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Abstract

We propose a technical reformulation of the measurement problem of quantum mechanics,
which is based on the postulate that the final state of a measurement is classical; this
accords with experimental practice as well as with Bohr’s views. Unlike the usual formu-
lation (in which the post-measurement state is a a unit vector in Hilbert space, such as a
wave-function), our version actually admits a purely technical solution within the confines
of conventional quantum theory (as opposed to solutions that either modify this theory,
or introduce unusual and controversial interpretative rules and/or ontologies).

To that effect, we recall a remarkable phenomenon in the theory of Schrödinger oper-
ators (discovered in 1981 by Jona-Lasinio, Martinelli, and Scoppola), according to which
the ground state of a symmetric double-well Hamiltonian (which is paradigmatically of
Schrödinger’s Cat type) becomes exponentially sensitive to tiny perturbations of the po-
tential as ~ → 0. We show that this instability emerges also from the textbook wkb
approximation, extend it to time-dependent perturbations, and study the dynamical tran-
sition from the ground state of the double well to the perturbed ground state (in which the
cat is typically either dead or alive, depending on the details of the perturbation). Numer-
ical simulations show that, in an individual experiment, certain (especially adiabatically
rising) perturbations may (quite literally) cause the collapse of the wavefunction in the
classical limit. Thus we combine the technical and conceptual virtues of dynamical collapse
models à la grw (which do solve the measurement problem) with those of decoherence
(in that our perturbations come from the environment) without sharing their drawbacks:
although single measurement outcomes are obtained (instead of merely diagonal reduced
density matrices), no modification of quantum mechanics is needed.

Motto

‘Another secondary readership is made up of those philosophers and physicists who—
again like myself—are puzzled by so-called foundational issues: what the strange
quantum formalism implies about the nature of the world it so accurately describes.
(. . . ) My presentation is suffused with a perspective on the quantum theory that
is very close to the venerable but recently much reviled Copenhagen interpretation.
Those with a taste for such things may be startled to see how well quantum compu-
tation resonates with the Copenhagen point of view. Indeed, it had been my plan
to call this book Copenhagen Computation until the excellent people at Cambridge
University Press and my computer-scientist friends pursuaded me that virtually no
members of my primary readership would then have any idea what it was about.’
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1 Introduction

Citizens of most democratic countries know the phenomenon of a “hung parliament”, in
which two major political parties have a large numer of seats each, but are short of a
majority separately and mutually exclude each other as potential coalition partners. In
that case, tiny parties with just a few seats can tip the balance to the left or to the right
and hence, quite undemocratically, acquire an importance far exceeding their relative size.

An analogous phenomenon in quantum mechanics was discovered in 1981 by Jona-
Lasinio, Martinelli, and Scoppola [57, 58] (see also Section 3 below). Here, the ground
state of (say) a symmetric double-well Hamiltonian becomes exponentially sensitive (in
1/~) to tiny perturbations of the potential as ~ → 0. In particular, whereas the ground
state of the unperturbed Hamiltonian has two pronounced and well-separated peaks, the
ground state of the perturbed Hamiltonian typically features one of those peaks only and
hence may be said to have “collapsed”. We will henceforth denote such a perturbation as
a “flea” (residing, of course, on Schrödinger’s Cat rather than on Simon’s elephant [95]).

As we will explain and make precise in Section 2, this phenomenon acquires acute
relevance for the measurement problem as soon as one accepts just two postulates:1

1. Bohr’s dogma—coinciding with experimental practice—to the effect that a measure-
ment be a classical snapshot (or “readout”) of a quantum state;2

2. The fundamental nature of quantum theory, which implies that measurement devices
(like anything else) are ultimately quantum mechanical in nature.3

On the first clause of this conjunction, the post-measurement state of the pertinent ap-
paratus should be a classical state, whilst on the second, it has to be the classical limit
of some quantum state. After coupling to some microscopic object, the latter state might
evolve into a superposition à la Schrödinger’s Cat, and this is what causes the measurement
problem. But it is exactly in the classical limit that the sensitivity of the wave-function
to the flea arises! Thus the correct formulation of the measurement problem as a problem
concerning classical limits of quantum states already contains the seed of its solution.

In Section 3 we review static aspects of “flea” instability (using the two-level system
as a pedagogical example), in that the perturbations are taken to be time-independent,
and the perturbed ground state is just studied for its own sake. This review is backed
up by a new, more technical analysis based on the familiar wkb approximation from the
textbooks,4 which we delegate to the appendix in order not to interrupt our story. In
order to trace the fate of Schrödinger’s Cat as a dynamical process, we need to take up
the dynamical study of the instability. In other words, the perturbation should be made
time-dependent, and in addition the transition from the unperturbed “Schrödinger Cat”
ground state to the perturbed ground state (in which the cat is either dead or alive) should
be followed in time. This will be done (largely numerically) in in Section 4, providing a
“proof of concept” that the solution to the measurement problem suggested here might
actually work (at least in a toy example), including an easy derivation of the Born rule.

In the final Discussion section, we explore connections between our approach and
symmetry breaking and phase transitions, quantum metastability, and determinism versus
Free Will type Theorems (at least one of whose assumptions our flea violates, of course).

1We regard these as Wittgensteinian “hinge propositions” [97], on which contemporary physics is based.
2This is sometimes called Bohr’s doctrine of classical concepts [87]. See also [66] for a detailed analysis.
3For our work it is a moot point whether Bohr endorsed this second point as well; it is hard to say.
4The original expositions [25, 46, 53, 57, 58, 95] might be hard to follow for non-mathematicians (see,

however, [21]). Applications in chemistry and solid-state physics may be found in [22, 40, 59, 74].



2 RETHINKING THE MEASUREMENT PROBLEM 3

2 Rethinking the measurement problem

2.1 Historical overview

Roughly speaking, the measurement problem consists in the fact that the Schrödinger
equation of quantum mechanics generically fails to predict that measurements have out-
comes. Instead, it apparently predicts (empirically) unacceptable “superpositions” thereof.
Slightly more technically, the problem is usually formulated in approximately the follow-
ing way (see e.g. the excellent presentations in [2, 17, 18] for more detail). Suppose that
one measures some observable O pertaining to a microscopic system S, in such a way
that if S is in an eigenstate Φi of O, then the associated macroscopic apparatus A is in
state Ψi. It is important to note that in this description (pure) states are seen as unit
vectors in some Hilbert space, as usual in quantum mechanics. Now, although there is
hardly any problem with the existence of a microscopic superposition Φ =

∑
i ciΦi of S

(where
∑

i |ci|2 = 1), the linearity of the Schrödinger equation implies that it would bring
A in a similar superposition Ψ =

∑
i ciΨi, which, if macroscopic,5 is never seen in nature.

Instead, as a matter of fact one always observes one of the states Ψi (or so it is claimed).
This problem was immediately recognized by the founders of quantum theory. In

response, in 1926, Born (generalizing earlier ideas of Bohr and Einstein on light emission
by atoms) stated that quantum theory indeed did not predict individual outcomes, but
merely computed their probabilities (according to the formula now named after him)
[14, 69]. In 1927, Heisenberg (again in the wake of Bohr’s electronic “quantum jumps”)
proposed the “collapse of the wavepacket” [51], which (in the above language) implies that
during the course of the measurement, the apparatus state Ψ miraculously “jumps” to one
of the states Ψ. Bohr immediately endorsed this idea, ordered that such quantum jumps
ought not to be analyzed any further, and claimed that they were the source of irreducible
randomness in physics. During the period 1927–1935 (with an aftermath running until
1949), Bohr famously defended these ideas against a highly critical Einstein [10], as did
Born [13]. Adding considerable conceptual and mathematical precision, von Neumann gave
an account of the measurement problem in his book from 1932 [78], which has formed the
basis for most discussions of the issue ever since. The early period was closed in 1935,
the year in which Schrödinger (following a correspondence with Einstein [39]) published a
penetrating analysis, including the metaphor around the cat later named after him [89].

The introduction of the collapse process (and the associated Born probabilities) has
turned out to be an incredibly successful move, on which practically all empirical successes
of quantum theory are based. This may well be the reason why few physicists are bothered
by the measurement problem: the underlying slick manoeuvre of ad hoc collapse seems an
acceptable price for these successes, unprecedented in science as they are.6 But for those in
the foundations of physics, there is no doubt that this is a pseudo-solution. Consequently,
despite arguments claiming to prove their non-existence [16, 18, 38], many solutions to the
measurement problem have been proposed. Among those, it is fair to say that at least the
quasi-philosophical solutions have failed to convince the scientific community at large.7

5This notion needs to be quantified, of course [2, 18].
6So-called “Bayesians” even deny that there is a measurement problem [20].
7This is true in particular for the Many-Worlds (aka “Everett”) Interpretation [86], or the Modal

Interpretation of quantum mechanics [32], in which radical changes are proposed in the ontology and/or
the usual interpretative rules of the theory, without clarifying in any way what is really going on during
measurements (a question one indeed is not supposed to ask, according to received wisdom). Bohmian
mechanics (as a modern incarnation of de Broglie’s pilot-wave theory) does a better job here [29, 34, 35],
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Within the realm of technical approaches to the measurement problem, one may dis-
tinguish between those proposals that do and those that do not modify quantum theory.
Among the latter, the main effort so far has been towards attempts to eliminate interfer-
ence terms (i.e., between the states Ψi of the previous section), sometimes accompanied by
the (implicit or explicit) suggestion that their removal would actually solve the problem.8

Such attempts come in (at least) two kinds. In the wake of the Swiss school [36, 54], math-
ematical physicists typically worked in the formalism of superselection rules (see [63, 64]
for reviews and [93] for recent work in this direction), whereas theoretical physicists tend
to exploit decoherence (see [60, 88] for recent reviews). There seems to be a general con-
sensus, though, that neither of these solves the problem (at least in the form stated above);
they rather reconfirm it. Indeed, granted that measurements yield classical data, since
classical physics by definition does not have quantum-mechanical interference terms, their
disappearance in appropriate limiting situations (like the ones described by decoherence
and/or superselection theory) is just a necessary condition that (in part) defines mea-
surement (which after all is supposed to produce some classical state as its outcome).9

Consequently, in our opinion the measurement problem is posed, rather than solved by
proving that such interference terms vanish under particular (limiting) conditions.10

In contrast, the dynamical collapse models of Pearle, Ghirardi–Rimini–Weber, and
others (cf. [15] for a comprehensive survey) do solve the measurement problem. But they
do so at a heavy prize: the Schrödinger equation is modified by adding a novel and universal
stochastic process that even makes the equation nonlinear, and which, like the solution of
Heisenberg and von Neumann, is completely ad hoc except for its goal of causing collapse.

The approach to the measurement problem we are going to propose below uses key
ideas from both dynamical collapse models and decoherence (and could not have been
conceived without the inspiration from these earlier approaches), but in such a way that
we avoid their main drawbacks (though probably at the cost of others!):

1. Dynamical collapse is obtained without modifying quantum theory.

2. While decoherence preserves all peaks (i.e., potential measurement outcomes) in the
density matrix, and hence subsequently needs e.g. some kind of a Many Worlds
Interpretation [56, 88], our mechanism, if correct, leads to just one outcome.

Our approach starts with a technical reformulation of the measurement problem, which
relies on a specific mathematical formalism for dealing with classical states, including their
role as potential limits of quantum states. For completeness’s sake, we explain this first.

but its narrow applicability (at least in its current form), focusing as it does on position as the only physical
observable, makes it unattractive to many (including the authors).

8This applies, for example, to the famous paper by Danieri, Loinger, and Prosperi [30], to early papers
on decoherence [100], and to much of the mathematical physics literature on the measurement problem,
including the work of the senior author [36, 54, 63, 64, 93]. We now regard such papers as mathematically
interesting but conceptually misguided, at least on this point. In any case, it is to the credit of especially
the Swiss school that it drew attention to the idea that measurement involves limiting procedures, so that
solutions of the measurement problem should at least incorporate the appropriate limits.

9In this sense even von Neumann’s book [78] is misleading, as he suggested that the act of observation
may be identified with a cut in the chain now named after him. What is right about this idea is that
observation is linked to a voluntary loss of information, but it would have been preferable to point out—with
Bohr— that such a loss, in so far as it defines measurement, should be a loss of quantum information.

10Furthermore, despite its outspoken ambition to derive classical physics from quantum theory [60, 88,
100], decoherence hardly (if at all) invokes limits like Planck’s constant going to zero, which are needed,
for one thing, to derive the correct classical equations of motion (cf. [66, 67]).
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2.2 Intermezzo: classical states

In order to describe classical states as limits of quantum states, we describe states alge-
braically. Although this formalism implicitly uses the language of C*-algebras, very little
of that theory will be needed here [48, 65]. In our case, the C*-algebra of observables
will simply be A = K(L2(R)) (i.e., the compact operators on the Hilbert space L2(R) of
square-integrable wave-functions) in the quantum case, and A0 = C0(R2) in the classical
case (that is, the continuous functions on the phase space R2 that vanish at infinity). Note
that the classical algebra is commutative. A state, then, is a positive linear functional of
norm one on the C*-algebra of observables. For the above algebras, this means that a
classical state µ (i.e., a state on A0) is the same thing as a probability measure µ̂ on
phase space, seen as a map f 7→ µ(f) =

∫
R2 dµ̂ f , f ∈ C0(R2). Such a probability measure

may or may not be given by a probability density, i.e., a positive L1-function χ on R2

integrating to unity with respect to the Liouville measure dpdq/2π on R2, such that∫
R2

dµ̂ f =
∫

R2n

dpdq

2π
χ(p, q)f(p, q). (2.1)

On the other hand, a quantum state, i.e., a state ρ on K(L2(R)), is essentially the same
as a density matrix ρ̂ on L2(R), seen as a map a 7→ ρ(a) = Tr (ρ̂a), where a ∈ K(L2(R)).

A pure state ω has no nontrivial convex decomposition, i.e., if ω = pω1 + (1− p)ω2 for
some p ∈ (0, 1) and certain states ω1 and ω2, then ω1 = ω2 = ω. Pure states on C0(R2) are
probability measures of the Dirac form δz, z ∈ R2 (i.e., δz(f) = f(z) for f ∈ C0(R2)), and
hence bijectively correspond to points of R2. Equally familiar, pure states ψ on K(L2(R))
are just unit vectors Ψ (up to a phase), with associated density matrices ρ̂ = |Ψ〉〈Ψ| given
by the (orthogonal) projection on CΨ; i.e., a unit vector Ψ defines an algebraic state ψ by

ψ(a) = 〈Ψ|a|Ψ〉 ≡ 〈Ψ, aΨ〉. (2.2)

The following notion of convergence of quantum states to classical ones is standard
(cf. [24, 65, 83, 85] and many other sources),11 and has been used especially in quantum
chaology [80]. We first recall the coherent states, labeled by z = (p, q) ∈ R2,

Φ(p,q)
~ (x) = (π~)−1/4e−ipq/2~eipx/~e−(x−q)2/2~, (2.3)

with associated Berezin quantization map f 7→ Q~(f), f ∈ C0(R2), Q~(f) ∈ K(L2(R)),

Q~(f) =
∫

R2n

dpdq

2π~
f(p, q)|Φ(p,q)

~ 〉〈Φ(p,q)
~ |. (2.4)

Now let (ρ~) be a family of quantum states, indexed by ~ (say ~ ∈ (0, 1]), with associated
density matrices (ρ̂~), and let ρ0 be a state on C0(R2), with associated probability measure
ρ̂0 on R2. The quantum states (ρ~) converge to the classical state ρ0, lim~→0 ρ~ = ρ0, if

lim
~→0

ρ~(Q~(f)) = ρ0(f), for all f ∈ C0(R2). (2.5)

11Often Weyl quantization QW
~ is used instead of Berezin quantization Q~, as in [9], but for Schwartz

functions f on phase space these have the same asymptotic properties as ~ → 0 [65]. The advantage of
Berezin quantization is that it is well defined also for continuous functions (vanishing at infinity), in that
for any unit vector Ψ ∈ L2(R) the map f 7→ 〈Ψ|Q~(f)|Ψ〉 defines a probability measure on phase space.
In contrast, the Wigner function defined by f 7→ 〈Ψ|QW

~ (f)|Ψ〉 may fail to be positive, as is well known.
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This condition more explicitly reads

lim
~→0

Tr (ρ̂~Q~(f)) =
∫

R2

dρ̂0 f. (2.6)

If ρ~ = |Ψ~〉〈Ψ~|, then obviously

〈Ψ~|Q~(f)|Ψ~〉 =
∫

R2n

dpdq

2π~
χΨ~(p, q)f(p, q), (2.7)

where the probability density χΨ~ , called the Husumi function of Ψ~, is given by

χΨ~(p, q) = |〈Φ(p,q)
~ |Ψ~〉|2, (2.8)

in which the inner product is in L2(R). Consequently, if the limit in (2.5) exists for specific
ρ~ = |Ψ~〉〈Ψ~|, then the limit measure ρ̂0 is the weak (or pointwise) limit of the probability
measures µΨ~ that are defined by the probability densities χΨ~ according to (2.1).

Let us illustrate this formalism for the ground state of the one-dimensional harmonic
oscillator. Taking V (x) = 1

2
ω2x2 in the usual quantum Hamiltonian (with mass m = 1/2),

H = −~2 d
2

dx2
+ V (x), (2.9)

it is well known that the ground state is unique and that its wave-function

Ψ(0)
~ (x) =

( ω

2π~

)1/4
e−ωx

2/4~ (2.10)

is a Gaussian, peaked above x = 0. As ~→ 0, this ground state converges to the ground
state ρ(0)

0 = (0, 0) ∈ R2 (i.e., (p = 0, q = 0)) of the corresponding classical system. Slightly
less familiar, the same is true for the anharmonic oscillator (with small λ > 0), i.e.,

V (x) = 1
2
ω2x2 + 1

4
λx4, (2.11)

the peak, of course, now being only approximately Gaussian. But it is a deep and coun-
terintuitive feature of quantum theory that even the symmetric double-well potential

V (x) = − 1
2
ω2x2 + 1

4
λx4 + 1

4
ω4/λ = 1

4
λ(x2 − a2)2, (2.12)

where a = ω/
√
λ > 0 (assuming ω > 0 as well as λ > 0), has a unique quantum-

mechanical ground state [55, 84], despite the fact that the corresponding classical system
has two degenerate ground states, given by the phase space points ρ±0 ∈ R2 defined by

ρ±0 = (0,±a). (2.13)

The wave-function Ψ(0)
~ remains real and positive definite, but this time it has two peaks,

above x = ±a, with exponential decay |Ψ(0)
~ (x)| ∼ exp(−1/~) in the classically forbidden

region x /∈ {−a, a} [55, 84]. As a quantum-mechanical shadow of the classical degeneracy,
energy eigenfunctions (and the associated eigenvalues) come in pairs. In what follows, we
will be especially interested in the first excited state Ψ(1)

~ , which like Ψ(0)
~ is real, but it

has one peak above (say) x = −a and another peak below x = a. See Figure 1.
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As ~→ 0, the eigenvalue splitting E1 − E0 vanishes exponentially in −1/~ like

∆ ≡ E1 − E0 ∼
~ω√
1
2
eπ
e−dV /~ (~→ 0), (2.14)

where the typical wkb-factor is given by

dV =
∫ a

−a
dx
√
V (x); (2.15)

see [43, 62] (heuristic), or [52, 55, 95] (rigorous) for details. In particular, the probability
densities defined by the wave-functions Ψ(0)

~ and Ψ(1)
~ approach δ-function peaks above the

classical minima ±a. See Figure 2, displayed just for Ψ(0)
~ , the other one being analogous.

We can make the correspondence between the (nondegenerate) pair Ψ(0)
~ and Ψ(1)

~ of
low-lying quantum-mechanical wave-functions and the pair (ρ+

0 , ρ
−
0 ) of degenerate classical

ground states much more precise and impressive by invoking the notion of a classical limit
of states explained above. Indeed, in terms of the algebraic states ψ(0)

~ and ψ
(1)
~ one has

lim
~→0

ψ
(0)
~ = lim

~→0
ψ

(1)
~ = ρ

(0)
0 , (2.16)

ρ
(0)
0 := 1

2
(ρ+

0 + ρ−0 ), (2.17)

where ρ±0 are the pure classical ground states (2.13) of the double-well Hamiltonian.12 To
see this, one may either consider numerically computed Husumi functions, as shown in
Figure 3 (just for Ψ(0)

~ , as before), or one may proceed analytically, combining the relevant
estimates in [50] or in [95] with the computations in §II.2.3 of [65]. Either way, it is clear
that the pure (algebraic) quantum ground state ψ(0)

~ converges to the mixed classical state
(2.17). On the other hand, the localized (but now time-dependent) wave-functions

Ψ±~ =
Ψ(0)

~ ±Ψ(1)
~√

2
, (2.18)

which of course define pure (algebraic) states as well, converge to pure classical states, i.e.,

lim
~→0

ψ±~ = ρ±0 . (2.19)

On the one hand this is not surprising, because Ψ± has a single peak above ±a, but on
the other hand it is, since neither Ψ+

~ nor Ψ−~ is an energy eigenstate (whereas their limits
ρ+

0 and ρ−0 are, in the classical sense of being fixed points for the Hamiltonian flow). The
explanation is that the energy difference (2.14) vanishes exponentially as ~ → 0, so that
in the classical limit Ψ+

~ and Ψ−~ approximately do become energy eigenstates. In similar
vein, because of (2.14) the tunneling time τ = 2π~/∆ of the oscillation between Ψ+

~ and
Ψ−~ becomes exponentially large in 1/~ as ~→ 0.

In the above examples (and many others) time evolution of states is defined both classi-
cally (by the Liouville equation for measures, which is equivalent to Hamilton’s equations)
and quantum mechanically (by the von Neumann equation for density matrices, which is
equivalent to Schrödinger’s equation), and provided that lim~→0 ρ~ = ρ0 as in (2.5), for
each fixed time t ∈ R, one has Egorov’s Theorem in the form [65, Thm. II.2.7.2], [85]

lim
~→0

(ρ~(t)) = ρ0(t). (2.20)

12In (2.17) we regard classical states as probability measures on phase space; hence the addition on the
right-hand side has nothing to do with addition in the particular phase space R2 (whose linear structure
is accidental and irrelevant), but is a convex sum of measures.
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Figure 1: Double well potential with ground state Ψ(0)
~=0.5 and first excited state Ψ(1)

~=0.5.

Figure 2: Probability densities for Ψ(0)
~=0.5 (left) and Ψ(0)

~=0.01 (right).

Figure 3: Husumi functions for Ψ(0)
~=0.5 (left) and Ψ(0)

~=0.01 (right).
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2.3 Reformulation of the measurement problem

We return to the measurement problem. If measurement is merely seen as the establish-
ment of certain correlations between two quantum systems, then the problem does not
arise, since a priori nothing is wrong with the existence of superpositions of such corre-
lated quantum states. What is wrong is that at first sight such superpositions seem to
survive the classical limit, as shown above by the ground state of the double-well poten-
tial. More generally, the measurement problem arises whenever in the classical limit a pure
quantum state converges to a mixed classical state, since in that case quantum theory fails
to predict a single measurement outcome. Rather, it suggests there are many outcomes,
not just because the wave-function has several peaks per se, but because in addition in
the classical limit each of these peaks converges to a different classical state.

Consequently, the measurement problem is by no means solved by proving that such
interference terms vanish under certain (limiting) conditions. Instead, the real problem is
to show that under realistic measurement conditions pure quantum states actually have
pure classical limits. Indeed, Schrödinger’s Cat is exactly of this nature [66]:

• If one were to study the cat as a quantum system, nothing would be wrong with the
famous superposition it resides in. However, such a study is practically impossible.13

• The “paradox” arises if one only uses macroscopic variables in order to give a classical
description of the cat, so that notions like (being) “alive” or “dead” make sense. In
that case, the naive classical state of the cat is of the kind ρ

(0)
0 = 1

2
(ρ+

0 + ρ−0 ), cf.
(2.17), where (say) ρ+

0 stands for being alive and ρ−0 is the (classical) state of death.
A classical state like ρ(0)

0 is indeed intolerable, but since our flea destabilizes it, it
fortunately enough cannot arise in practice (in theory, such a state could be created
in a totally isolated system, in which case its paradoxical features disappear).

Having wholeheartedly endorsed the Bohrian (or rather: practical) view of what a
measurement is, we emphatically reject the (typically) accompanying claims that the mea-
surement process itself cannot be analyzed or described in principle, and that its outcome
is irreducibly random (except for special initial states).14 But if measurement by definition
produces some classical state from a quantum state, and quantum (field) theory is agreed
to be fundamental and hence classical physics is some limit of it [65, 66], then it would
seem almost perverse not to describe the pertinent limiting procedure explicitly. Take our
example of the classical limit of the double well, which we regard as a model of a measure-
ment apparatus; the ground state Ψ(0)

~ models the state the apparatus has assumed after
coupling to some microscopic ‘object’ system, prepared in a superposition (O−+O+)/

√
2,

where the object state O± correlates with the localized state Ψ±~ , cf. (2.18). Subsequently,
the object system is dropped from consideration, as it does not take part in the classical
description of the apparatus, and its microscopic superposition does not pose any problem.

13This appeal to “practice” does not mean that we are resigned to fapp (i.e., “for all practical purposes”)
solutions to the measurement problem. As in [66], we remain convinced that the classical description of a
measurement apparatus is a purely epistemic move, relative to which outcomes are defined. So even if it
were possible to study a cat as a quantum system, there would be no measurement problem, since in that
case there would be innumerable superpositions but not a single (undesirable) mixture of classical states.

14We share this rejection with the Bohmians [28]. The folk wisdom (shared by the Founding Fathers)
that the Copenhagen Interpretation has no measurement problem relies on these secondary Copenhagenian
claims, which indeed sweep the problem under the rug. Incidentally, these claims seem much more popular
than Bohr’s doctrine of classical concepts, which is generally not well understood, and/or mistaken for the
idea that the goal of physics is to explain experiments, or that reality does not exist, et cetera.
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We then interpret the double limit ~ → 0, t → ∞ (in an appropriate order to be
discussed below) as the “unfolding” of the measurement, in that the apparatus is described
increasingly classically.15

• According to the Copenhagen Interpretation, by some inexplicable mystery, at some
stage of the classical description the wave-function suddenly collapses.

• According to our analysis, the collapse is not inexplicable at all: it is caused by a
perturbation, and in principle it can be exactly described and followed in time.

Here it is important to note that the values ~ = 0 and t =∞ are never actually reached—
we are talking about limits! In particular, the instability of the ground state described
in the next section already arises for very small (as opposed to zero or ‘infinitesimal’)
effective values of ~. And this is how it should be: truly classical states (like strictly infinite
systems) do not exist in nature, but you should be able to make the difference between the
quantum-mechanical approximation to such a state and the actual limit state as small as
you like, for sufficiently small ~ and large t. Indeed, the whole point of the reformulation
of the measurement problem proposed here is that the usual (superposition) state Ψ(0)

~ of
Schrödinger’s Cat does not have this feature: the classical states that (almost) occur in
nature are ρ+

0 (alive) and ρ−0 (dead), and for any ~ > 0, the state ψ(0)
~ defined by the wave-

function Ψ(0)
~ dramatically fails to approximate either of these,16 although it perfectly well

approximates the unphysical mixture 1
2
(ρ+

0 +ρ−0 ). In other words, returning to the original
mechanical meaning of the double-well system, quantum mechanics is apparently unable
to predict that a classical ball lies at the bottom of either the right or the left well.

Fortunately, this inability is only apparent: depending on the sign and localization of
the perturbation δV of the double well (cf. the next section), the collapsed states ψ(δ)

~
induced by the “flea on the cat” do approximate either ρ+

0 or ρ−0 as ~→ 0.
Unfortunately, this insight concerning perturbed ground states and their associated

localized wave-functions is only the first, static part of the solution of the measurement
problem. The dynamical part of the solution would be to find an appropriate time-
dependent way for the flea to jump onto Schrödinger’s Cat (in its superposition state),
and either kill it, or let it live. That is, one needs to find a suitable perturbed (but
nonetheless unitary!) quantum time-evolution operator U (δ)

~ (t) such that the (algebraic)
state ψ

(0)
~ (t) defined by the wave-function U

(δ)
~ (t)Ψ(0)

~ converges to either ρ+
0 or ρ−0 as

t → ∞ and ~ → 0. Moreover, a completely satisfactory solution of the measurement
problem (or at least of its Schrödinger Cat instance) would have the additional property
that measurement results that are already pre-classical, which in this case means that they
are either ψ+

~ or ψ−~ , be stable under perturbations. This leads to the following conditions:

15The analogy with the thermodynamic limit V → ∞ will be discusses at the end of the paper. As to
~→ 0, we repeat [66, pp. 471–472] that although ~ is a dimensionful constant, in practice one studies the
(semi)classical regime of a given quantum theory by forming a dimensionless combination of ~ and other
parameters; this combination then re-enters the theory as if it were a dimensionless version of ~ that can
indeed be varied. The oldest example is Planck’s radiation formula, with the associated limit ~ν/kT → 0,
and another example is the Schrödinger operator (2.9), with mass reinserted, where one may pass to a
dimensionless parameter ~/λ

√
2mε, where λ and ε are typical length and energy scales, respectively.

16Paraphrasing Bell [6]: the difference between ρ±0 and ψ
(0)
~ can be made ‘as big as you do not like.’.
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lim
~→0,t→∞

ψ
(0)
~ (t) = ρ±0 , (2.21)

lim
~→0,t→∞

ψ+
~ (t) = ρ+

0 ; (2.22)

lim
~→0,t→∞

ψ−~ (t) = ρ−0 . (2.23)

As in (2.16) - (2.19), these conditions do not contradict each other, since in passing from
unit vectors Ψ to algebraic states ψ, linearity is lost. Similarly, (2.16) - (2.17) would
be impossible for unit vectors (noting that Ψ(0)

~ and Ψ(1)
~ are orthogonal), but they are

perfectly alright for states in the algebraic sense. Indeed, families of unit vectors like Ψ(i)
~ ,

where i = 0, 1,+,−, do not have a limit as unit vectors (or even as density matrices,
including one-dimensional projections). This marks a decisive difference with standard
approaches to the measurement problem [2, 17, 18], which are victim to “insolubility”
theorems of the kind proved by von Neumann, Fine, and others [16, 18, 38, 78]. Such
theorems assume that the post-measurement state (if pure) is a unit vector in Hilbert
space (or a density matrix otherwise), and totally rely on the linearity of the Schrödinger
equation. In contrast, we take the post-measurement state by definition to be classical.

In the above setting, determining the correct way to take the double limit ~→ 0, t→∞
is a highly nontrivial problem. In the theory of semiclassical asymptotics [85] (with quan-
tum chaology as an important subfield [12, 37, 90, 98]), the goal of this limit is to find the
long-time behaviour of some quantum system by first describing the underlying classical
system (especially if it is chaotic), and subsequently using suitable classical expressions
to approximate the corresponding quantum formulae. For example, suppose one wants to
find the time evolution of a wave-packet that initially is strongly (micro) localized, i.e., is
a coherent state for some small (effective) value of ~. For fixed time t, one has Egorov’s
Theorem (2.20), which, supplemented by exponentially small error terms, shows that for
any finite t the limit ~ → 0 delivers the above goal. For large times, however, there is a
competition between the limit ~→ 0 making it more localized (and hence more classical),
and the limit t→∞ making it less so (and hence more wave-like or quantum-mechanical).
Intuitively, spreading is enhanced if the classical dynamics is chaotic, and suppressed if it
is integrable. In the chaotic case, it turns out that (micro) localization defeats the spread
in time as long as t ≤ C ln(1/~), with C of order one, so that one may take the double
limit in the order ~→ 0, t→ C ln(1/~) [1, 15, 26]. If the system is integrable, on the other
hand, one expects to push this to much larger times t ∼ ~−k, for some k ∈ N.

Our situation is more complicated than that. First, in d = 1, time-dependent pertur-
bations of the “flea” type render the double-well potential no longer integrable, without
the perturbed dynamics becoming really chaotic either. Second, the initial state being the
ground state of the (unperturbed) double well, it is not even localized to begin with.17

Thirdly, we will actually invoke another limit, namely the adiabatic one. As we will ex-
plain in the Discussion, combining these features poses a new problem in the practically
unexplored territory of quantum metastability, whose solution will not only involve new
mathematical results in semiclassical asymptotics, but also calls for genuinely new physical
understanding. For now, our goal is just to explain our program and provide a “proof of
concept” that it might work. Thus at the present stage we merely present some numerical
results, showing that for fixed small ~, localization takes place for sufficiently large t.

17As explained above, the nonlinearity inherent in the limit ~→ 0 makes it impossible to find the limit
of this ground state Ψ

(0)
~ by just adding the results for two localized wave-functions like Ψ+

~ and Ψ−~
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3 A collapse process within quantum mechanics

3.1 The “flea” perturbation of the double-well potential

Regarding the doubly-peaked ground state Ψ(0)
~ of the symmetric double well as the

quantum-mechanical counterpart of a hung parliament, the analogue of a small party
that decides which coalition is formed is a tiny asymmetric perturbation δV of the poten-
tial. Indeed, the following spectacular phenomenon in the theory of Schrödinger operators
was discovered in 1981 by Jona-Lasinio, Martinelli and Scoppola [57, 58], using stochastic
techniques. Using more conventional methods, it was subsequently reconfirmed and ana-
lyzed further by mathematical physicists [25, 46, 52, 53, 95].18 In view of this extensive
mathematical literature, we hardly see a need for yet another rigorous treatment, but
rather take it as our goal to explain the main idea to physicists and philosophers. This
section just gives the key results; a more detailed treatment using the well-known wkb
approximation from the textbooks may be found in the appendix.

Replace V in (2.9) by V + δV , where δV (i.e., the “flea”) is assumed to:

1. be real-valued with fixed sign, and C∞c (hence bounded) with connected support not
including the minima x = a or x = −a;19

2. satisfy |δV | >> e−dV /~ for sufficiently small ~ (e.g., by being independent of ~);

3. be localized not too far from at least one the minima, in the following sense.

First, for y, z ∈ R and A ⊂ R, we extend the notation (2.15) to

dV (y, z) =
∣∣∣∣∫ z

y
dx
√
V (x)

∣∣∣∣ ; (3.24)

dV (y,A) = inf{dV (y, z), z ∈ A}. (3.25)

Second, we introduce the symbols

d′V = 2 ·min{dV (−a, supp δV ), dV (a, supp δV )}; (3.26)
d′′V = 2 ·max{dV (−a, supp δV ), dV (a, supp δV )}. (3.27)

The localization assumption on δV , then, is that one of the following conditions holds:

d′V < dV < d′′V ; (3.28)
d′V < d′′V < dV . (3.29)

In the first case, the perturbation is typically localized either on the left or one the right
edge of the double well, whereas in the second it resides somewhere on the middle bump.
Note that symmetric perturbations are excluded by 3., as these would satisfy d′V = d′′V .

Under these assumptions, the ground state wave-function Ψ(δ)
~ of the perturbed Hamil-

tonian (which had two peaks for δV = 0!) localizes as ~ → 0, in a direction which given
that localization happens may be understood from energetic considerations. For example,
if δV is positive and is localized to the right, then the relative energy in the left-hand part
of the double well is lowered, so that localization will be to the left. See Figures 4 - 6.

18The “Flea on the Elephant” terminology used in [95] for the phenomenon in question evidently moti-
vated the title of the present paper, which has identified the proper host animal at last!

19 Some of the details in this section depend on the latter assumption, but our overall scenario in section
4 does not. For example, if the value and/or the curvature of one of the minima is decreased, then the
ground state wave-function will localize above that minimum, as follows from standard minimax techniques
taking single harmonic eigenfunctions as trial states [46, 84]. So collapse is actually easier in that case.
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Figure 4: Flea perturbation of ground state Ψ(δ)
~=0.5 with corresponding Husumi function.

For such relative large values of ~, little (but some) localization takes place.

Figure 5: Same at ~ = 0.01. For such small values of ~, localization is almost total.

Figure 6: First excited state for ~ = 0.01. Note the opposite localization area.
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In more detail, for the perturbed ground state we have (subject to assumptions 1–4):

Ψ(δ)
~ (a)

Ψ(δ)
~ (−a)

∼ e∓dV /~ (±δV > 0, supp(V ) ⊂ R+); (3.30)

Ψ(δ)
~ (a)

Ψ(δ)
~ (−a)

∼ e±dV /~ (±δV > 0, supp(V ) ⊂ R−), (3.31)

with the opposite localization for the perturbed first excited state (so as to remain orthog-
onal to the ground state).20 A more precise version of the energetics used above is then
as follows. The ground state tries to minimize its energy according to the rules:21

• The cost of localization (if δV = 0) is O(e−dV /~).

• The cost of turning on δV is O(e−d
′
V /~) when the wave-function is delocalized.

• The cost of turning on δV is O(e−d
′′
V /~) when the wave-function is localized in the

well around x0 = ±a for which dV (x0, supp δV ) = d′′V .

In any case, these results only depend on the support of δV , but not on its size: this means
that the tiniest of perturbations may cause collapse in the classical limit.

Although the collapse of the perturbed ground state for small ~ is a mathematical
theorem, supported (or rather illustrated) both by our numerical simulations and by the
wkb analysis in the appendix, it remains an enigmatic phenomenon of a purely quantum-
mechanical nature. Indeed, despite the fact that in quantum theory the localizing effect
of the flea is enhanced for small ~, the corresponding classical system has no analogue of
it. Trivially, a classical particle residing at one of the two minima of the double well at
zero (or small) velocity, i.e., in one of its degenerate ground states, will not even notice the
flea; the ground states are unchanged. But even under a stochastic perturbation, which
leads to a nonzero probability for the particle to be driven from one ground state to the
other in finite time (as some form of classical “tunneling”, where in this case the necessary
fluctuations come from Brownian motion), the flea plays a negligible role. For example, in
the case at hand the famous Eyring–Kramers formula for the mean transition time reads

〈τ〉 ∼=
2π√

V ′′(a)V ′′(0)
eV (0)/ε, (3.32)

where ε is the parameter in the pertinent Langevin equation dxt = −∇V (xt)dt+
√

2εdWt,
in which Wt is standard Brownian motion.22 Clearly, this expression only contains the
height of the potential at its maximum and its curvature at its critical points; most
perturbations satisfying assumptions 1–4 above do not affect these quantities.

20If δV has support on both sides of the real axis (which is possible in the case (3.29)), a more detailed
analysis of its shape is necessary in order to predict the direction of collapse.

21Compare [84, 95, p. 35] for such arguments. Nonetheless, the effect of the flea is counterintuitive even
from the point of view of quantum-mechanical tunneling: for example, with a perturbation of the kind
displayed in Figures 4 - 6, which falls under case (3.29), one would expect tunneling from the right into the
left-handed well to be discouraged, even increasingly so as ~ → 0, because the potential barrier through
which to tunnel has been heightened, but in fact the right-handed peak of the unperturbed ground state
tunnels to the left so as to localize the ground state wave-function. See §5.2 for further discussion.

22Cf. [7] (for mathematicians) or [49] (for physicists), and references therein.
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3.2 Two-level approximation

The instability of the ground state of the double-well potential under “flea” perturba-
tions as ~ → 0 is easy to understand (at least heuristically) if one truncates the infinite-
dimensional Hilbert space L2(R) to a two-level system living in C2 [52, 95].23 This simpli-
fication is accomplished by keeping only the lowest energy states Ψ(0)

~ and Ψ(1)
~ , in which

case the full Hamiltonian (2.9) with (2.12) is reduced to the 2× 2 matrix

H0 = 1
2

(
0 −∆
−∆ 0

)
, (3.33)

with ∆ > 0 given by (2.14). We drop the label ~. The eigenstates of H0 are given by

Φ(0)
0 =

1√
2

(
1
1

)
, Φ(1)

0 =
1√
2

(
1
−1

)
, (3.34)

with energies E0 = 0 and E1 = ∆, respectively; in particular, E1 − E0 = ∆. If

Φ±0 =
Φ(0)

0 ± Φ(1)
0√

2
, (3.35)

as in (2.18), then

Φ+
0 =

(
0
1

)
, Φ−0 =

(
1
0

)
. (3.36)

Hence in this approximation Φ+
0 and Φ−0 play the role of wave-functions (2.18) localized

above the classical minima x = +a and x = −a, respectively, with classical limits ρ±0 . The
“flea”, then, is introduced as follows: if its support is in R+, then we put

δ+V =
(

0 0
0 δ

)
, (3.37)

where δ ∈ R is a constant, whereas a perturbation with support in R− is approximated by

δ−V =
(
δ 0
0 0

)
. (3.38)

Without loss of generality, let us take the latter (a change of sign of δ leads to the former).
The eigenvalues of H(δ) = H0 + δ−V are E0 = E− and E1 = E+, with energies

E± = 1
2
(δ ±

√
δ2 + ∆2), (3.39)

and normalized eigenvectors

Φ(0)
δ =

1√
2

(
δ2 + ∆2 + δ

√
δ2 + ∆2

)−1/2
(

∆
δ +
√
δ2 + ∆2

)
; (3.40)

Φ(1)
δ =

1√
2

(
δ2 + ∆2 − δ

√
δ2 + ∆2

)−1/2
(

∆
δ −
√
δ2 + ∆2

)
. (3.41)

Note that limδ→0 Φ(i)
δ = Φ(i)

0 for i = 0, 1. Now, if ~ → 0, then |δ| >> ∆, in which case
Φ(0)
δ → Φ±0 for ±δ > 0 (and if we had started from (3.37) instead of (3.38), one would

have had the opposite case, i.e., Φ(0)
δ → Φ∓0 for ±δ > 0). Thus the ground state localizes

as ~→ 0, which resembles the situation (3.30) - (3.31) for the full double-well problem.
23This approximation is extremely well known also in physics [70], but has hardly been studied in the

present context. It is too simple to display the behaviour (2.21) - (2.23), though.
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4 Time-dependent collapse

As already remarked in Subsection 2.3, for a solution of the measurement problem it is not
enough to just note that under a typical “flea” type perturbation (as defined in Subsection
3.1) the ground state Ψ(δ)

~ of the perturbed Hamiltonian is localized. In addition, the
archetypical Schrödinger Cat state Ψ(0)

~ , which results from some measurement, needs
to evolve into Ψ(δ)

~ under the influence of this perturbation. This is a very complicated
problem in quantum metastability, about which little is known. But we can say something.

As a first orientation, we continue our discussion of the two-level system. The simplest
idea would be to launch the flea as a so-called “quench”, which means that for times t < 0
the dynamics is given by H0, upon which for t ≥ 0 the Hamiltonian is H0 + δ−V . Hence

H(t) =
(

δ(t) − 1
2
∆

− 1
2
∆ 0

)
, (4.42)

where δ(t) = 0 for t < 0 and δ(t) = δ for t ≥ 0. Writing Φ(0)(t) for the solution of the
corresponding time-dependent Schrödinger equation with initial condition Φ(0)(0) = Φ(0)

0 ,
see (3.34), for the localization probability “on the left”, i.e., above x = −a, we find

PL(t) ≡ |〈Φ−0 ,Φ
(0)(t)〉|2 = PL(0) + 1

2

δ∆
δ2 + ∆2

·
[
cos
(
it

~

√
δ2 + ∆2

)
− 1
]
, (4.43)

where Φ−0 is given in (3.36). Since δ∆/(δ2 + ∆2) → 0 as ~ → 0, we see from this and
similar calculations for other initial states that for any t (including t → ∞ in whatever,
even ~-dependent, way), in the classical limit the initial state freezes rather than collapses.

Figure 7: Time evolution of the probabilities PL(t) and PR(t) = 1−PL(t). The left image
has δ = 0, the middle has moderate δ, and the third (displaying “freezing”) has large δ.

Towards less naive time-dependent models for the flea perturbation, we also investi-
gated adding white noise or Poisson noise to the time-dependent Schrödinger equation. In
the two-level case, the pertinent stochastic differential equations are

dΦ = −( 1
2
i∆σxdt+ iδσzdBt + 1

2
δ2dt)Φ; (4.44)

dΦ = −( 1
2
i∆σxdt+ (σz − I2)dNt)Φ, (4.45)

respectively, where (σk) are the Pauli matrices, Bt is Brownian motion, and Nt is a Poisson
process, both with tunable parameters. However, neither of these leads to dynamical
collapse in the classical limit: this is equivalent to strong noise, in which case a quantum
Zeno-like effect seems to dominate any desire of the system to localize. See also [8, 11, 73].
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Similar (negative) conclusions follow for the full double well (at least, numerically).
As far as we have been able to determine, the most effective way to produce dynamical
collapse is to let the flea jump on the cat adiabatically. This is easily shown for the two-
level system, but we might as well return to the full double-well problem here. We perturb
this potential V with a flea with center b, width 2c, and height d, as follows:

δVb,c,d(x) =

{
d · e

1
c2
− 1

c2−(x−b)2 if |x− b| < c
0 if |x− b| > c

. (4.46)

This perturbation rises adiabatically according to

V (x, t) =


V (x) if t ≤ 0;
V (x) + δVb,c,d(x) sin

(
πt
2T

)
if 0 ≤ t ≤ T ;

V (x) + δVb,c,d(x) if t > T.
(4.47)

The corresponding time-dependent Schrödinger equation can be solved numerically with
the ground state Ψ(0)

~ as the initial condition at t = 0. This yields the following pictures, in
which dynamical localization is clearly visible, in agreement with the adiabatic theorem.24

Figure 8: Plots of both |Ψ(t)|2 and the corresponding Husumi function for the solution
Ψ(t) of the time-dependent Schrödinger equation defined by the potential (4.47), with
b = 7.5, c = 0.5, d = 0.3, ~ = 0.3, and T = 800. Starting in the upper left corner and
proceeding clockwise, the pictures correspond to t = 50, t = 100, t = 400, t = 800.

Of course, the symmetry of the situation implies that the Born rule holds if one averages
over all perturbations (which corresponds to averaging over a series of experiments) in any
reasonable way, i.e., any way in which δVb,c,d, δV−b,c,d, δVb,c,−d, and δV−b,c,−d have equal
probability. For in that case, according to the rules in Subsection 3.1 any collapse to the
left (in some experiment in a long run) will be accompanied by a collapse to the right (in
another experiment of the same run) if one of the signs changes. Hence the probabilities
for collapse to the left and to the right will both equal 1/2, in agreement with (2.17).

24A corresponding movie may be found on www.math.ru.nl/∼landsman/flea.avi.
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5 Discussion

To put the above result in perspective: we claim neither that the double-well system re-
alistically models Schrödinger’s Cat, nor that, even if it does, a typical perturbation that
causes the collapse of the wave-function should rise adiabatically.25 But we do believe that
the instability that works in this particular example is an example of the general mecha-
nisms that solves the measurement problem (i.e., in our reformulated version), and we do
claim to have given a “proof of concept” that our envisaged solution to the measurement
problem is viable in principle. But many issues remain to be resolved.

Leaving details to future papers, we briefly discuss three topics. The first indicates
that the measurement problem (and hence the mechanism we propose to resolve it) has a
far wider scope than is usually imagined, the second points at the unexplored territory of
quantum metastability, whilst the third touches on the very issue of determinism.

5.1 Symmetry breaking and phase transitions

The symmetric double-well potential provides one of the simplest models of spontaneous
symmetry breaking (ssb). Both the classical Hamiltonian and its quantization have a Z2

symmetry, given by reflection in the origin of the x-axis. As we have seen, a remarkable
difference between classical and quantum mechanics arises: the classical ground state is
degenerate and breaks the symmetry, whereas the quantum ground state Ψ(0)

~ is unique
and hence symmetric. If we see the splitting of the ground state as a phase transition, then
evidently the quantum system has no phase transition, whereas its classical counterpart
does. At first sight this appears to be quite paradoxical, since the presence or absence of
symmetry breaking is a major qualitative difference between the system described either
classically or quantum-mechanically, while at the same time we quantitatively expect the
classical theory to be a limiting case of the quantum theory. Indeed, this is nothing but
the measurement problem in disguise: if, for any ~ > 0, the (delocalized) quantum ground
state prevails, then the classical ground states ρ±0 totally fail to be approximated by it.

We resolved this problem by the “flea” instability. Similarly, the ground state of a large
but finite quantum systems (V <∞) is typically unique and hence symmetric. But at V =
∞, for suitable Hamiltonians ssb occurs, in that the ground state (or thermal equilibrium
state at low temperature) fails to be symmetric. Thus the limit V to infinity does not
approximate the phenomenon of ssb when V equals infinity.26 Based on [61], we expect
to find some analogue of the “flea” perturbation and expect it to be especially effective
for large V . This should destabilize the ground state so as to break the symmetry already
in large but finite volume. An instability like this must underly the Higgs mechanism, if
this is to be phenomenologically relevant (as it indeed seems to be since July 4, 2012).

25If it happens to be true that measurement outcomes emerge adiabatically, it would be a marked break
with tradition, starting with von Neumann’s model, in which both the measurement interaction and the
alleged collapse take place instantly [78]. Of course, the question arises relative to which time scale the
flea would enter adiabatically, if it does.

26 Like the measurement problem, this seemingly paradoxical situation does not seem to bother physicists
very much, although their Higgs mechanism relies on a resolution of it: apparently, in any finite volume
the system refuses to choose a ground state (or vacuum), although all perturbative calculations underlying
the successful Standard Model of elementary particle physics rely on such a choice. But it has been the
subject of recent discussions in the philosophy of science [4, 19, 71, 75, 81], in which some claim that this
“discontinuity” in passing from V < ∞ to V = ∞ is crucial for the possibility of emergence (‘More is
Different’), whilst others try to find arguments for continuity and hence defend some form of reductionism.
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5.2 Quantum metastability

According to our analysis, the measurement problem is really a problem in quantum met-
stability. Metastability is well understood if it is thermally driven, both in classical and
in quantum theory [49, 82, 91, 92], but in our approach the driving force is not a persis-
tent heat bath or Brownian motion but a minute single perturbation that (for small ~)
dramatically changes the ground state of a quantum system. In that case, it is quantum
fluctuations that are supposed to drive the old (unperturbed) ground state to the new
(perturbed) one. Little is known about this situation even heuristically [79, 94], let alone
analytically (hence our recourse to a numerical approach). What we can say, on the basis
of both these simulations and physical intuition (for what it is worth), is that the limit
~→ 0 is a double-edged sword: on the one hand, it enhances the instability of the original
(Schrödinger Cat) ground state, and hence favours static collapse (in that the perturbed
ground state is localized, unlike the original one), but on the other hand, it suppresses
tunneling and hence acts against dynamical collapse (in the sense that the unperturbed
ground state evolves into the perturbed one under the influence of the perturbed dynam-
ics). This explains the exceptionally long time it takes for localization to happen in our
numerical simulations, well beyond the (already long) time scales typical for the thermal
case. We expect the same phenomenon in (quantum) phase transitions, as above.

5.3 Determinism and Bell/Free Will type Theorems

In so far as determinism is concerned, there are two ways to look at our proposal.
First, the “flea” perturbation might itself be a genuine random process, perhaps ul-

timately being of quantum-mechanical origin. In that case, its own intrinsic randomness
is simply transferred to the set of possible measurement outcomes. Although the flea
may still be said to “cause” one particular outcome (of some experiment), and as such
solves the measurement problem, it fails to restore determinism. Rather, the experiment
amplifies the randomness that was already inherent in the flea.27

Second, the flea might be deterministic (but is just modeled stochastically for prag-
matic reasons). This opens the door to a complete restoration of determinism. For now
the flea transfers its determinism to the experiment (rather than its randomness, as in the
previous scenario). The mistaken impression that quantum theory implies the irreducible
randomness of nature then arises because measurement outcomes are merely unpredictable
“for all practical purposes”, though in a way that (because of the exponential sensitivity
to the flea in 1/~) dwarfs even the unpredictability of classical chaotic systems.

In both cases, one has to deal with the Bell inequalities [5, 17] or the Free Will Theorem
(fwt) [27]. In this respect the situation is the same as for dynamical collapse models à
la grw [3]: such models are necessarily nonlocal, but they do satisfy a no-signalling
theorem.28 To see which assumption of e.g. the fwt is violated,29 note that the flea
entails local contextuality, which by the twin assumption of Conway and Kochen induces
a violation of fin (in the original fwt) or min (in the Strong Free Will Theorem).30

27See [23] for a recent discussion of randomness amplification, which focuses on the way experiments
may be construed to amplify the randomness inherent in the (alleged) “free” choice of an experimentalist.

28A similar analysis holds also for Bohmian solutions to the measurement problem.
29In our opinion, the Free Will Theorem is sharper than any kind of constraint derived from Bell-type

inequalities, whose derivation relies on tacit assumptions like the use of the Kolmogorov formalism for
measure theory in averaging over hidden states. This formalism lacks a sound conceptual foundation.

30In current parlance surrounding the Bell inequalities [17], parameter independence is violated.
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6 Appendix: the flea from wkb

In this appendix,31 we study the “flea” type perturbation from the point of view of the
wkb method of the physics textbooks (like [47, 62]).32 As explained in [41, 42], the
connection formulae stated in such books are actually correct only for simple potentials
like a single well, but with due modifications (see below), the formalism will reproduce
both the rigorous and the numerical results described in the main body of this paper.

6.1 Quantization condition for an asymmetric double well

We start by recalling some standard wkb formulas. The wkb wave-function in the clas-
sically allowed region without turning points (E > V (x)) can be written as

Ψ(x) ∼=
1√
p(x)

[
Ae

i
~

R x p(y)dy +Be−
i
~

R x p(y)dy
]
, (6.48)

where

p(x) =
{ √

[E − V (x)] if E ≥ V (x)
±i
√

[V (x)− E] if E < V (x)
. (6.49)

A similar formula holds for the classically forbidden region (E < V (x)), namely

Ψ(x) ∼=
1√
|p(x)|

[
Ce−

1
~

R x |p(y)|dy +De
1
~

R x |p(y)|dy
]
. (6.50)

These wave-functions can be connected across turning points via so-called connection
formulas, stated in books like [47]. First, we need to distinguish between two kinds of
turning points in the usual way: we use the coefficients Al, Bl, Cl and Dl for a left-hand
turning point and Ar, Br, Cr and Dr for a right-hand one. The lower limit of the integrals
in the above equations is always the coordinate of the turning point. The connection
formulas for a left-hand turning point are given by

(
Al
Bl

)
=

MCl/Dl→Al/Bl︷ ︸︸ ︷
eiπ/4

(
1
2
−i

− i
2 1

)(
Cl
Dl

)
or
(
Cl
Dl

)
=

MAl/Bl→Cl/Dl︷ ︸︸ ︷
e−iπ/4

(
1 i
i
2

1
2

)(
Al
Bl

)
, (6.51)

whilst those for a right-hand turning point are given by

(
Ar
Br

)
=

MCr/Dr→Ar/Br︷ ︸︸ ︷
eiπ/4

(
1 − i

2
−i 1

2

)(
Cr
Dr

)
or
(
Cr
Dr

)
=

MAr/Br→Cr/Dr︷ ︸︸ ︷
e−iπ/4

(
1
2

i
2

i 1

)(
Ar
Br

)
. (6.52)

Now consider a general asymmetric double well, as shown in Figure 9. This figure also
introduces part of the notation used.

31The authors are indebted to Koen Reijnders (Radboud University) for help with this appendix.
32As opposed to the extremely sophisticated and mathematically rigorous methods of Helffer and

Sjöstrand [33, 52, 53], who somewhat confusingly suggest they use the ordinary wkb method.
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Figure 9: An asymmetric double-well potential V . The minima are a and b. We assume
that the particle has energy E. This provides us with turning points x1, x2, x3 and x4 and
hence with five distinct regions. Four of these regions are named with Roman numerals.

We need some more notation for the wkb coefficients used in our calculation. As in
(6.48) and (6.50), A,B and C,D denote the coefficients of the wkb wave-function in the
classically allowed region and the classically forbidden region, respectively. The number
attached to a letter shows to which turning point it belongs, e.g. A1 and B1 are the
coefficients of the wkb wave-function in region II with respect to x1 (i.e. x1 is the lower
boundary of the integral in (6.48)). We also need the following three quantities:

θ1 =
1
~

∫ x2

x1

p(x)dx, θ2 =
1
~

∫ x4

x3

p(x)dx, K =
1
~

∫ x3

x2

|p(x)|dx. (6.53)

A final quantity we need is

φ̃ = arg
[
Γ
(

1
2

+ i
K

π

)]
+
K

π
− K

π
ln
(
K

π

)
. (6.54)

We are interested in the limit K →∞, since this implies that the barrier is very high and
broad, which corresponds to the classical limit ~→ 0. Note that φ̃→ 0 as K →∞. Our
goal is the following quantization condition for the general double well in Figure 9:(

1 + e−2K
)1/2

=
cos(θ1 − θ2)

cos(θ1 + θ2 − π + φ̃)
. (6.55)

This condition can be derived in the following way:

1. We start out in region I (coefficients C1 and D1). The wave-function needs to be
square integrable, so we immediately see that C1 = 0.

2. Using the left connection matrix from (6.51), we move to region II (coefficients A1

and B1). We can then write the wkb wave-function with respect to x2 by using(
A2

B2

)
=
(
eiθ1 0
0 e−iθ1

)(
A1

B1

)
, (6.56)

which can be proved by changing the lower boundary of the integrals in the wkb
wave-function (6.48). The result is(

A2

B2

)
= eiπ/4

(
−ieiθ1
e−iθ1

)
D1. (6.57)
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3. In a similar way, we start in region IV (coefficients C4 and D4), and see that D4 = 0.
After moving to region III with a connection matrix and rewriting the wave-function
with respect to x3, we find(

A3

B3

)
= eiπ/4

(
e−iθ2

−ieiθ2

)
C4 . (6.58)

4. We now use a result derived in [41] to jump over the barrier and connect the wkb
wave-functions in region II and III, viz.33(

A2

B2

)
=

( (
1 + e2K

)1/2
e−iφ̃ ieK

−ieK
(
1 + e2K

)1/2
eiφ̃

)(
A3

B3

)
. (6.59)

5. Combining the above results (i.e. inserting (6.57) and (6.58) in (6.59)), we find

D1

C4
= i
[(

1 + e2K
)1/2

e−i(θ1+θ2+φ̃) + eKe−i(θ1−θ2)
]
, (6.60)

D1

C4
= −i

[(
1 + e2K

)1/2
ei(θ1+θ2+φ̃) + eKei(θ1−θ2)

]
. (6.61)

6. The equality of the above two equations leads to the quantization condition (6.55).

As will be discussed in the next two subsections, eqs. (6.55) and (6.60) have implications
for the energy levels and the wave-functions in an asymmetric double well.

6.2 Energy splitting in an asymmetric double-well potential

Assume that for a certain (unperturbed) symmetric double well and given energy E, the
constants θ1 and θ2 equal some value θ. As in Figure 9, we introduce a perturbation in
the right-hand well. For example, by (6.54), this means that θ = θ1 > θ2 for a positive
perturbation. We therefore write θ1 = θ, θ2 = θ − δ with δ ∈ R (e.g. δ > 0 in Figure 9).
The quantization condition (6.55) then becomes(

1 + e−2K
)1/2

=
cos(δ)

cos(2θ − δ − π + φ̃)
. (6.62)

We can solve for θ, yielding two solutions

θ± = (n+ 1
2
)π + 1

2
δ − 1

2
φ̃± 1

2
arccos

[
cos(δ)

(1 + e−2K)1/2

]
. (6.63)

This resembles the original quantization condition θ = (n+ 1
2
)π for a single well, which is

derived using connection formulas in [47]. Here, the energy levels have split up in pairs
around the original ones (where the minus sign in (6.63) corresponds to the lower energy
by (6.54)). To see what this means, we will examine this equation for two special cases.
We first set δ = 0 and check if this reproduces known results for a symmetric double well:

θ± = (n+ 1
2
)π − 1

2
φ̃± 1

2
arccos

[
1

(1 + e−2K)1/2

]
. (6.64)

33This result can also be found by applying the method of comparison equations, which is explained in
[99]. Further references are [72] and [77].
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Supposing that K is large, this means that

θ± ≈ (n+ 1
2
)π ± 1

2
e−K , (6.65)

since for K large, φ̃ ≈ 0 and arccos
(

1√
1+x2

)
= arctanx ≈ x for small x. We once again

find that the energy levels of the single well have split into two. As discussed in [42], this
leads exactly to the familiar energy splitting for a symmetric double-well potential stated
in texts like [62]. That means that our method for general double wells reproduces known
results for a symmetric one. Now that this has been confirmed, let us look at (6.63) in
the classical limit K →∞. Solving (6.63) for K →∞ (and so φ̃→ 0) gives

θ− = (n+ 1
2
)π (lower energy) ; (6.66)

θ+ = δ + (n+ 1
2
)π (higher energy). (6.67)

This differs from the symmetric well, which for K → ∞ gives a twofold degeneracy for
each energy level labeled by n. Equation (6.67) can be understood in the following way: in
the classical limit, tunneling is suppressed. Therefore, the particle is localized in one of the
wells, where it obeys the familiar quantization condition for a single well. If it is in the left
well, then θ1 = (n+ 1

2
)π = θ−, but if it is in the right well, we have θ2 = (n+ 1

2
)π = θ+−δ.

6.3 Localization in an asymmetric double-well potential

Now that we have analyzed the behaviour of the energy splitting, we turn to the wkb
wave-function. With the notation used in the previous section, (6.60) leads to

D1

C4
= i
[(

1 + e2K
)1/2

e−i(2θ±−δ+φ̃) + eKe−iδ
]
. (6.68)

Inserting (6.63), the reader can check that for δ ∈ [−π, π] one has

D1

C4
= sin(δ)eK ∓

√
sin2(δ)e2K + 1 . (6.69)

This allows us to derive localization of the wkb wave-function in the classical limitK →∞.
As can be seen from (6.57), D1 is a measure of the amplitude of the wkb wave-function
in regions I and II in Figure 9. In a similar way, (6.58) shows that C4 is a measure of
the amplitude of the wkb wave-function in regions III and IV. Therefore, the fraction
D1/C4 indicates whether the wave-function is localized, and if so, where. Doing the same
calculation again for δ ∈ [π, 3π] gives the above result multiplied by −1. Of course, this
can be generalized: for n ∈ Z and δ ∈ [(2n − 1)π, (2n + 1)π], the result (6.69) is correct
for n even and should be multiplied by −1 for n odd. This will not affect our conclusions,
as we will see. We consider some cases and check what (6.69) tells us:

• For δ = 0 (no perturbation), we find that D1
C4

= ∓1. The general double well has
pairs of energy levels (labeled by n). Such a pair consists of a lower and higher
lying level, corresponding to θ− and θ+ in (6.63), respectively. Here, we see that
for the lower level D1 = C4, i.e. the wkb wave-function is even. However, for the
higher level we find D1 = −C4, which means the wkb wave-function is odd. This
is a well-known fact and it is nice to see our method reproducing it. Note that this
conclusion is not only independent of n, but also of K, as expected.
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• For δ > 0, δ /∈ {kπ|k ∈ Z} (which corresponds to a positive perturbation in the right
well, e.g. the potential in Figure 9), we find, in the limit K →∞, that:

D1

C4
−→

{
∞ for θ− in (6.63) (lower energy)
0 for θ+ in (6.63) (higher energy)

.

Hence for low (high) energy, the wkb wave-function is localized on the left (right).

• For δ < 0, δ /∈ {kπ|k ∈ Z}, i.e., a negative perturbation in the right well, we find

D1

C4
−→

{
0 for θ− in (6.63) (lower energy)
∞ for θ+ in (6.63) (higher energy)

.

For the lower (higher) energy, the wkb wave-function is localized on the right (left).

• For δ ∈ {kπ|k ∈ Z\{0}}, something peculiar happens, in that either D1
C4

= ±1 or
D1
C4

= ∓1. This implies that no localization takes place.34

• So far, we have interpreted δ as the result of a perturbation in the right well. How-
ever, our approach allows us to interpret a positive perturbation in the right-hand
well as a negative one in the left-hand well, and vice versa. Therefore, the above
results change places if we put the perturbation in the left-hand well.

Our method produces the results we would expect. However, to be precise, the above
reasoning needs to be amended as follows. We have treated δ as a constant, but in reality
it depends on K. The reason for this is that K affects θ1 and θ2, and therefore δ = θ1−θ2,
via the quantization condition. Now consider a fixed energy level (i.e. fixed n and fixed
sign ± in (6.63)) in a given double-well potential that has a perturbation in one of the
wells. In the limit of completely decoupled wells (K →∞), we know this energy level has
some fixed limit higher than the minimum of the potential. As long as the perturbation is
below this energy level, we know that θ1 − θ2 6= 0 by (6.54). This means that there exists
some K0 such that |θ1− θ2| 6= 0 for any K > K0. We may then apply the above reasoning
to verify that our conclusions about localization are still correct.35
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