot, ‘this distinc-
tion is grounded by the fact that relative to a slicing one finds that for each t ∈ R, the
map that sends a solution to the initial data that it induces on the instant Σt, defines a
distinct isomorphism between the space of solutions and the space of initial data.’ And
thus ‘it natural to think of points of the latter space as representing states that can occur
at distinct times and to think of points in the space of solutions as representing possible
worlds composed out of such states.’ If under this interpretation the system is taken to be
the whole universe, then clearly points in I should be considered as representing distinct
instantaneous states of the world, and those in S should be considered as representing
worlds composed out of such states.

Now, for a standard gauge theory of the type discussed in Part I, such an interpretation
can no longer be justified in these terms. Rather than having a one-to-one map that confers
representative equivalence between each time slice of solution and a point in phase space,
for each slice of a given solution we have a one-to-many map, with the target an entire
gauge equivalence class of points in phase space. However, if we pass to a reduced phase
space IR via symplectic reduction as well as constructing a reduced solution space SR via
an analogous reduction process (i.e., quotienting out the action of the Lagrangian gauge
group), then we recover our distinct isomorphism per time slice and therefore also our
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argument towards the different representational roles of the two spaces – the former for
instants, the latter for entire worlds.

The case of general relativity – as an atypical gauge theory – is crucially different. Be-
cause of the nature of the diffeomorphism group, points in the reduced space of solutions
cannot be individually decomposed into slices, and this means that only a single isomor-
phism exists between each of these diffeomorphically invariant solutions and points in
the reduced phase space. This, Belot argues, means ‘it is difficult to deny’ that we should
interpret them as representationally equivalent spaces. Thus, according to Belot the re-
duced space is dynamically non-trivial since it can be taken to represent universes that
contain evolution and, furthermore, ‘we should resist any temptation to think of the re-
duction procedure as telling us to think of an early state of the universe and a late state
of the universe as being the same instantaneous state’ – contrary to what we have argued
argued above.

Although innovative and to some extent insightful, the isomorphism argument of Be-
lot is problematic in a number of respects. Firstly, if read as a strong deductive argument,
Belot’s reasoning seems to rest on the non-sequitur that since the existence of a distinct
isomorphism per time slice gives us grounds to fix distinct representational roles for IR
and SR, the non-existence of such a family of isomorphisms implies that the two spaces
should be taken to be representatively equivalent. Completely besides the nature of the
mappings that exist between them, we have very good reasons for asserting that solutions
represent worlds and phase space points represent instants – the variational basis upon
which the two structures are defined and the different form of the relevant boundary con-
ditions to name just two. Just because in the case of general relativity we no longer have
access to one argument towards their representational in-equivalence does not indicate
that we no longer have any arguments available at all!

Furthermore, the existence of a single isomorphism between points in two representa-
tive spaces is far from a sufficient condition for them to play equivalent roles (although it
could in some cases be taken to be necessary) since we can trivially find such relationships
between manifestly inequivalent structures – two books with the same number of words,
for example. This means that even if we take the isomorphism argument as motivating
an interpretation rather than deducing a conclusion, there are good reasons to doubt its
strength: without reasons beyond the existence of the isomorphism, it is not difficult to
deny that the two space are representationally equivalent.
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In fact, it makes far more sense for the representational role of a space within a theory
to be fixed primarily by its relationship to the representative structures from which it is
derived rather than to a space utilised in the context of a different formalism. For the
case of general relativity, therefore, it is more appropriate to consider the relationship
between the reduced phase space and the unreduced phase space as fixing the former’s
representational role.

In this context, one could argue that if we accept Belot’s interpretation of the reduced
space as a space of histories, then we should think ourself forced into also asserting that
points in the unreduced space are also representative of four-dimensional histories, and
this is manifestly inconsistent with the ADM procedure that leads to the construction of
this space. Rather, since we know by definition that a point in the unreduced phase space
corresponds to a three metric and its canonical momentum we should take points in the
unreduced space to represent instantaneous states and curves in this space to represent en-
tire four-dimensional histories. By passing to a quotient of this space, we are classifying
sets of points as equivalent and so representatively speaking we are classifying groups of
instantaneous states as equivalent. To be consistent with both the representative role of
the space from which it is constructed and the manner of its construction, it is difficult to
resist the conclusion that the reduced phase space should be interpreted as representing in-
stantaneous states – and therefore that our charge of dynamical triviality against reductive
temporal relationalism cannot be avoided.

In any case, as discussed at great length in §10.3, and further analysed at the start of
this section, the nature of the Hamiltonian constraint is precisely such that we should ex-
pect any procedure which treats them as typical, gauge generating constraints to lead to a
formalism without nontrivial dynamical evolution. Thus our argument towards fixing the
representational roles in the manner described is supplementary rather than fundamental
to our conclusion that dynamic trivialisation is implied by reductive temporal relational-
ism.

In this section we have argued that reductive temporal relationalism and the form of
denial of time that it implies is an at best problematic and at worst fatally flawed position.
Evidence has been provided that it leads to an interpretation of the formalism of canonical
general relativity that is not adequate as a representative framework for describing the
world since it admits only static universes. The crucial question is now which aspects of
the interpretation are responsible for driving us into such a conceptual cul-de-sac? Was it
the temporal relationalism or the reductionism that was the cause of the problem? In the
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next section, we will investigate a different conception of temporal relationalism, in part
with the object of settling this matter.



Chapter 12

Denial II: Machian temporal relationalism

12.1 Machian dynamics and the Hamiltonian constraints

A second and quite different perspective on time within general relativity is enabled by the
Machian temporal relationalism of Barbour (1995, 1994, 2009). The principal element of
this form of relationalism with regard to time is not an objection to temporal points form-
ing part of our basic ontology, nor even the assertion of a Leibnizian equivalence principle
such that any universes related by temporal symmetries must be judged to constitute the
same possibility – although consistency with these other relationalist dictates is implicit.
Rather for Barbour the fundamental edict of temporal relationalism is that time should be
‘an abstraction, at which we arrive by means of the changes of things; made because we
are not restricted to any one definite measure, all being interconnected’ (Mach (1960)).
This Machian viewpoint on time can be seen as an imperative to try to construct (or at
least restructure) our theories in such a way that time does not appear within the basic
structure of the theory but is a well defined notion at a derived or emergent concept level.
Thus, as well as a position as to what time is not, the Machian variant of relationalism is
a position as to what time is. Particularly, important to both Barbour’s interpretation of
Mach (which he shares with Mittelstaedt (1976)) and his own philosophy, is that the re-
lational definition of time is a holistic and democratic one based upon contributions from
all the motions within the universe. We will take this to mean that a theory or interpreta-
tion of a theory that is temporally relational in a Machian sense should provide us with a
distinct definition of time for any dynamical history of the universe.

Although it clearly starts from a different perspective, there is a degree of coherence
between this form of temporal relationalism and that predicated upon the denial of tem-
poral points discussed above. There is no room within the ontology of a Machian theory
for any basic temporal structure since this structure must itself be abstracted out of the

129
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ontology and not form part of it. Furthermore, it also seems safe to presume that the
democratic nature of the process by which time is abstracted will be such that universes
related by temporal symmetries must bear the same emergent notion of temporality. We
can therefore expect that even at the level of an abstracted concept of time a Leibnizian
equivalence principle should be satisfied.

So much for what it means to be a Machian temporal relationalist in principle. In
practice, we have already seen that a formal basis sufficient to establish such a position
can easily be achieved within non-relativistic mechanics by switching to the formalism
of Jacobi as formulated in §6.2. Again, restating the key ideas for the convenience of the
reader. The Jacobi Hamiltonian takes the form

HJ =
∑
i

pi.q
′
i − LJ = NJhJ (12.1)

where we define the Jacobi Hamiltonian constraint as

hJ =
1

2

∑
i

pi.pi + V − E = 0 (12.2)

and the lapse is an arbitrary function of of the time label τ . The form of these equations
is very suggestive of the canonical formulation of general relativity introduced above. We
have a Hamiltonian constraint that is connected with arbitrariness in temporal labelling,
and a Hamiltonian that is made up only of a constraint and an arbitrary multiplier. What
is particularly important for our purposes is how we should interpret the action of the
Jacobi Hamiltonian constraint upon phase space. Explicitly we have that (provided the
constraint is satisfied)

NJ{qi, hJ} =
δqi
δτ

(12.3)

which indicates that for any specification of the Jacobi lapse the Jacobi Hamiltonian will
effect an infinitesimal phase space transformation from the canonical variables charac-
terising a given instant in time to those describing a second instant that is dynamically
subsequent.

This is in close analogy to the dynamical role of the Hamiltonian constraints of canon-
ical general relativity. However, as in the relativistic case, this Poisson bracket also en-
codes a symmetry generating role in that, strictly speaking, the transformation that hJ
generates is unphysical because of the dependence on the arbitrary parameterisation en-
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coded in the lapse. Thus again we have evolution enacted by a constraint and thus our
dynamics and our temporal symmetry are entangled. In the case of Jacobi’s principle,
there is a straightforward methodology for disentangling them in the context of Machian
temporal relationalism. As mentioned above, as well as the preclusion of external tempo-
ral parameters within our mechanical theory, the Machian temporal relationalist position
involves a positive idea of time as an equitable measure that can be abstracted from dy-
namics. Jacobi’s principle admits exactly this notion of temporality because we may
naturally specify an emergent temporal increment:

Nδτ =

√
T

(E − V )
dτ =

√
δqi.δqi

2(E − V )
(12.4)

In Lagrangian terms this notion of ephemeris time is introduced by choosing τ such that
T = E−V . This then leads to the emergent temporal increment δτ and allows us to iden-
tify the Hamiltonian lapse with

√
T

(E−V )
.56 The ephemeris time is such that it uniquely

and monotonically parameterises dynamical histories. It is holistic and democratic in ex-
actly the sense that Barbour desires because it involves all the dynamical variables of a
given system – crucially it is a measure of duration that ‘emerges from the dynamics’ and
‘does not pre-exist in the kinematics’ (Barbour (1994, p.2856)).

We can take the Hamiltonian formulation of Jacobi’s principle as a model for the
Hamiltonian formulation of any Machian temporally relational theory. In particular, it
suggests a set of four criteria for the formal structure of such a theory: 1) the param-
eterisation of phase space curves is arbitrary; 2) the canonical variables do not contain
external time variables or their momenta; 3) there is a Hamiltonian constraint that has a
dynamical phase space action when combined with an arbitrary multiplier; 4) there ex-
ists a methodology for constructing an emergent temporal increment that parameterises
dynamical histories in an equitable and unique manner. If 1-4 are satisfied, then it seems
reasonable to accept that the theory admits an interpretation consistent with Machian tem-
poral relationalism. As discussed above, such an interpretation has two key features: i)
the absence of time in the basic ontological structure and ii) our ability to abstract an equi-
table measure of duration from the change (or relative change) of the objects that are part
of the ontology. Specifically, it seems reasonable to assume that 1-2 lead to i) since they
ensure that sequences of points within the phase space can be understood as representing

56Thanks to Julian Barbour for clarifying this point to me
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the fundamental ontology without reference to time. We then have that 3-4 lead to ii)
since, as illustrated by the case of Jacobi’s principle, they give us the machinery to asso-
ciate with pairs of points in the phase space (elements of the ontology) the appropriate
temporal increment. The utility of our criteria (which are of a heuristic rather than logical
character) is illustrated by their preclusion of a Machian temporal relationalist interpre-
tation of parameterised particle mechanics (there 2 does not hold) and admission of such
an interpretation for Barbour–Betotti theory (Barbour and Bertotti (1982)) (where 1-4 all
hold).

Given these criteria, we can now address the task of evaluating the interpretation of
canonical general relativity in terms of Machian temporal relationalism (MTR).57 Consid-
ering the action (10.3) leads us to conclude that the first and second conditions are satisfied
and therefore to expect that aspect i) of MTR holds in canonical general relativity.

To an extent, we also have that the third condition holds because the Hamiltonian is of
course a constraint and in one context its role is (when combined with the lapse) to gen-
erate a transition between dynamically related three geometries. However, as has been
asserted throughout our discussion it is essential to remember that that Hamiltonian con-
straints of canonical gravity have a dual nature with two distinct, context-dependent roles.
In the context of a hypersurface embedded within a solution, the role of the Hamiltonian
constraints is not of the dynamical type found in Jacobi’s theory. Rather, they generate
infinitesimal symmetry transformations that form part of the hypersurface deformation
group which manifests the fundamental symmetry of the theory. Still, this does not nec-
essarily break the analogy between the relativistic and non-relativistic Hamiltonian con-
straints since in Jacobi’s principle too the Hamiltonian constraint is also connected with
unphysical temporal relabellings. However, the fact that the temporal relabellings associ-
ated with the infinite set of Hamiltonian constraints of canonical relativity are local and
those associated with the single Hamiltonian constraint of Jacobi’s principle are global
is of crucial importance. Ultimately, the disanalogy that this subtle yet significant differ-
ence implies creates an acute problem for an interpretation of canonical general relativity
in Machian temporally relational terms.

The fourth criterion that we introduced for the formal structure of MTR Hamiltonian
57It must be noted here that much of Barbour’s work on the Machian temporal structure of general relativ-

ity focuses on general relativity formulated in Lagrangian terms. Our focus on the canonical formalism will
not obscure the essential aspects since they are inherent within the dynamical structure of general relativity
and therefore beyond the Lagrangian/Hamiltonian distinction. See Pooley (2001) and Butterfield (2002) for
detailed philosophical analysis using, for the most part, Barbour’s version of the Lagrangian formalism.
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theory was that we are able to construct an emergent temporal increment that parame-
terises dynamical histories in an equitable and unique manner. Given this together with
the third criterion, it seems reasonable to presume that we can interpret the phase space
of our theory to represent a Machian ontology in the sense of being amenable to the con-
dition ii) above. More explicitly: if our theory is such that two distinct points in phase
space that are dynamically related can be connected by the application of the Hamiltonian
constraints times suitable multipliers and, furthermore, the difference between them is pa-
rameterised uniquely by an emergent time parameter, then we may interpret each point in
the phase space as representing the state of the objects in the world and the change be-
tween these two distinct ontological states as encoding uniquely a measure of duration in
terms of ontological change. In the case of canonical Jacobi’s principle, we were able to
satisfy this criterion through the employment of ephemeris time, and it is therefore natural
to look to construct a similar emergent temporal increment to enable a Machian reading
of canonical general relativity.

As has already been mentioned, the crucial difference between the two theories is that
the single, global Hamiltonian constraint of Jacobi’s principle becomes an infinite set of
local Hamiltonian constraints in general relativity. Thus, rather than looking for a single
global ephemeris time it is natural to look for many local ephemeris times. A point in the
phase space of canonical general relativity corresponds to canonical data on a spacelike
hypersurface σ. The locality of the ephemeris times is necessitated by the fact that we
need one such time for every x ∈ σ. The lapse is of course itself a local function (the
dependence on x is suppressed in the notation above). Thus, by looking for formulation of
the theory with a lapse such that, in analogy with (12.4), it defines the desired emergent
temporal increment when multiplied by an infinitesimal change in the time parameter
we can define our local ephemeris times. If we denote the lapse of such a formulation
Nemph(x), then the local ephemeris can be written simply as Nemph(x)δt, where t is of
course now playing the part of the arbitrary time parameter.

The crucial problem is then finding a formulation of the theory containing a local
ephemeris with the desired properties. In particular, as well as being insensitive to rescal-
ings of the time parameter, we need our local ephemeris time to be such that it will repli-
cate time as measured by local clocks and thus be consistent with proper time. Further-
more, it is also fundamental to the notion of Machian temporality that any given local
ephemeris time be an equitable measure of duration, and therefore that it takes account of
the contribution of all the other degrees of freedom – even those that are separated from
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the spatial point at which it is defined.

Interestingly, according to Barbour (2000) the ‘deep structure’ of general relativity
already contains exactly the type of local ephemeris time that we are looking for.58 Start-
ing with the BSW (Baierlein et al. (1962)) reformulation of covariant general relativity
one can derive Barbour et al. (2002, pp.10-12) an expression for the lapse that, within a
Lagrangian picture, takes the form NBSW =

√
T/4R where T is a ‘kinetic energy’ term

Barbour et al. (2002, (4.2)). If the time label t within T is chosen such that NBSW = 1

then t will correspond to proper time. Furthermore, for arbitrary time label NBSW (x)δt

will always be equal to the local proper time. Just as in the case of Jacobi’s theory we
can translate this Lagrangian emergent time framework into the a Hamiltonian analogue.
ThereNBSW (x)δt gives us an emergent notion of duration that is equal to the local proper
time calculated along the direction perpendicular to Λt and is non-locally dependent upon
the entire three-metric and its canonical momentum. Thus, local ephemeris time is a
consistent notion within canonical general relativity (given the BSW formulation).

Furthermore, after the introduction of local ephemeris time we are able to classify
pairs of points within dynamically successive (infinitesimally close) three-geometries as
carrying a trans-temporal notion of identity. Such points are said to be equilocal, and the
ephemeris time marks them out in terms of the unique temporal metric it provides. For
our purposes, the crucial point is that the temporal metric that ephemeris time gives us
is defined to be independent of arbitrary reparameterisations of the temporal parameter (t
in the case of canonical general relativity) and thus allows us to parameterise dynamical
trajectories in phase space in exactly the manner required for criterion 4.

We thus have that 1-4 hold and would then expect canonical general relativity to admit
a consistent interpretation in terms of Machian temporal relationalism. However, there
is an acute problem with the Machian interpretation resulting, as foreshadowed above,
from the locality of the Hamiltonian constraints. The necessary arbitrariness within the
definition of NBSW (x) entails that given initial canonical data on a three geometry the
dynamical evolution generated by H(NBSW ) does not provide us with a unique contin-
uation. This is the result of the Hamiltonian’s second role of generating infinitesimal
diffeomorphisms when considered in the context of hypersurfaces embedded in dynam-
ical spacetimes. Two potential spacetime models are of course represented by a pair of
curves within the constraint surface in phase space. Let us assume that these curves are

58Note: he does not use the phrase ‘deep structure’ in this quite this context!
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identical up to a given phase space point corresponding to canonical data on σ0 and there-
after differ only in virtue of a different choice of the lapse – i.e., evolution generated by
H(N ′BSW ) rather than H(N ′′BSW ). We should then consider them as only differing by a
local temporal re-labelling, which (in spacetime terms) can be interpreted as an infinites-
imal diffeomorphism of an embedded hypersurface. Given any point x ∈ σ0, there will
be an equilocal point within the subsequent three-geometries, σ′ and σ′′, associated with
each of the distinct phase space curves. Thus, we run into exactly the problematic indeter-
minism discussed in §11.2. This problem does not occur in Jacobi’s principle because the
arbitrariness that remains within the lapse in that case only gains effect through a single
global Hamiltonian constraint and thus cannot lead to distinct phase space curves. Thus,
it seems that although an interpretation of canonical general relativity in terms of Machian
temporal relationalism can be consistently achieved, this can be done only at the price of
admitting ontological indeterminism into a theory that is manifestly deterministic in an
empirical and, so far as the conventional interpretation of the covariant formulation goes,
formal sense.59

12.2 Sophisticated temporal relationalism and indeterminism

Our discussion of §11.1 highlighted the concern that by treating points in the phase space
of a gauge theory as representative of individual states we leave ourselves susceptible to
a pernicious form of formal indeterminism within a physically deterministic theory. It
should be no surprise therefore that, as we have defined it by the criteria 1-4, the Machian
temporal relationalist approach to towards the Hamiltonian constraints and phase space of
canonical general relativity leads to a specific case of exactly this kind of problem. In our
earlier discussion we focused upon symplectic reduction as the supposed remedy for this
indeterminism but found that in the case of canonical general relativity such a procedure
has a trivialising effect. We are thus in need of an alternative, non-reductive methodology
for dealing with indeterminism.

In Chapter 2 we discussed a closely analogous indeterminism issue in the context of
phase space. There we considered a strategy for avoiding indeterminism within phase
space by identifying gauge related paths as providing representations of the same funda-
mental history. This identification is made on the basis that the difference between the

59In this respect at least our analysis of the Machian viewpoint precisely mirrors that made by Pooley
(2001) in the context of the Lagrangian formalism.
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histories – when seen as a sequence of ‘objects’ (i.e., instantaneous states) – is merely as
to which objects play which roles. If the inflation of possibilities entailed by such haec-
ceitistic differences between distinct histories are discounted – and we therefore adopt a
position of histories anti-Haecceitism – then any two histories which are gauge related in
phase space can be seen as corresponding to a single underlying ontology, and the spectre
of pernicious ontological indeterminism vanishes.

An immediate question is then whether adoption of some version of histories anti-
Haecceitism can be applied within the context of canonical general relativity, with the
object of reliving temporal relationalism of indeterminism. Let us label the combination
of histories anti-Haecceitism with relationalism about time as sophisticated temporal re-
lationalism (STR). Essentially, a sophisticated temporal relationalist is going to deny the
reality of local temporal labellings and endorse the notion that spacetimes related by local
relabellings (i.e., re-foliations) are multiply realised in terms of sequences of objects (in-
stantaneous states) that differ merely as to which roles are being played by which objects.
In the canonical context, this equates to treating phase space curves that are equivalent
to re-foliations of the same spacetime as representing the same fundamental ontology.
This is not equivalent to treating the phase space action of the Hamiltonian constraints
as generating gauge equivalence classes – such a position is, as we have seen, prob-
lematic and manifestly distinct from both the relationalist/substantivalist and (histroies)
haecceitist/anti-haeccestist disjuncts. Rather our sophisticated temporal relationalist, un-
like the reductive temporal relationalist, can account for the dual role of the Hamiltonian
constraints by, on the one hand, treating the curves it generates in phase space as dynamics
and, on the other, by classifying the two such curves that are related purely by the defor-
mation of a constituent three-geometry as representing the same basic history realised in
terms of two structures that differ merely haecceitistically.

It is very important to note that the identification between the same objects ‘playing
different roles’ that grounds the claim that the relevant structures differ ‘merely haeccei-
tistically’ – relies on our ability to consider a pair of three-geometries within space-times
related by a re-foliation as being the same object. We thus require a formalism which pro-
vides a ‘point-by-point’ identification between each of the constituent ‘objects’ for STR
to be a viable position. As was made clear by the analysis of §10.2-3, such an under-
standing of re-foliation symmetry cannot be provided at the level of phase space. Rather,
it is only at the level of hyper-surfaces embedded within a spacetime that we can be the
necessary identifications – specifically in terms of the action of an element of the hyper-
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surface deformation group (Teitelboim (1973); Hojman et al. (1976)). In that context (or
alternatively by using the closely related formalism of Isham and Kuchař (1985b)), we
can construct a well defined notion of histories anti-Haecceitism since we can properly
define the haecceitistic differences which we which to deny. Thus, our ability to avoid on-
tological indeterminism within phase space is built upon our ability to define the relevant
temporal relationalist ontology within an enlarged space including embedding variables
and therefore inevitably some notion of spacetime .

This last and crucial point makes it clear that the kind of sophisticated temporal rela-
tionalist position which we have outlined is going to make an uncomfortable bedfellow
for the Machian notion of relationalism. STR as we have defined it essentially makes use
of an ontology predicated upon four-dimensional spacetimes and not merely sequences
of three-geometries. The relevant inter-structure identification between objects can only
be properly defined in the spacetime context. Thus, we violate the key MTR notion that
time (or spacetime) should not form part of the basic ontological structure. STR does
allow for a viable notion of relationalism (to the extent of allowing us to exclude temporal
points) and would seem to be compatible with the emergent notion of time that forms the
other key aspect of the Machian position. However, it is essentially a spacetime theory of
temporal relationalism and thus cannot be construed as Machian in the most fundamental
sense.60

12.3 Scale invariance and Machian temporal relationalism

We thus return to the dilemma of extricating the Machian temporal relationalist philoso-
phy from the ontological indeterminism issue. As was mentioned above, the root of the
problem lies within the local nature of ephemeris time and this in turn is due to foliation
invariance. It is therefore fairly obvious that a solution could lie within the fixing of a fo-
liation and with, therefore, a Machian temporally relationalist interpretation of canonical
general relativity in a preferred foliation. Three issues with such a strategy are immedi-
ately apparent. First, there must be a basis for this preferred foliation that is, at the very
least non-ad hoc, and preferably driven by Machian underpinnings. Second, if we are

60Here again, we should note a connection between our conclusions, made in a canonical context, and
those of Pooley (2001). Although the characterisation given here is different in some notable respects,
our STR position is clearly closely related to the ‘rather subtle and nebulous form of Machianism’ that he
defines in terms of a position where one ‘regard[s] a spacetime as genuinely constructed from all possible
compatible sequences of 3-geometries’ (p.17).
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to exclude large sectors of the traditional (canonical) solution space by fixing a foliation,
then those solutions excluded must be at the very least not empirically grounded, and
preferably not empirically viable. Third, the foliation-fixed version of canonical GR must
still be consistent with the Machian criteria 1-4 introduced above. Recent years have in
fact seen dramatic improvements for the provision of good answers to all three of these
points through the development of a scale invariant approach to Machian general relativ-
ity know as shape dynamics. We do not have space here to give a detailed introduction to
or description of this programme and its recent developments. We can at least, however,
give a basic outline of its key elements such that we can consider shape dynamics in the
context of the three points regarding foliation fixed canonical GR and MTR just raised.

As a philosophical and methodological attitude taken towards physical theory, the
Machian approach is one that in general advocates the elimination of absolute or back-
ground structure. Modern Machians, Julian Barbour of course being most notable amongst
them, argue that whether in Newtonian mechanics or general relativity such structure
should be cleaved from our representation of the world via the adoption of alternative,
appropriately minimal, theories of mechanics. In this sense, Machianism can be seen as a
general scheme for eliminating absolute structure, minimising initial data, and a descrip-
tion of the world based in some sense on relations. This general programme should not be
conflated with the specific projects of Machian temporal and spatial relationalism. One
would hope, however, that the two cohere – and with regard to absolute structure relating
to scale and time so it appears to be the case.

There is within all the major theories of mechanics, including general relativity, an
absolute notion of scale – conformal transformations (i.e., those which preserve angles
but not lengths) are not symmetries at either the local or global level. Within covariant
general relativity, this means that solutions of the theory are not invariant under confor-
mal transformations of spacetime. Attempts to construct a gravitational theory that is 4D
conformally invariant have a long history stretching back to Weyl (1918, 1922). More
pertinent to our project is the programme of constructing a 3D scale invariant theory –
i.e., one that is invariant under conformal transformations of space. The investigation of
implementing such a symmetry within general relativity in fact parallels the development
of the canonical approach in that it can also be traced back to the late fifties and Dirac
(1959). In both this work and its extension by York (1973), we already have 3D conformal
invariance explicitly connected to a gauge-fixed formulation of general relativity with a
preferred foliation. More, recently Gomes et al. (2011) have build on the work of Bar-
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bour and Ó’Murchadha (2010) and Anderson et al. (2005) to propose the existence of a
intrinsic duality between a theory invariant under volume preserving local 3D conformal
transformations and general relativity. Specifically, the particular gauge fixing of general
relativity that corresponds to the foliation of spatially compact spacetimes into space-
like hypersurfaces of constant mean curvature (the CMC gauge) is taken to be equivalent
to a particular gauge fixing of a ‘dual theory’ that describes sequences of spatial three
manifolds invariant under both three-dimensional diffeomorphisms and 3D (volume pre-
serving) conformal transformations. Crudely and yet fairly accurately put, the essence
of this shape dynamics programme is then to exchange the foliation symmetry which is
present in GR for the local conformal symmetry which is absent. Thus, we can provide a
reasoned and, what is more, Machian basis for fixing a foliation.

Our second concern above was that since fixing a foliation amounts to a restriction
to a particular sector of the solution space of general relativity there is a danger that it
might have undesirable consequences with regard to the empirical adequacy and/or pre-
dictive power of the theory. This concern is directly analogous to that discussed in §10.2
regarding the restriction to globally hyperbolic solutions that is entailed by moving to the
canonical formalism. In essence, so far as it relates to canonical general relativity, the
shape dynamics approach amounts to the introduction of the restriction that as well as
being globally hyperbolic solutions must be CMC foliable. According to Gomes et al.
(2011) this is a weak restriction since it ‘includes the vast majority of physically inter-
esting solutions to Einstein’s equations while excluding many physically uninteresting
solutions’. Thus, one may be able to argue that empirically nothing has been lost – cer-
tainly we are able to retain the solutions most relevant to currently observed empirical
phenomena since the Schwarzschild, FRW, Reissner–Nordström and Kerr–Newman so-
lutions are all CMC foliable (at least so long as we exclude the areas within the event
horizon of black hole solutions). Furthermore, as was argued above for the canonical
general relativity and the hyperbolic solution case, we are not invoking an ad-hoc philo-
sophical principle in order to exclude these solutions but rather a theory derived from
definite physical principles (in this case 3D scale invariance). A more forceful response
to this worry is to convert this supposed empirical deficiency into a prediction. Since the
restriction to CMC foliable spacetimes can be seen as a consequence of shape dynamics,
we may argue that it is providing us with a falsifiable statement about the world that goes
beyond those provided by conventional general relativity. Additionally, it also in a sense
offers us an explanation why our universe does not manifest phenomena relevant to non-
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CMC foliable solutions – if they are nomologically possible, why do we not find them
or approximations to them in nature? Admittedly, as independent arguments for prefer-
ring shape dynamics over traditional general relativity these are not altogether convincing
lines of reasoning, but their adoption certainly seems enough to blunt any criticism of the
approach along the same lines.

Our third, and most important, worry concerning foliation fixing and MTR is whether
general relativity, so formulated, still has the necessary characteristics 1-4 that were
deemed necessary for a theory to be susceptible to the relevant Machian relational in-
terpretation of temporality. To investigate this point in the context of shape dynamics, we
must consider the latter in a little more technical detail. The methodology for construct-
ing the scale invariant ‘dual theory’ that Gomes et al. (2011) employ can be broken down
into five distinct stages. We will briefly outline these in order to argue that the resulting
theory can be understood in terms of the notion of Machian temporal relationalism that
we have introduced. The first step is to explicitly identify the requisite symmetry that will
be exchanged for foliation invariance. This is the quotient group denoted by C/V . Here
C is the (Abelian) group of conformal transformations on the (assumed to be compact)
spatial three manifold, which in our notation is σ. The elements of this group are scalars
φ : σ → R which are such that:

qab(x)→ e4φxqab(x) (12.5)

Pab(x)→ e−4φxPab(x) (12.6)

V is then a one parameter sub-group representing homogenous conformal transforma-
tions. The explicit construction of C/V in terms of equivalence classes of conformal
transformations [φ] then enforces that there exists a unique representative which leaves
the three volume Vq =

∫
σ
d3x
√
|q|(x) invariant (see Eq. 61 and the surrounding discus-

sion of Gomes et al. (2011) for details). This then allows us to parameterise the group
C/V by scalars associated with volume preserving conformal transformations and thus
indicates that we have identified the appropriate symmetry group. The next step is to
formally adjoin this symmetry to the theory. Glossing over the technicalities of exactly
how this is done (see Gomes et al. (2011, §4.1.2)), we can understand this stage in terms
of an extension of the phase space of canonical general relativity through the introduc-
tion of additional canonical variables (the Stückelberg field and its conjugate momenta),
which in turn, due to dynamical consistency requirements, results in the presence of an
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additional set of first class constraints C(x) = 0. Like the Hamiltonian constraints, there
is one of these constraints per spatial point. However, unlike the Hamiltonian constraints
theC(x) can be straightforwardly understood as generating unphysical gauge transforma-
tions (akin to the transformations generated by the momentum constraints) – these are the
volume preserving conformal transformations. Importantly, because of the fact that they
are volume preserving one of the new constraints reduces to an identity, so in fact there is
one conformal constraint less then there are Hamiltonian constraints. The third step is to
impose a gauge fixing via a best matching procedure (see Gomes et al. (2011, §4.1.3) and
references therein) such that all but one of the original Hamiltonian constraints becomes
second class (in the sense of the standard Dirac (1964) terminology). The usual dynamical
consistency conditions of the Dirac prescription for dealing with second class constraints
leads to a particular fixing of the lapse up to a one parameter freedom. This lapse fix-
ing is precisely that which gives the equivalence class of CMC foliations. Still following
the Dirac procedure, it is possible to eliminate the second class constraints (Gomes et al.
(2011, §4.1.4)) and arrive at a theory with a Hamiltonian that is constituted by the sum
of three distinct types of first class constraint combined with the appropriate multipliers.
This new theory is shape dynamics, and its relationship with canonical general relativ-
ity is such that for a specific gauge fixing it is equivalent to canonical general relativity
in the CMC gauge. Like canonical general relativity, both the symmetry and dynamical
properties of the theory are encoded within the structure of the different types of con-
straints. The first of these constraints are the conformal constraints, which are responsible
for the theory’s invariance under volume preserving conformal transformations. Next are
momentum constraints, which although they have been transformed in the passage to the
new phase space can still be understood as implementing three-dimensional diffeomor-
phism invariance as in the original theory. Finally, and most important for our purposes,
there is a single Hamiltonian constraint. This constraint is exactly analogous to the single
Hamiltonian constraint of Jacobi’s principle: it generates dynamics when considered as
acting on phase space and global reparameterisations when considered as acting on an
entire solution.

Let us now consider our four criteria for a theory to be susceptible to an interpretation
in terms of Machian temporal relationalism. Within the dual theory, the parameterisation
of phase space curves is arbitrary (i.e., 1), and furthermore the canonical variables do not
contain external time variables or their momenta (i.e., 2). We can also now see that, since
there is a Hamiltonian constraint that has a dynamical phase space action when combined
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with an arbitrary multiplier, we also have 3. Thus the condition for an interpretation in
terms of MTR is that there exists a methodology for constructing an emergent temporal
increment that parameterises dynamical histories in a equitable and unique manner (i.e.,
4). Since we have a single Hamiltonian constraint which is combined with a special lapse
with a one parameter freedom, intuitively it seems that the construction of the requisite
notion of global ephemeris time should be possible within the dual theory itself. Here
we will postponing to a future, more detailed, analysis the interesting technical challenge
of explicitly constructing such an object (and considering its operational status). Rather,
because of the duality between the theories, we can instead simply consider the parallel
issue within CMC foliated canonical general relativity. Here it transpires our problem is in
fact effectively already solved since it has long been know that all spacetimes admitting
a CMC foliation can be parameterised by a unique geometric time (See Belot (2007,
§7.3) for discussion of the details). Since it is determined by the difference in intrinsic
curvature between slices in a dynamical solution this geometric time is both unique and
suitably equitable. Thus, almost by definition, canonical general relativity in the CMC
gauge satisfies our condition 4. We can therefore assert that both this form of general
relativity and the dual theory are amenable to an interpretation in terms of MTR.61

61Once more there is a close connection between our conclusions and those of Pooley (2001). In essence,
his conclusion that the then embryonic 3D conformal theory of Barbour and O’Murchadha (1999) should
lead to a solution of Machian indeterminism problem is entirely endorsed by the understanding of shape
dynamics which we have presented.



Chapter 13

Denial III: complete observables and the Parmenidean
state

We now turn to our third denial of time, which is based on Rovelli’s complete and partial
observable scheme (Rovelli (1990, 1991, 2002b, 2004)) as applied to canonical general
relativity within the work of Dittrich (2006, 2007) and Thiemann (2007). The notion of
temporality that is implied by this scheme could be conflated with our first denial in terms
of reductive temporal relationalism. However, as we shall see, despite some superficial
similarity with regard to how the Hamiltonian constraints are treated there are in fact deep
conceptual differences. In particular, whereas reductive relationalism is predicated on the
reduced phase space, the Rovelli-Dittrich-Thiemann (RDT) approach is unequivocally
non-reductive. Furthermore, whereas reductive temporal relationalism, and for that matter
relationalism in general, is fundamentally a thesis with regard to the priority of relational
over purely temporal structure, the RDT approach can only be interpreted naturally in
terms of a philosophical framework that precludes temporal structure altogether. We will
begin our discussion of this third denial by first recalling our earlier treatment (§6.2) of
the RDT scheme in the context of the simple nonrelativistic case of Jacobi’s principle.

13.1 The complete and partial observables Ansatz

Consider the physical phase space of Jacob’s principle, ΓJ = {(p, q) ∈ ΠJ |H(p, q)J =

0}, which is the sub-manifold defined by the satisfaction of the constraint within the
full phase space. According to the standard Dirac-Bergmann machinery for dealing with
constrained Hamiltonian theories, we define as the observables the class of functions on
this physical phase space that have vanishing Poisson bracket with the constraints. With
the weak inequality implying restriction to the constraint surface, we can write this as

143
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a condition on a general phase space function f : ΓJ → R as {f,HJ} ≈ 0. As with
reduction with respect to Hamiltonian constraints in general relativity, the application of
this standard definition has immediate, and problematic, consequences for our descrip-
tion of change. If the observable functions must commute with the Hamiltonian, then
they must also be non-changing along dynamical trajectories. It seems that either: i) this
definition of observable or ii) our expectations for the notion of change that our theory
provides, must be adapted to deal with theories in which the Hamiltonian is a constraint.
The essence of the RDT approach, both as it applies to Jacobi’s principle and general rel-
ativity, is to assert that the problem lies within i). With some ingenuity, we can construct
observable functions with non-trivial representational capacity so long as we abandon the
notion that these obervables change in any conventional sense. The proposal for con-
structing such obervables is the complete and partial obervables Ansatz discussed in §6.2
in terms of the Dittrich (2007) nonrelativistic treatment. It involves us first labelling the
configuration variables within phase space partial observables and call relations between
these variables complete observables. The latter are constituted in Jacobi’s principle by
the reparameterisation invariant specification of the value of one configuration variable
with respect to another – as correlations between partial observables. The complete ob-
servables are the families of correlation functions that individually give the value of one
of the partial observables when the other (the clock variable) is equal to some real number.

Importantly, for a given dynamical solution, the conceptual leeway to consider a fam-
ily of these complete observables rather than a single correlation is dependent on the use
of the unreduced formalism. Thus, even though we are in a sense utilising the standard
Dirac-Bergmann condition for an observable function we are not thereby committing to
the passage to the reduced phase space that is generally assumed to go along with it –
we are only being consistent with the Dirac observables scheme so far as it relates to the
unreduced phase space. This makes explicit the difference between this approach and re-
ductive relationalism and the first denial of time (Chapter 11). It also implies that, unlike
functions of the reduced phase space, complete observables have non-trivial representa-
tional capacity since within a given family of observables we may represent the physical
structure of a single dynamical universe.
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13.2 Application to general relativity

Application of the complete and partial obervables Ansatz to canonical general relativity
poses a challenge of far greater difficulty for several reasons. We of course have many
and not one constraint, and in order to be a true complete observable the object we con-
struct must therefore be constant along the flow associated with all constraints. If all
the constraints were mutually Poisson commuting and finite in number, this could be ad-
dressed by the technically difficult, but conceptually fairly straightforward, process of:
i) introducing one clock variable per constraint and ii) considering as our complete ob-
servable a product between each of the flows generated by each of the constraints when
applied to a given partial observable, as evaluated for a specific value of each of the rel-
evant flow parameters. We would then have a family of complete observables which are
closely analogous to those for Jacobi’s principle, only they are now constant along all
the various gauge orbits. However, canonical general relativity has of course an infinite
number of constraints and, what is more, these constraints do not Poisson commute. As
pointed out by Thiemann (2007), even if we restrict ourselves to the space of spatially
diffeomorphism-invariant functions (i.e., those satisfying { ~H( ~N), f} = 0) a flow that is
associated with a given Hamiltonian constraint and acts on such a function will not itself
be spatially diffeomorphism-invariant since the bracket { ~H( ~N), H(N)} = −κH(LNaN)

is not invariant. Moreover, even if we remove the momentum constraints altogether and
presume ourselves to be working in super-phase-space we still have to deal with the highly
non-trivial Poisson bracket between the Hamiltonian constraints, which features structure
functions. Thus, the application of the basic RDT scheme outlined above to canonical
general relativity poses a significant challenge.

Encouragingly, a number of proposals for meeting this challenge have been put for-
ward. One is that of Dittrich (2006, 2007), which gives an explicit demonstration of how
complete observables for general relativity may be constructed in stages by first com-
puting partially compete observables. These are complete observables with respect to a
sub-algebra of the constraints. One then uses these objects to calculate complete observ-
ables with respect to all the constraints. The partial observables in this construction are
constituted by spacetime scalars, which in turn are constructed out of canonical fields; this
process serves to reduce the number of constraints that must be dealt with. For reasons
of space, we will not here attempt an explanation of the details of the Dittrich approach
but rather turn our attention to an alternative methodology which makes us of the master
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constraint programme introduced in §3.2.2. The choice between these two approaches is
far from a trivial one and particularly with regard to quantisation it may have significant
technical implications. However, for our purposes it must be noted that in respect of the
interpretational implications with regard to time the fundamental features are common to
both methodologies, and we are choosing to focus on the second only because, given our
earlier discussion, it may be introduced more concisely.

Recall that in general the idea of the master constraint programme (Thiemann (2006,
2007)) is to re-write constraint functions, ϕj(p, q) = 0, in terms of a single equation,
which will be satisfied under the same conditions. This new single constraint is then the
master constraint M. A simple example is given by taking a positive quadratic two form
Kij and constructing the equation

M := Kijϕiϕj = 0 (13.1)

This equation is satisfied if and only if all the individual constraint functions are vanishing
and thus defines the same physical phase space Σ that we had before. A condition for ob-
servables on the extended phase space is then given by considering the class of functions
such that

{{M,O},O}|M=0 = 0 (13.2)

i.e., those functions that have a vanishing double Poisson bracket with the master con-
straint on the constraint surface. Strictly, this is a restriction that implies that the ob-
servable functions generate finite symplectomorphisms that preserve Σ, rather than the
usual Dirac-Bergmann condition that the observables are constant along the null direc-
tions generated by the individual constraints. However, it can be demonstrated that the
two conditions are equivalent (Thiemann (2006)). For canonical general relativity, the
explicit form of the master constraint is

M =
1

2

∫
σ

d3x
H(x)2√
det(q)(x)

(13.3)

This constraint has a number of formal virtues, in particular it is such that its satisfaction
implies H(N) = 0 for all N , which means that it encodes the same constraint surface as
the Hamiltonian constraints. Furthermore, it is also such that { ~H( ~N),M} = 0, meaning
that it is invariant under spatial diffeomorphisms and will lead us to a constraint algebra
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with a much simpler form: the master constraint algebra, M:

{Ha(Na), Ha(N
′
a)} = −κHa(LNaN

′
a) (13.4)

{Ha(Na),M} = 0 (13.5)

{M,M} = 0 (13.6)

We no longer have to deal with the presence of structure functions in our constraint algebra
since the highly complex expression (10.10) in the Dirac algebra is replaced by the trivial
self-commutation expression (13.6) above. In substituting a single master constraint for
the infinite set of Hamiltonian constraints we avoid having to explicitly confront the diffi-
culties of the Poisson bracket algebra with which the latter are associated. Assuming the
momentum constraints have been dealt with, either through reduction or via the Dittrich
methodology mentioned above, we could now proceed to construct complete observables
with respect to single master constraint by considering the flow ατM. A family of complete
observables is then constituted by the one parameter set of functions defined by the value
of one partial observable when the other takes the value s. Assuming these functions
are continuous, a given complete observable can then be taken to be invariant under the
simultaneous phase space transformations generated by all the Hamiltonian constraints
taken together. Thus, as in the case of Jacobi’s principle, we arrive at an object which is
defined such that it is constant along the dynamical trajectory associated with the relevant
‘gauge orbit’ – but which has non-trivial representational capacity because it is part of a
family of such functions defined within the unreduced formalism. This strange temporal
structure is the hallmark of compete observables when applied to the case of Hamiltonian
constraints. We now turn to the consideration of the associated interpretational implica-
tions for the nature of time.

In our discussion of the Hamiltonian constraints of canonical gravity in §10.3 we em-
phasised the necessity of treating the constraints such that both the fundamental symmetry
of the theory and dynamics are respected. The problem of triviality that beset the reduc-
tive temporal relational stance can be understood as a failure on the second count and the
problem of indeterminism that troubled the Machian temporal relationalist stance (sans
a fixed foliation) can be understood as a failure on the first. The kernel of brilliance that
allows the RDT scheme to avoid both of these problems is to construct the families of
complete observables such that the specification of each family member is determinis-
tic, since they are individually constant along the orbit associated with the Hamiltonian
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constraints, and yet collectively they are still adequate to represent dynamical universes
because of the use of the unreduced phase space. Thus, by endorsing the complete ob-
servables as our fundamental object we are provided with an ontology which solves at
least one aspect of the problem of time in canonical gravity. However, unlike in a shape
dynamics implementation of Machian temporal relationalism, we are not provided with
a notion of how to represent change. In the case of our second denial, although time is
absent in the sense that it’s metrical structure has been relegated to an emergent level, it
is certainly still a substantive concept since we have temporal ordering of spatial states
without our basic ontological structure. Moreover, change is still a well defined notion, as
we are free to specify the evolution of observable quantities between hypersurfaces with
respect to an ephemeris time. What notion of change can we attach to the RDT scheme?

In order to answer this question it is instructive to consider certain key remarks of the
three physicists themselves. In discussion of the nonrelativistic application of the com-
plete and partial observables scheme Rovelli (2002b) distinguishes the ‘physical phase
space’ as the ‘space of orbits generated by the constraints on the constraint surface’ (p.3).
In a similar vain Dittrich (2007) defines the physical state as an ‘equivalence class of phase
space points’ which ‘can be identified with an n-dimensional gauge orbit’ (p1894). So
far as they apply to the Hamiltonian constraints as considered acting on the phase space
of canonical general relativity such a notion of ‘physical space space’ and ‘physical state’
imply an equation between the concept of a history and the concept of a physical state
which is radically discontinuous with conventional mechanical theory. Typically states
are taken to be instantaneous configurations and histories sequences of such states. In
standard gauge theories, where the constraints can be understood unproblematically as
generating unphysical transformations, phase space points connected by a gauge orbit are
classified as the same state because the difference between them is taken to be unphysi-
cal. Dynamical histories are then constituted by either curves within the unreduced phase
space which are no-where parallel to these orbits or, more simply by curves, within the
reduced phase space. Following the remarks of Rovelli and Dittrich above, the interpreta-
tion of change within the complete observables scheme still leads us to classify two points
on a ‘gauge orbit’ as the same state; however this is because the word ‘state’ is redefined
such that in includes all points on the orbit. For the case of the Hamiltonian constraints of
general relativity this is simply to adopt a notion of state that involves no temporal speci-
fication at all, but rather implies that the observables of a theory are smeared everywhere
along entire histories. Put more precisely, the complete observables can be understood as
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‘completely non-local in the unphysical time’ (Thiemann (2007, p.81)).

The only viable interpretation of the RDT scheme as applied to general relativity is
then one in which time and change have no part – not even at an emergent level. This
is to adopt a starkly Parmenidean view – time is purely an illusion – and thus consti-
tutes a denial of time in a much stronger sense than that involved in Machian temporal
relationalism. It is, however, unlike that involved in reductive temporal relationalism,
a denial coherent with the solutions and symmetries fundamental to canonical general
relativity. We may still describe dynamically nontrivial universes within the complete
observables formalism but almost paradoxically we are able to do this whilst disavowing
change. The key to untying this seemingly paradoxical conceptual knot is that, although
individual complete observables are eternally frozen, within the families of such observ-
ables – which, for a given solution, can only exist because we have avoided reduction –
we have access to additional conceptual equipment which allows for the representation
of universes corresponding to dynamical spacetimes. Fundamentally, when considered
together a family of doubly complete observables – constructed by ‘smearing out’ over
the null directions of both the Hamiltonian constraints (or Master constraint) and momen-
tum constraints – constitutes a set of spacetime correlations in many way analogous to the
‘point coincidences’ that have variously been proposed to constitute the basic ontology
of the covariant formalism.62 Thus, one must expect that a family of complete observ-
ables constructed under the RDT methodology will give us precisely the amount of data
needed to reconstruct the 4-D metric tensor for any given (globally hyperbolic) spacetime
– including of course those with non-trivial dynamical structure.

Still, one might reasonably raise the question as to in what sense the complete ob-
servables are actually observable – clearly they cannot themselves be the subject of a
measurement as they are entirely non-local! They only feasible way of understanding the
relationship between genuine experimental observations/measurements and the complete
observables would be to think of a physical measurement to be constituted by correlation
between various determined values of a variable (i.e., the partial observables). Consider:
i) the measurement of a certain variable corresponding to the hand of my watch being in
a certain position; and ii) the measurement of a certain variable corresponding to the sun
being in certain position – the essence of the complete observables idea is that a genuine

62The most famous example of such a coincidence proposal is Einstein (1916) – but also see Westman
and Sonego (2008). See (Rickles, 2008, §6.1) for a discussion of the connection between the coincidence
type approach and the RDT observables
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measurement is just a correlation between i) and ii) defined without reference to any local
system of cooridantes. The question still remains whether the observational data cus-
tomarily associated with general relativity (e.g., deflection of light rays by gravitational
bodies) can in practice be reconstructed in these terms. A full analysis would involve con-
sidering the construction of compete observables in the presence of matter would there-
fore go beyond our present ‘in vacuo’ analysis. The reader is referred to Rovelli (2002a)
for a promising line of thought on this front.

More generally, since (as indicated above) families of complete observables could
reasonably be understood as the canonical analogues of a set of four-dimensional space-
time correlations defined within the covariant formalism, it seems difficult to consider the
problem of reconstructing physical observations in the context of the RDT formalism as
any more difficult than the problem of constructing physical observations in the context
of any covariant scheme based upon spacetime correlations. In essence the compete ob-
servables approach is a disavowal of the variation of all properties across spacetime and
in this sense could be argued to merely be a canonical implementation of one particular
interpretation of general covariance.

This brings us to an important qualificatory remark regarding our third denial of time.
The Parmenidean position with regard to change that is forced upon us by RDT scheme
does not equate to a denial of time either in the sense of asserting that there exists only
one time. Nor is it a position that implies that the temporal dimension is less fundamental
than the spatial dimensions – in of itself it is entirely consistent with a four dimensional
spacetime picture of the world. We can therefore see that rather than being allied to the
Machian notion of timelessness of our second denial, this third denial is fundamentally
antithetical to it. In particular, if we were to couple the application of the complete ob-
servables scheme to the Hamiltonian constraints with an application of the scheme to the
momentum constraints as well, then the resulting doubly complete observables will be
objects smeared non-locally in the unphysical spacetime coordinates and this is an ontol-
ogy which clearly is not amenable to the Machian temporally relationalist interpretation
since it is predicated upon a fundamentally four rather than three dimensional picture of
reality. Thus, the choice between our two denials is effectively that between: i) loosing
four dimensionality and absolute scale but retaining change; and ii) retaining absolute
scale and four dimensionality but loosing change.



Chapter 14

Quantisation and interpretation

At the end of the last chapter we left our discussion at the crossroads between two very
different approaches to the interpretation of classical canonical general relativity. What
attitude we should take to such scenarios of metaphysical underdetermination, both in
general and for this specific case, will be the subject of a lengthly analysis in Part IV.
Before then we will bring our focus upon the implications of the anti-reductive conclusion
of §11.3 to the problem of the quantisation of canonical gravity. The essential question,
following on from the discussion of Part II (in particular Chapter 9) and utilising the
notion of representational equivalence defined in §4.1, is whether we should understand
reduction and quantisation as commutative for the case of the Hamiltonian constraints of
canonical gravity. If we should, then our various arguments against classical reduction
of the constraints can be seen to conceptually undermine any approach which follows
the conventional Dirac route for the quantisation of gravity. This would certainly be
an important result since it would give us cause to question much current research in the
field – not least loop quantum gravity as it is currently formulated – and we must therefore
proceed carefully. Let us first consider the parallel issue for the momentum constraint.

14.1 Reduction and quantisation of the momentum constraints

Recall from §10.2 that the Poisson brackets between two momentum constraints, (10.8),
closes with structure constants. This means that the action of the momentum constraints
can be associated with a Lie group. As was mentioned in that earlier discussion, the par-
ticular Lie group can be understood explicitly in terms of the implementation of a Lie al-
gebra of diffeomorphisms of the space-like hypersurface σ (Isham and Kuchař (1985a,b)).
We would then seem fully justified classically in seeking to: i) quotient the action of these
constraints via the application of symplectic reduction; and ii) construct a partially re-
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duced phase space where each point will correspond to canonical variables defined upon
a spatially diffeomorphic invariant three geometry. Such a space is the cotangent bundle
associated with Wheeler’s superspace (Wheeler (1968)) and as such we shall (as above)
call it the super-phase-space, T ?S . Formally, its structure is little explored and it is un-
likely to be without singularities and other topological complications.63 However, from
a conceptual viewpoint its representational role is clear and we will therefore make the
(highly non-trivial) assumption that it has the characteristics of a typical reduced phase
space with the associated symplectic geometry. As such, the application of geometric
quantisation would be available and a corresponding Hilbert space HSPS could be con-
structed.

For our purposes what is most significant is what representational relationship such a
Hilbert space would have to that constructed via a Dirac type ‘quantise first, reduce sec-
ond’ route. Since the momentum constraints are associated with an algebra which closes
with structure constants, it would seem appropriate to think of the associated Lie group
as being representable quantum mechanically in terms of the action of a set of unitary
operators on an auxiliary Hilbert space. Unfortunately, there is complication here since
within modern approaches (i.e., LQG) it is found that we are in fact only able to con-
struct quantum operators generating the finite component of the spatial diffeomorphism
group. Although some variant of the group averaging methodology of the RAQ scheme
(discussed in §3.2.1 and §4.1) can then be applied,64 this will lead us ultimately to to a
non-separable physical Hilbert spaceHmom.

The relationship betweenHmom andHSPS (which we would assume to be separable)
is not going to be simple. Formally, the two spaces are certainly not going to be unitarily
isomorphic and even in terms of the our notion of representational equivalence (as de-
fined by the three criteria introduced in §4.1), we do not have an exact correspondence
since the groups involved in the classical and quantum quotienting procedures are strictly
speaking different. However, in terms of the putative ontology represented by these two
Hilbert spaces, these details are not crucial. The classical and quantum quotients are
equivalent in that both lead us to the representation of objects invariant under spatial dif-
feomorphisms (albeit in slightly different sense since in the former but not in the latter
case the diffeomorphisms are smooth). Furthermore, in terms of degrees of freedom we

63See Giulini (2009) for detailed discussion of the metric and topological structure of superspace
64See Thiemann (2007, §9) for extensive details of such a methodology for the Dirac type quantisation

of the momentum constraints in the context of Ashtekar variables.
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will have equivalence since in both cases we are cutting down by 6 ×∞3. On the level
of observables too we can argue towards equivalence since a representation of an algebra
of spatially diffeomorphism invariant observables is well defined on Hmom. Clearly, it is
reasonable to think of such an algebra as representing the same fundamental objects as
the ÔR which we would define onHSPS .

Thus, although we cannot strictly assert representational commutation between re-
duction and quantisation for the momentum constraints – because of the problems in
constructing a quantum operator which generates infinitesimal spatial diffeomorphisms –
we can assert commutation to hold for all intents and purposes since one may at least rep-
resent the same spatially diffeomorphism invariant ontology via both Dirac and reduced
quantisation routes.

14.2 How should we interpret the quantum Hamiltonian constraints?

The essential dilemma is whether we should understand the implementation of the Hamil-
tonian constraints in terms of operators annihilating the wavefunction according to the
Dirac quantisation prescription as equivalent to the conceptually problematic classical
reduction. Or more precisely, is it appropriate to think of reduction and quantisation as
commutative procedures when considered with regard to the Hamiltonian constraints? On
a formal level, it is not yet possible to answer this question since the Hamiltonian con-
straints lie outside the scope of existent commutation proofs. Furthermore, we cannot at
the moment even make use of our weaker representative notion of commutativity since we
have only established its viability for cases in which the constraints close with structure
constants and some variant of the RAQ refinement of Dirac quantisation is available. We
can at least argue towards some degree of representative equivalence between the naive
quantisation of the Hamiltonian constraint via the original Dirac quantisation method-
ology (leading to the Wheeler-De Witt equation) and a quantisation of the putative and
problematic reduced phase space since there is an equivalence in terms of reduction of
degrees of freedom by 2×∞3. However, since the original Dirac constraint quantisation
methodology does not guarantee us either a well defined physical Hilbert space nor a set of
observables and there is no group theoretic basis for interpreting the relevant symmetries,
we are still well short of securing even our weak notion of representative equivalence.

Rather, quantisation of the Hamiltonian constraints65 is the context within which the
65We should here, more properly, be speaking of the Hamiltonian constraints as reformulated in Ashtekar
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master constraint programme comes into its own. Dittrich and Thiemann (Thiemann
(2007, 2006); Dittrich and Thiemann (2006)) have produced encouraging results with
regard to the applicability of this scheme to the Hamiltonian constraints (although the
significant problem establishing the correct classical limit, among others, still remains)
and it would therefore seem, in the first instance, reasonable to assume that if we can
establish in general the viability of representational commutation for theories in which
MCP has been applied, then we have a good basis for representational commutation in
the case of the Hamiltonian constraints.

Recall from above that in the MCP we seek classically to construct a single master
constraint the satisfaction of which is equivalent to the satisfaction of all the individual
constraints. We then promote this single constraint to a self-adjoint operator on an auxil-
iary Hilbert space and then use the direct integral methodology to construct a well defined
physical Hilbert space. To establish representational commutativity we first look to find
a correspondence between the classical and quantum reductions in terms of reduction by
the same number of degrees of freedom. We can do this be considering the quantum mas-
ter constraint equation M̂ψ = 0 which we implicitly solve when constructing the physical
Hilbert space via the direct integral method. Following Thiemann (2007) we can consider
the simple case that M̂ = Kiϕ̂i

†ϕ̂i where Ki > 0 are constants with the required conver-
gence properties.66 Next we have that M̂ψ = 0 implies that ϕ̂iψ = 0 since by definition
〈ψ | M̂ψ〉 = Ki‖ϕ̂iψ‖2 = 0. We can then fall back on the correspondence (Henneaux
and Teitelboim (1992)) in terms of reduction in number of degrees of freedom between
the Dirac quantum constraint conditions ϕ̂iψ = 0 and the classical symplectic reduction
of a system with physical phase space Σ = {(p, q) ∈ Γ|∀i : ϕi(p, q) = 0}.

Moving on to the condition regarding observables: we have from §3.2.2 that the MCP
allows us to define the strong observables Ôs which are such that [Ôs, M̂] ≡ 0. What kind
of relationship is there between such observables and the ÔR that we construct based upon
the reduced phase space? We can address this question by first considering the weak clas-
sical observables which were defined by the double commutator {{M,O},O}|M=0 = 0.
We have that {{M,O},O}|M=0 = 0 is equivalent to {ϕi,O}|M=0 = 0. This means that,
as noted above, we can think of a geometrical correspondence between O and OR since

variables rather than those expressed in normal ADM variables. However, since the reformulated Hamilto-
nian constraints close with the same Poisson bracket structure (as they must), this difference is immaterial
to our current purpose – although it will become important within a more explicit treatment.

66Here the ϕ̂i are a countable and close-able set of operators which need not be self-adjoint nor form a
Lie algebra but are such that {0} lies only in their common point spectrum.
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the first are constant along the gauge orbits which are quotiented out in order to construct
the space in which the latter are defined. Since the classical strong observables (which
can be constructed by considering an ergodic mean analogous to (3.5)) are a subset of the
weak observables such a correspondence will hold for them also, and it seems correct to
think of Ôs as being representatively equivalent to a subset of the ÔR. Classically, we can
in fact give a formal criterion to define this subset since they will be such that the pull-
back of the map which projects down to the reduced space (i.e., π? : ΠR → Σ) will take
them to the Os. We have not yet considered the representation of the physical state space
over which these observables are defined and, as was pointed out above, this relationship
is in fact ket to establishing representative correspondence between the observables. We
will return to this issue at the end of this section.

More problematic is our condition concerning ‘quotienting by the same gauge group’
– since MCP is still well defined for cases (such as that of the Hamiltonian constraints)
where there is no group theoretic basis to the quotient taken in symplectic reduction,
the condition clearly must be adapted to remain relevant. Instead, we should look for
the same set of local transformations being removed without any restriction on the na-
ture of these transformations (i.e they may not form a group). Let us return our focus
to the Hamiltonian constraints of canonical general relativity. The crucial question is
then whether we should understand the MCP as enacting a quantum equivalent of the dy-
namically trivialising classical reduction discussed in §11.3. In particular, are we doing
something equivalent to erroneously treating the (at least) partially dynamical action of
the constraints purely as a gauge transformation on the physical phase space? The ex-
plicit form of the master constraint for canonical general relativity was given in (13.3).
This constraint has a number of formal virtues. In particular it is such that its satisfaction
implies that H(N) = 0 for all N meaning that encodes the same constraint surface as the
Hamiltonian constraints.

Furthermore, it is also such that { ~H( ~N),M} = 0 meaning that it is invariant under
spatial diffeomorphisms and therefore leads us to a constraint algebra with a much sim-
pler form, the master constraint algebra M (13.4-13.6). As was mentioned in our earlier
discussion, M is by definition such that we no longer have to deal with the presence of
structure functions – in substituting a single master constraint for the infinite set of Hamil-
tonian constraints we avoid having to explicitly confront the complex Bergman-Komar
constraint algebra BK (10.8-10.10). Furthermore, since the master constraint algebra is a
proper Lie algebra it can be associated with a Lie group of transformations. This means
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that the task of fully quantising canonical general relativity (i.e., dealing with both sets of
constraints) will be made far more tractable.

Returning to the point in hand, clearly M 6= BK. So there is a clear sense in which
symplectic reduction (which removes the action of the transformations associated with
BK) is not going to have a straightforward representational relationship to application
of the MCP. Yet, we were able to establish a degree of correspondence in terms of the
treatment observables so we should still expect some correspondence in terms of which
transformations the two reductions treat as unphysical. We might hope to get a definite
formal grip on this relationship by calculating the action of M on a phase space variable.
However, since such a calculation will only yield an expression which is vanishing for
M = 0 it is clear that the action constructed in this way will be trivial on the physical
phase space. The key realisation is that since the Hamilton vector field associated with the
master constraint, Xa

M, is by definition vanishing on the physical phase space the Poisson
bracket between it and any phase space function will always be zero for M = 0. Thus,
there are no interpretational difficulties in treating the orbit associated with the integral
curves of Xa

M as gauge since it is a trivial move.

To make more definite progress we must consider the quantum theory. Recall from
above that we look to represent the master constraint as a positive, self-adjoint operator
M̂ on an auxiliary Hilbert space Haux. We then use the direct integral methodology to
construct a physical Hilbert space, Hphys. Setting aside some important technical com-
plications not least the non-separability of Haux Thiemann (2007, §10.6.3), the essential
elements of this scheme are readily applicable to our master constraint formulation of the
Hamiltonian constraints of classical general relativity. What is important for our purpose
is whether in constructing Hphys we have carried out a move analogous to treating the
classical action of the Hamiltonian constraints on phase space as pure gauge. At first
sight, it appears that we have not since the quantum quotient that we take in order to
constructHphys is with respect to the kernel of M̂.

Considering things more carefully, the direct integral methodology represents M̂ on
H⊕aux(λ) such that

M̂(ψaux(λ))λ∈R = (λψ(λ))λ∈R (14.1)

and then defines Hphys in terms of the ψaux(λ) in H⊕aux(λ) which are such that λ equals
zero. This of course means that only states which solve the master constraint will be part
of the physical Hilbert space. Furthermore it also means that (following Corichi (2008))
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we should think of the quantum equivalent to the Hamilton vector field of the master
constraint as vanishing.67 In fact, since the master constraint can be represented in terms
of a positive self adjoint operator on Haux, M̂ is associated with a one parameter family
of unitary operators, Û(t) = eitM̂. It is therefore appropriate to think of the construction
of Hphys in terms of the quotienting of a quantum gauge orbit associated with Û(t) in
the same sense as we discussed for the case of RAQ. This would seem to indicate that
our intuition from the classical theory has proved correct – quantisation according to the
MCP should not, when applied to the Hamiltonian constraints, be consider as involving
a quantum quotienting analogous to that achieved be reducing out the constraints at a
classical level.

We have, however, neglected to consider the observables – it is only in virtue of them
that the master constraint can be said to encode the same classical structure as the in-
dividual constraints. In fact, according to Thiemann (2006), the requirement that both
the observables and the individual constraint operators be represented as self adjoint op-
erators on Hphys, can be shown (in solvable models) to fix the inner product such that
the solution space must be reduced to the simultaneous one of all constraints. This im-
plies that states in the auxiliary Hilbert space which fail to be solutions of the individual
constraints will be excluded in the passage to the physical Hilbert space. If this were to
hold for the Hamiltonian constraints of canonical general relativity then we would have
a restriction on physical states such that they: i) individually solve Wheeler-De Witt type
equations of the form Ĥψphys = 0; and ii) collectively solve the master constraint equa-
tion M̂ψphys = 0.68 Under these circumstances, we can then argue that the representation
of physical states arrived at via this ‘quantise first, reduce second’ methodology will co-
incide with that based upon quantisation of the dynamically trivial classically reduced
space. This is because if the physical Hilbert space is such that only states which are zero
eigenvectors of the Hamiltonian constraint operators are permitted, then no two distinct
classical states which lie along the null direction which the classical constraint function
defines can be represented at the quantum level. This means that fundamentally the same
set of objects have been excluded from our ontology as in the case of a reduced and then

67Our ability to apply these classical geometrical terms in the quantum context derives from the sym-
plectic structure encoded in the space of rays associated with any Hilbert space. See Corichi (2008) and
references therein for more details

68Whether this proves to be the case in practice can only be established by a full treatment, with the quan-
tum Hamiltonian constraints reformulated in terms of loop variables and the Dirac observables explicitly
constructed – presumably using the complete observables Ansatz.
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quantised theory. We would therefore be justified in asserting that the quotienting criteria
of representational equivalence will hold since we have recovered its fundamental aspect.

Furthermore, this conceptual connection between the physical states also ensures that
there is full representative correspondence between the reduced and physical observables
at a quantum level and therefore that our criteria concerning observables holds. Thus, for
both the general case and the specific case of general relativity the physical Hilbert space
constructed via the MCP is representationally equivalent to that based upon quantisation
of a reduced phase space – i.e., representational commutation between quantisation and
reduction holds. This gives us strong conceptual grounds for doubting the validity of ap-
plying this quantisation procedure to the Hamiltonian constraints of general relativity on
the grounds of the trivialisation argument of §11.3. Since classically it is incoherent to
treat the Hamiltonian constraints as purely generating unphysical phase space transfor-
mations, any approach that is equivalent to the implementation of this interpretation at a
quantum level will be similarly afflicted.



Chapter 15

Prospectus for a relational quantisation

The arguments of the previous section were aimed at convincing the reader that con-
ventional methodologies for the quantisation of canonical general relativity have dubious
conceptual foundations. To a large extent this conclusion is based upon dynamical trivi-
alisation argument concerning reduction and Hamiltonian constraints. Such an argument
gives us solid – if indirect – reasons for linking both our viable strategies for understand-
ing classical canonical general relativity to an unconventional approach to quantisation in
which the Hamiltonian constraint is not related in the customary Dirac manner leading to
a Wheeler-de Witt type equation.

In this respect there is of course much commonality between the main ideas of Part
II (the non-relativistic problem of time) and Part III (the relativistic problem of time).
Given this similarity, it is tempting to try and reconstruct our arguments of Chapter 9,
and in particular consider an analogue of the relational quantisation, to the relativistic
case. However, for standard canonical general relativity such a proposal is immediately
problematic since, unlike in the non-relativistic case, we have an infinite set of local
Hamiltonian constraints. This blocks a straightforward application of our technique. It
does not, however, rule it our altogether. In particular, given either that: i) the infinity
of Hamiltonian constraints are rewritten in terms of a single master constraint; or ii) the
theory is reformulation of the theory in terms of shape dynamics, we would then regain
something like the single global Hamiltonian constraint structure within which relational
quantisation has proved applicable. Pursual of the project of formally exploring the first
of these ideas will, unfortunately, not be possible within the scope of this current work,
and is left to future investigations. However, we can reproduce here some initial work –
principally due to Sean Gryb, with the text based upon that of the final section of Gryb
and Thébault (2012) – towards the second option.
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15.1 Relational quantisation of Shape Dynamics

The Hamiltonian of shape dynamics is given by the sum of three first class constraintsHgl,
Ha, and C with associated Lagrange multipliers N(t), Na(x, t), and ρ(x, t) respectively

HSD = N(t)Hgl +

∫
d3x [Na(x, t)Ha + ρ(x, t)C] . (15.1)

Note that the lapse N(t) is always homogeneous because the time variable is global.
As we saw in §12.3, these constraints can be split into two kinds: i) the constraints that
generate gauge transformations and have associated symmetries and ii) the constraint that
generates the dynamics. The constraints Ha and C are linear in the momenta and fall
under the first kind. We can understand the significance of each by noting the gauge
symmetries that they generate. The momentum constraint, Ha, is common to both SD
and GR and generates infinitesimal spatial diffeomorphisms. The conformal constraint,
C, generates conformal transformations of the metric of the form

gab → eφgab. (15.2)

These conformal transformations, however, have a global restriction that the total volume
of space be preserved. Physically, C requires that the information about the local scale is
unphysical. Thus, only angles and ratios of lengths are observable. However, the global
scale, set by the spatial volume of the universe, is not gauge. This global restriction on
scale invariance is crucial because it allows C to be first class with respect to the non-
trivial global constraint Hgl. In terms of the number of degrees of freedom, this global
restriction is also necessary because the two phase space degrees of freedom killed by Hgl

are recovered by imposing this restriction on C. Thus, the total number of constraints is
still equal to that of GR.

The dynamics are generated by the global Hamiltonian constraint Hgl. This constraint
is uniquely defined by the two requirements: i) that the classical dynamics and initial
value problem of SD are identical to that of GR; and ii) that it be first class with respect
to Ha and C. It is important to point out that the first class requirement implies that
Hgl is invariant under both spatial diffeomorphisms and conformal transformations that
preserve the volume. Unfortunately,Hgl is non–local in the sense that it is defined through
the formal solution of an elliptic differential equation (given explicitly in Gomes et al.
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(2011)) which is a modified version of the so–called Lichnerowicz–York equation (York
(1972)). It can however, be given explicitly in terms of different perturbative expansions.
For our purposes, we will only need the first term of Hgl in a large volume expansion.
This is a well defined expansion in SD because the volume is a gauge invariant quantity.
The details can be found in Gomes et al. (2011); Gryb (2011). We will only quote the
result:

Hgl = 2Λ− 3

8
P 2 +O(V 1/3), (15.3)

where Λ is the cosmological constant and P is proportional to the mean of the trace,
πabgab, of the metric momenta. For completeness we include its definition (although it
will not be used):

P =
2

3

1∫
d3x
√
g

∫
d3xπabgab. (15.4)

Physically, it is helpful to note that P is the variable canonically conjugate to the spatial
volume and is equal to the York time, which is always homogeneous in SD. Note that,
to this order in V , the Hamiltonian is homogeneous and leads to the Friedmann universe
with pure cosmological constant. Also, in this limit gravity is equivalent to a free particle
model like the ones treated earlier in the text, justifying the their use as valid toy models
for quantum gravity.

We have now laid out sufficient structure to perform our relational quantisation pro-
cedure on SD. We define the central element of the observable algebra, ε, through the
Poisson bracket relations

{ε, gab} =
{
ε, πab

}
= 0. (15.5)

Its conjugate momentum, τ , is defined by {τ, ε} = 0. We extend the classical phase
space to include τ and ε with the Poisson brackets given above and extend the classical
Hamiltonian constraint

Hgl →ε+Hgl (15.6)

=ε+ 2Λ− 3

8
P 2 +O(V 1/3). (15.7)

That this produces an equivalent classical theory can be seen by computing the classical
equations of motion for ε

ε̇ = {ε,NHgl} = 0. (15.8)

Thus, ε is a constant of motion. We can then integrate out ε in the classical theory and
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obtain a new Hamiltonian that is just shifted from the original by the constant of mo-
tion, E , associated to ε. Clearly, the extension procedure has the effect of redefining the
cosmological constant

Λ→ Λ +
1

2
E . (15.9)

From an operational point of view this requires a change of philosophy: the cosmological
constant is seen as a constant of motion rather than a constant of Nature. However, this
new interpretation has no effect on the physical predictions of the classical theory.

Despite the fact that the classical theory is unaltered, the quantum theory is noticeably
different from that obtained by Dirac quantisation because we require that ε be promoted
to an operator. This leads to the following operator constraints on the SD wavefunctional,
Ψ,

ε̂Ψ = −i∂Ψ

∂τ
=

(
2Λ− 3

8
P̂ 2 + ĤO(V 1/3)

)
Ψ. (15.10)

The cosmological constant can be removed by simply shifting the eigenvalues of the ε̂
operator, just as in the classical theory. We see that the theory we obtain is equivalent to
that obtained if we treated the cosmological constant as a global canonical variable rather
than a coupling constant. We get a definite time evolution in terms of the global parameter
τ .

We can better understand the meaning of this relational quantum theory by considering
the nature of the classical intermediary formalism associated with the extend Hamiltonian
constraint (15.7). This can be seed to be the SD equivalent to the unimodular gravity
theory developed in Brown and York (1989); Henneaux and Teitelboim (1989); Unruh
(1989); Unruh and Wald (1989). In particular, in Brown and York (1989), it is shown
that promoting the cosmological constant to a canonical variable, in the context of GR,
produces a time–dependent quantum theory where the time variable, τ , is canonically
conjugate to the cosmological constant. In this case, as in ours, τ is interpreted as the
4–volume of the universe. In GR, the situation is a bit more subtle than in SD because ε
is allowed to vary over space. However, as is shown in detail in Henneaux and Teitelboim
(1989), there is a secondary constraint ∇aε = 0 that enforces the homogeneity of the ε.
Once this constraint is enforced, it is straightforward to see that the Hamiltonian obtained
in Henneaux and Teitelboim (1989) is equivalent to the modified SD Hamiltonian (15.7).
Thus the relational quantisation of shape dynamics leads to a formalism equivalent to the
Dirac quantisation of unimodular shape dynamics. We might, therefore, expect that a
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prospective relational quantisation of ADM GR would be equivalent to a Dirac quantisa-
tion of unimodular gravity. This possibility will be investigated in the following section.

15.2 Relational quantisation of general relativity

The relational quantisation procedure presented in Chapter 9 was motivated by what hap-
pens in reparameterisation invariant theories where a single Hamiltonian constraint gener-
ates the dynamics. Although the situation is more subtle in GR, where there is a different
Hamiltonian constraint for each spatial point, it may still be constructive to check what
happens when we apply our quantisation procedure in this case. The GR Hamiltonian
can be written as is the sum of two local constraints H and Ha with associated Lagrange
multipliers N(x, t), Na(x, t)

HADM =

∫
d3x
√
g (NH +NaHa) . (15.11)

To perform the relational quantisation, we must introduce the central element of the
observable algebra ε. However, because the Hamiltonian constraint, H , is a local function
of space, so too must be ε. Thus, we must shift H in the following way

H(x, t)→ H(x, t) + ε(x, t), (15.12)

where we still have
{ε, gab} =

{
ε, πab

}
= 0. (15.13)

The time variable, τ(x, t), canonically conjugate to ε(x, t) must also be a local function
of space. It would seem that this would produce a qualitatively different theory form the
unimodular one previously considered. However, this exact theory has been treated in
detail in Gryb (2010). In Section 3.2.4 of that paper, it is shown that the consistency of
this theory requires a secondary constraint of of the form ∇aε = 0 and that the resulting
theory is identical to the unimodular theory given in Henneaux and Teitelboim (1989).
Thus, the relational quantisation procedure (naı̈vely) applied to GR leads to the standard
Dirac quantisation of unimodular gravity.
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15.3 Comments on unimodular shape dynamics

Unimodular gravity has been proposed as a possible solution to the problem of time
Sorkin (1997). The homogeneous and isotropic case (corresponding to the large volume
limit given in Equation (15.3)) has been studied and unitary solutions have been found
to exist Daughton et al. (1993). Furthermore, it has been argued that treating the cosmo-
logical constant as an integration constant rather than a coupling constant could provide
a resolution of the cosmological constant problem Smolin (2009). Despite these hopes,
there are well–known criticisms for treating unimodular gravity as a genuine solution to
the problem of time. These are summarised in Kuchař (1991a). The essential argument
is that foliation invariance in GR makes it impossible to genuinely define a global time,
which is necessary in the unimodular description. We see these difficulties, in our con-
text, as arising from the fact that our quantisation procedure was designed only to work
for theories with a global Hamiltonian. As a result, we can not claim to resolve these
difficulties in the context of GR. However, in SD, the situation is considerably improved.
In this case, there is a genuine global time parameter and a single Hamiltonian constraint
generating dynamics. Thus, the unimodular SD theory presented above is free from the
criticisms presented in Kuchař (1991a) and provides a proposal for a genuine solution to
the problem of time in quantum gravity.

In essence, our solution is constituted by the application of a three stage procedure:
i) translate ADM GR into equivalent shape dynamics formalism; ii) apply extension pro-
cedure to construct unimodular shape dynamics; iii) apply standard Dirac quantisation to
derive dynamical theory of quantum gravity. Of these three steps, the basis behind the
first is perhaps the most contestable; does moving to the shape dynamics formalism not
simply amount to sweeping the problem of foliation invariance ‘under the rug’, rather
than solving it? We think not. On the one hand, if one considers shape dynamics a fun-
damental theory of gravity, then we have moved to a formalism that makes manifest a
physical deep symmetry triplet of reparameterisation invariance, three dimensional dif-
feomorphism invariance and three dimensional scale invariance. From this perspective,
the issue of retaining foliation invariance within quantum gravity is simply no longer
relevant. On the other hand, if one insists that general relativity should retain its funda-
mental status, then – due to duality between that theory and shape dynamics – one can
still consider the procedure i-iii above as providing a potential methodology to explore
the phenomenology of a foliation invariant theory of quantum gravity not captured within
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the Wheeler-de Witt formalism. In either case, a quantum theory of unimodular shape
dynamics offers an interesting new possibly within the theory space of quantum grav-
ity and warrants consideration of its explicit details, formal consistency and potential for
application. Such an investigation will be the subject of future work.

We will return to the consideration of the problem of quantising gravity within the
concluding sections of our discussion. In particular, Chapter 20 will examine the concep-
tual foundations of possible new approaches to the quantisation of gravity in the context of
the underdetermination precipitated by the two rival formulations of the classical theory
corresponding to complete observables and shape dynamics.
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Realism, Structuralism and
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Guide to Part IV

Much of the fourth and final part of our discussion will focus on issues from within the
philosophy of science and, as such, our theme of the quantisation and interpretation of
canonical gravity will for the most part be latent. However, the principal purpose of this
lengthly detour will be to provide a philosophical framework within which to analyse sit-
uations of metaphysical underdetermination – and, as we shall see, such underdetermina-
tion can be understood as being embodied precisely in the disparity between the ontology
ascribed to canonical general relativity by shape dynamics and the complete observables
scheme respectively. Moreover, we will, in the course of our analysis, come to formulate
a general philosophical prescription for relating the common structure found in classical
underdetermination scenarios to the formal process of quantisation – and it is hoped that
this prescription may provide useful insights into the task of quantising gravity.

The philosophy of science discussion of Part IV begins, in Chapter 16, with a number
of introductory sections. First, we review the two major frameworks for analysing the
structure of a physical theory (§16.1). Next, we consider how one of these frameworks
may be used to precisely characterise what it is about a physical theory that could be
said to be underdetermined (§16.2). Of particular importance will be the specific case
within which the underdetermination is driven by multiplicity within the formalisation of
a physical theory. We then introduce the position of scientific realism and explain why
one might think it to be specifically threatened by underdetermination cases (§16.3). The
next section details the various ways our scientific realist may attempt to break the under-
determination by appeal to external criteria (§16.4), before we introduce the alternative
position of ontic structural realism (OSR) within which the ontological bite of the un-
derdetermination is supposedly undercut (§16.5). We will also examine both OSR and
scientific realism in the context of the historically grounded undermining of ontology that
motivated by the argument from pessimistic meta-induction, and from this analysis place
a set of conditions on an application of OSR being both consistent and substantive. With
these conditions in mind, the final section of this chapter (§16.6) will present a scheme
for thinking about formulation underdetermination and OSR in the context of quantisa-
tion. The following three chapters will then represent case studies for the analysis of
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the proceeding ideas within three examples of classical formulation underdetermination.
Chapter 17 will examine the Lagrangian and Hamiltonian formulations of Newtonian
mechanics, and then Chapter 18 will examine the reduced and unreduced formulations of
standard gauge theory, before finally, in Chapter 19, we return our discussion to our two
rival formulations of canonical gravity. We conclude, in Chapter 20 with a summary of
our project together with an analysis of the relevant implications and prospective research
avenues that have been illuminated.



Chapter 16

Metaphysical underdetermination and the interpretation
of physical theory

16.1 Theory, interpretation and ontology

Before we embark on the task of investigating the issue of metaphysical underdetermina-
tion in the context of the interpretation of physical theory we will briefly consider the two
principal frameworks for characterising a physical theory in terms of a formal linguistic
system. The choice between these frameworks involves taking a distinct stance as to the
structure of physical theories and will, therefore, provide us with a guide as to what we
mean when we discuss both the interpretation and ontology of the theory. Our purpose
here will not be to enter into an in-depth discussion of this complex issue. Rather, we
merely aim to give an adequate description of the two frameworks and reasonable justifi-
cation for our adjudication between them based upon the nature of the project in hand.

The syntactic framework seeks to provide a representation of the structure of a scien-
tific theories in terms of a formal linguistic system that is interpreted partially by a set of
correspondence rules. Following Thompson (1989) (also see Ladyman and Ross (2007)
and van Fraassen (1980)) we can unpack these notions into more basic terms. Consider
a set of primitive symbols and a set of rules for the formation of formulas using these
symbols. A formal language is a set of well formed formulas (wffs) which are defined
to be those that contain only primitive symbols (or symbols defined based on primitive
symbols) and satisfy the rules of formation. To constitute a formal system we supplement
the formal language with two further sets of rules; one which specifies certain wffs as
axioms and another that dictates how we can derive the remaining wffs from the axioms.
The structures so far defined are sufficient to provide material for the abstract enquiries
of logic and pure mathematics but are inadequate for representing empirical science – we
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need a methodology for providing meaning to the symbols in our language so that it is
able to describe the world. In general we designate a provision of meanings to a formal
system as an interpretation or model of the system. One way of understanding the syn-
tactic conception of theory structure is in terms of the proposition that a theory can be
understood as formal language where the phenomenal world69 is the relevant model.

We can make this idea more precise by first splitting the non-logical symbols of the
language into two classes: those that can be assigned meanings directly in terms of ob-
servable entities (observational vocabulary); and those that are interpreted in terms of
non-observational entities (theoretical vocabulary). If we then assume the existence of
a set of rules that provides us with a definition of the theoretical vocabulary in terms of
the observational vocabulary then collection of these correspondence rules together with
the our two vocabularies defines the phenomenal world as a model for our formal system.
In practice useful scientific theories are such that there will always be some terms in the
theoretical vocabulary which cannot be reduced to observational terms and thus we have
that the correspondence rules only establish a partial interpretation of the language; the
observable world is only a partial model. Thus, under the syntactic view we have both that
a scientific theory should be constructible in terms of a formal system, a vocabulary of
observational and theoretical terms and a set of correspondence rules; and that we should
be able to think of the phenomenal world as a model in an appropriate sense.

We now turn to the semantic framework for characterising the structure of a scientific
theory. Whereas, in the syntactic conception, a theory is understood as a formal system
with the relevant semantics provided by correspondence rules, in the semantic conception
these semantics are understood as being provided directly by defining a class of models.
In other words, the theory is defined to be the provision of a set of models for a formal
system rather than the specification of the phenomenal world as a particular model (or par-
tial model) via correspondence rules. Significantly, such a provision of models, though
it implicitly recognises its existence, need not make reference to a formal system at all.
Rather, following the state-space approach to the semantic characterisation of scientific
theory of van Fraassen (1970)70, we can establish our model class principally by reference
to a state space H , each point within which corresponds to a possible configuration of a

69We do not here mean to imply that the proponents of the syntactic view are necessarily phenomenalists.
‘Phenomenal world’ here and below could be understood in any number of a broader sense of observable
world

70We present van Frassen’s view here rather than the set-theoretic alternative because of the natural
coherence between it and the state spaces of the Lagrangian/Hamiltonian formalisms.
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physical system X that our theory defines. Supplementing this state space by a set of
elementary statements E (which are propositions about the magnitude of physically mea-
surable quantities sufficient to characterise the physical system) and a set of satisfaction
functions h(E), mapping from the elementary statements to the state space we can form
a semi-interpreted language L =< E,H, h > . If we define a model M for L in terms of
the combination of X and an assignment of a location loc(X) in H to X then all models
such that loc(X) ∈ h(E) will be such that the elementary statements will be true.

Here we have made a distinction between the phenomenal world and an analogous
physical system X which represents some aspect of the phenomenal world. Unlike the
syntactic view of theory structure the semantic approach treats the latter rather than the
former as the proper object of a scientific theory. In this context we can understand the
truth of the elementary statements as not being contingent upon actual phenomena rather
upon consistency between the system and a model of L. Thus, under the semantic view
any well formed physical theory will be true with respect to the system it is concerned
with. The connection between this system and the phenomenal world is not taken to be
the concern of a different branch of scientific activity distinct from a given theory. We
therefore have that under a semantic account two rival theories – one of which may be
totally empirically ineffective – will both be true under the lights of the model class and
systems that they define. To differentiate between good and bad theories can be taken to
principally be to consider a question of empirical adequacy rather than truth. To flesh this
idea out we can refine our semantic conception by defining a further element of scientific
theory. Van Fraassen presents his picture of the most general features of scientific theories
as follows:

To present a theory is to specify a family of structures, its models; and sec-
ondly, to specify certain parts of those models (the empirical substructures)
as candidates for the direct representation of observable phenomena. The
structures which can be described in experimental and measurement reports
we can call appearances: the theory is empirically adequate if it has some
model such that all appearances are isomorphic to empirical substructures of
that model. van Fraassen (1980, p.64) [my italics]

It is crucial, however, to realise that for Van Fraassen the empirical sub-structures do
not exhaust the representational capacity of a scientific theory under the semantic con-
ception. Although what matters is taken to be empirical adequacy and not the truth of
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how they go beyond the observable phenomena, there is no bar to physical theories de-
scribing much more than what is observable. Thus, what will be for our purposes the
crucial division within the semantic conception of scientific theories is between the theo-
retical structure of a theory which consists purely of the model class and the theoretical
hypotheses which detail the representational capacity of the model class with respect to
both observable and non-observable entities/objects.

We may now move our discussion on to its principle goal: considering questions of in-
terpretation and ontology in the context of the structure of scientific theory. Let us assume
that when we are concerned with questions relating to the interpretation of a physical the-
ory we are always principally talking about the manner in which aspects of the formalism
can be taken to have a representational capacity with regard to some class of objects or
entities. This is reasonable because interpretational disputes with regard to physical the-
ory can usually, if not always, be characterised in these terms – for example, different
interpretations of quantum mechanics generally assume the same formalism but take dif-
ferent aspects of it (like the wavefunction) to represent different entities (like information
or a guidance wave). The ontology of the theory can then be characterised specifically in
terms of the provision of an account of what it is that is being represented (i.e., what are
the objects or entities).

Under a syntactic conception of scientific theory structure, the division between the
observational and theoretical vocabulary defines the interpretation since it is only the ob-
servational vocabulary that can straight-forwardly be understood as having representa-
tional capacity. The phenomenal world then would seem to define our ontology since it
is the thing that, prima facie, is being represented. This is a fairly restrictive framework
since it does not provide us with an easy means for the characterisation of interpretational
disputes concerning the representation of entities that are not directly observable. Fur-
thermore, since our ontology is cashed out in terms of a single model for each theory it is
difficult to see how one might deal with theories which only provide us with equivalence
classes of solutions. Such disputes and such theories are ubiquitous in the philosophy of
physics and although one might be able to provide a satisfactory account of them within
the syntactic framework, it is certainly not the case that one may do so in an intuitively
easy way. An additional worry is that by making such a tight equation between the on-
tology of a theory and the entire phenomenal world we seem to be divorcing ourselves
from the flexibility within real scientific practice. In physics at least, the objects being
represented within an individual theory are generally taken to be abstracted away from
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the phenomenal world itself by use of idealisations or at the very least the demarcation
of a certain aspect of the world as ‘the system’. Relatedly, since our ontology is, on one
understanding, just the phenomenal world itself, prima facie, we have little leeway to
demarcate ontological attitudes distinct from a simplistic dialectic between realism and
scepticism about the phenomena.

The semantic framework on the other hand provides us with adequate conceptual
space to carry out a more nuanced exploration of all of these issues. The interpretation of
a theory under a semantic conception pertains to the assignment of representational ca-
pacity to both observational and non-observational terms (i.e., both to the terms that stand
for things like detector readings and the terms that stand for things like the wavefunction).
The definition of the theoretical hypotheses of a theory thus allows us room to give empir-
ically equivalent and yet distinct interpretations of a theory. Furthermore, since a theory
is now taken to define a class of models we can naturally describe theories which only
provide us with and equivalence class of solutions. Finally, with regard to the ontology
of a theory the semantic framework provides us with a characterisation which is suitably
flexible and amenable to the practice of science. Given an interpretation the ontology can
be suitably unpacked in terms of the systems that is defined and the observable and non-
observable entities which are represented. The relationship between this ontology, on the
one hand; and both the phenomenal world and ‘reality’71, on the other, is then manifestly
distinguished as a independent issue.

16.2 Underdetermination of what?

The semantic framework for describing the structure of a physical theory provides us with
the formalism to easily demarcate three scenarios which can be grouped together under
the heading underdetermination: theoretical, interpretational and formulation. The first,
and most familiar within the philosophy of science, is when we are presented with dis-
tinct theories each consistent with the same set of phenomena. In semantic terms this
equates either a situation where: i) The same empirical substructures are embeddable
within multiple distinct classes of models and therefore we have the same representation
of the same phenomena forming part of different theories; or ii) The same phenomena can
be represented in terms of different empirical substructures which are then in turn embed-
ded in distinct model classes and therefore we have different representations of the same

71‘[O]ne of the few words which mean nothing without quotes’ Nabokov (1955, p.312).
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phenomena forming part of different physical theories. We thus, in each case, have an
underdetermination of theory by the phenomena such that we have no empirical grounds
for deciding between two theories. We also have an underdetermination of ontology since
given an interpretation of each of our two competing theories we will then be provided
with a choice between two distinct sets of objects or entities (both observable and non-
observable) that are taken to exist. It is our attitude towards this ontology that is what,
for the most part, will inform our response to this underdetermination. However, before
we embark on a discussion of the relation between attitudes to ontology and responses
to underdetermination we must first introduce two further notions of underdetermination
which are of keener relevance to our discussion of the interpretation of general relativity.

As was discussed above (§15.1), in addition to the division between the empirical and
non-empirical aspects of a scientific theory the semantic framework allows for the further
division between the model class of a theory (theoretical structure) and the propositions
which detail the representational capacity of the model class (the theoretical hypothe-
ses). It is the latter which is specified within the interpretation of a theory and which
dictates the class of objects/entities which constitute the ontology. Thus, as well as the
underdetermination of ontology that exists between two theories which describe the same
phenomena there may be underdetermination of the ontology of a single theory when two
or more competing interpretations are available. If the same theoretical structure can be
consistently associated with a different set of theoretical hypotheses, then the ontology
that is being represented by the theory is underdetermined by our freedom as to its inter-
pretation. The classic example of such an interpretational underdetermination is quantum
mechanics where multiple ontologies (e.g., non-local hidden variables or many worlds)
may be associated with the same Dirac-Von Neumann mathematical structure via starkly
different interpretational stances. Similarly, in quantum field theory it has been noted that
one may supplement the same formal structure with an ontology predicated upon a field
type or particle type ontology. Once more, the attitude one has towards ontology can be
seen to dictate the response one makes to its underdetermination, and in many ways the
categories of reaction to interpretational underdetermination parallel those to the underde-
termination of theory by phenomena. We have not yet completely exhausted the capacity
for scientific theory to underdetermine our ontology. There exists a third, somewhat ne-
glected, and yet pernicious, form of underdetermination that is of most relevance to our
project of understanding canonical general relativity.

In addition to the underdetermination entailed by the existence of multiple interpre-
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tations of a physical theory there is a subtly different class of underdetermination which
grows out the existence of multiple formulations. In terms of the semantic framework
we can understand the formulation of a theory as different ways in which the theoretical
structure of a theory (i.e., the model class) can be expressed. The crucial hallmark of dis-
tinct formulations as opposed to distinct interpretations is that (as well as being confined
to the structure aspect of the theory) they are necessarily accompanied with a rigorous
translation dictionary which allows us to transform from the language of one formal-
ism to the language of the other. The interpretation and the formulation of a theory are
closely related. A given interpretation may make use of a particular formulation of a the-
ory and it may even be the case that a particular formulation is conducive to or exclusive
of a particular interpretation (the nature and relative strength of these notions of formal-
ism underdetermination will be considered more carefully in the next section). Again
falling back upon the semantic framework, we can express this interconnection between
formalism and interpretation in terms of the limits that differences within the expres-
sion of the theoretical structure place upon the construction of the theoretical hypotheses.
The strength of the relationship may not be particularly strong, however – such as in the
case of quantum mechanics where the various possible formulations (e.g., Schrodinger
vs. Heisenberg pictures) are found to licence most, if not all, of the various interpreta-
tions equally. However, there is (as the examples that we shall consider illustrate) definite
scope for the choice between competing formalisms to be restrictive enough to mandate
only certain interpretations and therefore only certain ontologies. Thus, we can encounter
underdetermination of ontology which is dictated not by a choice between empirically
equivlent theories, nor even between interpretations of the same theory, but rather by the
seemingly arbitrary choice between different formulations of the same theory. What atti-
tude we should have to ontology and its underdetermination is the topic to which we now
turn.

16.3 The tenets of scientific realism

Realism about the ontology of our best scientific theories is often considered to be the
natural or at least the default attitude to take. But what does it entail? Let us quote at
length from an influential account Jones (1991, p.185-6):

Scientific realism is a doctrine about the relationship of our ideas on the na-
ture of things to the nature of things itself. Part of that doctrine is that there is



§16.3 The tenets of scientific realism 177

a nature of things itself...[Advocates of realism] share the general hope that
the scientific enterprise has the capacity to provide accounts of this nature-
of-things-itself that are true. In what is more or less the “classical” real-
ist position, this hope is elevated to a belief. Indeed, such classical realists
are willing to go out on a limb and claim that theories in the “mature” ar-
eas of science should already be judged as “approximately true”, and that
more recent theories in these areas are closer to the truth than older theo-
ries. Classical realists see the more recent theories encompassing the older
ones as limiting cases and accounting for such success as they had. These
claims are all closely linked to the claim that the language of entities and
processes—both “observational”and “theoretical” ones—in terms of which
these theories characterize the-nature-of- things-itself genuinely refers. That
is, there are entities and processes that are part of the nature-of-things-itself
that correspond to the ontologies of these theories.

The way in which this reference is fixed, and thus the nature of this correspon-
dence, are topics of intense current debate even among the classical realists
who follow the position this far. But their doctrine is a hearty and confident
one. It envisions mature science as populating the world with a clearly de-
fined and described set of objects, properties, and processes, and progressing
by steady refinement of the descriptions and consequent clarification of the
referential taxonomy to a full-blown correspondence with the natural order.
[my italics]

Realism is here being associated with a number of distinct ideas which come together
to form a multifaceted doctrine. We should consider them one by one and see if we can
isolate the kernel of the realist position so far as it pertains to the question to the un-
derdetermination of ontology issue. Firstly, according to Jones, the realist (or at least
the classical realist) believes that particular areas of science are privileged by their ma-
turity and manifest this privilege by the provision of theories which are approximately
true. Since we will be dealing exclusively with the unquestionably mature theories of
theoretical physics from the nineteenth century and later, this maturity qualification will
not be important. Similarly, the relationship between more and less recent theories is not
of particular importance since the object of our analysis is not (for the moment at least)
underdetermination between historically related theories. What is of significance is the



§16.3 The tenets of scientific realism 178

connection drawn between truth (or approximate truth) and the referential relationship
between the ontology of a theory and the ‘the-nature-of- things-itself’. The nature of this
correspondence may be fleshed out in many different ways but what is essential to the
realist position is that such a correspondence exists – the ontology vocabulary of a sci-
entific theory genuinely refers. Thus, given the semantic framework for presenting the
structure of a theory, the realist can be taken to someone who insist that a strong notion
of reference is involved in every viable interpretation of the formal aspect of a theory.
The representational capacity of the model class is not merely with respect to the ‘ontol-
ogy’ of the theory but with respect to the Ontology – by which we mean some notion of
‘the-nature-of- things-itself’ or ‘reality’. It is this second notion of reference that dictates
whether a theory carries with it a notion of metaphysical truth as well as the formal truth
that is necessarily guaranteed to the models it provides. From a scientific realist perspec-
tive it makes sense to say that a given interpretation of a given theoretical formalism can
be metaphysically true (or false) in virtue of genuinely referring (or failing to refer) to
the Ontology of the world. Significantly, this notion of truth is essentially grounded by a
metaphysical rather than empirical or semantic criterion.

In addition to and distinct from this reference tenet Jones involves the realist in the
further specification that a scientific theory postulates not a conceptually vague and in-
definite ontology but rather one which consists of clearly and distinctly defined sets of
objects, properties and processes. Read at face value this would seem a little restrictive
in terms of necessarily signing the realist up to non-trivial metaphysical positions with
regard to the division of the world into these three categories. We do not need to be so
restrictive as to the metaphysical equipment that the realist uses to construct their ontol-
ogy. Rather, the essence of this second aspect to scientific realism is that the referential
relationship that exists between the terms of the ontological vocabulary and their Onto-
logical referents, is one which is between well-defined terms and well-defined entities.
Thus, when we find terms such as ‘electron’ and ‘particle’ within a theory we should take
them to be part of the ontological vocabulary and to refer to electrons and particles.

Intuitively, scientific realism is an attractive stance. In practice it would seem to fit
very well with what many scientists, philosophers and children would regard to be the
natural or common sense way of thinking about science and language – there is a sense
in which we all behave like realists within our everyday lives. However, the realist view
can be seen to be particularly susceptible to being undermined by exactly the type of
underdetermination discussed above (§15.2). In general terms, this is because underde-
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termination scenarios confront us with multiple distinct candidate ontologies and a realist
is committed to a referential relationship holding between a single ontology and some
real and unique class of entities in the world (the Ontology). Thus, there is an obvious
pressure on the realist to either show that true ontological underdetermination cases can-
not occur or else do not occur in practice. Alternatively they might wish to show that if
underdetermination scenarios do occur we may always break the underdetermination by
appeal to external criteria. Above we distinguished three possible levels at which we may
have underdetermination: theoretical, interpretational and formalism. We must be careful
to distinguish the problem posed to the realist as subtly unique to each type.

The most famous and most discussed notion of underdetermination is between em-
pirically equivalent theories. We can make a useful distinction between weak and strong
empirical underdetermination (this terminology is adapted from Ladyman (2007)). The
first (i.e., weak) is when two theories have different possible empirical sub-structures but
currently observed phenomena are accounted for indistinguishably as well by either. The
second (i.e., strong) results from when either: i) the empirical sub-structures of both the-
ories are isomorphic; or ii) both present and all possible future observed phenomena is
accounted for indistinguishably as well by the empirical sub-structure of either theory.

Weak underdetermination is of little real concern and is often found in science, in
general, and in physics, in particular. The realist, like the practicing scientist, can simply
point towards future experiments to probe the phenomenal difference between the two
theories and thus effectively collapse this issue into the problem of induction. Given a
situation of weak empirical underdetermination between two theories, we can only crit-
icise the insistence that the ontological terms of only one of them genuinely refer to the
extent that we endorse inductive scepticism. Every instance of a well confirmed theory
in science can be translated into a case of weak empirical underdetermination by adding
an inductively sceptical clause that arbitrarily makes a different prediction for future but
not past measurements. This is well illustrated by Goodman’s (Goodman (1955)) exam-
ple where we let one theory be any empirical law, such as that all metals expand when
heated, and the other be a claim implying that everything observed so far is consistent
with the first theory but that the next observation will be different. Finding a response
to this kind of weak underdetermination is therefore equivalent to finding a response to
the problem of induction. Although this is undoubtably a very important problem it will
not serve our discussion to consider any of the vast literature on the matter here and it is
enough for our purposes to accept that cases of weak empirical underdetermination are



§16.3 The tenets of scientific realism 180

not genuine underdetermination problems in their own right.

It is at least arguable that the realist can also side-step strong empirical underdeter-
mination of type ii) on the grounds that it relies on an un-reasonable definition. The idea
that theories can have distinct empirical substructures but admit no possible phenome-
nal difference seems to be a dubious assumption. For the first part, it assumes that it is
possible to construct a unique notion of what the observable phenomena related to the
theory are but such a notion is likely to be interpretation dependent so this seems unlikely.
Furthermore, at a given point in time, claiming that there are no possible observable phe-
nomena that will ever be able to distinguish between the distinct structures is effectively
to be something like a scientific realist as to theory of observable phenomena. Thus, in
order to differentiate weak from strong type ii) empirical underdetermination one must
invoke some variant of precisely the doctrine one is attempting to criticise. We therefore
have that this notion of empirical underdetermination is also fairly unproblematic for the
scientific realist since they seem to have good grounds to simply deny its viability.

In the case of type i) strong empirical underdetermination, however, the challenge can-
not be dissolved so easily. That identical or at least isomorphic empirical sub-structures
cannot be distinguished between upon the grounds of phenomenal differences seems triv-
ially correct. Furthermore, that such substructures can be embedded within distinct theo-
retical structures seems consistent with the history of physics at least: the classic example
being special relativity and Lorentz’s ether theory. Confronted with such cases the realist
must either find non-empirical grounds for breaking the underdetermination or else push it
down to the next level: what we have here is actually an interpretational underdetermina-
tion because any two theories which are such that they are strongly empirically equivalent
are actually two interpretations of the same theory. Deferring discussion of the first option
to the next section, we now turn to the problem of interpretational underdetermination of
ontology which is inherent in recourse to the second.

The difference between two theories and two interpretations of the same theory is,
under our semantic conception of a scientific theory, essentially that between two distinct
model classes and two distinct sets of propositions which detail the representational ca-
pacity of the same model class. Whether the distinction between special relativity and
Lorentz’s ether theory is more naturally understood in terms the first type of difference or
the second is an interesting issue would require a detailed analysis to adjudicate. Perhaps
more clear cut is the difference between the various interpretations of quantum mechan-
ics. Although arguably some of these may be taken to be distinct theories (dynamical
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collapse models for example) for the most part the reliance on an identical mathematical
formalism should be taken to indicate equivalent semantic structure. It is how that struc-
ture is cashed-out in terms of an ontology featuring both observable and un-observable
entities that is the essence of the distinction. Essentially, interpretational distinctions are
grounded in the embedding of the same empirical sub-structure within the same theoret-
ical structure, supplemented by distinct sets of theoretical hypotheses. As such the key
issue for the realist is whether these distinct sets of theoretical hypotheses entail distinct
casts of ontological entities. If they do, then the realist is faced with a genuine ontolog-
ical underdetermination case and must recourse to some methodology to privilege one
interpretation, and the corresponding ontology, or the other.

It is important to note here that the second aspect of our notion of scientific real-
ism – that which specifies the referential relationship must be between distinct terms and
entities – is what blocks the most obvious route of escape from interpretational underde-
termination. Since in such cases it is only the theoretical hypotheses and not the theory
which is underdetermined, the realist might attempt to claim that they need not adjudicate
since they have a single true theory and a single real (and genuinely referential) ontology
constituted by the structural overlap between the two sets of interpretationally defined the-
oretical hypotheses. However, such a stance inevitably involves permitting an ontology
constituted by either the shared terms or structural commonalities that preludes at least
some of the ontological terms from each interpretation as genuinely referring to distinct
existential entities. As such it is not, under our lights, genuine scientific realism but rather
some variant of the structural realist programme that will be discussed in §15.5.

Finally, we come to formalism underdetermination. The multiplicitous nature of the-
oretical formulations has potential be taken to be even more pernicious than that of theo-
retical interpretation: firstly, this is because of its ubiquitousness in physics theory; sec-
ondly, it is because of the insouciance with which it is treated within the practice of that
theory. Distinct formulations of Newtonian mechanics date back at least to the late eigh-
teenth century and within relativity theory and quantum mechanics distinct alternatives
to the original formalism were constructed either simultaneously or fairly shortly after-
wards. While the issue of the multiple interpretations of quantum mechanics is regarded
as something close to a scandal within physical theory, that one can write Newtons theory
of mechanics down in terms of force laws, the Euler-Lagrange equations, Hamiltonian’s
equations or the Hamiltonian-Jacobi equation is not generally regarded by practicing sci-
entists as matter of concern or even great interest. There is a big difference between
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multiple formulations of a theory existing and those formulations underdetermining our
ontology. The realist would expect that we are never dealing with a case of the latter;
and in such circumstances the attitude of unconcern with which formal non-uniqueness
is treated, is then exactly in line with a pragmatic predilection for realist attitudes to-
wards ontology. Moreover, since two formalisms are, under our definition, necessarily
connected by a rigorous translation dictionary, there are grounds for arguing that, unlike
in the interpretational case, the ontological differences they may seem to engender will
be minimal. The devil of this matter is, as ever, in the detail. In order to establish that
the realist ontology can be undetermined by differences that originate at a formal level we
will have to carefully consider examples. This is done in Chapters 16, 17 and 18.

On a more abstract level we can consider what criteria must be satisfied for the formal-
ism in particular to underdetermine the realist conception of ontology. The essential point
is that the existence of a translation dictionary at the formalism level does not necessitate
the existence of a translation dictionary at an interpretation level. Thus, provided it is
possible to simultaneously apply distinct interpretations to two formalisms then it is pos-
sible that the difference between the two classes of ontological entities that results cannot
be reduced to a purely descriptive difference. We can use the example of the Heisenberg
and Schrödinger pictures to illustrate this capacity. Labelling these two formalisms H

and S. The key difference between them is that in H states are represented as static and
observables as evolving unitarily, but in S observables are represented as static and states
as evolving unitarily. If the same interpretation is applied to both formalisms (for example
a simplistic version of the Copenhagen interpretation) then although in a sense we will
get distinct ontologies, because of the differing notions of time dependence, this differ-
ence can be reduced to a purely descriptive one – the terms state, observable, evolution
are used differently but the ontology that is described is the same. To a scientific real-
ist such cases pose no great problem since it is only the description of the ontology that
is underdetermined and not the ontology itself – fundamentally we are dealing with the
same interpretation, leading to the same class of entities, only it has been applied to two
different formalisms. The difference between the two formalisms can be understood in
terms of a notational variation and thus does not have any true interpretational weight.72

72It is important to emphasise here that we are discussing the Schrödinger and Heisenberg pictures as
different formulations of quantum mechanics and not Schrödinger and Heisenberg formulations. The dif-
ference between the latter is that between wave and matrix mechanics. As noted by Pooley (2006) this
second case may be seen to engender a genuine case of ontological underdetermination since certain inter-
pretations are found to be preferred by certain interpretations.
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On the other hand, if different interpretations are applied to different formulations then
there is scope for ontology to be underdetermined. However, this is merely a manifesta-
tion of interpretational underdetermination discussed above and not a distinct case. The
key to genuine cases of formalism/formulation underdetermination (as suggested above)
is the possibility of cases where two given formulations of the same theory place different
bounds on the cast of viable interpretations. The strength of these bounds demarcates
three distinct notions of formalism underdetermination: Firstly, they may be strict, mean-
ing that they are such that there is no single interpretation that can be applied to both
formalisms. Secondly, they may exclusive, meaning that there exists at least one inter-
pretation which is applicable to one formulation but not to another. Thirdly they may be
loose; meaning that they are such that they make a particular interpretation more natural
to one formulation than to another.

All three variants are philosophically interesting and are relevant to the conflict be-
tween the tenets of scientific realism and the underdetermination of ontology by physical
theory. In the strict case the problem is most acute since there is no unique ontology which
the realist has prima facie grounds to take to genuinely refer. In the exclusive case the ob-
vious recourse available to the realist is the argument that the interpretations which can be
applied to all formalism are privileged over those that are excluded. Reasonable though
this may be, it is essentially to bring in an external criteria to break a genuine case of un-
derdetermination and not the dissolution of such a case. As such we will defer discussion
of this argument to the next section. Finally, we have the least strong and arguably most
prevalent form of ontological underdetermination as mandated by the diversity of formu-
lations; the loose notion. Here the realist might seem to have some grounds to dissolve the
seeming formalism underdetermination down to a case of interpretational underdetermi-
nation; since it is only whether a particular interpretation is natural or not that is in issue,
most of the philosophical bite seems to come from the diversity of interpretations not
formalisms. However, in practice at least it will prove useful to maintain the distinction
between loose formalism and interpretation underdetermination since different strategies
of response appear more viable in the one case than the other. In particular, those strate-
gies used to confront strong and exclusive formalism underdetermination are better suited
to the loose case than those designed to distinguish between interpretations.
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16.4 Breaking the bonds of ontological underdetermination

In each of the three underdetermination scenarios described in the previous section the
scientific realist is confronted with at least two distinct ontologies and must then find
means to privilege one as true without any empirical grounds for differentiation. There are
two distinct ways in which this may be attempted. Firstly, one may argue that, at the level
of the ontology itself, for privilege on the grounds of some set of metaphysical virtues.
Secondly, one may argue at the level of theory, formalism or interpretation for privilege
on the grounds of some set of scientific virtues. It is important to note here that the
available set of scientific virtues applicable to the particular cases of underdetermination
we have in mind is more restrictive than the larger group often invoked to deal with the
very common situation of weak empirical underdetermination. Differentiation on the
grounds of falsifiability, predictive power or postulation of novel entities is not applicable
to cases in which identical empirical sub-structure are involved. Thus, we must look for
non-empirical virtues, both scientific and metaphysical.

Primary amongst, and common between, the two sets of non-empirical virtues is the
notion of simplicity. In the metaphysical case one might try to argue on the grounds of
a parsimony principle that whichever ontology involves a smaller commitment should be
that which is endorsed as the true one. However, leaving aside the significant doubt as
to whether such a principle can avoid arbitrariness in its specification, it would seem in
tension with the tenets of scientific realism that the ultimate grounds for adducting truth
should be detached from science in such a way. Thus the attitude of a philosopher like
Swinburne (1997) who argues for an ‘ultimate a priori epistemic principle that simplicity
is evidence for truth’ (p.1) does not seem in accordance with the primacy of science as a
guide to truth. It is consistent to contend that such an a priori simplicity principle is only
meant to be applied with all things being equal – thus it may be used as a supplement
to, rather than a substitute for, sciences truth determining power. However, the essential
point is that the use of any ontological parsimony principle that is justified as a priori or
by appeal to some wider purely metaphysical principle, is inconsistent with the scientific
realists presumed attitude of scientism and as such amounts to a revision of their position
into an importantly different doctrine.

The same would seem to apply to any other ‘free-floating’ metaphysical virtue –
whether it be consistency with a particular conception of properties and objects or with
the fabled analytical philosophers arbiter of intuition. We must expect a scientific realist
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to give weight only to metaphysical virtues drawn from a metaphysical framework that is
taken to be continuous with physics. However, as pointed out by French (2011), in ap-
pealing to virtues drawn from a scientifically loaded metaphysics the realist is threatened
by a vicious circularity: it is exactly the underdetermined aspect of the science that is most
relevant to the metaphysics. Thus, the scientific realist is forced onto a rack between their
scientism and their realism: the realism necessitates a metaphysics that can distinguish
between ontologies and the scientism necessitates that this metaphysics must be loaded
up with underdetermined science!

We can therefore see why it is natural for a scientific realist to look to scientific and
not metaphysical virtues in order to break cases of underdetermination. As mentioned
above, the foremost of these is (arguably) again the notion of simplicity. Between theo-
ries and between interpretations there is again the danger of arbitrariness. What does it
mean for one theory or interpretation of a theory to be simpler than another? We have
already mentioned the notion of ontological parsimony but in addition to this we could
consider an intra-theoretic or intra-interpretational linguistic notion of simplicity. The
key point is that the scientific realist cannot argue for the truth of the simpler scientific
theory/interpretation because it is simpler, simpliciter. But rather they must base their ar-
gument on the notion that simpler theories/interpretation are better because science judges
them to be so. Thus, science remains the only arbiter as to truth but it is taken to include
simplicity as a virtue amongst its precepts. Whether this is true in practice is a matter
of examining the history of scientific practice with an applicable notion of simplicity to
hand. This is a huge task not directly relevant to the particular purpose of our discussion
of underdetermination.

The major object of our discussion is to frame the particular issue of formalism under-
determination within the context of the wider question of ontological underdetermination
With this in mind we can introduce a version of the simplicity-as-an-underdetermination-
breaking-scientific-virtue argument that is designed specifically for competing formalisms.
Following North (2009) we may distinguish a particular aspect of a particular formulation
of a physical theory (the example she has in mind and which we shall discuss in detail
in the following section is the analytical formulation of Newtonian mechanics) as being
in some sense intrinsic to the formalism and therefore not dependent on arbitrary aspects
of the descriptive apparatus used. An insightful example is the geometric structure of the
mathematical spaces used in theories of mechanics:
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The geometric structure of a mathematical space is given by the geometric
objects defined on it. Since geometric objects are invariant under coordinate
changes, so too is geometric structure. Geometric structure is given by quan-
tities that remain intact while we alter what are merely arbitrary choices of
description. This is what we have in the backs of our minds when we say
that we are free to choose different coordinate systems for the plane. We
mean that choosing different coordinate systems does not alter the underly-
ing structure. It only alters our description of that structure. North (2009,
p.6)

The first step in North’s argument is the insistence that it is this mathematical structure73

which should be taken as the ontological vocabulary of a theory of fundamental physics.
The application of this style of interpretation to different formulations of the same theory
is very likely to lead to different notions of ontology. However, once such an ontologi-
cal underdetermination has been set up exclusively in terms of structure, one then has a
precise criteria for differentiating between the two candidate ontologies in terms of sim-
plicity: we simply reject the ontology which is based upon the formulation that uses more
than the minimal structure. This argument is immediately applicable to cases in which
we are confronted with formulation driven ontological underdetermination of any of our
three types since in each case it gives a means to distinguish between any two distinct for-
malisms. There is also an immediate relevancy and precision to the notion of simplicity
utilised. However, again our scientific realist must find scientific grounds for asserting this
principle of structural parsimony is a guide to truth. Thus, we must look to the history
of science to verify the viability of a scientific realists utilisation of North’s arguments
(structural minimalism could be used as an a priori metaphysical virtue but such an idea
would take us away from the focus of our discussion).

The idea that the formulation of a theory with the least structure is that which is most
likely to be conducive to future advancement of the field has considerable intuitive cur-
rency. However, it in fact has scant support within the modern history of physical theory
at least (this is perhaps to be contrasted with the reasonable evidence for simplicity as
grounds for success between theories). The major preoccupation of physics during the
second half of the twentieth century was with the construction of quantum field theories.
Such theories are generally gauge theories and as such contain what Redhead (2003) fa-

73n.b. unlike the notion of structure that we will discuss later North’s structure is particular to a formalism.
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mously designated ‘surplus structure’. According to North’s structural simplicity princi-
ple (or at least our interpretation of it) one would expect the development of these theories
to be centred upon the non-surplus structure and that all else would have been discarded
upon the unceasing march of progression that is modern physics. However, as noted by
Redhead and adeptly summarised by French:

There are numerous examples of the fruitful role of such surplus structure...Redhead
himself considered the significance of gauge symmetries within field theory
in this context: understanding gauge transformations as acting non-trivially
only on the surplus structure, he suggested that non-gauge-invariant proper-
ties can enter the theory via this structure leading to further developments via
the introduction of yet more surplus structure such as ghost fields, etc. French
(2011, p.9)

The role and status of surplus structure within the constrained Hamiltonian formulation
of gauge theory will be discussed in more detail in §17.2 so we will not enter in to a de-
tailed analysis of this counter argument to North style structural realism on these grounds
here. However, even this brief passage is enough to suggest that there is a good case to be
made for surplus structure to be an asset rather than an impediment to scientific develop-
ment. Thus the argument that we may utilise minimal formal structure as a scientifically
informed criteria to distinguish between formalism driven cases of underdetermination of
ontology has difficulty getting off the ground.

The potential utility of certain structural aspects of the formulation of a physical the-
ory suggests a different candidate for a scientific virtue that the scientific realist may
appeal to for adjudication: heuristic fruitfulness. As in the case of competing theories
it is often found – once we are furnished with the admirable vantage of hindsight – that
certain formal aspects of one of the candidates have proved invaluable to the successor
theories. In the theoretical underdetermination case an obvious example is the notion of
Minkowski spacetime which could be taken to lead one naturally from special to general
relativity but had no correlate in the scientific cul-de-sac that is Lorentzian ether theory.
Again bringing our particular focus upon underdetermination between formulations, there
seems arguable grounds for, given the appropriate historical evidence, the scientific real-
ist retrospectively privileging that formulation that proved to be more fruitful. We are
here, of course, assuming that it is viable for a formulation rather than a theory to have
a successor; and the extent to which this assumption is a reasonable one can only be es-
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tablish by historical evidence. However, (among other examples) we are able to point
to the example of the Lagrangian formulation of Newtonian mechanics and its successor
in Lagrangian quantum field theory to support the notion of a viable formulation-theory
successor relationship. It is thus at the very least possible for us to have grounds for
privileging that ontology mandated by interpretations of a formalism which has proved
to be more heuristically fruitful as being potentially true over and above that mandated
by those interpretations that are exclusive to (or at least aligned to) the rival formulation.
Thus heuristic fruitfulness may allows us to break the underdetermination so far as it is
formulation rather than interpretation driven.

It is crucial, however, that we can form some definite concept about what it means
for a formalism in of itself to be heuristically fruitful. This cannot be purely the retro-
spective specification that, in point of fact, it has proved a fertile ground for the genesis
of new theoretical structures. Rather we must isolate some feature common to fruitful
formulations and be able to utilise this feature to decide between competing formalisms
before the underdetermination has already been broken by the course of theoretical de-
velopment. A good candidate for such a feature is captured by the notion of ‘heuristic
plasticity’ (Saunders (1993)) which (according to French) describes the ‘feature of cer-
tain mathematico-physical entities which allows for their generalisation into new forms,
or extension into new domains’ French (2011, p.7). Again, we will defer discussion of
particular examples to our case studies. But in general, it seems difficult to dispute that the
presence of such structures before they have been utilised in a viable successor theory can
at most only indicate tentative rather than definite grounds for privilege of one formalism
over another – until the arrival of the successor theory it is merely a ‘promissory note’ for
heuristic plasticity. In fact, just as supposedly surplus structure may prove invaluable to
scientific development so might seemingly non-plastic structure and what appears to be
a heuristically malleable structure according to the presets of one scientific era may be
an unfruitful dead end. Despite these concerns the notion of heuristically fruitful struc-
ture is too interesting to be discounted altogether and we will return to it in detail when
conducting our case studies.

A final virtue, that we will consider in scientific rather than metaphysical terms, and
which is particular to interpretational and loose/exclusive formulation underdetermina-
tion, is the notion of flexibility. Given a case of underdetermination, where there exist
multiple interpretations for a given theory or formalisms that can be given multiple inter-
pretations, we should opt for the formalism/interpretation which is most flexible. Thus, if
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a certain formalism excludes certain interpretations but another is not so selective then we
should favour the more permissive. Similarly, if an interpretation (or family of interpre-
tations) is found to be widely applicable to different theories one might argue that there
are grounds for, given a case of underdetermination, that interpretation to be privileged
on the grounds of its flexibility. Although tenable, the notion of flexibility as a virtue
would seem in conflict with the explanatory role of physical theory. If we are always
to privilege the most flexible formalism/interpretation then the type of scientific theory
that will emerge will be that which places the least restriction on the types of theoretical
hypotheses that can be incorporated. However, if we accept the Kitcher (1981) notion
of scientific explanation in terms of explanatory unification then this will be to favour an
approach to scientific theory which is least explanatory.

This argument can be illustrated explicitly by considering the notions of argument
pattern and stringency that are key to the Kitcher model. Essentially, an argument pattern
is an ordered triple consisting of: i) a series of sentences with the non-logical terms re-
placed by dummy letters; ii) a set of instructions on how to fill these sentences; and iii) a
scheme which allows us to classify the sentences as premises or conclusions and which
tells us which rules of inference are used. Stringency is then the degree to which a par-
ticular argument pattern places restrictions upon the class of arguments that implement it.
An explanation is a set of argument patterns which connect a why-question with a class
of phenomena and we have that: if an explanation uses a smaller number of more strin-
gent argument patterns to provide a larger the number of conclusions, then it constitutes
a more unificatory explanation. This scheme is not the only model for scientific explana-
tion74. However, it at least provides us with a good response to the well know problem of
irrelevance (Woodward (2009)) which hampers the earlier Deductive-Nomological model
(Hempel and Oppenheim (1948)). Furthermore, it also provides us with a notion of what
it means for one explanation to be better than another since the provision of a more unifi-
catory explanation intuitively constitutes a deeper and more powerful understanding. This
notion of a more explanatory theory however would seem to be in conflict with the prefer-
ence for a theory including a formalism/interpretation that is more flexible. In particular,
preferring more stringent argument patterns is in prima facie conflict with preferring the-
oretical structures which are more flexible.

Thus, we have reasonable grounds to reject this final candidate for a scientific virtue
in general terms. Before we embark on the more applied analysis of the three case studies,

74The Nerlich (1979) notion of geometric explanation provides an interesting, contrasting example.
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we will first investigate an ontological attitude alternative to scientific realism. It will be
found that this alternative furnishes us with distinct notions of ontology which drives us to
embrace rather than break cases of underdetermination. Thus our test cases will be used
as exhibits in the trial not just of scientific realism but of this second viewpoint as well.

16.5 Realism, science and structure

Structuralism as a ontological stance within the philosophy of science has a long history
and can be associated with a number of markedly different ontological stances.75 How-
ever, for the purposes of our analysis it will prove instrumental to consider a specific
structural realist position that is suitable for the construction of a dialectic with respect
to the scientific realist stance. This is the ontic structural realism which is defended by
Ladyman and Ross (2007), and that arguably draws closest inspiration from the ‘best of
both worlds’ structural realism of Worrall (1989).

The essential difference between ontic structural realism (OSR) and scientific realism
is an adjustment within the classification of which aspects of a theory are taken to consti-
tute the ontological vocabulary; along with a corresponding adjustment as to the category
of existent substance (for want of a better word) which this vocabulary may be taken to
refer. Specifically, it is the view that distinct objects or individuals are not fundamental
but rather what it real, and what is referred to in the ontological vocabulary of a scientific
theory, is inherently structural in nature. As a view it can be distinguished from a more
Aristotelian flavour of structural realism by the inclusion of mathematical objects such
as sets and groups within the class of real structures rather than an emphasis on concrete
structure.76 Similarly it is clearly distinguished from an epistemic version of a structural
realist stance by being constituted by metaphysical assertions of structural ontology rather
than merely the claim that we should only believe in the structural content of theories as
an epistemic constraint (Ladyman (1998)).

OSR is advanced by its authors as a solution to a number of thorny problems within
the philosophy of science. We shall briefly consider the principal amongst these so as to
give some background to the position beyond the underdetermination issue which is our

75There is no bar on someone who takes a structuralist view as to scientific theory, simultaneously back-
ing away from realism as to the structural ontology that is being endorsed. Two obvious alternatives are the
structural empiricism of van Fraassen, B. C. (2008) and the minimal structuralism (which is more deflation-
ary with regard to the status of individuals) endorsed by Rickles (2008).

76Thanks to B. Long for this point.
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main focus. The first problem is that of the pessimistic meta-induction. Essentially, it is
drawn from the observation that historically successful theories are often, if not always,
eventually supplanted by successor theories which refer to a distinct or even incommensu-
rable cast of theoretical objects or entities. We can therefore make the inductive argument
that, since this has consistently been the case in the past, then it likely to be the case in
the present. Thus, provided we accept this meta-inductive step, we should also accept
that the entities referred to in the (conventionally constituted) ontological vocabulary of
our current best theories are very likely to not be referred to by our future best theories.
Thus, given the appropriate historical evidence from within mature scientific practice (see
Laudan (1981)) we have grounds for doubting the existence of exactly the ontology that
the scientific realist wishes to endorse. In essence, the pessimistic meta-induction pulls on
the same cord as the underdetermination issue discussed above (§15.2-4) since it serves
to cast doubt upon the ability of the scientific realist use our ‘best current theories’ to
give us a notion of ontology (in terms of set of distinct entities at least) that is both robust
and unique. Moreover, it also serves to weaken one of the principle positive reasons for
believing in scientific realism: the viability of explaining the success of science in terms
of (approximate) truth and reference.

According to the no miracles argument the opponent of scientific realism suffers from
a distinct deficit in resources when trying to explain the empirical success of science taken
as a whole. While the scientific realist may appeal to the truth tracking nature of the on-
tological vocabulary with which they endow physical theory as providing an explanation
for the past and continued ability of scientific theory to both explain existing phenom-
ena and predicting new phenomena, the anti-realist may make no such appeal. Thus,
unless we accept scientific realism, the success of science is adjudged to be miraculous.
Putting aside the standard anti-realist responses to such an argument (in particular the
provision of a positive, non-realist doctrine for describing both science and its success), it
can be argued that the scepticism which pessimistic meta-induction motivates towards the
entities involved in the scientific realist stance, serves to undercut the supposedly success-
explaining value that these entities have. Essentially both the no miracles argument and
pessimistic meta-induction have the same data drawn from this history of scientific theory
change, coupled with the improvement of empirical adequacy; and thus, by accepting the
first we cast doubt upon the other. In order to motivate realism based upon the history
of science we must be provided with an explanatory account of its success that does not
fall foul of the meta-inductive existential undermining of the referents of its ontological
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vocabulary.

In order to meet this challenge within the bounds of scientific realism as we have
defined it the most obvious move is to insist that the abandoned terms in the ontological
vocabularies of old successful theories did, in fact, genuinely refer by the lights of our
current theories. Such an argument can only be truly tested by examination of a stock
of historical examples and such an analysis unfortunately falls outside the scope of our
current project. However, in general, it seems that we have good reason to be dubious
of such a move. Although it may be possible to make the relevant notion of reference
rigorous, perhaps by some causal theory of reference (Hardin and Rosenberg (1982)),
in removing the entities referred to away from the theories in which the terms doing
the referring are defined, we undercut our ability to be genuine scientific realists about
our current theories. As pointed out by Ladyman and Ross (2007) such a re-evaluation
of reference would imply that Newton was actually talking about geodesic motion in a
curved spacetime when he talked about the natural motion of material objects. Meta-
inducting from this account of a past successful theory to our current best theories would
render the real referents of the ontological vocabulary within these theories as almost
completely discontinuous with those same theories! In spirit, if not in essence, this would
seem to be contrary to any claim that our best scientific theories are a good description of
the world-in-of-itself.

A second, and potentially more successful, methodology for the scientific realist to
enable a robust reconstitution of their notion of reference is to adopt the strategy de-
fended by Psillos (1999). We will consider his arguments towards resisting the pull of
pessimistic meta-induction in some detail since they arguably constitute the best realist
alternative to OSR in dealing with both this and the underdetermination issue. Essential
to Psillos’ argument is the idea that truly successful scientific theories are distinguished
by the provision of (successful) novel predictions. He carefully defines this notion in the
following terms:

A ‘novel’ prediction is typically taken to be the prediction of a phenomenon
whose existence is ascertained only after a theory suggests its existence. On
this view a prediction counts as novel only if the predicted phenomenon is
temporally novel, that is, only if the predicted phenomenon was hitherto
unknown...[However,] the notion of novelty should be broader than what is
meant by ‘temporal novelty’...we should speak of ‘use novelty’, where, sim-
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ply put, the prediction of a known fact is use-novel relative to a theory, if
no information about this phenomenon was used in the construction of the
theory which predicted it. Psillos (1999, p.101)

With this, seemingly reasonable, notion of what it means to be be a genuinely successful
scientific theory in hand one might then set about knocking down many of the histori-
cal data points upon which the pessimistic meta-induction argument is based. However,
by Psillos’ own admission this criterion of success does not serve to exclude all of the
relevant historical examples – there are past scientific theories which did provide novel
predictions despite the fact that they contain theoretical terms within their ontological vo-
cabulary which (by the lights of current theory) did not refer. Thus, the notion of novel
predictions is not taken to undercut the pessimistic meta-induction on its own. Rather,
we make a intra-theoretic division between; those theoretical terms within the ontological
vocabulary which are inessential to a theories success in terms of producing novel predic-
tions (the idle terms); and those which are essential to the production of those predictions
(the indispensable terms). It is the latter rather than the former which Psillos claims we
should be realists about:

...the success of past theories did not depend on what we now believe to
be fundamentally flawed theoretical claims...the theoretical laws and mech-
anisms which generated the successes of past theories have been retained in
our current scientific image. Psillos (1999, p.104)

...it is precisely those theoretical constituents which scientists themselves be-
lieved to contribute to the successes of their theories (and hence to be sup-
ported by the evidence) that tend to get retained in theory change. Whereas,
the constituents that do not ‘carry-over’ tend to be those that scientists them-
selves considered too speculative and unsupported to be taken seriously...If,
therefore, there is a lesson which scientists should teach realists it is that an
all-or-nothing realism is not worth fighting for. Psillos (1999, p.107)

For this more selective version of scientific realism to be convincing it must be supported
by historical examples that serve to undercut the pessimistic meta-induction; examples
where theory change can be described in terms of the discarding of only the predictively
idle ontologically relevant terms. This Psillos attempts for the caloric theory of heat and
the optical ether theories of the nineteenth century (see his 1999 §6). Putting to one side
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the strength of his examples (which again we will not examine; see Ladyman and Ross
(2007, §2.2.2)), and accepting for the moment that the historical evidence for pessimistic
meta-induction can be so undercut; what bearing does this reconstituted scientific real-
ism have on our underdetermination issue? It is certainly conceivable that the disparity
between the ontological vocabularies of two empirically underdetermined theories (or in-
terpretations of one theory) might consist of entirely idle terms. In such a scenario we
would no longer have a genuine case of ontological underdetermination because the es-
sential ontologically relevant theoretical vocabulary would be common to the two theories
(interpretations) and thus can be consistently taken to refer to a unique cast of existent en-
tities. However, the viability of the Psillos version of scientific realism as a response to
both underdetermination and pessimistic meta-induction (in general) relies upon both: i)
our ability to make a precise and principled distinction between the indispensable and idle
terms; and ii) this distinction cohering with the terms common between pairs of under-
determined theories (or interpretations) and precursor and successor theories. Over and
above the issue of whether his (or other) specific examples may (or may not) be taken
to support ii), a strong argument is available against i) based upon an adaptation of the
famous Duhem-Quine Thesis (DQT).

The DQT (or at least the version of it which we will consider) can be given in terms
of two separate sub-theses (Ariew (2011)): i) since empirical statements are intercon-
nected, they cannot be disconfirmed in isolation; and (ii) we can always hold a particular
statement true, in-spite of any recalcitrant evidence, by making adjustments to other, not
directly empirical, statements (the auxiliary hypotheses) within the theory.

In terms of the semantic conception of theory structure which we have introduced
above this (roughly speaking) equates to an ability to always re-embed an empirical
sub-structure, incorporating any new phenomena, within essentially the same theoreti-
cal structure. This is supposedly always made possible by making small adjustments to
the non-fundamental (and therefore auxiliary) aspects to the theoretical structure. This is
a particularly strong thesis and if accepted would entail a form of global underdetermina-
tion of theories by phenomena. This hardly seems prima facie reasonable (close analysis
is taken to imply that any form of the DQT will rest on number of highly non-trivial
assumptions; see Psillos (1999, p.159) and reference therein for discussion).

However, we need not invoke the full strength version of the DQT to cast doubt upon
the viability of Psillos’ idle/indispensable distinction. So long as we accept that the terms
taken to be essential to a theory’s provision of novel predictions have some non-trivial
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dependence upon at least some of the background theoretical structure used it seems rea-
sonable to posit that the distinction can never me made in absolute terms. In addition to
the obvious ambiguity that arises from the type of the dependency between the empir-
ical structures related to the novel predictions and the essential theoretical constituents
to which they are taken to correspond, there is also clear scope to argue that the former
(and perhaps the latter) will also inevitably be connected to some of the idle terms via the
shared background structure. We can formalise our argument as follows (again relying on
the semantic conception of scientific theory):

− P1. Certain empirical sub-structures within a theory relate to specifically to the
novel predictions of the theory

− P2. These empirical aspects of the theory are connected to certain theoretical con-
stituents via a set of auxiliary theoretical structures

− P3. These theoretical constituents are designated as the ‘essential terms’, and the
rest of the theoretical structure is ‘idle’.

I will assume that P1-3 are uncontroversial. Now, if we then accept that:

− P4. There always exists at least some alternative auxiliary theoretical structures
which lead to a theory with identical predictions but which connect at least some
of the empirical sub-structures relating specifically to novel predictions to different
parts of the theoretical structure.

then we have

− C. For any given theory the idle/essential distinction between theoretical aspects of
the theoretical structure cannot be made in absolute terms.

Thus, we need only endorse a weakly holistic conception of scientific theory in order
to muddy the waters of Psillos’ ontologically fundamental distinction. Given that such
a notion of science seems, prima facie, irresistible we have good reason to doubt that
Psillos’ program can succeed since the idle/essential distinction cannot be drawn with
sufficient clarity, even in principle.

So, if all-or-nothing scientific realism is not worth flighting for, and Psillos’ restrictive
version may be taken to be beset by inherent ambiguity, what is there left for a scientific
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realist to be realist about? What, if any, aspects of scientific theory can survive the gaunt-
let of pessimistic meta-induction and navigate the ontological undermining of underde-
termination? According to the ontic structural realist the only answer is the structure. As
mentioned above the inspiration for OSR can be traced to the (non-ontological) structural
realist arguments of Worrall (1989). In his influential paper Worrall argues that the force
of the pessimistic meta-induction (as embodied by the historical phenomena of scientific
revolutions) is strong enough to thwart the type of scientific realist position we have been
discussing. However, he also accepts that the argument towards realism based upon the
continued novel predictive success of science in general has considerable psychological
force:

The ‘no miracles’ argument cannot establish scientific realism; the claim is
only that, other things being equal, a theory’s predictive success supplies a
prima facie plausibility argument in favour of its somehow or other having
latched onto the truth.’ Worrall (1989, p.102)

Furthermore, he is not satisfied with the standard anti-realist response whereby theories
are understood as making no real claims beyond their directly empirical consequences and
the continuity of successful empirical content between theories alone is taken to account
for science’s success:

Such a [pragmatic or constructive anti-realist] position restores a pleasing,
cumulative (or quasi-cumulative) development to science (that is, to the real
part of science); but it does so at the expense of sacrificing the no miracles
argument entirely. After all, the theoretical science which the pragmatist al-
leges to be insubstantial and to play a purely codificatory role has, as a matter
of fact, often proved fruitful. That is, interpreted literally and therefore treated
as claims about the structure of the world, theories have yielded testable con-
sequences over and above those they were introduced to codify and those
consequences have turned out to be correct when checked empirically. Why?
The pragmatist asserts that there is no answer. Worrall (1989, p.102)

The key point taken by Ladyman and Ross (2007) from Worrall’s dual use of the no-
miracles argument and pessimistic meta-induction is that there is considerable force push-
ing us towards a view in which there is something objectively real corresponding to sci-
ence’s description of the world (and therefore no need for miracles) but this something
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is not the distinct cast of entities and objects that are undermined by pessimistic meta-
induction. Rather, according to Ladyman and Ross, we should avoid being ‘metaphysi-
cally committed to the existence of self-subsistent individuals’ and assert that what exists
are ‘real patterns’ which are the referents of the structural components of scientific the-
ory. Furthermore, they also assert that the ‘material mode’ of reality additionally contains
objective modal structures which are in turn represented by logico-mathematical formal
modal structures. These structures are taken to be retained and developed between succes-
sive scientific theories over and above dramatic change in the theoretical entities described
by the theories and thus, by rejecting the conventional realist specification of the ontolog-
ical vocabulary, the proponent of OSR is able to undercut the anti-realist thrust of the
pessimistic meta-induction. Simultaneously, by providing a realist type account of sci-
ence with a robust referential relationship holding between the relevant structural aspects
of theory and reality, OSR enables a stance which can ride the psychological current of
the no miracles argument:

If theorists are able sometimes to capture the objective modal structure of
the world then it is no surprise that successful novel prediction sometimes
works, and the practice of theory conjunction ought to lead to progress at the
empirical level (Ladyman and Ross 2007 p. 123)

Thus, as a position taken specifically with regard to problems deriving from tension be-
tween our philosophical description of science and the history of science’s development
and success, there are good reasons to favour the ontic structural realist programme.

The programme also has potent applications within modern theories of physics where
the notion of primitive self-subsisting individuals/objects is adjudged to be problematic
(or at the very least be underdetermined by the interpretation of the theory in question).
French (2011), notes that the received view on quantum statistics (both the Bose-Einstein
and Fermi-Dirac types) is that they imply that particles can no longer be regarded as
individuals. In a similar vein to this received view, Redhead (1999) argues that because
the global number operator of a relativistic quantum field theory cannot be broken down
such that it gives us a unique local notion of particle number:

In a truly local physics, particles don’t exist in the relativistic theories, except
in an attenuated ‘approximate’ sense, which may be good enough for physi-
cists but definitely not for philosophers trying to understand in absolute ‘all
or nothing’ categories what QFT is about!
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Teller (1995) makes use of similar arguments to motivate an ontology of ‘quanta’ rather
than particles possessing (self-subsisting) primitive identity within QFT. However, with
regard to the non-relativistic quantum mechanical case at least, the case against indi-
viduals is not entirely straightforward since the novelties of quantum statistics may be
explained in terms of restriction on allowed states of a quantum system rather than a
indication of the absence of primitive individuals:

With the reduction in statistical weight explained by the inaccessibility of
certain states, rather than by the non-classical metaphysical nature of the par-
ticles as non-individuals, one can continue to regard them as individuals for
which certain states are now inaccessible – just because the particle labels
are statistically otiose does not mean they are metaphysically so. French and
Krause (2006, p.150)

Thus, we can conceive of the situation as one of (in our terms) interpretational underdeter-
mination of the ontology of quantum mechanics: two interpretation packages are available
for the same quantum mechanical formalism, particles-as-non-individuals and particles-
as-individuals (subject to some accessibility constraints). One might therefore reasonably
conceive of the situation in terms of these two competing interpretations of individuality
within quantum mechanics as simply paralleling the competing realist interpretations of
science as embodied by OSR and the ‘object-orientated’ standard scientific realism of a
philosopher such as Psillos. However, the ontic structural realist can avail themselves of
a more sophisticated response to this underdetermination which is unavailable to the tra-
ditional scientific realist. Following Ladyman (1998) an advocate of OSR may argue that
both packages are merely manifestations of the underlying purely structural ontology. In
practice, for this case it means that we arrive at a picture such that:

...a particle will be understood as a fermion, say, in terms of the relevant (anti-
symmetric) representation of the permutation group (and hence the relevant
symmetry of the wave-function) and as an electron in terms of properties of
mass and spin associated with the relevant irreducible representation of the
Poincaré group, and so on. French and Krause (2006, p.173)

At this point a clear objection that can be made is that the particular variant of ontological
structural realism that Ladyman, Ross and French are advocating is not the only option.
We could perhaps be deflationary rather than eliminative towards individuals/objects and
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adopt something closer to Rickles’ (2007) minimal structuralism. In fact, it could seem in
general that the OSR programme implicates itself in a response to situations of ontological
underdetermination within science which is to itself underdetermined. Such criticisms
do seem well placed but the subtleties which their evaluation requires are not of direct
relevance to our discussion. In particular, to the extent to which a less metaphysically
loaded structuralism provides a satisfactory resolution of issues of underdetermination in
virtue of its structuralism, the OSR programme will also provide a satisfactory resolution.
Moreover, the dialectic with the scientific realist, which is fundamental to our analysis, is
most clearly constituted using the more metaphysical variant of structuralism that we have
been considering precisely because of the thicker notion of ontology of entities/objects
which it entails.

The most pertinent feature of OSR for our current discussion is the extent to which its
structural notion of ontology allows for the dissolution of cases of formalism underdeter-
mination without the abandonment of either the realism or the science aspect of scientific
realism. Essentially, we can understand the scientific realist as committed to three key
ideas: i) the fundamental supremacy of (mature) science as a guide to the nature of re-
ality; ii) the genuine referential relationship existing between the ontological vocabulary
of our best scientific theories and world-in-of-itself; iii) the constitution of both the onto-
logical vocabulary and that to which it referees in terms of distinct classes of objects and
entities. As has already been mentioned above, OSR involves the rejection of the third
of these and, on a superficial level at least, we can see that it is this move that engen-
ders a resolution of the underdetermination issue without recourse to anti-realism. Given
two formulations of a theory interpreted in terms of two different sets of entities we can
avoid underdetermination by constituting our ontology not by the entities themselves but
by some overall structure lying behind them. It is this structure that is real and which we
take to be referred to by the structural ontological vocabulary of the theory.

A well placed criticism (due to Pooley (2006)) that has been levelled at OSR, is that
the specification of a structural ontology may not on its own be sufficient to resolve a
genuine case of ontological underdetermination, at least as it exists between formula-
tions. As is well illustrated by the type of ‘structural realism’ defended by North, it is
quite possible for the structural ontological vocabulary itself to be underdetermined if it
is characterised in such a way as to be particular to each formalism (see the three cases
studies of Chapters 16, 17 and 18 on this point). Thus, the structures that the defenders
of OSR are looking to endorse must be such that they span between the appropriate for-



§16.5 Realism, science and structure 200

mulations – it must be common structure. An obvious candidate for such structure is the
mathematical transformations and interrelations that constitute the translation dictionary
between two formulations. However, such a characterisation of the structural ontology
is also problematic. As further noted by Pooley (2006), such interrelations between for-
mulations offer only a very thin notion of structure that alone seems insufficient to be
the fundamental furniture of the world: what is needed is a ‘single, unifying framework
[which we can] interpret as corresponding more faithfully to reality than do its various
[conventional] realist representations’ (p.7). Thus, the onus is on the ontic structural re-
alist to offer more than a purely set or group theoretic characterisation of the common
underlying structure invoked to dissolve cases of underdetermination. What is needed,
in essence, is a physico-mathematical framework that generalises the structures relevant
to each formulation in such a way as to illustrate that each formulation is merely a dif-
ferent representation of the same underlying ‘reality’. Such a framework must inevitably
include dynamical77 as well as purely mathematical aspects and will therefore be partic-
ular to the formulations and theories to which it pertains. The extent to which this highly
nontrivial task proves possible in practice will be one of the key issues examined via the
investigation of our three test cases in the following three chapters.

If we, for the time being, accept that ontic structural realism does provide a good so-
lution to problems of ontological underdetermination. This would mean that in addition
to its utility for providing a notion of ontology that evades both the no-miracles and pes-
simistic meta-inductions problems, OSR would have the additional strength of providing
us a solution to the metaphysical underdetermination issue. Importantly, there is no guar-
antee that the notion of structural ontology particular to the solution of the two different
problem types will cohere. It seems perfectly possible that the structural commonali-
ties that are retained between precursor and successor theories will be found to be of an
entirely different type to those held, for example, to solve the quantum individuals inter-
pretational underdetermination issue. In that case, at least, one could argue that exactly
the same group theoretic structure invoked by French to resolve the underdetermination of
interpretation issue, could be identified as the ‘common structure’ between quantum me-
chanics and its classical mechanical forebears. So there is a prima facie, viability to such
consistency existing. However, as we have just been discussing, mere group theoretic
mathematical structure might not seem sufficient to constitute our ontology. In general,
the task of providing the kind of generalising physico-mathematical framework that is

77On this point see Bain (2009).
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taken to be required for dealing with underdetermination issues within a theory seems
difficult enough without the additional requirement that this framework also be common
between theories. To some extent the two tasks seem to pull in different directions since at
least under a revolutionary type conception of theory change we might expect the notion
of a generalising framework between successive theories to be very hard to construct.

This question of self-consistency within a structural view of scientific ontology will
be taken up in the next section in the specific context of formalism underdetermination
within a classical theory and historical inter-theoretic structural continuity with the cor-
responding quantum theories. Our major focus will be whether of not structures can
be isolated that are simultaneously: i) common between formalisms; ii) not undercut by
PMI; iii) is a genuine physico-mathematical framework that includes dynamical structure.
We will thus not here make a detailed consideration of whether we could hope to meet
Pooley’s challenge that a viable structural realist ontology must be able to be understood
‘as corresponding faithfully to reality’, in the same sense as a traditional realist ontology.
Answering such a question relies upon a subtle understanding of what attitude towards
ontology the ontic structural realist may take and, as discussed above, such issues will be
neglected in our current discussion.

16.6 Quantisation, structuralism and underdetermination

We will here give a brief recapitulation of some of the principal arguments and concepts
that have already been introduced within earlier parts of this thesis. We do this both for the
sake of clarity, and in order to further motivate the analysis of the next section. Let us start
with quantisation. Within Chapter 3 we detailed three methodologies for the quantisation
of a classical standard gauge theory: geometric quantisation, constraint quantisation and
path integral quantisation. For a non-standard gauge theory things are more complicated,
and the relational quantisation technique of Chapter 9 is taken to constitute, as yet, the
only viable methodology.

We have already considered the problem of quantising a gauge theory within non-
standard structure in some detail and a particularly important conclusion has been that
the problem of providing a conceptual basis for any quantisation procedure seems to be
intertwined with questions of interpretation related to the classical theory considered on
its own. Most significant has been the relationship between reduction and quantisation
procedures when applied to canonical gauge theories within which the Hamiltonian is
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itself a constraint. Problems in the interpretation of the reduced phase space in the context
of a non-trivial representation of dynamics were connected to arguments towards the non-
applicability of standard quantisation techniques. In addition to this line of argument
from the conceptual analysis of classical theory to the formal structure of quantisation
techniques, there is also significant scope for the converse; arguments from the formal
structure of quantisation techniques to the conceptual analysis of classical theory. In
particular, in a standard gauge theory at least, one may argue towards the primacy of
the reduced phase space on the basis of the predication, to varying degrees, of all three
quantisation techniques upon its symplectic structure. It is this second style of argument
that could perhaps be seen to lend itself particularly well to the support of a structural
realist stance with regard to the ontology of physical theory.

Quantisation is a bridge between classical and quantum theories and thus provides a
direct and rigorous way of linking historically successive theories.78 That the bridge itself
is found to point to certain structures within the predecessor theory as in some way essen-
tial to that theory is extremely interesting. Briefly restating one of the principle motivating
arguments of ontic structural realism (OSR), it is observed that throughout the history of
science empirically successful theories are often, if not always, replaced by theories which
include starkly different types of theoretical entities and objects. From this we may make
the pessimistic, meta-inductive leap to the conclusion that the terms included within our
current best theories that relate to theoretical entities and objects should not be thought of
as constituting a genuine, robustly referential ontological vocabulary. Rather, the propo-
nents of OSR contend, we should focus our attention on the structural aspects of physical
theory and attempt to reconceive the notion of what constitutes the ontological vocabulary
in terms of the structure common between successive theories. If the formal structure of
quantisation techniques itself points to certain key structural facets of classical theory then
it seems natural to ask what these structures correspond to within the quantum theory. We
may then be able to specify precisely the structures that, according to OSR, should be rei-
fied when constituting a structural scientific ontology at the classical/quantum boundary
such that it is robust to the challenge of pessimistic meta-induction.

A further motivation for OSR that has been considered in some detail within our dis-
cussion above was that based upon formalism underdetermination. Again restating some

78An alternative structural approach to conceiving of an ontology at the classical/quantum boundary
would be to focus upon the classical limit of the relevant quantum theories. We will here neglect a detailed
consideration of this option since it would provide little insight into the inter-formulation issue which we
wish to investigate in parallel.
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key ideas from above, we can understand the interpretation of a theory as pertaining to
the demarcation of representational capacity within the theories theoretical structure (both
observational and non-observational aspects). The formulation of a theory then relates to
the manner which the theoretical structure of a theory has been expressed. We also have
with distinct formulations, as opposed to distinct interpretations, that they are necessarily
accompanied by a rigorous translation dictionary which allows us to transform from the
language of one formalism to the language of the other. Formalism underdetermination
is then the situation whereby two or more formulations of a theory exist such that they
are either more or less restrictive as to which interpretations can be applied. If a tradi-
tional realist notion of scientific ontology is then appealed to, we are led to a situation of
ontological underdetermination which is specifically driven by diversity with the formu-
lations of a theory. The putative resolution of this problem from OSR is to reconceive
our notion of ontology such that it is now constituted by structure common between two
formulations. To be defensible as an ontology, however, it seems reasonable to insist that
this common structure should take the form of a unifying framework rather than merely
an interrelation. Here again it is possible that the formal machinery of quantisation may
prove extremely important as a guide to identifying the right structure.

Let us assume we are given two formulations of a classical theory which have been
quantised (perhaps by different methodologies). We would presume that from the two
classical formulations will result the same quantum theory (although this is not guaran-
teed) and we would thus then have two quantum formulations of this single theory. Let
us denote these formulations as C1, C2, Q1, Q2. A genuine implementation of the OSR
programme for resolving cases of underdetermination would then provide us with a uni-
fying framework for each of the pair of formulations, CUF and QUF . Furthermore, a
genuine implementation of the OSR programme for confronting the challenge of pes-
simistic meta-induction would give us a structural bridge between each of the classical
and quantum formulations: CQ1, CQ2. It should also give us such a bridge between our
two classical and quantum frameworks: CQUF . And furthermore, these two unifications
should cohere. We can illustrate the situation graphically (committing a small abuse of
mathematical diagrammatic convention) as follows:



§16.6 Quantisation, structuralism and underdetermination 204

C1
- CUF � C1

CQ1

?
- CQUF

?
� CQ2

?

Q1

6

- QUF

6

� Q1

6

Implementation of such a complex schema might be assumed to be impractical in
general terms. However, armed with the mathematically well-defined quantisation pro-
cedures and interrelations between formulations we may perhaps be able to make some
progress. In particular, it is highly suggestive that the symplectic and observables struc-
ture common between Lagrangian and Hamiltonian formulations at a classical level, is
paralleled by the inner product and observables structures which are common between
formulations at a quantum level. In the next section we will reconsider these issues in
both more detailed and more concrete terms.



Chapter 17

Case study I: Lagrangian and Hamiltonian formalisms

17.1 What is underdetermined?

Let us consider a classical system consisting of a finite number of degrees of freedom and
assume that this system does not display any local symmetry.79 The physical theory de-
scribing such a system is Newtonian mechanics and in modern terms the two principal for-
mulations available are Lagrangian and Hamiltonian (unfortunately, we do not here have
space to consider the Hamilton-Jacobi formulation also). The Lagrangian formulation of
Newtonian mechanics is framed within the space of solutions to the Euler-Lagrange equa-
tions which are dynamical curves, γEL : TC → R in the velocity-configuration space (the
tangent bundle), TC. The Hamiltonian formulation of Newtonian mechanics is framed
within phase space (i.e., the cotangent bundle Γ ≡ T ?C) with Hamilton’s equations pick-
ing out a preferred tangent vector field on phase space, XH , which is sufficient to define
the set of dynamical curves for any specification of instantaneous initial data.

By the criteria and definitions detailed in §15.1 and §15.2 what we are dealing with
here is two distinct formulations of the Newtonian theory of mechanics: neither La-
grangian nor Hamiltonian formalism furnishes us with an ontology without a further inter-
pretation and the two are connected by a rigorous translation dictionary provided by the
Legendre transformation together with the set of maps (parameterised by a one dimen-
sional time parameter) that exists between a given solution in the Lagrangian formulation
and the corresponding sequence of instantaneous states in the Hamiltonian formulation.
The crucial question, in light of our above analysis, is then whether we should understand
these formulations as leading to an underdetermination of the relevant ontology. This de-

79Here and below we neglect the role of global symmetries for the sake of brevity. An analysis of the
structural connections relevant to them would follow straightforwardly from what we say about observables
and state spaces.
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pends on the nature of the relevant interpretations available and their relationship to these
two formulations.

Focusing in particular on the temporal ontology of Newtonian mechanics, two candi-
date interpretations are available. The first is constituted by the classic Newtonian pic-
ture of instantaneous states of the world together with deterministic laws sufficient to fix
all past and future states given an initial state. We will call this the instantaneous pic-
ture of the world and understand it as specifying an ontology which posits instantaneous
states as part of the fundamental furniture of the world. Supplementary to this picture
we can ascribe additional and more metaphysical structure such as a dynamical notion
of time and an ontologically privileged present (Markosian (2011)). Our concern here is
not with the detailed philosophical analysis of these additional interpretational structures
and the extent to which they prove acceptable additions to the project of furnishing the
relevant theory with an ontology. They are certainly not generally taken to be precluded
by Newtonian mechanics at least.80 Rather, what we shall assume to be at the very least
non-controversial is that given the viability of an interpretation in terms of a instanta-
neous picture, one may – if it is deemed reasonable – supplement this interpretation with
additional temporal ontological structure such as a dynamic time.

A second interpretation of Newtonian mechanics that provides us with a distinct tem-
poral structure is in terms of entire four dimensional histories which are specified by atem-
poral laws (i.e., laws that are not defined at a given time) together with initial and final
boundary conditions. We will call this the teleological picture of the world since it implies
the final boundary data is fundamental in determining the laws. Unlike the instantaneous
picture is does not necessarily posit instantaneous states as part of the fundamental furni-
ture of the world and, relatedly, it is not necessarily as amenable to supplementation with
the additional more metaphysical structure mentioned above and discussed in more detail
below. We do not mean this as a particularly strong claim and will not therefore seek to
make a justification of it in a strong sense. Rather, we believe it is at the very least reason-
able to assume that an interpretation of Newtonian mechanics in terms of a teleological
picture is at face value going to look more like the non-dynamic, eternalist type stance as
to the metaphysics of time and less like the dynamic/privileged present type stances.

An illustrative example of a potential association between the two pictures and a de-

80See Wüthrich (2010) for an interesting discussion of the extent to which the presentist view is precluded
by theories of quantum gravity of exactly the type that have been extensively detailed in this work.



§17.1 What is underdetermined? 207

bate in contemporary strong metaphysics81 is provided by the case of presentism already
mentioned above. We can summarise basic relationship between our two pictures and the
two sides of the presentism debate using the following tables82:

instantaneous picture Teleological picture
Instantaneous states are fundamental Spacetime is fundamental
Dynamical laws are defined for a given
temporal state

Dynamical laws are defined atemporally

Initial conditions are fundamental Initial and final conditions are fundamen-
tal

Presentist Stance Anti-Presentist Stance
Privileged present No privileged present
Dynamism (i.e., real temporal flow) No dynamism
Only the present exists Entire space-time ‘block’ exists

Just as there is a clear intuitive relationship between the aspects essential to the instan-
taneous picture and the presentist stance, there is a clear intuitive relationship between the
aspects essential to the teleological picture and the anti-presentist stance. It would seem,
furthermore, that the teleological picture is such that it is inherently hostile to presentism
– the laws, boundary conditions and fundamental objects are things that, by the presentist
lights, do not exist. Thus, at a superficial level of analysis at least, there is a natural way of
cashing out the difference between our two pictures in terms of a substantive metaphysical
difference.83

Even if we were to be more minimalist as to the level of metaphysical structure we
wish to permit, then we may still end up with genuine differences between the two pic-
tures. Whereas the instantaneous picture is predicated upon an ontology that necessarily

81By this we mean metaphysics of variety whereby ontological assertions concerning objects and con-
cepts that go beyond usual scientific discourse are treated in the thick sense of Ontology rather than just
more deflated ontology.

82Thanks to Sam Baron for help with this.
83There is also reasonable scope to understand the difference between the instantaneous and teleological

pictures as possibly grounding a fundamental metaphysical difference as to the laws of nature. For example,
it has been claimed that the disposition essentialist viewpoint on laws of nature is inconsistent with the
principle of least action that is fundamental to the teleological picture Katzav (2004). See (Smart, 2012, §8)
for further discussion.
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includes instantaneous states as fundamental, the teleological picture is not necessarily
predicated upon such an ontology. Thus any approach to space-time ontology which
precludes fundamental instantaneous states can only be reconciled with the teleological
picture – and is thus more naturally at home within the Lagrangian formalism. Such an
argument is of course not sufficient to establish that there is no reasonable conventional
realist ontology that transcends the Lagrangian/Hamiltonian divide. Rather, we have that
there are at least some notions of ontology that are underdetermined by the case in hand,
and thus that there is a requirement for the proponent of OSR to provide a viable alterna-
tive ontology, even if there is not an acute problem for the realist in pointing to possible
ontology that is is not underdetermined.

We are now in a good position to examine our first test case for the possibility of
formalism underdetermination. We have two formulations of a theory together with two
viable and distinct interpretations. Above we listed three ways in which such a situation
may lead to formalism underdetermination. Firstly, the underdetermination may be strict,
meaning that there is no single interpretation that can be applied to both formalisms.
Secondly, it may exclusive, meaning that there exists at least one interpretation which is
applicable to one formulation but not to another. Thirdly it may be loose; meaning that
one or more of the interpretations are more natural to one formulation than to another.

Since the teleological interpretation (or interpretation type) is applicable to both Hamil-
tonian and Lagrangian formulations the first does not apply. One could argue for the sec-
ond on the grounds that the instantaneous interpretation might seem not to be applicable to
the Lagrangian formulation. However, one may reconstruct the Lagrangian formulation
such that it is based upon points rather than curves within the tangent bundle and such
that the dynamical equations are differential equations giving a unique specification of
dynamics at such a point rather than restrictions on possible curves. Such a re-conception
means that it is possible to apply a instantaneous interpretation to the Lagrangian formal-
ism. However, the historically prior and arguably most fundamental way of understanding
Lagrangian mechanics is in the context of action principles and variational calculus and
such formal structure does necessarily lead to a formulation which is in terms of curves
with two boundary conditions. This point will be further born out when we come to dis-
cuss the quantisation of Lagrangian mechanics in terms of path integral methods as well
as the intimately related issue of symplectic structure. There is therefore a good case for
the Lagrangian formulation being more naturally interpreted in teleological rather than
instantaneous terms and thus for us being confronted with a loose case of formalism un-
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derdetermination.

Given that the solution space of the Lagrangian formulation is that of curves with
two boundary conditions, the natural interpretation is one in terms of a histories based
ontology; with the furniture of the universe entire four dimensional spacetimes along
with the appropriate initial and final conditions (i.e., the teleological picture). Given that
the solution space of the Hamiltonian formulation is an initial data space, the natural
interpretation is in terms of a instantaneous state based ontology; with the furniture of
the universe three dimensional spatial states with appropriate instantaneous data (i.e., the
instantaneous picture). Since the two formulations are empirically equivalent and yet, to
an extent, furnish us with distinct ontologies there is a challenge to the realist to break the
underdetermination.

Since the underdetermination in question is only of the loose variety, one obvious re-
alist response would be to question its legitimacy as a genuine case of underdetermination
rather than break it; and there is perhaps a good case to be made on this score relying upon
the unnatural but viable instantaneous interpretation of the Lagrangian formalism. How-
ever, since this is merely the first of three examples, and it will prove a useful heuristic for
the strictly underdetermined third example, detailed discussion of such a realist counter
may be justifiably set aside.

17.2 Scientific realist responses

As discussed above (§15.4), a number of strategies for underdetermination breaking are
available to the realist, all of which amount to appeals to some form of external crite-
ria. Following on from that discussion the two most viable criteria that a scientific realist
would seem best advised to utilise are: i) an appeal to greater simplicity; and ii) an appeal
to greater heuristic fruitfulness. The first of these was introduced in the context of work
by North (2009) within which simplicity was understood specifically in terms of mini-
mal mathematical structure. The case of Lagrangian and Hamiltonian mechanics is that
which North discusses in some detail, so it will be useful to consider the specifics of her
argument.

Reiterating from above, the basic premise of North’s form of realism is that the mini-
mal, geometrical, coordinate-free structure of a physical theory is what is real. From this
she argues that whichever formulation of a theory utilises the minimal amount of such
structure should be taken as the true one. As we have discussed extensively above the
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Hamiltonian formalism rests on the presumption of a symplectic structure. What North
points out is that this symplectic structure is merely associated with a volume element
and the Lagrangian formalism, on the other hand, presumes a metric structure which
gives a distance measure. Thus, since a metric structure presumes a volume structure but
not vice versa, we can argue that the Hamiltonian formulation of mechanics contains the
fundamentally minimal, symplectic structure. Therefore, if we accept that structural min-
imalism should be conceived of as a viable underdetermination breaking criteria, then we
should take the Hamiltonian formulation as that which is associated (via the appropriate
interpretation) with the true ontology of the world. This would lead us to a (admittedly
weak) argument that the temporal ontology of the world conforms to the instantaneous
rather than teleological picture.

Now, for this case in particular North’s argument in favour of the Hamiltonian formu-
lation of Newtonian mechanics does seem fairly convincing – and we shall below concur
with her idea that symplectic structure is what is fundamental to understanding this first
case. However, as was argued in general terms above there is a severe difficulty with any
view which seeks to carve away any and all seemingly excess mathematical structure that
is associated with the formal aspects of physical theory. By following North’s prescription
in our particular case we would be driven to relegate both the Lagrangian formulation of
mechanical theory and the metric structure which it presumes to a non-fundamental level
within our theory – and, given the predominance of metric structures in special and gen-
eral relativity, if such a move had been taken seriously by Einstein then it would have
been a massive impediment to the development of relativistic spacetime physics in the
early twentieth century! A general precept to always dispense with non-minimal struc-
ture would seem to tie one hand of the creative scientists since such structure is always
potentially a fruitful resource for future development. This leads us to the second prospec-
tive underdetermination breaking criteria that a scientific realist might hope to appeal to:
heuristic fruitfulness.

To an extent this second criterion seems to support both North’s choice of fundamen-
tal structure and true formalism. As should be familiar from above it is precisely Poisson
bracket structure associated with the symplectic form within Hamiltonian mechanics that
is central to geometric quantisation. And in the early days of quantum mechanics – par-
ticularly in Heinsberg’s formulation – this same structure was also key. Thus, ignoring
relativity theory, one may be able to argue that for the first of our test cases the two best
criteria for privileging one formulation over another cohere: Hamiltonian mechanics is
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both simpler and proved more fruitful. However, it is difficult if not impossible to see
how one may neglect the pivotal relationship between Lagrangian theory and Einstein’s
work of relativity and as we have already stated, this argument for Hamiltonian theory in
terms of the heuristic value of the Poisson bracket can be counter weighted by an argu-
ment for the heuristic value of the metric structure of Lagrangian theory. Moreover, the
Lagrangian theory was eventually also quantised via path integral methodology and thus
its structure has proved fruitful within both branches of modern physics. What should
be taken as the abiding lesson from the consideration of the relative heuristic value of
Lagrangian and Hamiltonian formulations of Newtonian mechanics is not that one or the
other should be privileged – but rather that there is invaluable utility in diversity. It is
the large scale heuristic plasticity that is enabled by a bipartite system of mechanics that
can perhaps at least partially be said to account for the huge expansion of physics in the
early twentieth century. Thus, rather than giving us good reason to break the formalism
underdetermination, heuristic considerations, in this case at least, seem to impel us to
embrace it. Arguments based on heuristic fruitfulness in this case give us reason to reject
scientific realism in favour of preserving the ontological underdetermination with which
it is inconsistent.

17.3 Quantisation and the structuralist response

The ontic structural realist response to cases of formalism underdetermination is to seek
to reconceive the relevant notion of ontology in structural terms such that it is no longer
underdetermined. As discussed above (§15.5), for such structure to genuinely constitute
an ontology it is required to consist of more than a mere interrelation between formu-
lations, we need to find a suitably generalising physico-mathematical framework which
includes the requisite level of dynamical structure. Is this possible for the case of La-
grangian and Hamiltonian mechanics? Based on the analysis of Belot (2007), we can
make a good argument that the answer is yes. As has already been partially discussed
above (§5.4,§11.3), Belot’s work illustrates that for standard theories of mechanics (i.e.,
standard gauge theories and non-gauge theories): the space which represents unique so-
lutions within a Lagrangian formulation of mechanics, has a close formal relationship
with the space which uniquely represents instantaneous states within a Hamiltonian for-
mulation. Within Newtonian mechanics these two spaces are simply the space of curves
solving the Euler-Lagrange equation, γEL ∈ S, and phase space, T ?C. Not only are these
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two spaces connected by a set of maps between time slices of Lagrangian solutions and
instantaneous canonical states, but since S is, like phase space, a symplectic manifold, it
is possible to prove that the two relevant dynamical arenas are symplectically isomorphic.
The existence of this symplectic isomorphism then allows us to fix a precise relationship
both between functions representing observable quantities within the two formalisms and
between the representation of dynamical change in the observable quantities. Given a
preferred slicing of a Lagrangian solution, for every moment of time we can construct a
symplectic isomorphism between a phase space function and a corresponding function on
S – and this relationship allows us to understand both functions as representing the same
underlying physical quantity as it changes over a dynamical history. Thus the mutual
symplectic structure of Lagrangian and Hamiltonian mechanics provides us with exactly
the kind of generalising framework, including dynamical structure, which we are look-
ing for and although we will certainly not claim that this analysis is complete,84 there
is a convincing case for an ontic structural realist account of the Hamiltonian and La-
grangian formulations of Newtonian mechanics in symplectic terms. This ontology is not
constituted by the symplectic isomorphism itself but by the interconnections between dy-
namical structures that it encodes at the level of both observables and the state spaces. To
accept this ontology is not to endorse either the instantaneous or teleological interpreta-
tions, rather through OSR we are able conceive of a fundamental reality that stands behind
these two contrasting pictures of the world in terms of precise structural framework.

We then come to the question most crucial to our analysis. Is this prospective struc-
tural ontology of the suitable type to deal with both underdetermination issues and the
historical undermining of pessimistic meta-induction? Would it be appropriate to con-
ceive of the relevant symplectic structure as preserved between classical and quantum
mechanical arenas? Again, our question is to an extent already answered. In our discus-
sion of geometric quantisation techniques (§3.1) it was noted that one of the key steps was
defining the map A : f → Af which takes us between classical algebra of observables,
defined by functions on a symplectic manifold, and the quantum algebra of observables,
defined by self adjoint operators on a Hilbert space. One of the restrictions on this map
was that [Af , Ag] = i~A{f,g} and thus we see that by definition the geometric quantisation
scheme is such that the classical Poisson bracket structure is carried over into the quantum

84An interesting and important extension to our analysis which would strengthen our case, would be a
full illustration of how the relevant generalising framework might be constructed in precise semantic terms.
We leave this task as well as the corresponding analysis for the other case studies to future work.
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context in terms of the commutator. We can therefore justifiably argue that there exists
a structural bridge between the observables of classical Newtonian mechanics and non-
relativistic quantum mechanics at a formal level, precisely in terms of the link between
the binary operations constituted by the Poisson bracket and the commutator. This anal-
ogy is also reflected at the level of dynamics since when combined with the Hamiltonian
observable it is the binary operation that is responsible for generating evolution. Further
to this structural bridge from the symplectic form to the commutator, there is also a sug-
gestive analogy between the classical state space (a manifold equipped with a symplectic
structure) and the quantum state space (a vector space equipped with an inner product
structure).85

Independently of anything to do with formalism underdetermination, a proponent of
OSR would therefore argue that the fundamental structure of a classical or quantum theory
is related to maps between algebras of observables, the relevant binary operations and the
relationship between the classical and quantum state spaces. Fundamentally this is what
is structurally consistent between the classical and quantum theories. It is therefore what
OSR implies we should seek to reify in the face of pessimistic meta-inductive arguments.
However, this is also, roughly speaking at least, the type of structure which we were driven
towards when considering the ontology of the classical theory alone so there would seem
to be prima facie coherence in our approach.

Let us then examine the case in hand more carefully. Given our two classical formula-
tions we arrived at a ‘structural ontology’ encoded by a symplectic isomorphism between
both the relevant observables and state spaces. Given a generalised, geometric picture
of classical and quantum theory we arrived at a structural ontology encoded by: i) a Lie
algebra morphism (up to a factor) connecting the algebra of observables and the relevant
binary operation; and ii) the connection between the symplectic and inner product struc-
tures. Although these are not the same structures, they are closely related. One way to
refine our analysis a little is to consider two different formulations of quantum theory,
look at the common structure, and compare this to both the classical-classical formulation
common structure and the general classical-quantum common structure. If we presume
to have quantised the Lagrangian formulation classical mechanics using a path integral
methodology and the Hamiltonian formulation using canonical quantisation (which just
amounts to a concrete implementation of geometric quantisation) then we would have two

85This connection is undoubtably a subtle one and we do not have space here to consider it in full formal
detail. See future work for a detailed analysis of this aspect to our scheme.
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formulations of quantum theory, each based on a formulation of classical theory. We will
label these two formulations after their principle originators – Feynman on the one hand
and Dirac-von Neumann on the other. Our desired consistent structural ontology could
then expressed using the diagram that was introduced above:

CLag. - CUF � CHam.

CQLagFey

?
- CQUF

?
� CQHamDvN

?

QFey.

6

- QUF

6

� QDvN

6

In this notation, our discussion thus far has already effectively coveredCUF andCQHamDvN .
We will now briefly consider the rest of the diagram in order to give at least a superfi-
cial evaluation of the extent to which the relevant structural notion of ontology is suitably
‘commutative’. The fundamental dynamical equation within Feynman path integral quan-
tum mechanics is, for a single particle:

Z = 〈qf |e−
i
h
H(tf−ti)|qi〉 =

∫
Dxe

i
h

∫ T
0 L(q,q̇)dt (17.1)

Where D is the functional measure. This path integral expression describes quantum
mechanical behaviour in a configuration space in that, roughly speaking, it gives us a
probabilistic weighting to paths through that space between an initial position qi and a
final position qi. We thus see that, under the Feynman approach, a quantum system is
associated with a space of possible histories (i.e., the space over which the integral is
taken) and the nature of the path integral is such that it gives (in an informal sense) an
inner product structure to that space.

Within the classical theory we also focused upon a space of histories as fundamental
to the Lagrangian formulation; and it was the symplectic structure of that space which we
took to constitute one side of the structural bridge between Lagrangian and Hamiltonian
theory. Furthermore, in the generalised abstract case and the case of Hamiltonian theory,
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there is an extent to which the symplectic structure within the classical theory is analogous
to the inner product structure within the relevant Hilbert space. It is natural therefore to
ask whether the symplectic structure of the classical history space in Lagrangian theory
can be connected with a Hilbert space, together with the necessary inner product structure,
within Feynman path integral quantum mechanics.

Unfortunately, although its heuristic, intuitive and practical value is undoubtably great,
the Feynman path integral as it has been introduced, is insufficiently mathematically well-
defined for us to be able to answer this question. Consideration of the project of providing
a more rigorous mathematical basis to it would take us far beyond the limits of our current
discussion, but we may at least note that according to Albeverio et al. (2008) the Feyn-
man path integral for the solution the Schrödinger equation can be interpreted rigorously
as a Fresnel integral86 over a Hilbert space of continuous paths. Thus, given a suitable
formalisation, it does appear to be correct to think of path integral quantum mechanics in
terms some form of Hilbert space for histories. There is, therefore, some formal support
for a tentative proposal that a structural bridge may be made between Lagrangian classical
mechanics and path integral quantum mechanics in terms of a connection between: a clas-
sical space of histories with symplectic structure, on the one hand; and a quantum space
of histories with an inner product structure, on the other. We do not, however, have the Lie
algebra morphism that can be demonstrated to connect the observables and dynamics of
the classical Hamiltonian theory with the Dirac-von Neumann quantum theory (as arrived
at via canonical quantisation). Relating the classical Lagrangian notion of observable to
some precisely analogous structure within path integral quantum theory – if it is possible
– is a highly non-trivial challenge.

In addition to seeking this structural connection between classical Lagrangian and
quantum path integral formalisms, consistency with the OSR philosophical framework
drives us to look for a similar connection between path integral and Dirac-von Neumann
quantum formalisms. Not least this is because these two quantum formalisms would
appear to be naturally associated with interpretation in terms of disparate ontologies – a
quantum teleological type and quantum instantaneous type picture respectively. Further to
this, in order to establish the relevant commutativity we need to find a quantum unifying
framework to parallel our classical unifying framework and then hope that the structural
commonalities between these two frameworks (the middle edge of our diagram) mirror
those between the individual classical and quantum formulations (the two outside edges).

86A special type of oscillating integral defined on a real vector space equipped with a norm.
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Unfortunately, our progress is once more hampered by the unsolid mathematical basis
of Feynman’s approach. Again what is desired would be a well-defined Hilbert space
of histories which could then be connected to the traditional Hilbert space of instanta-
neous quantum states. In such circumstances, if the two Hilbert spaces could be shown
to be unitary isomorphic and the relevant isomorphism can be understood as entwining
the representations of two sets of quantum observables, then we would have established,
despite the apparently fundamental interpretational difference, that the two quantum for-
mulations are fundamentally manifestations of the same underlying physico-mathematical
framework/structure. The situation with regard to the Hilbert space aspect of our prob-
lem is again promising. According to Dowker et al. (2010) we may formalise a histories
approach to quantum theory using the framework of quantum measure theory (Sorkin
(1994)) and proceed to construct a histories Hilbert space which can be proved (given
a unitary quantum theory with a pure initial state) to be isomorphic to the conventional
Hilbert space of the Dirac-von Neumann formalism. However, despite this success at the
level of state-spaces, the situation with regard to observables is less promising as there
is currently not a sufficiently general procedure for constructing an observables algebra
within a histories Hilbert space formalism, let alone a proof that such histories observables
are suitably related to their conventional Dirac-von Neumann counterparts.

We are, therefore, not in a position to reach a strong conclusion with regard to the
observables aspect of a cross-formulation quantum mechanical structural framework –
and according to our own criteria this means we have not quite met the necessary con-
ditions for an adequate structural ontology at the quantum level. However, through the
relevant state space connections we have suggestive evidence that our application of OSR
in terms of the digram above is leading us in a promising direction. In particular, for all
of the four outer nodes of the diagram – i.e., the Lagrangian and Hamiltonian formula-
tions of classical mechanics and the path integral and Dirac-von Neumann formulations
of quantum mechanics – all the necessary structural connections can be seen to hold with
regard to the state spaces involved. The symplectic structure and Poisson bracket algebra
of observables are what is fundamental at a classical level, the inner product structure
and commutator algebra of observables are what is fundamental at a quantum level. The
classical and quantum structures are analogous in the case of the state spaces and, mod-
ulo the difficulties mention, connected directly by a Lie algebra morphism in the case of
the observables. More work must be done to further refine details of this project, but at
this initial level of analysis at least, it seems we have good evidence for the fundamental
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consistency within our OSR-style reading of Newtonian mechanics. Let us press on to
our second case study to see if such success is replicated within standard gauge theories.





Chapter 18

Case study II: reduced and unreduced formalisms

18.1 What is underdetermined?

We now return our analysis to the standard gauge theories considered at great length in
Part I. As should be familiar from that discussion, these systems are represented canon-
ically through the constrained Hamiltonian formalism and are distinguished by featur-
ing first class constraints that can be understood as purely generating gauge symmetries.
We can understand the collection of these constraints as defining a sub-manifold, (Σ, ω),
within the ‘extended’ phase space, (Γ,Ω), called the constraint manifold or physical phase
space. The physical phase space is such that equivalence classes of points can be defined
(via the null vector fields associated with the constraints) and we call these equivalence
classes gauge orbits. In standard gauge theories it is physically reasonable to classify
points that lie along a gauge orbit as physically equivalent in that they represent the same
instantaneous state of the world. This in turn justifies the viability of switching to a re-
duced formalism, where through a quotienting procedure we construct a reduced phase
space, (ΠR,ΩR), with every point on a gauge orbit mapped down to a single point. The
map between the physical and reduced phase spaces, π, is such that a version of both
the Hamiltonian function and the Poisson bracket algebra of observables is carried over
onto the reduced space. We thus have available two formulations of the mechanics of a
standard gauge theory – the unreduced and reduced. They are empirically equivalent and
connected by a rigorous translation dictionary as defined via the map π.

The crucial question is then, do these different formalisms precipitate a case of on-
tological underdetermination? To find out the answer we must consider the relevant in-
terpretational structures that can be added to our bare formalism. This depends upon the
theory at hand. Given that we have already laid much of the ground work in part three, it
will best behove us to consider the case of the momentum constraints of general relativity

219
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– an analogue of what we will say should be applicable to any standard gauge theory with
a suitable change in the objects playing the role of background structure. Recall from
above that these constraints can be associated with the action of the three dimensional
diffeomorphisms group on a three dimensional spatial geometry. A point within the rel-
evant reduced phase space (super-phase-space) can then be understood as representing
an equivalence class of such three geometers or equivalently a single, diffeomorphically
invariant object.

We can define within the unreduced formalism a number of interpretational stances
as constituted by a position with regard to the ontological status of spatial points. One
may be a spatial substantivalist and assert that such points are fundamental; or a spatial
relationalist and deny this fundamentality. Whereas, within the unreduced formalism sub-
stantivalism may be achieved with or without an additional commitment to Haecceitism –
one may be a straightforward or sophisticated substantivalist; within the reduced formal-
ism, the two available substantivalist stance is the sophisticated Haecceitist. Thus, we see
that which formalisms you use places restrictions on which interpretation (and therefore
which ontology) is available.

If one wishes to ascribe stronger metaphysics to one’s physics then one may make
this underdetermination even more acute by cashing out the excess possibilities available
only within the unreduced formalism in terms of some form of modal realism – formally
this is because the two spaces contain different cardinalities of possibilities. Thus we
see that in general there is considerable grounds for believing the case of reduced and
unreduced formulations of a (standard) canonical gauge theory constitute an example
of formulation underdetermination according to the terminology introduced in the last
chapter. For the traditional doctrine of scientific realism to be applicable either this this
underdetermination needs to be broken or an interpretations that can be applied to both
formalisms must be accepted. As with the first case study, we will first consider the second
option, and then move on to consider the structural realist response. The first option we
will simply admit as a consistent, alternative to the picture presented here.

18.2 Scientific realist responses

Let us then consider the viability of the various arguments available to the scientific real-
ist who wishes to privilege one of the two formalisms over the other. First, let us briefly
reconsider the idea of making an appeal to metaphysics since one of our general worries



§18.2 Scientific realist responses 221

about these strategies is well illustrated by the case in hand. The most obvious meta-
physical resource that could be employed to break our second case of underdetermination
would be some principle that compels us to: either reify the maximum or minimum possi-
bility space; or endorse the maximal or minimal amount of absolute structure. Only such
metaphysical principles would seem relevant and powerful enough to break the underde-
termination. However, to endorse any such principle as the arbiter for our case would to
enter into a vicious circularity – the choice between more or less possibilities/background
structure is exactly what is underdetermined! Thus, it seems metaphysical principles can
be of no comfort to the realist in constructing a rational basis for privileging either for-
malism.

Going from the more metaphysical to the more pragmatic end of the philosophical
spectrum, the interpretational flexibility of the unreduced phase space could be taken
as practical ground for preferring working with that formalism since it is the ‘neutral
base’ (Rickles (2008)) from which to work. However, such pragmatic arguments are
insufficiently strong to justify the type of thick realism that the scientific realist (by our
definition) requires. They need to give an argument why one formalism rather than the
other leads to the true picture of the world and pointing to the utility of working with
whichever choice allows us to best hedge our metaphysical bets is clearly not enough
to do this. Furthermore, as was argued in §15.4, flexibility is a double edged sword
since (at least under some accounts) the more flexible the scientific framework is, the less
explanatory value it can be understood as having.

In our general discussion we singled out simplicity and heuristic fruitfulness as the
most viable science based principles for underdetermination breaking. We can think of
the former principle precisely in the context of the North (2009) formulation that, as dis-
cussed above, is based on the idea of minimal geometric structure. Dynamics within the
unreduced formalism requires for its definition the quadruple (Γ, φi,Ω, H) with φi the
constraint and H the Hamiltonian. Based on these four objects we can then either define
observables and evolution via a weak commutation relation or upon the physical phase.
Since in the unreduced formalism the constraints have been eliminated it can be defined
simply via the usual triple of an unconstrained system – i.e., in this case (ΠR,ΩR, HR).
We can thus give a precise sense in which the reduced formalism is simpler than the unre-
duced formalism. However, as has been noted before, the endorsement of such minimal
structure arguments seems to be contrary to the history and practice of physics. The sup-
posedly surplus structure of physical theory has proved, and is therefore likely to continue
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to prove, essential to theoretical development. This is particularly true when considering
the surplus structure of the unreduced canonical formalism – it is precisely this surplus
structure that is pivotal in Dirac route towards quantisation (§3.2). Moreover, it is in
general extremely difficult to construct explicitly a true reduced phase space (i.e., a man-
ifold with symplectic structure) without running into serious formal issues: superspace,
for example, has problems with non-trivial topology. Thus in practice the quantisation
of a standard gauge theory nearly always proceeds via utilisation of exactly the excess
structure (i.e., the constraints) that simplicity arguments would lead us into dispensing
with.

This last point might indicate that we may be able to make an argument for the unre-
duced space formalism upon heuristic fruitfulness. Such an argument is especially per-
tinent to our discussion given the indispensability of the unreduced formalism for the
quantisation of non-standard gauge theories as detailed in Part II and Part III. However,
for standard gauge theories at least, the symplectic structure of the reduced space is also
an important heuristic tool for quantisation. In particular, it is precisely our ability to think
of Faddeev-Popov quantisation of a standard gauge theory as a Feynman path integral on
the reduced space that provides the conceptual basis for that technique. Thus, both spaces
have proved to be able to provide us with heuristically useful structures and therefore
neither can be privileged on the grounds of heuristic fruitfulness. In fact, the structure
that seems most appealing from a heuristic for quantisation perspective is the connection
between the spaces. This leads us naturally to consider the potential application of the
ontic structural realist programme along the lines discussed in §15.6 and §16.3 above.

18.3 Quantisation and structuralism

Given the reduced and unreduced formulations of a standard gauge theory we would first
like to consider the relevant structural connections at a purely classical level. Again what
we are looking for is more than merely an interrelation between the formulations, rather
we need to find a suitably generalising physico-mathematical framework including dy-
namical structure. This can be done fairly easily for the case in hand. The map π not
only defines the relationship between the reduced phase space and the physical phase
space, but is also necessarily such that it fixes a relationship between the relevant no-
tions of observables and Poisson bracket structures. Consider the observable functions
fR, gR ∈ C∞(ΠR) and the Poisson bracket defined by the relevant symplectic structure
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{fR, gR} = ΩR(XfR , XgR). We can then use π to pullback to an equivalent set of func-
tions in the unreduced formalism, f, g ∈ C∞(Σ ⊂ Γ) such that f = π∗fR and g = π∗gR.
Now, we have that π does not allow us to pullback the Poisson bracket structure of the
reduced space uniquely, since ω = π∗ΩR gives us only a presymplectic structure. How-
ever, since the f, g are by definition such that they weakly commute with the constraints,
the Poisson bracket associated with the symplectic structure of Γ will, when restricted to
Σ, equip this collection of functions with the binary operation necessary for us to estab-
lish a symplectic isomorphism between the algebras. Explicitly (again following Faddeev
(1969)) and assuming that ΠR is parameterised by coordinates Q and P :

{f, g}|Σ = (
∂fR
∂P

∂gR
∂Q
− ∂fR
∂Q

∂gR
∂P

) (18.1)

where we have suppressed the subtlety in indices needed for the lower dimension of the
reduced space to be accounted for. Further to this first aspect of the classical unifying
framework as constituted by the symplectic isomorphism between the algebras of observ-
ables it also trivially follows that the dynamics of the two formalisms can be suitably
connected, and generalised. Since the relevant Hamiltonians are simply functions on ei-
ther ΠR or Γ they are connected via π. Our dynamical framework is then just encoded in
the equation:

ḟ = ḟR = {f,H}|Σ = (
∂fR
∂P

∂HR

∂Q
− ∂fR
∂Q

∂HR

∂P
) (18.2)

We have therefore established for the case of the unreduced and reduced formalisms,
exactly the type of generalising physico-mathematical framework that the ontic structural
realist would wish to reify. Satisfyingly this framework is of a very similar type as that
discussed for the case of Lagrangian and Hamiltonian mechanics above. Although in this
case we do not have a symplectic isomorphism between the relevant state spaces we do
have such a relationship between the algebra of observables and the dynamical structure.

The next step of in our programme is to consider the quantisation of the two classical
formalisms and then investigate the connections that exist at both classical-quantum and
quantum-quantum level. Recall from above, one of the principal motivations for this ex-
ercise is to examine whether the structures that are common between two formulations of
a theory are related to the structures that are common between predecessor and successor
theories. Furthermore, if the ontic structural realist prescription for identifying ontology
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within physical theory is a consistent one, then we would expect a degree of commutation
– the quantum-quantum structure should reflect the classical-classical structure we have
just described. Assuming that we proceed to quantise the unreduced formalism via some
variant of the Dirac methodology and the reduced formalism via a geometric quantisation
technique then our structural commutation diagram should look as follows:

CUnRed. - CUF � CRed.

CQUnRedConst

?
- CQUF

?
� CQRedGeo

?

QConst.

6

- QUF

6

� QGeo.

6

Much of this diagram has, in fact, already been dealt with in our discussion. The ex-
terior right hand CQRedGeo edge is merely the relationship between a non-gauge Hamil-
tonian theory and its quantum equivalent. From our discussion in §16.3 we have that the
relevant structural ontology should be thought of as being encoded by: i) a Lie algebra
morphism (up to a factor) which connects both the algebra of observables and dynamics;
and ii) the (as yet not full explored) connection between the symplectic and inner product
structures that defined the relevant states spaces.

The lower QUF is precisely the relationship between quantum formalisms reached via
the Dirac constraint quantisation and reduced quantisation routes. From §4.1 we have that
if the standard gauge theory in question falls inside the scope of a Guillemin-Sternberg
conjecture proof then the two quantum formulations are related such that: i) the physical
Hilbert space constructed through a constraint quantisation type approach, Hphys, is uni-
tarily isomorphic to that,HR, achieved by quantising the reduced phase space; and ii) the
two quantisation procedures result in an equivalent set of observables to the extent that the
isomorphism in i) also entwines the representations of the two sets of quantum observ-
ables (both of which can be connected back to the same set of gauge invariant classical
observables).
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Making the assumption that we do fall inside such a proof (this notably excludes cases
such as the momentum constraints of general relativity and, without further simplifying
assumptions, Yang-Mills theory) then we can give a clear characterisation ofQUF in terms
of the unitary isomorphism that encodes the relationship between both the states spaces,
the observables and the dynamics. We can then in turn consider the relationship between
this quantum unifying framework and its classical analogue (the middle vertical edge of
the diagram). Although classically the relationship between the relevant state spaces is
a little more subtle, the relationship between the observables – both quantum mechani-
cally and classically – is represented via a map that encodes how the binary operations of
each algebra are related. Furthermore, in each of the four cases (the four corner nodes) we
have analogous inner product or symplectic structure essential to the definition of the state
space. Thus, the essential structural commonality between the classical and quantum uni-
fying frameworks must be understood in terms of: i) the maps encoding binary operations
over algebras of obervables in each case; and ii) the relationship between the symplectic
and inner product structures that define the state spaces . i) reflects precisely the structure
identified more formally as a Lie algebra morphism when we were discussing CQRedGeo

above and therefore evidences one aspect of the relevant CQUF ← CQRedGeo link in the
diagram.

The final two structural links that must be established for our diagram to close are
those: a) between the unreduced classical formalism and the constraint quantised quan-
tum formalism, CQUnRedConst; and b) between this structure and the general classical-
quantum framework, CQUF , we have just identified. Starting, as is logically necessarily,
with a) we must first decide whether it will be more valuable to our analysis to consider the
informal version of constraint quantisation according to Dirac or its modern implementa-
tion in terms of RAQ or the MCP. Since we have already used the qualification that we are
working inside the scope of a Guillemin-Sternberg conjecture proof it best behoves us to
assume that the standard gauge theory we are considering is such that the Poisson bracket
algebra closes with at worst structure constants. Thus, we can utilise RAQ for our analysis
and make use of the group theoretic basis for both quantum and classical local symme-
try which it provides us. Recall that classically the essential structures of the unreduced
theory were taken to be given by the quadruple (Γ, φi,Ω, H). What was not discussed ex-
plicitly above is that together the second and third of these also encode the structure of the
constraint’s Poisson bracket algebra since we have that: {φi, φj} := Ω(Xφi , Xφj). It is the
structure of this classical algebra that gives us a group theoretic basis for understanding
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the local symmetry in the theory and which gives the clearest structural bridge to the RAQ
formalism. The quantum constraints within the RAQ scheme are taken to be represented
as Hermitian operators acting on the auxiliary Hilbert space. The binary operation that
defines the quantum constraint algebra is then defined by the commutator analogue of the
Poisson bracket given by Ω. The quantum constraint algebra is then guaranteed to itself
be a Lie algebra and we therefore have a Lie algebra morphism between the classical and
quantum constraint algebras. Thus, the same type of structural connection that is essential
to the relationship between the classical reduced and geometrically quantised formalism
is key to the way in which the auxiliary Hilbert space is constructed in RAQ.

Furthermore, it is because the quantum constraints form a Lie algebra that that expo-
nentiation of the constraint operators yields a unitary representation U(g) of the corre-
sponding Lie group G. We then have that the observables – including the Hamiltonian
operator – are self-adjoint operators that commute with the action of this group (on the
subspace Φ defined in §3.2.1). This is closely analogous to the definition of the classi-
cal observables in the unreduced formalism and means that the algebras of observables
in each case have essentially the same structure. However, there is, of course, a second
stage to the RAQ quantisation process – the construction of the physical Hilbert space.
Significantly, there is no classical analogue in the unreduced formalism for this second
step, in particular the inner product of Hphys has its correlate structure in the reduced
classical formalism. It is therefore not entirely consistent to think of the quantum the-
ory constructed via RAQ (or indeed any constraint quantisation methodology) as simply
a quantum version of the classical unreduced formalism and to this extent, for this case
our diagram is somewhat misleading. Nevertheless, to the extent to which this connection
does make sense, its essential structure is encoded in terms of a Lie algebra morphism
between the classical and quantum constraint algebras along with the associated relation-
ship between the observables. Furthermore, to the extent to which it does not make sense
due to the absence of a classical analogue for the inner product structure of the physical
Hilbert space, we have resources within the reduced classical formalism that can fulfil the
required role.

We thus have that the classical reduced and unreduced formalisms together might
seem a better structural match for constraint quantisation. In this context, we may then
be able to understand the RAQ rigging map η as something like the analogue structure to
the classical reduction map π. However, as was discussed in §4.1 the connection between
the two is more subtle that it might at first sight seem. More detailed investigation of
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this point is much warranted – in particular a careful formal examination of the structural
connections between classical and quantum quotienting procedures would be very inter-
esting. On a more informal level, clearly there is a sense in which what is achieved in
RAQ is directly analogous to the quotienting of a Lie group, and this is precisely what we
are understanding the classical symplectic reduction as achieving also. We could argue
therefore that all the relevant connections between our classical and quantum formalisms
are always encoded within: i) the relationship between Lie algebraic and group theo-
retic structures; and ii) the analogy between the symplectic and inner product structure of
the state spaces. i) includes the observables, the Hamiltonian and the constraints them-
selves. Given the clear coherence of this picture, it would seem that this second case study
leaves the ontic structural realist well placed to define exactly the required ‘generalising
physico-mathematical framework’. This framework essentially consists of the structure
which encodes the relationship between key quadruple of state spaces, observables, dy-
namics, symmetries.





Chapter 19

Case study III: shape dynamics and complete observables

19.1 What is underdetermined?

We now return our discussion to the task of adjudicating between the two viable de-
nials of time that were examined extensively in Part III. Recall that there are currently no
empirical grounds for differentiation between the approaches towards canonical general
relativity that were discussed and, furthermore, with regard to the treatment of momentum
constraints there is also little or no inherent conceptual difference. Fundamentally, and at
a formalism level, the choice as it was presented in its final form was between: i) a 3D
conformally invariant theory with a fixed foliation and change generating global Hamilto-
nian constraint; and ii) a foliation invariant theory with the local Hamiltonian constraints
replaced by a single master constraint and the observables constructed accordingly via
application of the complete and partial observables Ansatz. Interpretationally, each of
these formalisms was associated with a particularly interesting – and in many ways chal-
lenging – notion of ontology. The first formalism, which we shall refer to simply as shape
dynamics, is naturally interpreted in terms of a Machian view whereby absolute structure
with regard to space, time and length scale has been eliminated but a notion of change
with respect to an internal, equitable measure of duration can be defined. The second for-
malism, which we shall simply call complete observables, is then naturally interpreted in
terms of a (non-scale invariant) four dimensional non-local observables picture which not
only eliminates absolute spacetime structure but also any notion of change whatsoever –
we are left with a Parmenidian picture of reality.

The two formalisms are extremely closely tied to the two interpretations; the Machian
view on time and scale in fundamentally inconsistent with the complete observables
scheme and the Parmenidian picture of time is fundamentally inconsistent with both the
preferred foliation and emergent time aspect of shape dynamics. This is not to say that
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in the case of either formulation there is no interpretational leeway – particularly with re-
gard to space there is scope for alternative ontological pictures to be associated with each
formalism. However, with regard to time there is an extent to which each formalism is
locked in to a particular interpretation and it would certainly seem the case that no single
interpretation could possibly be applied to both formalisms.

Furthermore, provided we subject our analysis to the very significant qualification
that the complete observables scheme has been applied within the CMC foliable sub-set
of solutions to the Einstein equation, we would expect a rigorous translation dictionary to
exist between the two formalisms. We have this since the complete observables scheme
is merely a prescription for defining observables within conventional canonical general
relativity and (in the CMC gauge) this theory has been shown to be equivalent to shape
dynamics. Thus, our third, final and most important case study can be reasonably un-
derstood as a strict case of formulation underdetermination. It could, of course, also be
understood as a case of theoretical underdetermination since there is an important sense
in which we may view shape dynamics as an alternative theory to general relativity, rather
than an alternative formulation.

How seriously one views this issue depends to a large extent on the way one views the
physical viability of non-CMC foliable spacetimes. If the non-physical nature of these
solutions, or more precisely phenomena associated with such solutions, is accepted then
our choice genuinely would be reduced to that between different formulations of the same
theory and their associated interpretations. However, one could quite reasonably claim
that such an assumption is not entirely warranted – and we would be better to treat shape
dynamics as an alternative theory to general relativity with the choice between the two
merely (weakly) empirically underdetermined. To someone who is insistent on this point
there is perhaps no strong rebuttal available. Yet one may deflect the point of contention,
however, by appeal to a comparable case.

As was discussed extensively in §10.2 covariant and canonical general relativity are,
strictly speaking, empirically distinguishable since the former, and not the latter, is well-
defined upon the non-globally hyperbolic subset of spacetimes. Thus, to the extent that
it is problematic to call shape dynamics a reformulation of canonical general relativity, it
is also problematic to call canonical general relativity a reformulation of covariant gen-
eral relativity. Moreover, in moving to the shape dynamics formalism from the canonical
formalism we are not strictly excluding all non-CMC foliable spacetimes but merely the
globally hyperbolic, non-CMC foliable spacetimes. We can therefore see this issue may
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not be as serious as it may seem. Furthermore, given that, to the best of our knowledge,
the universe that we live in is at large scales best modelled by the FRW-solution to the Ein-
stein field equations – which is a CMC-foliable spacetime – and at very small scales not
modelled well by general relativity at all, this entire question of the existing phenomena
related to non-CMC classical solutions might be considered moot.

For the rest of our discussion we will simply assume CMC-foliabllity meaning that
shape dynamics is an empirically equivalent formulation of canonical general relativity
and therefore that we are dealing with formulation underdetermination. The crucial point
is that this assumption does not imply that we have fixed a foliation for the complete
observables scheme nor that the solutions we are dealing with cannot be invariant under
refoliation. From the perspective of the complete observables formulation we are merely
restricting ourselves to equivalence classes of solutions which have a CMC foliated repre-
sentative. Thus we have that the duality we shall be exploring is between two formalisms
with well-defined yet very different notion of symmetry. Given a spacetime (and ignoring
3D spatial diffeomorphisms) we have the option of understanding the relevant symmetry
in terms of either: i) 3D conformal invariance up to global scale and reparameterisation
invariance; or ii) refoliation invariance. These symmetries can only really be interpreted
in terms of fundamentally different ontologies and thus precipitate an acute case of meta-
physical underdetermination.

19.2 Realism: shape space or Parmenidian states?

The gamut of underdetermination breaking criteria available to the realist should now be
familiar, as should also be their various weaknesses. For the case in hand, what might
seem like the most obvious response would be some argument from physics enriched
metaphysics that seeks to convince us that either formalism better implements: back-
ground independence (in the case of complete observables); or conformal invariance (in
the case of shape dynamics). However, as has been noted several times, use of such argu-
ments amounts to question begging; they are predicated upon a stance as to precisely the
ontological difference that is underdetermined.

Arguably a better candidate is a more general prescription against background struc-
ture. To give scientific credence this could be conceived of in terms of a principle drawn
from a reasonable amount of historical evidence as well as support amongst practising
physicists. However, what counts as less background structure? We are comparing one
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approach with more of a temporal background, but almost no notion of absolute scale, to
another with no temporal structure at all, but a well-defined notion of scale. To choose
one or the other as more significant would seem arbitrary and might also be considered
precisely the type of question begging we are trying to avoid.

Another alternative would be to invoke a minimal structure argument of the North
(2009) type discussed extensively above. The most obvious candidate for such structure
is the algebra of constraints since this is fundamental to each formalism and can be sub-
jected to a precise notion of structural simplicity in terms of the presence or not of struc-
ture functions. However, since the complete observables scheme may be formulated in
terms of the master constraint programme it is arguable that the constraint algebra relevant
to it is no more complex. Furthermore, even if we assume that we are dealing with com-
plete observables formulated according to the full Bergmann-Komar algebra (i.e., using
the prescription of Dittrich (2006) where the complete observables are constructed with
respect to all the constraints) the there is still an issue. The full BK-algebra is undoubt-
edly more complex than that relevant to shape dynamics because the structure function
in the Poisson bracket between two local Hamiltonian constraints has no parallel (refer
back to §10.2 and §12.3 to see this explicitly). However, as has been discussed (again in
§10.2), it is precisely because of foliation invariance that these structure functions occur.
Thus, although tenable, such a line of argument again comes dangerously close to ques-
tion begging. More broadly, as has been emphasised for the other test cases, there are
good historical precedents for the seemingly excess structure of a theory being an essen-
tial stepping stone to future development. To jettison the BK-algebra simply on grounds
that it is very complex is arguably a rather short sighted move – the fundamental picture
of reality we end up with might be foliation invariant and scale invariant.

A further potential criterion for privileging one formalism over the other would be a
perceived advantage with regard to quantisation. If it could be shown that one formal-
ism provided structures better suited to the application of viable quantisation techniques,
then some form of heuristic fruitfulness case could be made for that formalism. Given
the technique we introduced above for the relational quantisation of systems with global
Hamiltonian constraints in Chapter 9, and the preliminary work of Chapter 15, we might
seek to invoke such an argument in favour of shape dynamics. However, as was just
mentioned, it is possible that the structure of local Hamiltonian constraints might just as
well also prove important in future theoretical development. Moreover, when considered
in the context of the master constraint programme the complete observables scheme has
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also much to offer in terms of potentially heuristically significant structure. In keeping
with the preceding discussion, we would argue that for this case of underdetermination
we are best served by not giving either formalism an ontologically privileged status and,
rather, focusing our attention upon the structural connections that exist between them.

19.3 A problem for ontic structural realism?

We have, then, a formidable yet well-defined philosophical challenge before us. Can we,
as in the cases of Lagrangian and Hamiltonian formulations of Newton mechanics and
reduced and unreduced formulations of standard gauge theory, find a suitable generalis-
ing framework within which to give a structural realist ontology based upon the shape
dynamics and compete observables formalisms? This challenge is very much along the
same line as that which Pooley (2006) identifies87 and, as stated above, we concur with
him as to the requirement that any adequate structural realist account of structural on-
tology must provide a ‘unifying framework’ (although we are not here insisting that this
framework need be able to be interpreted ‘as corresponding more faithfully to reality than
do its various realist representations’.)

In the two cases above we attempted to provide just such a framework in terms of
maps between the relevant observables, state spaces and, when necessary, symmetries.
Such maps encode the fundamental dynamical and kinematical structure of the theory
and thus can be thought of as both suitably ‘unifying’ and dynamical. This seeming
success might drive us to attempt a closely analogous strategy for the case in hand. Thus
we might consider the structures relating the observables, state space and symmetries in
shape dynamics to the corresponding structures in the complete observables scheme.

With regard to the state spaces and symmetries at least we have a precise mathemati-
cal definition of the relevant relationship in terms of the translation dictionary that Gomes
et al. (2011) define between the conventional canonical theory and shape dynamics. This
is because in these aspects the complete observables scheme simply is the same as stan-
dard canonical theory. However, unlike in our previous two cases it does not seem entirely
clear that these maps really do encode anything like the essential structure common be-

87The three rival formulations of general relativity he challenges the structural realists to account for
are: i) Barbour’s original 3-space approach; ii) traditional curved spacetime theory; and iii) ‘formulations
involving spin-2 fields on a flat (or at least fixed) background spacetime’. Our case is analogous to the two
way underdetermination of i) vs. ii) rather than Pooley’s full three way underdetermination problem.
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tween the two formalisms. To provide a means to exchange one symmetry for another
is not to provide a basis for why these symmetries can be exchanged in the first place.
Furthermore, and relatedly, dynamics in the two cases is represented in an entirely differ-
ent way and the relevant maps between phase spaces and constraint algebras seemingly
encode none of the relevant information.

Of particular importance is the very different way in which the Hamiltonian con-
straints are both manifested and dealt with within the formalisms. Whereas, the single
Hamiltonian constraint of shape dynamics is understood generating dynamical evolution
between distinct states of the world, the dynamical aspect of the local Hamiltonian con-
straints is implemented within the complete observables scheme (including the master
constraint version) in a more subtle manner. As detailed above, in the complete observ-
ables scheme the Hamiltonian constraints are associated with a flow and the observables
are then smeared non-locally along this flow. Given such a difference between the for-
malisms it is difficult to see they could ever be ‘unified’.

Moreover, just as the distinct formal roles played by Hamiltonian constraints within
the two approaches would seem irreconcilable so would the algebraic structure of the ob-
servables. There is no restriction that observables within the shape dynamics framework
must commute with the global Hamiltonian constraint. Thus, although they would be
expected to share some of the same symmetry properties as complete observables (most
importantly being invariant under 3D diffeomorphisms), the shape dynamics observables
would form an algebra that cannot be thought of as in any way the same fundamental
structure as that of complete observables. In fact, only functions of shape space that are
non-dynamic could have correlates amongst the complete observables. The same would
be true of any Machian type formulation of canonical general relativity and this is there-
fore perhaps the most precise concrete realisation of the tension between the two viable
strategies for dealing with the problem of time that have informed our discussion. Not
only is our case such that the two formalisms are associated, via the appropriate inter-
pretation, with incompatible ontologies, but it also seems that, despite the existence of
a well-defined translation dictionary, there is a sense in which the physico-mathematical
structures of the two formulations are themselves incompatible. Thus, as things stand,
there is no viable path towards the type of substantive structural realist ontology that we
are looking for. In the following final chapter we will consider the implications of this
negative result whilst placing it within the wider context of the entire preceding discus-
sion.



Chapter 20

On the interpretation and quantisation of canonical
gravity

The principal idea underlying this work has been the dual thesis that the interpretation
of classical canonical gravity must be driven by the problem of its quantisation and, con-
versely, the quantisation of this theory must be driven by its classical interpretation. In
this sense, I hope to have defended an attitude towards the philosophy of physics whereby
we follow the motto that; just as the physics must inform the practice of philosophy, so
the philosophy of physics should inform the practice of physics.88

The particular application of this strategy that occupied centre stage within Parts I-III
was the relationship between interpretative implications of classical geometric reduction
and the basis of the Dirac methodology for constraint quantisation. In Part I we considered
the sense in which for standard gauge theories the interpretation of the classical constraint
functions as gauge generating informs their promotion to quantum operators annihilating
the wavefunction. We also saw how the structure of quantum gauge theory – including
the Faddeev-Popov formulation – can be brought to bear upon debates with regard to
reductionist interpretations at a classical level.

Part II constitutes the most full implementation of our dual approach towards the prac-
tice of physics driven philosophy and philosophy driven physics. We first identified how
the mathematical structure of non-relativistic classical reparameterisation invariant theory
places restrictions upon the available interpretational stances as to time and possibility
space reduction. We then considered the formal and conceptual basis of the two most
viable strategies for representing change and observables within the classical theory: the
emergent time strategy and the correlation strategy. Next, we utilised our negative argu-

88It is not only mathematicians who should remember that, ‘physics is too important to be left to the
physicists’ (variously attributed to David Hilbert)
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ment with regard to reductionism to motivate a criticism of the application of conventional
quantisation techniques to reparameterisation invariant theories. Finally, starting from in-
terpretative basis of Machian temporal relationalism, we were able to find a relational
technique for quantisation of the theories in question.

In Part III our treatment was extended to the full canonical gravity case. Much of the
added subtlety within the relativistic problem of time can be traced to the complex and
dual role played by the local Hamiltonian constraints of the theory. In contrast to the non-
relativistic case we cannot straightforwardly treat these constraints as purely generating
evolution. However, like in the case of non-relativistic models, it can be shown that to
simply reduce out the action of the constraint is to trivialise our dynamics. Thus, to
move to a denial of time in the interpretation of canonical gravity on the grounds of such
reductionism is an incoherent step. There are, however, two alternative stances which do
amount to viable interpretational strategies for denying time – the first of which involves
removing absolute scale but recovering an emergent notion of time (the Machian denial)
and the other which keeps scale but dispenses with change altogether (the Paramenadian
denial). These two denials correspond to the emergent time and correlation strategies of
the non-relativistic case.

In the penultimate chapter of Part III we argued from our interpretative stance with
regard to the conceptual failure of reductionism to a prescription against the application
of conventional constraint quantisation techniques to canonical general relativity. Quan-
tum Hamiltonian constraints cannot be treated like normal constraints because we cannot
interpret their classical counterparts as purely gauge generating. The next step of this
analysis is to apply the relativistic application of the relational quantisation technique
introduced in Part II. Given either the single global Hamiltonian constraint of shape dy-
namics or the possibility of combining relational quantisation with the master constraint
programme, this avenue appears potentially highly fruitful. Work towards the first option
was included in Chapter 15.

The early sections of Part IV were principally concerned with introducing several key
ideas from the philosophy of science. In particular, the semantic conception of theory
structure, the apparent conflict between metaphysical underdetermination and scientific
realism, and the ideas surrounding the position of ontic structural realism (OSR). Two
points that were much emphasised were that a structuralist ontology must be: i) substantial
enough to be a generalising framework which includes dynamical as well as mathematical
structure; and ii) such that its essential elements are consistent between two formulations
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of one theory and between a theory and its successor.

In light of the second of these requirements we may make the proposal that we could
test the OSR programme via the investigation of situations where we have two (suitably
metaphysically underdetermining) formulations of a classical theory that we can then
compare with their quantum analogues. If the structuralist notion of ontology is a coherent
one then we should be able to take the frameworks we use to generalise formulations at
the classical-classical and quantum-quantum levels and make a further classical-quantum
generalisation. These ideas were applied concretely with a degree of success for the cases
of Lagrangian and Hamiltonian formulations Newtonian mechanics and the reduced and
unreduced formulations of a canonical standard gauge theory.

Finally we come back to the point at which we left off in the last chapter. Upon in-
vestigation it is found that there are large – possibly insurmountable – obstacles to the
construction of a suitable generalising structuralist framework for canonical general rel-
ativity as formulated in terms of shape dynamics and the complete observables scheme.
Unlike in our other two case studies there is no suitable set of maps that encodes the
structural relationship between the observables, symmetries and dynamics fundamental
to the two formalisms (or at least no such set of maps has yet been identified). We are
yet to comment on what implications should be attached to this result. Let us review the
most obvious options. First, it could be taken that we have found evidence of weakness
in the structural realist notion of ontology – in this case it is not fully applicable. We
might therefore, assuming we still want to be realists about something, simply fall back
to privileging the ontology associated with one formulation or the other – albeit without a
totally rational basis for doing so. In practice, this seems closer to what physicists work-
ing on this problem are actually doing. A second option would be to reject the idea that
the structural ontology we should be looking for in this case must be as substantive as
that constructed for the two other cases. There is still a duality between the two formu-
lations and therefore we still have available some structural bridges. The problem with
such a move is that it exposes the structural realist notion of ontology to twin dangers of
triviality and ad-hocness. If all that were needed to constitute a structural ontology were
some set of maps then we would, by definition, always be able to satisfy this requirement
whenever we had two formulations of a theory. Similarly problematically, if we allow the
notion of a substantive structural ontology to be weakened or adjusted whenever we are
confronted with a recalcitrant case, then it might seem we are merely adding epicycles
onto a degenerating philosophical research programme.
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The third option, which arguably has the most promise, is to place this problem of
identifying the classical structure of canonical gravity in the context of the outstanding
problem of quantising the theory. Within classical theories where we can identify the fun-
damental classical structure we find that this structure is then key to quantisation. Given
that we have a situation where, despite over half a century of work, the quantisation of the
canonical gravity is still seemingly beyond us, would it not best behove us to think of our
structuralism problem as part and parcel of the same issue? More specifically, the identi-
fication of the true degrees of freedom of a classical gauge theory allows us in principle to
construct a reduced phase space which correctly parameterises the fundamental dynamics
of the theory. It is the symplectic structure of this space which is analogous to the inner
product structure of the fundamental Hilbert space of the quantum theory and which is
directly linked to the binary operation which defines the algebra of quantum observables.
Furthermore, the relationship between the formalism in this space and the unreduced for-
malism is exactly what we identified above as encoding what is essential to a theory at
both classical and quantum levels – states spaces, symmetries, observables, dynamics and
the structures which connect them. As we have seen, for canonical gravity this reduced
space is not the space reached by application of conventional constraint reduction methods
and therefore, from the vantage of hindsight, it is perhaps no surprise, that quantisation
along conventional lines has failed to deliver a completed theory of quantum gravity.

If, however, we were able to correctly isolated the true reduced phase space of canon-
ical gravity (in analogy to what was done for Jacobi’s theory in Part II) then we may be
better placed to proceed towards quantisation. Furthermore, our expectation would be
that the identification of the true reduced space of the canonical theory should allow us
to better understand both the complete observables scheme and its connection to shape
dynamics. One would expect, in fact, that there should be a shape dynamics analogue to
this true reduced phase space. More speculatively, we might even propose that it is the
connection between these putative reduced spaces that would constitute exactly the sub-
stantive structural framework that we are looking for. Thus, in the task of making sense of
the interpretation of canonical gravity in terms of structural realism, we might – to recall
our epigraph – find that what may have seemed like a tripwire is, in fact, a new path to
quantum gravity.
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Gryb, S. and Thébault, K. (2012). The role of time in relational quantum theories. Foun-
dations of Physics DOI: 10.1007/s10701-012-9665-5.
URL: http://arxiv.org/abs/1110.2429

Gryb, S. B. (2010). A Definition of Background Independence. Class. Quant. Gravity.
27: 215018. doi:10.1088/0264-9381/27/21/215018. arXiv:1003.1973.

Guillemin, V. and Sternberg, S. (1982). Geometric quantization and multiplicities of
group representations. Inventiones Mathematicae 67(3): 515–538.

Hardin, C. L. and Rosenberg, A. (1982). In defence of convergent realism. Philosophy of
Science 49: 604–15.

http://dx.doi.org/10.1088/0264-9381/28/4/045005
http://dx.doi.org/10.1088/0264-9381/28/4/045005
http://arxiv.org/abs/1010.2481
http://arxiv.org/abs/1105.0938
http://dx.doi.org/10.1007/BF00669766
http://dx.doi.org/10.1088/0264-9381/27/21/215018
http://arxiv.org/abs/1003.1973


BIBLIOGRAPHY 245

Hempel, C. and Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of
Science 15: 135–175.

Henneaux, M. and Teitelboim, C. (1989). The Cosmological Constant And General Co-
variance. Phys. Lett. B222: 195–199. doi:10.1016/0370-2693(89)91251-3.

——— (1992). Quantization of gauge systems. Princeton University Press.

Hilgevoord, J. (2005). Time in quantum mechanics: a story of confusion. Studies In His-
tory and Philosophy of Science Part B: Studies In History and Philosophy of Modern
Physics 36(1): 29 – 60.
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