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1 Introduction

The significance of the phenomenon of quantum entanglement—wherein the most precise
characterisation of a quantum system composed of previously interacting subsystems does
not necessarily include a precise characterisation of those subsystems—has been at the fore-
front of the debate over the conceptual foundations of quantum theory, almost since that
theory’s inception. It is the distinguishing feature of quantum theory, for some (Schrödinger,
1935).1 For others, it is evidence for the incompleteness of that theory (Einstein et al.,
1935).2 For yet others, the possibility of entangled quantum systems implies that physical
reality is essentially non-local (Stapp, 1997).3 For almost all, it has been, and continues to
be, an enigma requiring a solution.

For most of the history of quantum theory, serious investigation into the significance and
implications of entanglement has been conducted mainly by philosophers of physics and by
a few philosophically-minded theoretical and experimental physicists interested in founda-
tional issues. With the advent of quantum information theory, this has begun to change. In
quantum information theory, quantum mechanical systems are utilised to implement com-
munications protocols and computational algorithms that are faster and more efficient than
any of their known classical counterparts. Because it is almost surely the case that one or
more of the fundamental distinguishing aspects of quantum mechanics is responsible for this
‘quantum advantage’, quantum information theory has precipitated an explosion of physical
research into the traditionally foundational issues of quantum theory.

Of the many and varied applications of quantum information theory, perhaps the most
fascinating is the sub-field of quantum computation. In this sub-field, computational algo-
rithms are designed which utilise the resources available in quantum systems in order to
compute solutions to computational problems with, in some cases, exponentially fewer re-
sources than any known classical algorithm. A striking example of this so-called ‘quantum
speedup’ is Shor’s algorithm (Shor, 1997) for factoring integers. A basic distinction, in com-
putational complexity theory, is between those computational problems that are amenable
to an efficient solution in terms of time and space resources, and those that are not. Easy
(or ‘tractable’, ‘feasible’, ‘efficiently solvable’, etc.) problems are those which involve re-
sources bounded by a polynomial in the input size, n (nc time steps, for instance, where c
is some constant). Hard problems are those which are not easy; they are those problems
whose solution requires resources that are ‘exponential’ in n, i.e., that grow faster than any
polynomial in n.4,5 The factoring problem is believed to be hard, classically, and indeed,
much of current Internet security relies on this fact. Shor’s quantum algorithm for factoring

1For some more recent speculation on the the distinguishing feature(s) of quantum mechanics, see, for
instance, Clifton et al. (2003); Myrvold (2010).

2For further discussion, and for Einstein’s later refinements of the Einstein-Podolsky-Rosen (EPR) paper’s
main argument, see Howard (1985).

3For responses to Stapp’s view and for further discussion, see: Unruh (1999); Mermin (1998); Stapp
(1999).

4As this class of problems includes those solvable in, for instance, nlog n steps, this convention abuses,
somewhat, the term exponential, hence my use of inverted commas.

5As we will discuss in more detail later, the easy-hard distinction is not meant to reflect any deep
mathematical truth about the nature of computational algorithms, but is rather meant as a practical char-
acterisation of what we normally associate with efficiency.
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integers, however, makes the factoring problem efficiently solvable.
While the fact of quantum computational speedup is almost beyond doubt,6 the source

of quantum speedup is still a matter of debate. Candidate explanations of quantum speedup
range from the purported ability of quantum computers to perform multiple function eval-
uations simultaneously (Deutsch, 1997; Duwell, 2004; Hewitt-Horsman, 2009),7 to the pur-
ported ability of a quantum computer to compute a global property of a function without
evaluating any of its values (e.g. Steane, 2003; Bub, 2010).

In most of these candidate explanations, the fact that quantum mechanical systems can
sometimes exhibit entanglement plays an important role. On A.M. Steane’s view, for in-
stance, quantum entanglement allows one to manipulate the correlations between the values
of a function without manipulating those values themselves. For proponents of the many
worlds explanation, on the other hand, though they consider computational worlds to be
the main component in the explanation of quantum speedup, they nevertheless view entan-
glement as indispensable to its analysis (Hewitt-Horsman, 2009, 889). It is thus somewhat
disconcerting that recent physical research seems to suggest that entanglement, rather than
being indispensable, may be irrelevant to the general explanation of quantum speedup.

Logically, entanglement may play the role of either a necessary or a sufficient condition
(or both) in an overall explanation of quantum speedup. I address the question of whether
entanglement may be said to be a sufficient condition elsewhere (Cuffaro, 2012a). As for
the assertion that entanglement is a necessary condition, this has gained wide acceptance
and seems to be confirmed by a result due to Jozsa & Linden (2003), who prove that for
quantum algorithms which utilise pure states, “the presence of multi-partite entanglement,
with a number of parties that increases unboundedly with input size, is necessary if the
quantum algorithm is to offer an exponential speed-up over classical computation” (2003,
p. 2014). Jozsa & Linden’s result does not seem to extend to mixed states, however, for
Biham et al. (2004) have shown that it is possible to achieve a modest (sub-exponential)
speedup using unentangled mixed states, while Datta et al. (2005, 2008) have shown that
it is possible to achieve an exponential speedup using mixed states that contain only a
vanishingly small amount of entanglement. In the latter case, further investigation has
suggested to some that quantum correlations other than entanglement may be playing a
more important role. One quantity in particular, quantum discord, appears to be intimately
connected to the speedup that is present in the algorithm in question. In light of these results,
it is tempting to conclude that it is not necessary to appeal to entanglement at all in order to
explain quantum computational speedup and that the investigative focus should shift to the
physical characteristics of quantum discord or some other such quantum correlation measure
instead.

In this paper I will argue that this conclusion is premature and misguided, for as I will
show below, there is an important sense in which entanglement can indeed be said to be
necessary for the explanation of the quantum speedup obtainable from both of these mixed-

6Just as with other important problems in computational complexity theory, such as the P = NP

problem, there is currently no proof, though it is very strongly suspected to be true, that the class of
problems efficiently solvable by a quantum computer is larger than the class of problems efficiently solvable
by a classical computer.

7For criticisms of the version of this view that takes this parallel computation to occur in many parallel
universes, see, for instance, Steane (2003); Duwell (2007); Cuffaro (2012b).
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state quantum algorithms. To this effect, I will proceed as follows. After introducing the
concept of entanglement in §2, I introduce the necessity of entanglement thesis in §3.2. In
§3.3, I show how what looks like a counter-example to the necessity of entanglement thesis for
pure states—the fact that certain important quantum algorithms can be expressed so that
their states are never entangled—is instead evidence for this thesis. Then, in §4, I examine
the more serious challenges to the necessity of entanglement thesis posed by the cases of
sub-exponential speedup with unentangled mixed states (§4.1) and exponential speedup
with mixed states containing only a vanishingly small quantity of entanglement (§4.3).

Starting with the first type of counter-example, I begin by arguing that pure quantum
states should be taken to provide a more fundamental representation of quantum systems
than mixed states. I then show that when one considers the initially mixed state of the quan-
tum computer as representing the space of its possible pure state preparations, the speedup
obtainable from the computer can be seen as stemming from the fact that the quantum
computer evolves some of these possible pure state preparations to entangled states—that
the quantum speedup of the computer can be seen as arising from the fact that it implements
an entangling transformation.

As for the second type of counter-example, where exponential speedup is achieved with
only a vanishingly small amount of entanglement, and where it is held by some that another
type of non-classical correlation, quantum discord, is responsible for the speedup of the
quantum computer: I argue that, first, it is misleading to characterise discord as indicative
of non-classical correlations, and that this mischaracterisation stems from a confusion over
what it means for a compound system to be classically correlated. I then appeal to recent
work done by Fanchini et al. (2011), Brodutch & Terno (2011), and Ollivier & Zurek (2002)
who show, respectively, that when one considers the ‘purified’ state representation of the
quantum computer, there is a conservation relation between discord and entanglement, and
indeed that there is just as much entanglement in such a representation as there is discord
in the mixed state representation; that entanglement must be shared between two parties in
order to bilocally implement any bipartite quantum gate; and that entanglement is directly
involved in the operational definition of quantum discord.

Given Jozsa & Linden’s proof of the necessity of entanglement for speedup using pure
states, and given the fundamentality of pure states as representations of quantum systems,
the burden of proof is upon those who would deny the necessity of entanglement thesis to
show either by means of a counter-example or by some other more principled method that
it is false. Neither of the counter-examples discussed in this paper succeeds in doing so. We
should conclude, therefore, that the necessity of entanglement thesis is true.
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2 Preliminaries

2.1 Quantum entanglement

Consider the following representation of the joint state of two qubits:8

|ψ〉 = |0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉.

This expression for the overall state of the system represents the fact that the two qubits
are in an equally weighted superposition of the four joint states (a)-(d) below:

q1 q2
(a) |0〉 |0〉
(b) |0〉 |1〉
(c) |1〉 |0〉
(d) |1〉 |1〉.

This particular state is a separable state, for it can, alternatively, be expressed as a product
of the pure states of its component systems, as follows:

|ψ〉 = (|0〉+ |1〉)⊗ (|0〉+ |1〉).

Not all quantum mechanical states can be expressed as product states of their component
systems, and thus not all quantum mechanical states are separable. Here are four such
‘entangled’ states:9

|Φ+〉 = |00〉+ |11〉√
2

|Φ−〉 = |00〉 − |11〉√
2

|Ψ+〉 = |01〉+ |10〉√
2

|Ψ−〉 = |01〉 − |10〉√
2

.

The skeptical reader is encouraged to convince himself that it is impossible to re-express any
of these states as a product state of two qubits. They are called the Bell states, and I will
refer to a pair of qubits jointly in a Bell state as a Bell pair.10 Maximally entangled states,11

8A qubit is the basic unit of quantum information, analogous to a classical bit. It can be physically
realised by any two-level quantum mechanical system. Like a bit, it can be “on”: |1〉 or “off”: |0〉, but unlike
a bit it can also be in a superposition of these values.

9From now on, I will usually, for brevity, omit the tensor product symbol from expressions for states of
multi-particle systems; i.e., |αβ〉 and |α〉|β〉 should be understood as shorthand forms of |α〉 ⊗ |β〉.

10These are also sometimes referred to as ‘EPR pairs’. EPR stands for Einstein, Podolsky, and Rosen.
In their seminal 1935 paper, EPR famously used states analogous to the Bell states to argue that quantum
mechanics is incomplete.

11Not all entangled states are maximally entangled states. We will discuss this in more detail shortly.
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such as these, completely specify the correlations between outcomes of experiments on their
component qubits without specifying anything regarding the outcome of a single experiment
on one of the qubits. For instance, in the singlet state (|Ψ−〉), outcomes of experiments on
the first and second qubits are perfectly anti-correlated with one another. If one performs,
say, a ẑ experiment on one qubit of such a system, then if the result is |0〉, a ẑ experiment
on the other qubit will, with certainty, yield an outcome of |1〉, and vice versa. In general,
the expectation value for joint measurements on the two qubits is given by −m̂ · n̂ = − cos θ,
where m̂, n̂ are unit vectors representing the orientations of the two experimental devices,
and θ is the difference in these orientations. Any single ẑ experiment on just one of the two
qubits, however, will yield |0〉 or |1〉 with equal probability.

We will put to one side the question of the physical significance of quantum entanglement.
I discuss this at greater length in Chapters 4 and 5 of Cuffaro (2012c). For the purposes of
this paper it is most appropriate to give as minimal and uncontroversial a characterisation
of entanglement as possible.

2.2 Entangled mixed states

The concepts of separability and of entanglement are also applicable to so-called ‘mixed
states’. Imagine that one draws a ball from an urn into which balls of different types have
been placed, and that the probability of drawing a ball of type i is pi. After drawing the
ball, we inform our friends Alice, Bob, Charles, and so on, that the outcome of the draw was
i, after which they all locally create their own individual quantum states ρXi (where ρXi is
the density operator representation of X ’s state corresponding to outcome i). After creating
these states they then discard the information they were given about the result of the draw.
The resulting state of the overall system will be the mixed state:

ρABC... =
∑

i

piρ
A
i ⊗ ρBi ⊗ ρCi ⊗ . . . (2.1)

In general, determining whether a mixed state of the form (2.1) is an entangled state is
difficult, because in general the decomposition of mixtures is non-unique. For instance, the
reader can verify that a mixed state represented by the density operator ρ, prepared as a
mixture of pure states in the following way:

ρ =
3

4
|0〉〈0|+ 1

4
|1〉〈1|,

can also be equivalently prepared as:

ρ =
1

2
|ψ〉〈ψ|+ 1

2
|φ〉〈φ|,

where

|ψ〉 ≡
√

3

4
|0〉+

√

1

4
|1〉, |φ〉 ≡

√

3

4
|0〉 −

√

1

4
|1〉.
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This is so because both state preparations yield an identical density matrix representation
(in the computational basis12); i.e.,:

(

3/4 0
0 1/4

)

.

In particular, as we will see in more detail later, a system that is prepared as a mixture of
entangled states will sometimes yield the same density operator representation as a system
prepared as a mixture of pure product states.

2.3 Quantifying entanglement

Entanglement is a potentially useful resource for quantum information processing. Masanes
(2006) has shown, for instance, that for any non-separable state ρ, some other state σ is
capable of having its teleportation fidelity enhanced by ρ’s presence.13 Given this, it is
useful to be able to quantify the amount of entanglement contained in a given state. In
order to do this, we employ so-called entanglement measures. Using such measures, it is
easy to see, for instance, that the state

|φ〉 =
√

1

3
|01〉+

√

2

3
|10〉, (2.2)

though entangled, is not a maximally entangled state (unlike the Bell states we encountered
in §2.1, which are maximally entangled). This is explained in more detail in Cuffaro (2012c),
where a description of various entanglement measures is also given. This can also be found
in Plenio & Virmani (2007).

2.4 Purification

Every mixed state can be thought of as the result of taking the partial trace of a pure state
acting on a larger Hilbert space. In particular, for a mixed state ρA acting on a Hilbert
space HA, with spectral decomposition

∑

k pk|k〉〈k| for some orthonormal basis {|k〉}, a
purification (in general non-unique) of ρA may be given by

|ψAB〉 =
∑

k

√
k|kA〉 ⊗ |kB〉 ∈ HA ⊗HB,

where HB is a copy of HA. We then have ρA = trB(|ψAB〉〈ψAB|), with |ψAB〉 an entangled
state.

12The computational, or classical, basis for a single qubit is the basis {|0〉, |1〉}, which can be used to
represent the classical bit states {↑, ↓}, where |0〉 = ( 10 ) , and |1〉 = ( 01 ) . An alternative basis for representing

qubits is the basis {|+〉, |−〉}, where |+〉 = 1√
2
( 11 ) =

|0〉+|1〉√
2

, and |−〉 = 1√
2

(

1
−1

)

= |0〉−|1〉√
2

.
13The teleportation fidelity (cf. Nielsen & Chuang, 2000, §9.2.2) is a measure of the ‘closeness’ of the input

and output states in the teleportation protocol (cf. Bennett et al., 1993).
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3 Entanglement in the quantum computer

3.1 The Deutsch-Jozsa algorithm

Deutsch’s problem (Deutsch, 1985) is the problem to determine whether a given function
f : {0, 1} → {0, 1} is constant or balanced. Such a function is constant if it produces the
same output value for each of its inputs; it is balanced if the output of one half of the
inputs is the opposite of the output of the other half. Thus, the constant functions from
{0, 1} → {0, 1} are f(x) = 0 and f(x) = 1; the balanced functions are the identity and
bit-flip functions.

A generalised version of this problem enlarges the class of functions under consideration
so as to include all of the functions f : {0, 1}n → {0, 1}. Its quantum solution is given
by the Deutsch-Jozsa algorithm (Deutsch & Jozsa, 1992). In Cleve et al.’s improved version
(Cleve et al., 1998), the algorithm begins by initialising the quantum registers of the com-
puter to |0n〉|1〉, after which we apply a Hadamard transformation14 to all n + 1 qubits, so
that:

|0n〉|1〉 H−→
(

1

2n/2
(|0〉+ |1〉)n

)( |0〉 − |1〉√
2

)

=

(

1

2n/2

2n−1
∑

x

|x〉
)

( |0〉 − |1〉√
2

)

. (3.1)

The unitary transformation,

Uf(|x〉|y〉) =df |x〉|y ⊕ f(x)〉, (3.2)

is then applied, which has the effect:15

Uf−→
(

1

2n/2

2n−1
∑

x

(−1)f(x)|x〉
)

( |0〉 − |1〉√
2

)

. (3.3)

If f is constant and = 0, this, along with a Hadamard transformation applied to the first
n qubits, will result in:

f = 0 :

(

1

2n/2

2n−1
∑

x

|x〉
)

|−〉 Hn⊗I−−−→ |0n〉|−〉,

where |−〉 =df
|0〉−|1〉√

2
. Otherwise if f is constant and = 1, then this, along with a Hadamard

transformation applied to the first n qubits, will result in:

f = 1 : −
(

1

2n/2

2n−1
∑

x

|x〉
)

|−〉 Hn⊗I−−−→ −|0n〉|−〉.

14The Hadamard transformation (also called a Hadamard ‘gate’) takes |0〉 to |0〉+|1〉√
2

and |1〉 to |0〉−|1〉√
2

and

vice-versa.
15Given the state |x〉(|0〉 − |1〉) (omitting normalisation factors for simplicity), note that when f(x) = 0,

applying Uf yields |x〉(|0⊕ 0〉− |1⊕ 0〉) = |x〉(|0〉− |1〉); and when f(x) = 1, applying Uf yields |x〉(|0⊕ 1〉−
|1⊕ 1〉) = |x〉(|1〉 − |0〉) = −|x〉(|0〉 − |1〉).
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In either case, a measurement in the computational basis on the first n qubits yields the bit
string z = 000 . . . 0 = 0n = 0 with certainty. If f is balanced, on the other hand, then half
of the terms in the superposition of values of x in (3.3) will have positive phase, and half
negative. After applying the final Hadamard transform, the amplitude of |0n〉 will be zero.16
Thus a measurement of these qubits cannot produce the bit string z = 000 . . . 0 = 0n = 0. In
sum, if the function is constant, then z = 0 with certainty, and if the function is balanced,
z 6= 0 with certainty. In either case, the probability of success of the algorithm is 1, using
only a single invocation. This is exponentially faster than any known classical solution.

3.2 The necessity of entanglement thesis

In the literature on quantum computation (cf. Ekert & Jozsa 1998; Steane 2003) it is often
suggested that entanglement, such as that present in states like (3.3), is required if a quantum
algorithm is to be capable of achieving a speedup over its classical alternatives. I will call
the related claim that entanglement is a necessary component of any physical explanation

for quantum speedup the necessity of entanglement thesis (NET).17

Note that although the NET is related to the claim that one requires the computer to be

in an entangled state in order to achieve quantum speedup, these two claims are not strictly
speaking identical. As we will see in §4.1, it is possible for the NET to be true even if the
second claim is false (in the technical sense of §2.2), and it is not incoherent to argue that
the NET is false by citing, as a counter-example, a quantum computer whose state is always
entangled, as we shall see in §4.3.

3.3 De-quantisation

At first sight the following consideration seems problematic for the NET. Consider the
Deutsch-Jozsa algorithm (cf. §3.1) for the special case of n = 1. This case is essentially
a solution for Deutsch’s problem. Deutsch’s (1985) original solution to this problem is re-
garded as the first quantum algorithm ever developed and as the first example of what has
since come to be known as quantum speedup. If one considers the steps of the algorithm as
given in §3.1, however, then the reader can confirm that, when n = 1, at no time during the
computation are the two qubits employed actually entangled with one another. The thesis
that entanglement is a necessary condition for quantum speedup thus seems false. But the

16To illustrate, consider the case where n = 2. After applying Uf , the computer will be in the state:
(|00〉 − |01〉+ |10〉 − |11〉)|−〉. Applying a Hadamard transform to the two input qubits will yield:

(

(|00〉+ |01〉+ |10〉+ |11〉)− (|00〉 − |01〉+ |10〉 − |11〉)

+ (|00〉+ |01〉 − |10〉 − |11〉)− (|00〉 − |01〉 − |10〉+ |11〉)
)

|−〉
= (0|00〉+ . . .)|−〉.

17The attentive reader who has noticed that there is actually no entanglement in (3.3) when n = 1 will
be somewhat puzzled by this statement. In fact, as we will see, entanglement will only appear for n ≥ 3.
In what follows I will argue, however, that this turns out to be evidence for, not against, the necessity of
entanglement thesis. This will be clarified in the next section.

8
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situation is not as dark for the NET as it appears, since for the case of n = 1, it is also
the case that the problem can be ‘de-quantised’, i.e., solved just as efficiently using classical
means.

One method for doing this (cf. Abbott, 2010) is with a computer which utilises the
complex numbers {1, i} as a computational basis in lieu of {|0〉, |1〉}. A complex number
z ∈ C can be written as z = a + bi, where a, b ∈ R, and thus can be expressed as a
superposition of its basis elements in much the same way as a qubit.18 The algorithm
proceeds in the following way. We first note that the action of Uf on the first n qubits in
Eq. (3.3) can, for the case of n = 1, be expressed as:19

1√
2

(

(−1)f(0)|0〉+ (−1)f(1)|1〉
)

=
(−1)f(0)√

2

(

|0〉+ (−1)f(0)⊕f(1)|1〉
)

.

We now define an operator Cf , analogously to Uf , that acts on a complex number as follows:

Cf(a+ bi) = (−1)f(0)
(

a + (−1)f(0)⊕f(1)bi
)

.

When f is constant, the reader can verify that Cf(z) = ±(a+bi) = ±z. When f is balanced,
Cf(z) = ±(a − bi) = ±z∗. Multiplying by z/2 so as to project our output back onto the
computational basis, we find, for the elementary case of z = 1 + i, that

f constant : 1
2
z · ±z = ±i

f balanced : 1
2
z · ±z∗ = ±1.

Thus for any z, if the result of applying Cf is imaginary, then f is constant, else if the result
is real, then f is balanced; indeed, the sign will tell us which of the two balanced or two
constant functions f is. This algorithm is just as efficient as its quantum counterpart.

It can similarly be shown (cf. Abbott, 2010) that no entanglement is present in (3.3)
when n = 2, and that for this case also it is possible to solve the problem efficiently using
classical means. When n ≥ 3, however, (3.2) is an entangling evolution and (3.3) is an
entangled state. Unsurprisingly, it is no longer possible to define an operator Cf analogous
to Uf that takes product states to product states, and it is no longer possible to produce an
equally efficient classical counterpart to the Deutsch-Jozsa algorithm (cf. Abbott, 2010).

Indeed, for the general case, Abbott has shown that a quantum algorithm can always
be efficiently de-quantised whenever the algorithm does not entangle the input states. Far
from calling into question the role of entanglement in quantum computational speedup, the
fact that the Deutsch-Jozsa algorithm does not require entanglement to succeed for certain
special cases actually provides (since in these cases it can be efficiently de-quantised) evidence
for the NET.

18Regarding the physical realisation of such a computer, note that complex numbers can be used, for
instance, to describe the impedances of electrical circuits and that we can apply the superposition theorem
to their analysis.

19Note that, since f(0) = f(0), (−1)f(0)⊕f(0)⊕f(1) = (−1)f(1).
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4 Challenges to the necessity of entanglement thesis

In their own analysis of de-quantisation, Jozsa & Linden (2003) similarly find that, for pure
quantum states, “the presence of multi-partite entanglement, with a number of parties
that increases unboundedly with input size, is necessary if the quantum algorithm is to
offer an exponential speed-up over classical computation.”20 In the same article, however,
Jozsa & Linden speculate as to whether it may be possible to achieve exponential speedup,
without entanglement, using mixed states. In fact, as we will now see, it is possible to achieve
a modest (i.e., sub-exponential) speedup using unentangled mixed states. As I will argue,
however, entanglement nevertheless plays an important role in the computational ability of
these states, despite their being unentangled in the technical sense of §2.2.

4.1 The mixed-state Deutsch-Jozsa algorithm

We will call a ‘pseudo-pure-state’ of n qubits any mixed state that can be written in the
form:

ρ
{n}
PPS ≡ ε|ψ〉〈ψ|+ (1− ε)I ,

where |ψ〉 is a pure state on n qubits, and I is defined as the totally mixed state (1/2n)I2n .
It can be shown that such a state is separable (cf. §2.2) and remains so under unitary
evolution just so long as

ε <
1

1 + 22n−1
.

Now consider the Deutsch-Jozsa algorithm once again (cf. §3.1). This time, however, let
us replace the initial pure state |0n〉|1〉 with the pseudo-pure state:

ρ = ε|0n〉|1〉〈0n|〈1|+ (1− ε)I . (4.1)

The algorithm will continue as before, except that this time our probability of success will
not be unity.

To illustrate: imagine that we write some of the valid boolean functions f : {0, 1}n →
{0, 1} onto balls which we place into an urn, and assume that these consist of an equal
number of constant and balanced functions. We select a ball from the urn and then test
the algorithm with this function to see if the algorithm successfully determines f ’s type.
Consider the case when f is a constant function. In this case, we will say the algorithm
succeeds whenever it yields the bit string z = 0. Assuming ρ has been prepared as in (4.1),
we know, from §3.1, that the algorithm will certainly succeed when ρ is in its pure part; i.e.,
when the system’s state is actually |0n〉|1〉〈0n|〈1|. This occurs with probability ε. When ρ is
in its completely mixed part, on the other hand, then since there are 2n possible values that
can be obtained for z, the probability of successfully obtaining z = 0 in this case is 1/2n.
The overall probability of success associated with the density operator ρ when f is constant
is thus:

P (z = 0|f is constant) = ε+ (1− ε)/2n. (4.2)

20For some earlier results relating to specific classes of algorithms, see Linden & Popescu (2001);
Braunstein & Pati (2002). For a review, see Pati & Braunstein (2009).

10



Michael E. Cuffaro Reflections on the Role of Entanglement

The probability of failure is:

P (z 6= 0|f is constant) =
2n − 1

2n
· (1− ε). (4.3)

In the case where f is balanced, a result of z 6= 0 represents success, and the respective
probabilities of success and failure are:

P (z 6= 0|f is balanced) = ε+
2n − 1

2n
· (1− ε), (4.4)

P (z = 0|f is balanced) = (1− ε)/2n. (4.5)

Note that as I mentioned in §2.2, mixed states can in general be prepared in a variety
of ways. (4.1), in particular, is only one of many possible state preparations that will yield
an identical density matrix representation of ρ. For ease of exposition, and in order to see
clearly why Eqs. (4.2-4.5) hold, it was easiest to assume, as I did above, that ρ has been
prepared as in (4.1). But note that there is no loss of generality here; the identities (4.2-4.5)
do not depend on the fact that we have used this particular preparation procedure.

In any case, consider the alternative to the Deutsch-Jozsa algorithm of performing clas-
sical function calls on f with the object of determining f ’s type. The reader should convince
herself that a single such call, regardless of the result, will not change the probability of
correctly guessing the type of the function f . Thus the amount of information about f ’s
type that is gained from a single classical function call is zero.21 On the other hand, as we
should expect given (4.2-4.5), for the mixed-state version of the Deutsch-Jozsa algorithm,
it can be shown that the information gained from a single invocation of the algorithm is
greater than zero for all positive ε, and that this is the case even when ε < 1

1+22n−1 ; i.e., the
threshold below which ρ no longer qualifies as an entangled state. Indeed, this is the case
even when ε is arbitrarily small (cf. Biham et al., 2004), although the information gain in
this case is likewise vanishingly small.

4.2 Explaining speedup in the mixed-state Deutsch-Jozsa algo-

rithm

The first question that needs to be answered here is whether the sub-exponential gain in
efficiency that is realised by the mixed-state Deutsch-Jozsa algorithm should qualify as quan-
tum speedup at all. On the one hand, from the point of view of computational complexity
theory (cf. Papadimitriou, 1994; Aaronson, 2012), the solution to the Deutsch-Jozsa problem
provided by this algorithm is no more efficient than a classical solution: from a complexity-
theoretic point of view, a solution S1 to a problem P is deemed to be just as efficient as
a solution S2 so long as S1 requires at most a polynomial increase in the (time or space)
resources required to solve P as compared with S2. From this point of view, only an exponen-

tial reduction in time or space resources can qualify as a true increase in efficiency. Clearly,
the mixed-state Deutsch-Jozsa algorithm does not yield a speedup over classical solutions,

21This information gain is referred to as the mutual information between two variables (in this case,
between the type of the function and the result of a function call). For more on the mutual information and
other information-theoretic concepts, see Nielsen & Chuang (2000).
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in this sense, when ε is small. In fact it can be shown (Vedral, 2010, 1148) that exponential
speedup, and hence a true increase in efficiency from a complexity-theoretic point of view,
is achievable only when ε is large enough for the state to qualify as an entangled state.

On the other hand, there is a very real difference, in terms of the amount of informa-
tion gained, between one invocation of the black box (4.1) and a single classical function
call—which is all the more striking since the amount of information one can gain from a sin-
gle classical function call is actually zero. Further, one should not lose sight of the fact that
the complexity-theoretic characterisation of efficient algorithms is artificial and, in a certain
sense, arbitrary. For instance, on the complexity-theoretic characterisation of computational
efficiency, a problem, which for input size n, requires ≈ n1000 steps to solve is polynomial
in terms of time resources in n and thus tractable, while a problem that requires ≈ 2n/1000

steps to solve is exponential in terms of time resources in n and therefore considered to be
intractable. In this case, however, the ‘intractable’ problem will typically require much less
time to compute than the ‘tractable’ problem, for all but very large n.22 Such extraordinary
examples aside, for most practical purposes the complexity-theoretic characterisation of ef-
ficiency is a good one. Nevertheless it is important to keep in mind that this is a practical
definition of efficiency which does not reflect any deep mathematical truth or make any deep
ontological claim about what is and is not efficient in the common or pre-theoretic sense of
that term.

But let us come back now from this slight digression to our main discussion, and let us
consider the question of whether entanglement plays a role in the speedup exhibited by this
mixed state. The strongest argument in favour of a negative answer to this question is, I
believe, the following. Recall that (4.1) is only one of many possible ways to prepare ρ. It is
possible to prepare ρ in an alternate way if we so desire, for instance (when ε is sufficiently
small) as a mixture of product states. This, in fact, is the significance of asserting that ρ is
unentangled. And since ρ remains separable under unitary evolution, it will be capable of a
product state representation throughout the computation. Thus while the pseudo-pure state
representation may well function as a tool for finding mixed quantum states that display
a computational advantage (i.e., by enabling a facile derivation of the identities (4.2-4.5)),
once found, it seems as though we may do away with this representation entirely. Hence
there seems to be no need to invoke entanglement in order to explain the speedup obtainable
with this state.

I believe this line of reasoning to be misleading, however, for it emphasises the abstract
density operator representation of the computational state at the cost of obscuring the na-
ture of the computational process that is actually occurring in the computer. To the point:
the density operator corresponding to a quantum system should not be understood as a
representation of the actual physical state of the system. Rather, the density operator rep-
resentation of a quantum system should be understood as a representation of our knowledge
of the space of physical states that the system can possibly be in, and of our ignorance as
to which of these physical states the system is actually in.

From the point of view of quantum mechanics, it is pure states of quantum systems
which should be seen as representations of the ‘actual’ physical states of such systems, for

22For example, for n = 1, 000, 000, the easy problem requires (106)1000 = 106000 steps to complete while
the hard problem requires 21000 steps.
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pure states represent the maximum possible knowledge one may have of a system within the
theory. I have enclosed the word actual within inverted commas in the preceding sentence
in order to emphasise the weakness of the claim I am making. This claim is not intended to
rule out that there may be a deeper physical theory underlying quantum mechanics, within
which quantum mechanical pure states can be seen as merely derivative representations.
Nor is it intended to rule out that quantum mechanics only incompletely (as a matter
of principle) specifies the nature of the physical world. I am only making what should
be the uncontroversial claim that relative to quantum mechanics itself, pure states should
be interpreted as those which are most fundamental, in the sense that they represent a
maximally specific description, within the theory, of the systems in question—i.e., they
represent the best grasp available, from within that theory, of the real physical situation.

In order to appreciate the minimalist nature of the claim I am making here, consider that
it is intended to be compatible with the interpretation given by Spekkens to the pure states
of his toy theory (cf. Spekkens, 2007): states of maximal, though in principle incomplete,
knowledge of the system in question. It is also intended to be compatible with the following
statement by Fuchs:

This, I see as the line of attack we should pursue with relentless consistency: The
quantum system represents something real and independent of us; the quantum
state [(the foregoing but not the following emphases are mine)] represents a
collection of subjective degrees of belief about something to do with that system
... The structure called quantum mechanics is about the interplay of these two
things—the subjective and the objective. The task before us is to separate the
wheat from the chaff. ... Only when we are finished picking off all the terms
(or combinations of terms) that can be interpreted as subjective information will
we be in a position to make real progress in quantum foundations. The raw
distillate left behind—minuscule though it may be with respect to the full-blown
theory—will be our first glimpse of what quantum mechanics is trying to tell us
about nature itself (Fuchs, 2003, 989-990).

Physics is the science of what is real, in the very minimal sense that physical concepts
purport to give us some idea of what the world is like. And if pure states represent the best
possible, i.e., most specific, representation of the physical situation from the point of view
of a theory, then with right they should be treated as the more fundamental concepts of the
theory. Mixed states, on the other hand, should be seen as derivative in the sense that they
are abstract characterisations of our knowledge of the space of pure states a system may
be possibly in, and of our ignorance of precisely which state within this space the system is
actually in.23 This is not the place to attempt to give a reading of either Fuchs’ or Spekkens’
opinions on the interpretation of the quantum state description.24 I may be incorrect as
regards the compatibility of my claim with their views. But regardless, I hope that most
readers will appreciate the benign nature of and be agreeable to the claim that I am making
here. In any case I will be assuming it in the remainder of this paper.

23If one prefers, one can think of a mixed state as a statistical state, representing the mean values of a
hypothetical ensemble of systems. The difference is inessential to this discussion.

24For a more in-depth look at this issue, see, for instance, Tait (2012).
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If the reader accepts this difference in fundamental status that I have accorded to pure
and mixed quantum states, then she should agree that if it is an explanation of the physical
process actually occurring in the computer that we desire, then it will not do to limit ourselves
to analysing the characteristics of the computer’s ‘black box’ mixed state; rather, we should
attempt to give a more detailed ‘white box’ characterisation of the operation of the computer
in terms of its underlying pure states.

Recall the fact—which we noted in our earlier discussion of de-quantisation—that the
unitary evolution (3.2) is, in general, an entangling evolution; i.e., it will take pure product
states, such as, for instance, |0n〉|1〉, to entangled states. Now imagine that the computer be-
gins its operation in the pseudo-pure state preparation (4.1), and that the computer evolves
in accordance with the entangling unitary transformation Uf . This will yield the transfor-
mation.

|0n〉|1〉〈0n|〈1|+ (1− ε)I
Uf−→ |φ〉〈φ|+ (1− ε)I ,

where |φ〉〈φ| is an entangled state. Now define si and sf to refer to the state preparations
corresponding to the initial and final states, respectively; i.e.,

si ≡ |0n〉|1〉〈0n|〈1|+ (1− ε)I , (4.6)

sf ≡ |φ〉〈φ|+ (1− ε)I , (4.7)

and let ρf be the density operator representation of the final state of the system. Because the
state preparation sf is only ‘pseudo-entangled’, some other state preparation s′f involving
a mixture of exclusively product states will yield an identical density operator representa-
tion ρf . Because of this, it is concluded by some that entanglement plays no role in the
computational advantage exhibited by the computer in this case.

The significance of the fact that Uf is an entangling evolution, however, is that si, evolved
in accordance with Uf , will not result in s′f—rather, it will result in the ‘pseudo-entangled’
state sf . Since both sf and s′f share the same density matrix representation, they are, from
this point of view, equivalent, but one cannot directly obtain s′f from an application of Uf

to si.
25

What of the fact that ε in the ‘pseudo-entangled’ representation sf may be vanishingly

small in principle and yet still lead to a computational advantage—does not this tell against
attributing the speedup exhibited by the computer to entanglement? I do not believe it
does. One must not lose sight of the fact that “vanishingly small” 6= 0. If ε were actually
equal to zero, it is evident that there would, in fact, be no performance advantage.

It is interesting, nevertheless, to consider the question of what can happen in the quantum
computer when ε = 0; i.e., when the state of the computer just is the totally mixed state I .
Note that this does not signify that it is impossible for the computer to actually be in the
pure state |0n〉|1〉 initially. Rather, it represents the circumstance where we are completely

25I am indebted to Wayne Myrvold for suggesting this line of thought. I am also indebted to the discussion
in Jozsa & Linden (2003, §5). I should note, also, that Long et al. (2002) make a similar point to the one
made here; but in making it they unnecessarily rely on interpreting the density matrix of a system as
representing the average values of a physical ensemble (i.e. of an actual collection of physical systems). The
objection is equally forceful, however, whether one thinks of the mixed state as representing a physical or a
statistical ensemble, and whether one thinks of the probabilities as ignorance probabilities or as representing
relative frequencies.
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ignorant of the initial state of the quantum computer. In this case the set of states of the
quantum computer for which it is actually |0n〉|1〉 is a set of measure zero. But it is possible,
nevertheless, for the quantum computer to be in that state.

Suppose then, that the quantum computer, represented by the density operator ρi = I ,
actually is in |0n〉|1〉 at the start of the computation. Is a computational process occurring
which would enable quantum speedup? From one point of view, the answer is yes, for the
entangling unitary transformation Uf evolves the computer to an entangled state which is
then capable of being utilised in principle in order to solve the problem under consideration
(with fewer computational resources than a classical computer). From another point of
view, the answer is no, for because the computer will actually be in this initial state with
probability zero the contribution to the overall computational advantage of the computer
will also be zero.

This sounds paradoxical, but I think it rather illustrates an important distinction: be-
tween what is actually occurring in a physical system, on the one hand, and the use which
can be made of it by us, who are attempting to achieve some particular end, on the other. In
the example we are considering here there assuredly is a process occurring in the computer
that is of the right sort to enable a quantum speedup, but because the computer’s being
in an initial state of the right sort is so improbable—i.e., because there is too much ‘noise’
in the computer—we are unable to take advantage of it to achieve the end of solving the
Deutsch-Jozsa problem using fewer computational resources than a classical computer.

4.3 DQC1: The power of one qubit

In the last subsection we saw that it is possible to achieve a sub-exponential speedup for the
Deutsch-Jozsa problem with an unentangled mixed-state. We concluded that this does not
constitute a counter-example to the NET, since the computational algorithm in question is
successful only when the evolution of the state of the computer is an entangling evolution;
therefore the actual final state of the successful computer will always contain some entan-
glement (i.e., the state will be ‘pseudo-entangled’) despite the fact that the density operator
representation of the final state will be unentangled.

We now consider another purported counter-example to the NET. This is the determin-

istic quantum computation with one qubit (DQC1) model of quantum computation, which
utilises a mixed quantum state to compute the trace of a given unitary operator and displays
an exponential speedup over known classical solutions. As we will see, the claim sometimes
made to the effect that the DQC1 achieves this speedup without the use of entanglement is
unsubstantiated. The NET, however, is not the claim that any state that displays quantum
computational speedup must be entangled; it is, rather, the different claim that entangle-
ment must play a role in any physical explanation of quantum speedup. We saw in the last
section how it is possible for the first claim to be false26 and the latter (the NET) to be true.
In this section I will address the objection that the NET is false even if it is the case that
the state of the quantum computer is always entangled. Those defending such a view claim
that another measure of quantum correlations, quantum discord, is far better suited for the
explanatory role. In what follows I will argue that this conclusion is misguided. Quantum

26I mean false in the technical sense explained in §2.2.
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Figure 1: The DQC1 algorithm for computing the trace of a unitary operator.

discord is indeed an enormously useful theoretical quantity for characterising mixed-state
quantum computation; nevertheless, I will argue that when one looks deeper, and consid-
ers the quantum state from the multi-partite point of view, one finds that entanglement is
involved in the production, and even in the very definition, of quantum discord; indeed,
there are some indications that quantum discord is, in fact, but a manifestation of and not
conceptually distinct from entanglement.

In the DQC1, or as it is sometimes called: ‘the power of one qubit’, model of quantum
computation (cf. Knill & Laflamme, 1998),27 a collection of n ‘unpolarised’ qubits in the
completely mixed state In/2

n is coupled to a single ‘polarised’ control qubit, initialised to
1/2(I + αZ). When the polarisation, α, is equal to 1, the control qubit is in the pure state
|0〉〈0| = 1/2(I + Z), otherwise it is in a mixed state. The problem is to compute the trace
of an arbitrary n-qubit unitary operator, Tr(Un). To accomplish this, we begin by applying
a Hadamard gate to the control qubit,28 which is then forwarded as part of the input to a
controlled unitary gate that acts on the n unpolarised qubits (see Figure 1). This results in
the following state for all of the n + 1 qubits:

ρn+1 =
1

2n+1

(

|0〉〈0| ⊗ In + |1〉〈1| ⊗ In + α|0〉〈1| ⊗ U †
n + α|1〉〈0| ⊗ Un

)

=
1

2n+1

(

In αU †
n

αUn In

)

. (4.8)

The reduced state of the control qubit is

ρc =

(

1 αTr(Un)
†

αTr(Un) 1

)

,

thus the trace of Un can be retrieved by applying the X and Y Pauli operators to ρc. In
particular, the expectation values of the X and Y operators will yield the real and imaginary
parts of the trace, 〈X〉 = Re[Tr(Un)]/2

n and 〈Y 〉 = −Im[Tr(Un)]/2
n, respectively; so in order

to determine, for instance, the real part, we run the circuit repeatedly, measuring X on the
control qubit at the end of each run, while assuming that the results are part of a distribution
whose mean is the real part of the trace.

Classically, the problem of evaluating the trace of a unitary matrix is believed to be hard,
however for the quantum algorithm it can be shown that the number of runs required does

27In this exposition of the DQC1, I am closely following (Datta et al., 2005).
28This will yield, for instance, when the control qubit is pure, |0〉〈0| H−→ 1

2

(

|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|
)

.
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(a) (b)

(c) (d) (e)

Figure 2: Some of the bipartite splits possible in the DQC1 for n = 4. No entanglement can ever occur
amongst the n unpolarised qubits (a) or between the polarised qubit and the rest (b); however, bipartite
splits such as (c), (d), and (e) can exhibit entanglement (Datta et al., 2005).

not scale exponentially with n, yielding an exponential advantage for the DQC1 quantum
computer. When α < 1, the expectation values, 〈X〉 and 〈Y 〉, are reduced by a factor of
α and it becomes correspondingly more difficult to estimate the trace. However as long as
the control qubit has non-zero polarisation, the model still provides an efficient method for
estimating the trace (and thus an exponential speedup over any known classical solution) in
spite of this additional overhead.

We might ask whether, in a way analogous to the mixed-state Deutsch-Jozsa algorithm,
we can make α small enough so that the overall state of the DQC1 is demonstrably separable.
The answer seems to be no. On the one hand, for any system of n+ 1 qubits there is a ball
of radius r (measured by the Hilbert-Schmidt norm and centred at the completely mixed
state), within which all states are separable (Braunstein et al., 1999; Gurvits & Barnum,
2003). On the other hand, the state of the DQC1 is at all times at a fixed distance α2−(n+1)/2

from the completely mixed state. Unfortunately the radius of the separable ball decreases
exponentially faster than 2−(n+1)/2 (Datta et al., 2005, 2).

It appears, therefore, that the state (4.8) must be an entangled state; but it is not
obvious where this entanglement is. On the one hand, there is no bipartite entanglement
among the n unpolarised qubits. On the other hand the most natural bipartite split of the
system, with the control qubit playing the role of the first subsystem and the remaining
qubits playing the role of the second, reveals no entanglement between the two subsystems,
regardless of the choice of Un. When α > 1/2, entanglement can be found when we examine
other bipartite divisions amongst the n + 1 qubits (see Figure 2). However, besides being
exceedingly difficult to detect, the amount of entanglement in the state (as measured by the
multiplicative negativity; cf. Plenio & Virmani 2007) becomes vanishingly small as n gets
large. Commenting on this circumstance, Datta et al. (2005, 13) write “This hints that the
key to computational speedup might be the global character of the entanglement, rather
than the amount of the entanglement. ... what happier motto can we find for this state of
affairs than Multam ex Parvo, or A Lot out of A Little.”

Others have expressed a different viewpoint on the matter. In fact, both the DQC1 and
the mixed-state version of the Deutsch-Jozsa algorithm have led many (see for instance,
Vedral 2010) to seriously question whether entanglement plays a necessary role in quantum
speedup. The result has been a shift in investigative focus from entanglement to other types
of quantum correlations. One alternative in particular, quantum discord (which I will explain
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in more detail shortly), has received much attention in the literature in recent years (e.g.,
Merali, 2011).

In fact, the situation for the NET seems dire. On the one hand, the following facts all
seem to run counter to it: there is no entanglement in the DQC1 circuit between the po-
larised and unpolarised qubits—the most natural bipartite split that suggests itself—during
a computation; tests to detect entanglement along other bipartite splits in the DQC1 when
α ≤ 1/2 have thus far been unsuccessful;29 and finally, even when α is relatively large, only
a vanishingly small amount of entanglement can be found in the state of the DQC1 (4.8).
On the other hand, when we consider the correlations between the polarised and unpolarised
qubits from the point of view of quantum discord, it turns out that the discord at the end
of the computation is always non-zero along this bipartite split for any α > 0 (Datta et al.,
2008). Datta et al. (2008, 4) therefore write, and I agree, that “for some purposes, quantum
discord might be a better figure of merit for characterizing the quantum resources available
to a quantum information processor.”

Yet despite this, as I will argue below, it is a mistake to conclude as they and others do
that the NET is false; i.e., that entanglement may play no role in the explanation of the
quantum speedup of the DQC1 (Datta et al., 2008; Vedral, 2010; Merali, 2011).

4.4 Quantum discord

Quantum discord (Ollivier & Zurek, 2002; Henderson & Vedral, 2001)30 quantifies the differ-
ence between the quantum generalisations of two classically equivalent measures of mutual
information,31

Ic(A : B) = H(A) +H(B)−H(A,B), (4.9)

Jc(A : B) = H(A)−H(A|B). (4.10)

29The criterion used by Datta et al. (2005) to detect entanglement is the Peres-Horodecki, or Positive
Partial Transpose (PPT) criterion (Peres, 1996; Horodecki et al., 1996). The partial transpose of a bipartite
system,

∑

ijkl p
ij
kl|i〉〈j| ⊗ |k〉〈l| acting on HA ⊗HB is defined (with respect to the system B) as:

ρTB ≡ (I ⊗ T )ρ =
∑

ijkl

pijkl|i〉〈j| ⊗ (|k〉〈l|)T =
∑

ijkl

pijkl|i〉〈j| ⊗ |l〉〈k|,

where T is the transpose map on matrices. The PPT criterion states that, if ρ is a separable state, then
the partial transpose of ρ has non-negative eigenvalues. Satisfying the PPT criterion is a necessary (but
not sufficient) condition for the joint density matrix of two systems to be separable. While Datta et al.
were unable to detect entanglement in the DQC1 (along any bipartite split) for the case of α ≤ 1/2, they
nevertheless note that it is very likely that both entanglement and bound entanglement are present in
the state. A state exhibits bound entanglement (cf. Hyllus et al., 2004) when, in spite of the fact that it
is entangled, no pure entangled state can be obtained from it by means of local operations and classical
communications alone (cf. Plenio & Virmani, 2007). One important characteristic of bound entangled states
is that they (at least sometimes) satisfy the PPT criterion despite the fact that they are entangled.

30Quantum discord was introduced independently by both Henderson & Vedral and by Ollivier & Zurek,
with slight differences in their respective formulations (Henderson & Vedral consider not just projective mea-
surements but positive operator valued measures more generally). These and other alternative formulations
of quantum discord do not differ in essentials. The definition of discord I introduce here is Ollivier & Zurek’s.

31See Nielsen & Chuang (2000) for an overview of the basic concepts of classical and quantum information
theory, including the mutual information.
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These two expressions are not equivalent quantum mechanically, for while (4.9) has a straight-
forward quantum generalisation in terms of the von Neumann entropy S:

Iq(A : B) = S(A) + S(B)− S(A,B), (4.11)

things are more complex for the quantum generalisation of (4.10). The quantum counterpart,
S(A|B), to the conditional entropy requires a specification of the information content of A
given a determination of the state of B. Determining the state of B requires a measurement,
however, which requires the choice of an observable. But in quantum mechanics observables
are, in general, non-commuting. Thus the conditional entropy will be different depending
on the observable we choose to measure on B. If, for simplicity, we consider only perfect
measurements, represented by a set of one dimensional projection operators, {ΠB

j }, this
yields, for the quantum version of (4.10), the expression:

Jq(A : B) = S(A)− S(A|{ΠB
j }). (4.12)

We now define discord as the minimum value (taken over {ΠB
j }) of the difference between

(4.11) and (4.12):

D(A,B) ≡ min{ΠB
j
}Iq(A : B)−Jq(A : B). (4.13)

Discord is, in general, non-zero for mixed states, while for pure states it effectively becomes
a measure of entanglement (Datta et al., 2008, 3); i.e., for pure states it is equivalent to the
entropy of entanglement (cf. Plenio & Virmani, 2007).

Interestingly, there are some mixed states which, though separable, exhibit non-zero quan-
tum discord. For instance, consider the following bipartite state:

ρdisc =
1

2
(|0〉〈0|A ⊗ |0〉〈0|B) +

1

2
(|1〉〈1|A ⊗ |+〉〈+|B). (4.14)

This state is obviously separable. Since |0〉 and |+〉 are non-orthogonal states, however,
Jq(A : B) will yield a different value depending on the experiment performed on system B;
and thus this state will yield a non-zero quantum discord.

In most of the literature on this topic, one is introduced to quantum discord as a quantifier
of the non-classical correlations present in a state which are not necessarily identifiable with
entanglement. Such an interpretation of the significance of this quantity is supported by the
fact that, in the classical scenario at least, the mutual information contained in a system of
two random variables is held to be representative of the extent of the correlations between
them. Since the quantum generalisations of the two classically equivalent measures of mutual
information Ic(A : B) and Jc(A : B) are not equivalent, then, this is taken to represent the
presence of non-classical correlations over and above the classical ones—some, but not all
of which may be accounted for by entanglement, and some by ‘quantum discord’.

Interpreting discord as a type of non-classical correlation is nevertheless puzzling. Con-
sider, for instance, a classically correlated state represented by the following probability
distribution:

1

2
([+]l, [+]r) +

1

2
([−]l, [−]r). (4.15)
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Here, let [·]l represent the circumstance that Linda (in Liverpool) finds a letter in her mailbox
today containing a piece of paper on which is inscribed the specified symbol (+ or −), and let
[·]r represent the occurrence of a similar circumstance for Robert (in Ravenna). According
to the probability distribution, it is equally likely that they both receive a letter today
inscribed with + as it is that they both receive one inscribed with −, but it cannot happen
that they each today receive letters with non-matching symbols. These correlations are
easily explainable classically, of course. It so happens that yesterday I flipped a fair coin.
I observed the result of the toss and accordingly jotted down either + or − on a piece of
paper, photocopied it, and sent one copy each to Robert in Ravenna and Linda in Liverpool
(by overnight courier, of course).

A quantum analogue for classically correlated states such as (4.15) is a mixed state
decomposable into product states:

∑

ij

pij|i〉〈i| ⊗ |j〉〈j|, (4.16)

such that the |i〉 and |j〉 are mutually orthogonal sub-states of the first and second subsystem,
respectively. For such a state it is easy to provide a ‘hidden variables’ explanation, similar
to the one above, that will account for the observed probabilities of joint experiments on the
two subsystems.

We can equally give such a local hidden variables account of the discordant state ρdisc:
tossing a fair coin, I prepare the state |0〉〈0|A⊗|0〉〈0|B if the coin lands heads, and |1〉〈1|A⊗
|+〉〈+|B if it lands tails. Let Pr(X, Y |a, b, λ) refer to the probability that Alice’s a-experiment
and Bob’s b-experiment determine their qubits to be in states X and Y , respectively, given
that the result of the coin toss is λ. Then (omitting bras and kets for readability):

Pr(0, 0|ẑ, ẑ, H) = Pr(0, ·|ẑ, ·, H)× Pr(·, 0|·, ẑ, H) = 1,

P r(1, 1|ẑ, ẑ, T ) = Pr(1, ·|ẑ, ·, T )× Pr(·, 1|·, ẑ, T ) = 1/2,

P r(0,+|ẑ, x̂, H) = Pr(0, ·|ẑ, ·, H)× Pr(·,+|·, x̂, H) = 1/2,

P r(1,+|ẑ, x̂, T ) = Pr(1, ·|ẑ, ·, T )× Pr(·,+|·, x̂, T ) = 1,

and so on. More generally, Pr(X, Y |a, b, λ) = Pr(X, ·|a, ·, λ)×Pr(·, Y |·, b, λ). Thus once we
specify the value of λ there are no remaining correlations in the system and the probabilities
for joint experiments are factorisable. This should be unsurprising. Given a specification of
λ, the state of the system is in a product state, after all.

Contrast this with an entangled quantum system such as, for instance, the one represented
by the pure state

|Φ+〉 = |00〉+ |11〉√
2

.

Bell’s theorem (Bell, 2004 [1964]) demonstrates that the correlations between subsystems
present in such a state cannot be reproduced by any local hidden variables theory in the
manner described above. These correlations are non-classical.

There is certainly something non-classical about a state such as ρdisc; viz., it is possible to
prepare such a system as a mixture of non-orthogonal product states. This is impossible for
classical systems. As a result, the information one can gain about Alice’s system through an
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experiment in the {+,−} basis on Bob’s system will be different from the information one
can gain about Alice’s system through an experiment in the computational basis on Bob’s
system. On the one hand, in the absence of a specification of a hidden parameter such as
λ, given an experiment on B in the computational basis which determines B to be in state
|0〉, it is still unclear, because of the way in which system B was prepared, whether the joint
system is in the state |0〉 ⊗ |0〉 or in the state |1〉 ⊗ |+〉. Given an experiment on B in the
{+,−} basis which yields |+〉, on the other hand, it is perfectly clear which product state the
joint system is in. But these facts by themselves are certainly not indicative of the presence
of non-classical correlations between the two subsystems.

There is one indirect sense, however, in which ρdisc can be said to contain non-classical
correlations. Recall from §2.4 that any mixture can be considered as the result of taking the
partial trace of a pure entangled state on a larger Hilbert space. Given that, as I argued in
§4.2, the pure state representation of a quantum system should be taken as fundamental, we
can consider the bipartite state ρdisc as in reality but a partial representation of a tripartite
entangled quantum system, where the third party is an external environment with enough
degrees of freedom to purify the overall system. And since entangled systems do not ad-
mit of a description in terms of local hidden variables, it follows that the system partially
represented by ρdisc can legitimately be said to contain non-classical correlations.

Even so it is unclear how these non-classical correlations per se can have anything to do
with the quantum discord exhibited by ρdisc, for it is also the case that a classically correlated
mixture of orthogonal product states, i.e. one of the form (4.16), can be purified in just the
same way as a discordant one and hence also the case that it can be given a multi-partite
representation in which entanglement is present.

As we will now see, however, there is in fact a tight relationship between the amount

of discord contained in a bipartite mixed state and the amount of entanglement contained
in a tripartite representation of that state. And, interestingly from our point of view, what
emerges from this is a correspondingly tight relationship between the quantum speedup
exhibited by the DQC1 and the amount of entanglement contained in its purified tripartite
representation, and thus a confirmation, not a refutation, of the NET.

4.5 Explaining speedup in the DQC1

Quantum discord was introduced independently by Henderson & Vedral and by Ollivier & Zurek
in 2001 and 2002, respectively; however, it was only recently given an operational interpreta-
tion, independently by Madhok & Datta (2011) and by Cavalcanti et al. (2011).32 On both
characterisations, quantum discord is operationally defined in terms of the entanglement con-
sumed in an extended version of the quantum state merging protocol (cf. Horodecki et al.,
2005).

In the quantum state merging protocol, three parties: Alice, Bob, and Carla, share a
state |ψABC〉. Quantum state merging characterises the process,

|ψABC〉 → |ψB′BC〉,
32I present here the definition given by Cavalcanti et al., although the conclusion I will draw is the same

regardless of which definition is used.
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(a) (b)

Figure 3: A (pure) tripartite representation of the elements of the DQC1 protocol before (a) and after (b)
the application of the controlled not gate. Black and grey thunderbolts represent entanglement and discord,
respectively. After the application of the controlled not gate, there is an increase in the discord between A
and B and a corresponding increase in the entanglement between A and the combined system BE.

by which Alice effectively transfers her part of the state to Bob while maintaining its coher-
ence with Carla’s part. It turns out that in order to effect this protocol a certain amount of
entanglement must be consumed (quantified on the basis of the quantum conditional entropy,
S(A|B); cf. Nielsen & Chuang 2000). When we add to this the amount of entanglement
needed (as quantified by the entanglement of formation; cf. Plenio & Virmani 2007) to pre-
pare the state |ψABC〉 to begin with, the result is a quantity identical to the quantum discord
between the subsystems belonging to Alice and Carla at the time the state is prepared.

The foregoing operational interpretation of discord has an affinity with an illuminating
analysis of the DQC1 circuit due to Fanchini et al. (2011). Fanchini et al. show that a rela-
tionship between quantum discord and entanglement emerges when we consider the DQC1
circuit, not as a bipartite system composed of polarised and unpolarised qubits respectively,
but as a tripartite system in which the environment plays the role of the third subsystem.
Fanchini et al. note that an alternate way of characterising the completely mixed state of
the unpolarised qubits, In/2

n, is to view it as part of a bipartite entangled state, with the
second party an external environment having enough degrees of freedom to purify the overall
system. This yields a tripartite representation for the DQC1 circuit as a whole (see Figure
3).

Fanchini et al. show that, for an arbitrary tripartite pure state, there is a conservation
relation between entanglement of formation and quantum discord. In particular, the sum
of the bipartite entanglement that is shared between a particular subsystem and the other
subsystems of the system cannot be increased without increasing the sum of the quantum
discord between this subsystem and the other subsystems as well (and vice versa). In the
DQC1, after the application of the controlled not gate (see Figure 1), there is an increase in
the quantum discord between B and A. This therefore necessarily involves a corresponding
increase in the entanglement between A and the combined system BE. All of this accords
with what we would expect given the above operational interpretation of quantum discord:
an increase in quantum discord requires an increase in the entanglement available for con-
sumption in a potential quantum state merging process.

Note also that from this tripartite point of view, there is just as much entanglement
in the circuit as there is discord; in particular, exactly as for quantum discord, there is
entanglement in the circuit whenever it displays a quantum speedup, i.e., for any α > 0.

Fanchini et al. speculate that it is not the presence of entanglement or discord (however
the latter is interpreted) per se that is necessary for the quantum speedup of the DQC1,
but rather the ability of the circuit to redistribute entanglement and discord. This thought
seems to be confirmed by a theoretical result of Brodutch & Terno (2011), who show that
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shared entanglement is required in order for two parties to bilocally implement33 any bi-
partite quantum gate—even one that operates on a restricted set L of unentangled input
states and transforms them into unentangled output states. This means, in particular, that
entanglement is required in order to implement a gate that changes the discord of a quantum
state.

By themselves, these considerations already amount to confirmations of the NET, for
entanglement appears to be involved in the very definition of discord, and it appears that
we require entanglement even for the production of discord in a quantum circuit. But in
addition, there are indications that quantum discord need not be appealed to at all to give an
account of quantum speedup (though such a characterisation will of course be less practical),
in light of one other recent theoretical result. Devi et al. (2008; 2011) have pointed out that
more general measurement schemes than the positive operator valued measures (POVM)
used thus far exist for characterising the correlations present in bipartite quantum systems.

POVMs are associated with completely positive maps and are well suited for describing
the evolution of a system when we can view the system as uncorrelated with its external
environment. When the system is initially correlated with the environment, however, the
reduced dynamics of the system may, according to Devi et al., be ‘not completely positive’.
But as Devi et al. show, from the point of view of a measurement scheme that incorpo-
rates not completely positive maps in addition to completely positive maps, all quantum
correlations reduce to entanglement.

In sum, it is, I believe, unsurprising that on the standard analysis the DQC1 circuit
displays strange and anomalous ‘correlations’ in the form of quantum discord, for the DQC1
is typically characterised as a bipartite system, and from the point of view of a measurement
framework that incorporates only completely positive maps. As Fanchini et al. have shown,
however, the DQC1 circuit is more properly characterised, not as an isolated system, but
as a system initially correlated with an external environment. The evolution of such a
system is best captured by a measurement framework incorporating not completely positive
maps, and within such a framework, the anomalous correlations disappear and are subsumed
under entanglement. From this point of view the equivalence of entanglement and discord
for pure bipartite states is also unsurprising, for it is precisely pure states for which the
correlation with the environment can be ignored and for which a framework incorporating
only completely positive maps is appropriate.

The use of not completely positive maps to characterise the evolution of open quantum
systems is not wholly without its detractors. The question of whether such not completely
positive maps are ‘unphysical’ is an interesting and important one, though I will not address
it here.34 But regardless of the answer to this question, it should be clear, even without
the appeal to this more general framework, that entanglement has not been shown to be
unnecessary for quantum computational speedup. Far from being a counter-example to the
NET, the DQC1 model of quantum computation rather serves to illuminate the crucial role
that entanglement plays in the quantum speedup displayed by this computer.

33Bilocal implementation means, in this context, an implementation in which Alice and Bob are limited
to local operations and classical communications (cf. Plenio & Virmani, 2007).

34For a more detailed discussion, and qualified defence of the use of not completely positive maps, see
Cuffaro & Myrvold (2012).
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5 Conclusion

Quantum entanglement is considered by many to be a necessary resource that is used to
advantage by a quantum computer in order to achieve a speedup over classical computation.
Given Jozsa & Linden’s and Abbott’s general results for pure states, and given that, as I
argued in §4.2, a pure state should be considered as the most fundamental representation
of a quantum system possible in quantum mechanics, the burden is upon those who deny
the NET to either produce a counter-example or to show, in some other more principled
way, why the view is false. We examined two such counter-examples in this paper. Upon
closer examination we found neither of these, neither the sub-exponential speedup of the un-
entangled mixed-state version of the Deutsch-Jozsa algorithm, nor the exponential speedup
of the DQC1 model of quantum computation, demonstrate that entanglement is unneces-
sary for quantum speedup; they rather make clearer than before the role that entanglement
does play, and point the way to a fuller understanding of both entanglement and quantum
computation.
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