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1 Introduction
This is Part I of a two-part essay. We present CIFOL, an (1) easy-to-use,
(2) uniform, (3) powerful, and (4) useful combination of first order logic
with modal logic resulting from philosophical and technical modifications of
Bressan 1972. Such an intensional first-order logic, or quantified modal logic,
must be able to represent facts about the identity and distinctness of things
in different possible circumstances or, as we will say, possible cases.1 One way
or the other, this may bring with it a distinction between the extension of
an expression in a case, and its intension as the pattern of extensions across
cases.2 The crucial question is how this distinction can be made productive.
There are many systems of quantified modal logic out there, each with its own
virtues, but in our view none of them exhibits easiness of use, uniformity,
expressive power, and usefulness in the precise way that we will motivate
∗Department of Philosophy, University of Pittsburgh, 1001 Cathedral of Learning,

Pittsburgh, PA 15260, U.S.A. Email: belnap@pitt.edu.
†Department of Philosophy, Utrecht University, Janskerkhof 13a, 3512 BL Utrecht, The

Netherlands. Email: Thomas.Mueller@phil.uu.nl.
‡This is a preprint version of the article to appear in Journal of philosophical logic.

Copyright by the authors.
1We consistently use “thing” not in a wide sense, but rather for a “proper” thing, a

resident of our concrete world of which it makes sense to say that it exists in different
cases or at different times.

2Warning: Although philosophers often use “intension” to connote meaning and “ex-
tension” to connote reference, we do not, as we soon explain.
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and indeed implement in our proposed system of case-intensional first order
logic, CIFOL. As we noted, CIFOL is a modification of Bressan 1972. There
Bressan, a theoretical physicist, presents the system MLν , which in turn is
a profound deepening of the “method of extension and intension” of Carnap
1947. His purpose was to devise a quantified modal logic not in the interests
of either metaphysics or the philosophy of language, but rather to help with
understanding some aspects of scientific theory. His touchstone was Mach’s
well-known but murky definition of “mass” in terms of possible experiments.
We think that among Bressan’s many innovations, his introduction of modal
separation (Def. 17) stands out as a testament to his originality: No other
work in quantified modal logic even hints at this fundamental concept.

Bressan’s system is both ν-sorted and higher order. CIFOL is first or-
der, not because we think the first order is of paramount logical interest,
but merely because ascending to higher types is unavoidably complex when
everything is spelled out. Just to begin, one has to keep track of four kinds
of type entities: the types themselves, typed expressions, typed domains of
extensions, and typed domains of intensions. For a summary description of
MLν , see Belnap 2006. It is a scandal that Bressan’s brilliant work has been
almost universally ignored for forty years.

1.1 Four logical virtues

We begin with the first of the four qualities numbered above. (1) For a
first-order intensional logic, by easiness of use we mean (only) that a system
relies chiefly on procedures familiar from first order and modal logic. CIFOL
makes two large exceptions: (a) To the minimal syntax, CIFOL adds a Frege-
inspired singular term, “∗,” to mark nonexistence such as occasioned by failed
definite descriptions; and (b) CIFOL subtracts the general replacement prop-
erty from the usual logic of identity, while retaining the replacement prop-
erty for necessary identity. CIFOL has nearly the full power of first-order
quantification—including unrestricted instantiation and generalization prin-
ciples and unrestricted λ-conversion and context-free formation of definite
descriptions ( ι-terms)—combined with S5 modal logic. This combination of
modality and quantification stands in contrast to almost every other extant
quantified modal logic. On the other hand, the primitive syntax of CIFOL
has no “extra” features that go beyond first order logic and S5. It is nev-
ertheless natural to suppose that the quantificational and modal features of
CIFOL working in combination go beyond what either can accomplish alone.
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From a semantic point of view, of principal significance will be quantification
over intensions and non-extensional predication.

(2) By uniformity we intend (only) a requirement on the treatment of
terms and predicates, both syntactically and semantically. There are cer-
tainly good linguistic, metaphysical or scientific reasons for treating some
terms or predicates differently than others (e.g., for having a separate cate-
gory of proper names, or of sortal or extensional predicates). These reasons
seem, however, to be extra-logical: Logic is supposed to be formal in the sense
of subject-neutral. Logical regimentation at this juncture means running the
risk of artificially narrowing down the range of what can be expressed, and
thus, in the end, of constraining empirical and conceptual work. A first-order
intensional logic uniform in our somewhat restricted sense has just one syn-
tactical category of terms, and one syntactical category of predicates, with
a uniform semantic clause characterizing the application of a predicate to a
term (or to several terms, for a many-place predicate). CIFOL lives up to
this ideal (except for its treatment of the identity predicate itself) includ-
ing the treatment of definite descriptions as categorematic terms. Nearly all
extant systems of quantified modal logic need to have recourse to special fea-
tures of some syntactically identified class of terms, for example, by treating
proper names and variables as so-called “rigid designators” that alone allow
one to trace an individual across cases as a matter of logic, since their in-
tension is forced to be constant across all cases, while other terms are not
so constrained. This amounts to a breach of uniformity of the kind we have
in mind, and to making the various ways of tracing individuals, which is an
empirical, scientific matter, a matter of logic. It is a scientific discovery that
a common frog can be traced as one living organism from spawn to tadpole
to frog under the sortal term, “common frog” (rana temporaria), no matter
whether you give the beast a name or not, nor how you identify it in a given
case. CIFOL leaves terms and predicates unconstrained by logic in the name
of logical uniformity.

Of course our requirement of uniformity runs against another person’s felt
need of a complex syntax. For example, it would make no sense for Gupta,
in his book titled The logic of common nouns (1980), to avoid introducing a
formal representation of common nouns along side of predicates and singular
terms. It is not a question of taste, but of purpose.

(3) CIFOL is expressively powerful in certain ways found only in case-
intensional systems with non-extensional predication, a category that in-
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cludes, aside from CIFOL, only Bressan’s MLν and Montague’s IL.3 Only
these systems seem to have the power to define, in the language itself, what
it means to be able to trace an individual from one case to another. The
source of this extra power comes partly through quantification over inten-
sions and partly through allowing and exploiting non-extensional predica-
tion. These expressive features allow CIFOL to offer a definitional interface
with which to introduce sortal (tracing) predicates—the so-called “absolute”
predicates—and “extensional” (qualitative) predicates via non-logical axioms
as in §4 below.

(4) Finally and above all, a logic worth its salt ought to be useful, in the
sense of being able to represent everyday and (especially) scientific scenarios
and of giving some guidance to the perplexed.4 Consider, for example, the
following “horse story”: There is a paddock outside; the occupant of the
paddock is Andy, a brown stallion (male horse). An hour later, Andy has
been moved into the barn, and the occupant of the paddock is now Daisy,
a grey mare (female horse). Andy could, however, have been left in the
paddock as well, in which case there would be two horses in the paddock.
It is perfectly easy to picture what’s going on; a child can do it. It is,
however, difficult to give a perspicuous formal representation of the situation.
The hard bit is to come up with a good account of what the terms in the
story, “Andy,” “Daisy” and “the occupant of the paddock,” stand for and how
the predicative expressions, “brown,” “grey,” “male,” “female” and “horse,”
function to combine with the terms to form propositions that are true or
false, as the case may be. Specifically, a major challenge is to explain how
certain terms (e.g., “Daisy”) allow one to trace an individual (a horse) through
the various cases and sustain the ascription of essential properties (e.g., being
female), while other terms (e.g., “the occupant of the paddock”) are unfit for
these purposes. Most quantified modal logics, if they can handle the example
at all, fail to illuminate the notion of tracing. (We essay to meet the challenge
in §5.) For a second example, consider that only Bressan touches on the

3Montague introduced his full system of intensional logic, now commonly referred to
as IL, in Montague 1973. While he did not exercise the system’s power (his application
was to a fragment of ordinary English), later work by Gallin 1975 does so, making it clear
that IL can do anything that MLν can do. For similarly powerful systems, see also Tichý
1988 and Fitting 2004. Gupta 1980, Ch. 3.4, also considers a first-order version of MLν .

4There are of course other notable uses of modal logic; for instance, clarifying meta-
physical doctrines, and analyzing natural-language constructions. Bressan 1972 touches
on these matters.
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problem of literally “possible measurements,” nearly all of which never get
made but which must always give the same results if there is to be a stable
concept of what is measured. (See §5.5.) We don’t know of another case
in which a quantified modal logic has been applied to generating rigorous
scientific arguments.

1.2 Semantics: preliminary informal discussion

Following Bressan, CIFOL takes the notion of a possible case as the basis for
modal semantics. Possibility is truth in a case; necessity is truth in all cases.
No metaphysical assumptions about the structure of the cases are made be-
forehand. Specifically, cases are not taken to be “worlds” with an internal
temporal structure; the cases themselves can be taken to be temporal if that
is useful in an application. Bressan applies with full generality the method
of extension and intension introduced in a limited way by Carnap 1947: Ex-
tension is always extension-in-a-case, and every expression has an extension
in each case and an intension, which is the pattern of extensions across cases.
Both extensions and intensions are therefore thoroughly objective: In contrast
to standard philosophical usage, intensions are not taken to be analytic of
meanings, nor indeed to be always of a kind that a human mind can grasp.
All individual terms, including variables, constants and definite descriptions,
are handled uniformly. Semantically, there is a “domain,” introduced in §2.3,
that harbors the extensions of individual terms, but take care right from the
beginning: Members of “the domain” need not be construed as individuals.
Rather, in certain typical applications it is the intensions of certain indi-
vidual terms that correspond to concrete individuals. To lose sight of this
feature of CIFOL is entirely to misconstrue our enterprise. It follows that
it is wrong to think of intension vs. extension as rather like Frege’s sense
and denotation; even the grammar is unlike, since an extension is always
extension-in-a-case. Partly for this reason, we altogether avoid the semantic
word “reference” (sticking to extension/intension), but it may help to observe
that if we were to use it, reference in CIFOL would be to intensions.

Predication and quantification are intensional: Variables, like all other
terms, have an intension, and an extension in each case. Furthermore, in a
profoundly significant departure from almost every other quantified modal
logic known to us, whether a predicate (other than the identity predicate)
applies to a sequence of terms in a case, may depend not just on the ex-
tensions of the terms in that case, but on their intensions (“non-extensional
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predication”). No restrictions are placed on the (intensional) values of the
variables, so that instantiation and λ-abstraction are allowed with full gen-
erality. Non-extensional predication allows for and is required by the defini-
tional (logical rather than syntactical) characterizations of extensional and
absolute properties given in §4. We count these definitions as part of CIFOL.
In contrast, axioms declaring a particular predicate as extensional or abso-
lute are an extra-logical part of an application. Absolute properties have the
intensional features of sortal properties, so they can be employed to trace an
object between cases. As such, it is only individual intensions that fall under
an absolute property that can reasonably represent concrete individuals. In
other words, in its definition of “absolute,” CIFOL gives an account of the
logical nature of the tracing of individuals between cases, whereas whether a
particular predicate is absolute is assumed to be not a matter of logic, but
rather of science and metaphysics. There is in CIFOL no recourse to “rigid
designators” nor to any notion of “trans-world identity.”5

1.3 A brief overview of other systems

We briefly discuss a number of proposed systems of quantified modal logic to
indicate how they do not further our aims (that is, in particular, sorting out
complicated everyday reasoning and—above all—scientific modal reasoning)
or fall short of our ideals. This is meant to provide additional motivation for
introducing CIFOL.6

The first steps combining first order and modal logic were made purely
5Indeed, CIFOL’s minimalistic, non-metaphysical outlook on cases gives one an argu-

ment against a category of rigid designators over and above our appeal to ease of use
and uniformity: Such a syntactical category should (we may want to suppose) work for
any set of cases. But surely rigid designation in the sense of “same extension in every
case” only makes sense, if it makes sense at all, for cases=worlds; it makes no sense
for cases= times, or cases=moment/history pairs as in branching histories. In those ap-
plications of the framework, rigidity would amount to freezing the thing in question; it
couldn’t change (supposing that the change of a thing is reflected by temporal variation
in the extension of a term denoting the thing).

6Our aim is to be brief rather than comprehensive, both with respect to the selection
of systems mentioned and with respect to the discussion of the systems themselves. For
more detailed information on many systems of quantified modal logic, see, e.g., Hughes
and Cresswell 1996, Garson 2005, and Fitting 2011. It is striking that no mainstream
discussion of quantified modal logic with the exception of Parks 1972, Gupta 1980 and
Bacon 1980 takes substantial notice of Bressan’s ideas; and as we will make clear, even
the latter two systems fall short of answering to our purposes.
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syntactically in Barcan 1947. Carnap 1947 gives a semantics and introduces
his method of extension and intension. Cases in his system are syntacti-
cal entities, viz., “state-descriptions” that contain “for every atomic sentence
either this sentence or its negation, but not both, and no other sentences”
(p. 9). While opening the way to the method of extension and intension,
the syntactic approach severely limits both uniformity and usefulness. To
name one striking limitation, Carnap does not allow modalities in definite
descriptions (p. 184).

Post-Carnapian systems are not based on syntactically individuated cases,
but rather on a general notion of cases, like CIFOL, or—more commonly—on
possible worlds. In Kripke 1959 and others, the development of quantified
modal logic has been an area of tight contact between logic and metaphysics,
in that logical features of a system are made subservient to metaphysical
views about worlds, objects, individuals, substances, and so on. This ap-
proach has led to a proliferation of logical systems. All of them offer means
for tracing individuals across cases in the logic itself, which restricts use-
fulness. As we will indicate, that approach also reduces ease of use and
uniformity. A second feature of all non-Bressanian systems is what we think
of as “extensionalism,” namely, a desire to be as extensional as possible, the
traditional ideal being first-order predicate logic. This hankering manifests
itself in more than one way, but the overwhelmingly common result of ex-
tensionalism is that it supports the view that all predication is extensional;
that is, the view that the extension (truth value) of the result of applying
a predicate to a term depends only on the extension of the term.7 As one
might put it, as a matter of extensionalist logic, all predication is said to be
extensional like the negation connective, rather than being non-extensional
like the necessity connective. No extensionalist logic has the expressive power
to illuminate the idea of tracing an individual from case to case or time to
time.

Extensionalism is a natural child of first-orderism. How so? In second-
order modal logic it would indeed be quixotic to insist that all predication
be extensional. Think of the second-order property of a first-order property
such as “white,” applying contingently: Whether or not a first-order property,
P applies contingently to Socrates clearly must depend on the intension of
P (i.e., its extension in many possible cases), not merely on its extension

7As an extra-logical matter, CIFOL describes “most” predicates as extensional, while
avoiding extensionalism by leaving room for non-extensional predication.
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in a single case. Now uniformity kicks in: If predication at higher types
needs to be non-extensional, uniformity suggests that the same should hold
at lower types. It is therefore not surprising that the higher order system
of Montague 1973 allows for predicates of all types, including predicates
applying to intensions. It is also unsurprising that all quantified modal logics
that ignore higher types demand that all predication be extensional.8

The pioneering semantics of Kripke 1959 (for S5) and Kripke 1963 (for
weaker systems, based on a relational structure of possible worlds), endows
each world with its own domain of individuals. Extensionalism comes in
twice: (1) Although constants are given intensions, variables are given only
extensions, which amounts to non-uniformly taking variables, but not con-
stants, to be rigid designators. (2) Predication is extensional, even when its
argument is a constant bearing an intension.

Extensionalism is also a driving force behind the counterpart-theoretic ap-
proach to quantified modal logic pioneered by Lewis 1968, who considers the
non-extensionality of modal logic “a historical accident” (p. 113) that can be
overcome. In Lewis’s approach, the need for a tracing principle is denied, as
individuals are strictly world-bound. Our conversational practice of tracing
individuals across different cases is catered for by a context-dependent coun-
terpart relation between inhabitants of different worlds. The Lewis scheme
may work well for conversations; it seems unlikely, however, that our protean
conversational practice can undergird a serious use of quantified modal logic
in science. Metaphysically, Lewis answers the question, whether a thing can
be present in more than one case, in the negative. CIFOL works out the con-
trary position, that the person who answered the doorbell on Monday is the
same person as the one who answered on Tuesday, and that the person who
is going to answer a knock in case it’s loud is the same person who is going
to answer a soft knock. It is inconceivable that the philosophical verdict on
such a basic question is going to be unanimous. We will only maintain that
all the parts of the CIFOL scheme fit together intuitively, comfortably, and
without strain or loose pieces.

Like Bressan’s MLν , the system of Montague 1973 (known as IL) is both
higher order and also invites concentration on its first order fragment (see
note 3). IL is properly intensional in that it assigns intensions to all terms, in-
cluding variables. Nevertheless, IL treats variables and constants differently:

8Except CIFOL, which, though first order, self-consciously uses ideas from Bressan’s
higher-order logic.

8



As in Kripke 1963, constants may have non-constant intensions, but vari-
ables are rigid designators. On the other hand, in IL, variables are available
at all types, so that there are also variables ranging over individual inten-
sions, and we can express intensional predication. This means, however, that
the different types have to be converted explicitly in order to maintain well-
formedness; there is a primitive intension-of operator and a corresponding
primitive extension-of operator. IL uses these in order to be able to explain
the failure of arguments such as the following: “The temperature is ninety.
The temperature rises. Therefore, ninety rises.” With the (indirect) avail-
ability of non-extensional predication, IL has resources sufficient to introduce
extra-logical tracing principles; Montague, however, does not take this step.

We repeat: IL adds notation beyond the S5 modalities and quantifica-
tion, namely, the “intension of” operator and a companion “extension of”
operator. These syntactic additions, which seem to arise out of extensional-
ism, spoil ease of use and make it more difficult to connect IL with scientific
argumentation. There is, however, no doubt that IL is equal in power to
MLν in strictly mathematical terms.

Muskens 2007 develops a higher-order quantified modal logic, MTT (mo-
dal type theory), which deserves credit for cleaning up IL, partly by letting
predication be nonextensional in a sense even stronger than that available
in MLν . MTT prides itself on two features orthogonal to the concerns of
CIFOL: (1) It is what we may call “hyperintensional” in that it is suitable for
epistemic and doxastic modalities as well as possibility and necessity. (2) It
admits of formulation as a cut free tableau calculus. MTT is noticeably more
complex than CIFOL without, we think, offering comparable logical insight
at the first order. In our opinion, its doctrine of intension and extension,
which is not at all case-intensional, is, for that reason, relatively opaque and
by so much difficult to apply.

Tichý 1988 introduces “transparent intensional logic” (TIL), a system
that bears many similarities to IL while at the same time differing in crucial
respects. TIL is based on constructions, which allows for hyperintensionality,
e.g., in belief contexts, which CIFOL does not.9 Variables are treated as
simple constructions selecting an object from a given sequence of objects (a
valuation); thus, again, first-order variables are rigid designators, with the
mentioned negative effects. To be fair, Tichý 1988 also offers variables of

9We believe it is still a major open question whether hyperintensionality is amenable
to useful formal treatment.
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different types, e.g., variables for intensions, but this route breaks uniformity
in the treatment of terms. Nevertheless, TIL, like IL, illuminates many bits
and pieces of English.

Williamson 2012 offers a second order modal logic as a context for dis-
cussing the “Barcan formula,” which we mention in §3.1.6. Based on exten-
sional predication and an extensional treatment of quantifiers, that study
concerns problems quite different from those that arise from our first-order
adaptation of MLν .

Thomason 1969 discusses systems of quantified modal logic with the aim
of combining “modal logic and metaphysics” (so the title of the paper): “[A]s
well as shaping logical work in the light of heuristic philosophical consider-
ations, I have often found myself modifying metaphysical preconceptions in
the light of technical considerations” (Thomason 1969, 120). Thomason con-
siders, but rejects a system Q2 with variables for intensions (but extensional
predication); his ultimate choice, in the system Q3, is to treat variables as
standing for substances and to require constant intensions for them: again,
as in so many other systems, making the tracing of individuals a matter of
logic. As before, we mention this as a salient difference rather than as a value
judgment.

Bacon 1980, building on Thomason 1969, aims at a first-order version of
Bressan’s framework, although in our judgment he misses the mark. Terms
(including variables) have intensions, and an extension in each case. Bacon
adds to the grammar: He introduces a single tracing predicate, , which is
read as “subsists” or “straight,” and is meant to single out “what is rigidly
designated” (p. 193, n1). As in other cases, extensional predication restricts
the usefulness of the system, and allowing only a single tracing predicate
restricts the metaphysics of substance as a logical matter.

In contrast, Parks 1972 anticipates CIFOL by offering a faithful first-
order version of Bressan 1972, which Parks calls “the Bressan language.”
Parks applies the Bressan language to the question whether a class such
as the Supreme Court can change its members. Later philosophers, sadly,
completely ignore this interesting paper.

Gupta 1980 develops a system similar in spirit to Bressan’s. He stresses
the “important logical and semantic difference between common nouns and
predicates” (p. 1) and builds his system to reflect these differences both
syntactically and semantically. Quantifiers are of the form (∀K, x), with
K a common noun, so that variables are always variables for things of a
certain kind. In this way, a tracing principle, provided by the kind K, is
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built into the quantificational machinery of the logic. This feature has the
advantage of nicely enhancing the fit of the formal system with English syntax
and semantics. It comes at the cost of ease of use, as well as syntactic and
semantic uniformity. The system is powerful; these features, however, seem to
make it less easy to use the system to help with clarifying technical scientific
arguments.10

Fitting 2004 gives a readable account of certain difficulties of the most
common frameworks of quantified modal logic, criticizing both the idea of
variables as rigid designators and the counterpart theory of Lewis 1968.
Against this background he introduces his first-order intensional logic, FOIL.
As in other systems, object variables are distinguished from intension vari-
ables, thus reducing ease of use—a trade-off that we have encountered before.

Garson 2005 embarks on the laudable enterprise of unifying quantified
modal logic by starting from a minimal basis, G. G has some similarities
to CIFOL: Variables as well as other terms of G take intensions as values,
and identity is case-relative. Garson describes how a great many extensions
of G, including “[w]ith one notable exception, the major systems found in
the literature,”11 can be treated uniformly with regard to soundness and
completeness. All these systems share extensional predication. Consequently,
Garson’s unification excludes CIFOL and its case-intensional cousins.

To sum up: With the exception of CIFOL, Bressan 1972, and Parks
1972, quantified modal logic has, for better or worse, been affected by (1)
extensionalist tendencies and (2) the felt need to introduce logical means for
tracing individuals across cases. This has led to systems whose usefulness for
certain applications is restricted since they treat extra-logical matters as fixed
by logic, and, except for IL, thereby fail to provide expressive resources that
are needed for scientific or conceptual work. The systems also pay a price in
that they do not fully live up to standards of ease of use and uniformity that

10Gupta 1980, Ch. 3.4, discusses the option of adopting Bressan’s approach to com-
mon nouns, acknowledging its uniformity. For a thoughtful discussion and comparison
of Gupta’s system with Montague’s IL, see Van Leeuwen 1991, which also documents an
exchange between Montague and Dana Scott in which Montague seems ready to adopt
stages, or heaps-of-molecules-at-a-moment, as extensions in a temporal reading of his in-
tensional logic, similar to what we will propose in our examples (§5). Furthermore, Van
Leeuwen argues that such an understanding of extensions would be the most “favorable
interpretation” (p. 76) of Gupta 1980. Van Leeuwen thereby comes close to the CIFOL
view that extensions of terms are not individuals (see §2.3).

11The reference is to the expanding domain system LPC+S and its relatives defined in
Hughes and Cresswell 1996, Ch. 15.
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CIFOL can satisfy. On the other hand, several of the systems provide an
easier and more illuminating fit with English. We think of CIFOL as being
in this respect rather like that bedrock of logic, first-order predicate logic.

1.4 Structure of the essay

Part I of the essay is structured as follows: We introduce the basic notions of
CIFOL, including its grammar and the general machinery of extension and
intension, in §2. In §3, we lay out the detailed semantics of CIFOL. We take
two shortcuts here: First, we explicitly describe only one-place predicates
and operators; second, we omit a lengthy discussion of the proof theory,
much of which is a straightforward combination of standard first-order proof
theory and the proof theory for S5 (modulo the CIFOL-specific treatment of
identity as extensional; see §3.1.5 and §3.3). For details, see Bressan 1972 or,
more gently, Belnap 2006. In §4 we discuss absolute properties and related
notions, and their uses in characterizing sortals; we illustrate their use in
§5. We summarize in §6. The separate Part II (Belnap and Müller 2012)
continues the discussion.

2 Basics

2.1 Grammar of CIFOL

The principal “parts of speech” in CIFOL are terms, sentences, operators,
and predicates, all defined by recursion on complexity, and certain connec-
tives. Among the atomic constants there are sentential constants, p, predi-
cate constants, P , individual constants, c, and operator constants, f . Among
the atomic terms, there is also a set Vars of individual variables, with x, y, z
ranging over them, and there is a special individual constant, ∗, to figure as a
sign of non-existence. Individual terms, with α, β ranging over them, arise by
applying an n-ary operator (either constant or λ-operator), η, to an n-tuple
of terms: η(α1, . . . , αn).There is a distinguished two-place predicate constant
for use in case-dependent identity sentences: α1 = α2.12 Using Θ to range
over predicates, additional sentences come by applying an n-ary predicate

12Even though it is hard to think of identity as world dependent, taking it as case
dependent is natural: “The winner will be (identical to) Ralph in case it rains, but not in
case the sun shines.”
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(either constant or λ-predicate), Θ, to an n-tuple of terms: Θ(α1, . . . , αn).
Sentences arise from these via the usual truth-functional connectives such
as negation, conjunction, disjunction, and the conditional and biconditional:
¬,∧,∨,→,↔; the modal connectives � and ♦ for necessity and possibility;
and the usual first-order quantifiers, ∃x and ∀x, applied to sentences. Φ
ranges over sentences.

CIFOL features unrestricted formation of ι-terms (definite descriptions)

ιx(Φ), λ-predicates λx(Φ), and, λ-operators λx(α).13 A definite description
is an individual term. Applying a λ-operator, λx(α) to a term, β, issues in
a term, (λx(α))β. Applying a λ-predicate, λx(Φ), to a term, β, issues in a
sentence, (λx(Φ))β. A λ-operator [λ-predicate] may occur only in an operator
[predicate] position (on pain of ascending past the first order). Finally, an
expression, whether open or closed, is either an operator, η, or a predicate,
Θ, or an individual term, α, or a sentence, Φ; and in the latter two cases is
categorematic. We let ξ range over expressions.

2.2 Cases

In contrast to the exotic practice of quantifying over “worlds,” quantification
over cases is standard English:

• What if it rains? In any such a case, the game will be canceled; but
the game will proceed in case it doesn’t rain.

• Yes, there are cases in which Sam will agree to wash the car, but also
cases in which he won’t.

• In no case will I attend the meeting.

Partly because of their ties to conversational English, cases are less pre-
tentious than worlds, so that their use invites substantial increase of flexibility
in applications. On the other hand, invoking a set, Γ, of cases to help with
modal thinking in CIFOL brings along with it certain interconnected ideal-
izing presuppositions that go beyond the everyday meaning of “case.” (1) In
any application, Γ is to be the set of all possible cases; there are no others.
(2) Accordingly, each case γ ∈ Γ is elementary, which is to say, there are no

13λ-operators and -predicates in CIFOL are all one-place. One may simulate the use of
binary λ-operators, for instance, with λx1(λx2(α)β2)β1.

13



subcases. (3) Put linguistically, no elementary case harbors a contradiction,
and each elementary case decides all disjunctions. Point (3) makes it clear
that there is an interaction, be it ever so slight, between postulating a set
of cases on the one hand, and the language (grammar and semantics) on
the other. (4) At this point, we have no need for “the real case” since even
though many examples and modal puzzles call for it, we are not in this essay
introducing an “It’s actually true that” connective.

The set of cases might be humdrum and finite, and elementary only rela-
tive to the conversational context. Let there be a horserace coming up next
Saturday, and let Γ be {γ1, γ2}, where γ1 is a case in which the track is dry,
and γ2 a case in which the track is muddy. A stable owner might ask her
manager if there is a horse that can win the race in any case. Or Γ might
be arcane and infinite, as in Bressan’s application of MLν to Mach’s defi-
nition of mass in terms of the ratio of consequent relative velocities when
the measured mass-point strikes the unit mass-point. In this context, each
case, γ, represents a distribution of mass-points, at a certain fixed time, t0,
with their attendant masses and velocities. Given that the to-be-measured
mass-point, here-now, does not in fact collide with the unit mass stored in
Sèvres (and they won’t let you play with it anyway), the problem is to make
sense of using, here and now, the result of a merely possible collision.

In an application, Γ might or might not be structured in some way; for
example, an application to tense logic would interpret Γ as a linearly ordered
set of intervals or moments of time. In another application, Γ might be
construed as the set of momentary events in a branching (indeterministic)
structure (branching histories). In Part II of this essay (Belnap and Müller
2012), we will develop our approach with a view towards temporal-modal
cases in branching histories. In this Part, however, we make no assumptions
whatsoever about the structure of the set of cases. At the present level of
generality all we need to know about cases is that there are some—indeed, at
least two, so as to avoid modal triviality.14 We always let Γ be the set of all
cases, and let γ range over Γ. Truth and extension for closed expressions will
be relativized to cases. More fundamentally, in case-intensional semantics,
every closed expression has an extension-in-γ relative to each case, γ, and
an intension that can always be represented as a function from the set, Γ, of

14We can’t think of a word that applies idiomatically to both modal alternatives and to
times; CIFOL, however, operates at a level of generality that treats times and alternatives
alike, which is our reason for sticking to “cases” when we are being most general.
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all cases into extensions of an appropriate sort. To help us keep track, given
sets X and Y , we use X 7→ Y as the set of functions that map X into Y .
Thus, intensions will uniformly have the form Γ 7→ Y , for appropriate Y .

2.3 Extensional domain

Having specified the cases, we need an extensional domain, D, to provide
case-dependent extensions of singular terms, and the set of truth values
{T,F}, which we abbreviate as 2, to provide case-dependent extensions of
sentences of CIFOL. In standard quantified modal logic, where the cases are
thought of as separate “worlds,” such a domain is normally thought of as
containing individuals: the inhabitants of the separate worlds. In CIFOL,
however, concrete individuals are not represented by members of D. More
fundamentally, in CIFOL there are no variables that range over D. The only
function of D is to enable a case-dependent identity: We will say later that
α1 = α2 is true in a case, γ, when and only when the extensions in D of α1 in
γ and of α2 in γ are identical. CIFOL puts D to no further use. In particular,
there is in CIFOL no facility for comparing the extension of a term in one
case with its extension in another, so that the idea of a term being “rigid” by
having the same extension in every case turns out to be inexpressible, which
is a matter of no consequence, since expressing rigidity would add nothing
useful to the expressive powers of CIFOL. You will see that in CIFOL the
work of rigidity is accomplished via “absolute properties,” as in §4 below.
With these means, we will be able to say in CIFOL that the horse that wins
the race in case it rains is the same horse as the horse that wins the race in
case it doesn’t rain—or that they are not the same horse—without compar-
ing the extension of “the horse that wins” in the case in which it rains with
the extension of “the horse that wins” in the case in which it doesn’t rain.

Thus, we assume almost no structure on D, and for simplicity, we assume
that the domain is specified independently of the cases. It is essential to
observe, however, that CIFOL is not comparable to a “constant domain”
logic in the sense of standard modal logic. The profound reason is that the
individual variables of CIFOL take values that are intensional, rather than
extensional.15

15As Bressan observed, one obtains exactly the same logic if one allows that extensional
domains are case relative, as long as these case-relative or “variable” domains are all of the
same cardinality; but CIFOL itself has a single extensional domain. As noted above, this
does not render CIFOL a “constant domain” logic.
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There is one more thing to say about D: We have introduced ∗ as an
individual constant. Its intension must therefore be a function in Γ 7→ D.
Following Frege, we assume that D contains, apart from at least one “proper”
extension, a “throwaway” to be the extension of terms, such as failed definite
descriptions, that do not otherwise have an extension in a given case. We
call the throwaway “∗ ”. Since we let ∗ be a term, and since we don’t care
what its extension is, we may as well think of ∗ as autonymous by giving it
the extension ∗ in every case.16 The sentence “α 6= ∗ ” then expresses a kind
of case-dependent existence, and is to be read “α exists.” For convenience,
we define a case-dependent existence predicate, E:17

Definition 1 (Existence predicate)

�∀x[Ex↔df x 6= ∗].

This case-relative existence predicate will play an important role in the dis-
cussion of properties of properties in §4.

2.4 Intensions

The defining feature of case-intensional semantics is that every expression
of every type shall have both an intension and an extension-in-γ for each
γ ∈ Γ. Starting with categorematic expressions, by an “individual intension”
we mean a function in Γ 7→ D, and by a “propositional intension” a function
in Γ 7→ 2. It is then obvious that in our lexicon intensions are neither lin-
guistic nor subjective.18 We let z, in our use-language, range over individual
intensions, so that z(γ) ∈ D. Of note is that in case-intensional semantics,
for certain predicates, Θ, the truth value in a case γ of a sentence, Θ(α),
may depend not just on the extension in γ of the singular term, α, but on
its intension (intensional predication).

You should expect that concrete individuals are represented in CIFOL
by intensions, not extensions, a thought that we spell out a little in the

16As a matter of convenience, we permit use-mention ambiguity for ∗.
17We use the style of definition prescribed by Suppes 1957, Ch. 8; so we are thinking of

Def. 1 as an “axiom” added to a theory formulated in CIFOL. In contrast many subsequent
definitions should be conceived as added to our semantic theory of CIFOL rather than to
CIFOL itself.

18Carnap 1947 and many later logicians say “individual concept” where we write “indi-
vidual intension.” We make the change to avoid false connotations: In our usage, there is
nothing “conceptual” about individual intensions.
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next section. It is worth repeating that a CIFOL intension is not meant
to give the meaning of an expression: There is nothing either linguistic or
mental or social about intensions. This is easiest to see when the cases
are taken as times: Certain intensions can represent the entire history of
concrete individuals and their possibilities, and regardless of whether or not
one endorses the view that an individual is to be metaphysically identified
with its history and possibilities, it is good to say that this identification is
perfectly reasonable for logic. As for extensions, they may in such a temporal
setting be thought of as “stages” of individuals. Extensions are a powerful
technical tool; however, like stages, they have no place in the ontology of
common sense, nor in the ontology of CIFOL (see also §5.1, esp. note 49).

2.5 Assignments and individuals

As noted, the intensional type of each individual term is, uniformly, Γ 7→ D.
In addition to cases, Γ, we must consider that expressions may contain free
variables that are later to be bound by quantifiers or other devices. We
therefore need to work with assignments to the variables; we let δ range over
the set of all such assignments, that is, over the set ∆ = Vars 7→ (Γ 7→ D).
Thus, each δ ∈ ∆ assigns an individual intension to each individual variable.19

In typical applications of CIFOL, individuals of the concrete world, to
use Quine’s phrase, are represented as certain individual intensions, namely,
those that fall under certain absolute properties in the sense of Def. 18 below
in §4.3. It is a confusion to identify CIFOL extensions and individuals—a
confusion that is made seemingly plausible by thinking of cases as “worlds,”
and of the extensions of individual terms at a world (the “inhabitants” of
these worlds, as one might say), as individuals. Case-intensional logic, which
makes no mandatory assumptions about the structure of the cases, helps
to avoid this confusion: Why should the extension of an individual term at
a case be the individual itself? Certainly individuals are not case-bound in
natural language: Socrates, who is running in one case, is the same individual
that is not running in another case; and Socrates at 2:00 p.m. is the same
man as Socrates at 4:00 p.m. The discussion of §5 will show how to spell all
this out without invoking “trans-world identity.”

19Note that this type is mathematically equivalent to Γ 7→ (Vars 7→ D), so that an
assignment can alternatively be pictured as a family, indexed by Γ, of assignments of
extensions to the variables. While mathematically equivalent, this way of thinking about
variables can create confusions and is to be avoided.
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In accord with Quine’s famous comment as guest in Carnap 1947, exten-
sions have “been dropped from among the values of the variables” of CIFOL.
Quine took this as a fault; we do not: There is no danger that “the indi-
viduals of the concrete world” might disappear, “leaving only their concepts
behind them” (p. 197). The reason is that in accord with the still more
famous Quine dictum, that to be is to be the value of a variable, CIFOL rep-
resents concrete individuals precisely as certain values of its variables: Such
values must fall under a natural absolute property.20 The temporal applica-
tion makes the point vivid: Socrates is represented as a function in Γ 7→ D,
which (accurately) represents Socrates as persisting through many moments.
Of course Socrates is not eternal; CIFOL will represent this via the truth of
“Socrates = ∗” in each case γ in Γ at which Socrates fails to exist.

3 Semantics

3.1 Basic case-intensional semantics

We can now lay out, recursively, case-intensional semantics for CIFOL.21

Throughout, we silently assume that variables have been chosen so as to
avoid collision or confusion. We begin by laying out in one place all the
various semantic parameters needed for the recursive account of intension and
extension. For ease of exposition, we treat only single-argument predicate
and operator constants.

Semantic parameters for CIFOL. Γ is the set of cases, and γ is a mem-
ber of Γ. D is the extensional domain, d is a member of D. ∆ is the set
Vars 7→ (Γ 7→ D) of intensional assignments of values to the variables, and δ
is a member of ∆. I is an intensional interpretation of the individual, pred-
icate, and operator constants, each having a form dictated by the grammar.
Thus, I(c) ∈ Γ 7→ D, I(p) ∈ Γ 7→ 2, I(P ) ∈ Γ 7→ ((Γ 7→ D) 7→ 2) and
I(f) ∈ Γ 7→ ((Γ 7→ D) 7→ D), provided P and f are one place—which is
the only case that we treat explicitly.22 All semantic information required

20Other values can represent gerrymandered individuals: “Socrates at 2:00 p.m. and
Plato at 4:00 p.m.,” which might be the intension of “the philosopher on the corner.”

21Like all model-theoretic semantics, CIFOL’s falls on the “B” rather than on the “A”
side of McTaggart’s famous dichotomy.

22In these terms, the signature of extensional predication (see Def. 13) would lie in the
characterization of I(P ): I(P ) ∈ Γ 7→ (D 7→ 2), or equivalently, Γ 7→ ℘(D), instead of
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for understanding closed expressions (i.e., no free variables) is included in a
“model,” M = 〈Γ, D, I〉.

As announced, we will stay general and talk about cases γ ∈ Γ only
in the abstract here (we give some structure to Γ in some examples). The
heart of case-intensional semantics is the double dictum that each meaningful
expression, ξ, including those with free variables, has (1) an intension that
depends only on the model, M, and an assignment, δ, to the variables,
and (2) for each case, γ, an extension that depends on the model, M, the
assignment, δ, and the case, γ.23

3.1.1 Intension and extension

Expressions will have intensions, relativized to M, and also to δ if the ex-
pression may contain free variables. We write

intM,δ(ξ)

(omitting δ when irrelevant), which will always have the form Γ 7→ X, for X
the set of appropriate extensions for expressions having the same type as ξ.
Expressions will also have an extension in each γ ∈ Γ, also relativized toM,
and also to δ when there might be free variables. We write

extM,δ,γ(ξ),

which will always satisfy the fundamental equations

Definition 2 (Extension from intension)

extM,δ,γ(ξ) =df (intM,δ(ξ))(γ)

and

Definition 3 (Intension from extension)

intM,δ(ξ) =df λγ[γ ∈ Γ](extM,δ,γ(ξ)).

Γ 7→ ((Γ 7→ D) 7→ 2) or Γ 7→ ℘(Γ 7→ D).
23In the context of CIFOL, the double dictum must not be shortened to the appalling

slogan, “each meaningful expression has an intension and an extension.” Note also that
δ is irrelevant and may be dropped in speaking of the intension, or extension-at-γ, of
expressions that contain no free variables.
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Henceforth we omit explicit use of the restricting clause “[γ ∈ Γ]” that occurs
in Def. 3.24 The core idea is that an intension, far from being something either
mental or linguistic, is a pattern of extensions in γ, as γ ranges over the set
Γ of cases.

Since extension and intension are correlative, in some contexts we take
Def. 3 as semantically prior, in which case Def. 2 serves as a definition, and in
other contexts the other way around. Circularity is avoided by our recursive
use of extensions and intensions. We go over the clauses for each grammatical
type of CIFOL as listed in §2.1.

3.1.2 Generalities: Sentences and terms

CIFOL virtuously treats in strict parallel the semantics of the two categore-
matic syntactic classes, sentences and terms. To support this parallelism, it
has to turn out that each sentence, Φ [each term, α] will take as value, for
each assignment, δ, a sentential (or propositional) [an individual ] intension,
which is a mapping from the cases to the set of truth values, 2 [to the domain,
D] :

intM,δ(Φ) ∈ Γ 7→ 2 [intM,δ(α) ∈ Γ 7→ D].

A sentential [individual ] extension on assignment δ in case γ is a truth value,
that is, a member of 2 [a member of D]

extM,δ,γ(Φ) ∈ 2 [extM,δ,γ(α) ∈ D].

We obtain part of these requirements by means of parallel constraints on I
and δ that are used in the base case of an inductive account of extension
and intension: For each sentential constant, p, [individual constant, c ], its
intensional interpretation must be a mapping from Γ into 2 [into D]:

intM(p) =df I(p) (hence intM(p) ∈ Γ 7→ 2)

intM(c) =df I(c) (hence intM(c) ∈ Γ 7→ D)

and for each individual variable, x, its intensional value on assignment δ must
be of the same type as interpretations of individual constants:

intM,δ(x) =df δ(x) (hence intM,δ(x) ∈ Γ 7→ D).

24Risking the remote possibility of use-mention confusion, we will both mention λ as
an element of CIFOL in the context λx (with x an individual variable), and use it in the
context λγ (with γ ranging over cases).
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Then the extensions-in-γ come from Def. 2. It is part of the uniformity of
case-intensional semantics that the constant/variable distinction makes no
difference to the type of their intensions, a choice that greatly simplifies
the use of CIFOL. For example, this uniformity licenses unrestricted use
of the rules of universal instantiation and existential generalization. More
important, however, is that case-intensional semantics satisfies two critical
requirements on any fully adequate logic, namely, “the essential substitution
property” and “the vacuous assignment property.” To state them succinctly,
we need to introduce clear notation both for syntactic subsitution and for
assignment-shift.

Definition 4 (Syntactic substitution) [α/x](ξ) is the result of putting
the closed individual term, α, for every free occurrence of the variable x
in expression ξ.

Definition 5 (Assignment-shift) Where x, y ∈ Vars , δ ∈ Vars 7→ (Γ 7→
D), z ∈ (Γ 7→ D), and [z/x](δ) ∈ Vars 7→ (Γ 7→ D):

([z/x](δ))(y) =df

{
z iff y = x;
δ(y) otherwise.

Thus, [z/x](δ) may be read “the assignment that results from shifting the
assignment δ by giving x the intensional value z, and leaving alone the as-
signment to all other variables.”

Definition 6 (Essential substitution property) If there is no confusion
or collision of variables (e.g., if α is closed),

extM,δ,γ([α/x](ξ)) = extM,[intM,δ(α)/x](δ),γ(ξ).

At this point, we intend Def. 6 as a desideratum, or as a fact that depends
on later developments. It says that you can calculate the extension on as-
signment δ in case γ of the result of substituting closed α for x in ξ by first
calculating the assignment, call it δ′, that results by altering δ by giving x
as intensional value the intension of α, and leaving alone the assignment to
all other variables, and then calculating the extensional value of ξ on δ′ in
γ. The essential substitution property is, mutatis mutandis, fundamental
to extensional first order logic, required (among other things) for verifying
that universal instantiation and existential generalization preserve truth. No
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modal logic that breaks uniformity in the sense of treating variables and con-
stants differently (giving constants a more extensive set of values than the
set allowed for variables) can be expected to have the “essential substitution
property.”

Next comes the apparently trivial but surprisingly deep companion to
the essential substitution property, which is also required of a fully adequate
logic:25

Definition 7 (Vacuous assignment property.) The semantic value of an
expression, ξ, shall never depend on assignments to variables that do not oc-
cur free in ξ.

In developing a semantics for CIFOL, we take pains to satisfy the essential
substitution property and the vacuous assignment property.

3.1.3 Operator constants, predicate constants, complex terms,
predications

CIFOL permits operators and predicates of arbitrary n-arity; however, we
give explicit treatment only to one-place operators and predicates, leaving
those with many places to mutatis mutandis. Because of uniformity, we
may treat operators and predicates together. Since the intension of a term
[sentence] is always a function in Γ 7→ D [Γ 7→ 2], it is hardly surprising that
the intension of a one-place operator constant, f , [predicate constant, P ] is
conceptually equivalent to a function in (Γ 7→ D) 7→ (Γ 7→ D) [(Γ 7→ D) 7→
(Γ 7→ 2)].

In other words, the natural type of a one-place predicate constant would
have the type of functions from individual intensions into sentential intensions
(propositions), and would underwrite the characterization of the intension of
a predicate as a propositional function (à la Russell).26 In a strictly parallel
fashion, the natural type of an intensional operator would be the type of
functions from individual intensions into individual intensions (intensions in,

25See Kishida 2010 for a category-theoretic explanation of this claim.
26The overwhelmingly common (but regrettable) choice of standard first-order quantified

modal logics is to let the type of the intension of a predicate constant be Γ 7→ (D 7→ 2),
or, equivalently, Γ 7→ ℘(D), thereby forcing all predicates to be extensional as a matter
of logic. This choice severely reduces the expressive power of any such quantified modal
logic.
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intensions out). The official type, however, as promised in §3.1.2, must have
the form Γ 7→ X, and so we use the transposes instead:

intM(f) =df I(f) ∈ Γ 7→ ((Γ 7→ D) 7→ D);

intM(P ) =df I(P ) ∈ Γ 7→ ((Γ 7→ D) 7→ 2).

(Just this once: If f were binary, the type of its intension would need to be
Γ 7→ (((Γ 7→ D)× (Γ 7→ D)) 7→ D), and so on.) So, by Def. 2,

extM,γ(f) ∈ ((Γ 7→ D) 7→ D); extM,γ(P ) ∈ ((Γ 7→ D) 7→ 2).

All that is intuitive and good; but note that the types of f [P ] and α don’t
quite match as function and argument, which threatens blockage of a seman-
tic account of complex terms, f(α) [predications, P (α)]. For this reason, the
intension of a complex term, intM,δ(f(α)) [predication, intM,δ(P (α))], has
to be defined in a somewhat roundabout way. First, recursively defining the
extension of f(α) [P (α)] on δ relative to γ is straightforward:

extM,δ,γ(f(α)) =df (extM,γ(f))(intM,δ(α)) ∈ D;

extM,δ,γ(P (α)) =df (extM,γ(P ))(intM,δ(α)) ∈ 2

(the types match). Then, in accord with the uniform definition of intM,δ(ξ)
in terms of extM,δ,γ, as in Def. 3, we may define

intM,δ(f(α)) =df λγ((extM,γ(f))(intM,δ(α)));

intM,δ(P (α)) =df λγ((extM,γ(P ))(intM,δ(α))).

The upshot is that case-intensional semantics treats predicate constants
as strictly analogous to operator constants: Just replace the target, D, by
2 = {T,F}.

It is occasionally useful to employ the epsilon (element of) notation for
predication.

Definition 8 (∈) If P is a predicate (including a λ-predicate as introduced
just below) and α is an individual term,

α ∈ P ↔df P (α).

The two notations are not intended to mark a logical difference.
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3.1.4 Lambda-operators, -terms, -predicates, and -predications

A λ-operator [-predicate] of CIFOL is made by prefixing λx, for x an individ-
ual variable, to a term [sentence], for example, λx(f(x, (g(x)))) [λx(x = α)],
presumably a term [a sentence] that contains x free. Because CIFOL is to be
first order (no quantification over higher types), we require that a λ-operator
[-predicate] can occur only in operator [predicate] position. The semantics
of λ-operators and -predicates is best understood as derivative:

intM,δ((λx(β))α) =df intM,δ([α/x]β),

intM,δ((λx(Φ))α) =df intM,δ([α/x]Φ),

as long as collision or confusion of variables is avoided. Then Def. 2 gives the
extension-in-γ of of the λ-term (λx(β))α [of the λ-predication (λx(Φ))α].

Given that in CIFOL λ-operators λx(β) [λ-predicates λx(Φ)] are re-
stricted to operator [predicate] positions, it is obvious that adding these
λ-forms is conservative.

3.1.5 Identity

The two-place predicate constant, =, deserves special notice, because it is
both an extensional predicate and used to help characterize extensional pred-
icates in CIFOL (Def. 13). In each case, γ, the extension in γ of an identity
statement depends only on the extension in γ of the terms:

extM,δ,γ(α1 = α2) =df

{
T iff extM,δ,γ(α1) = extM,δ,γ(α2);
F otherwise.

As you can see, the fundamental thought is not that identity is “contingent”;
rather, the basic feature of identity is that it is case-dependent.27 Case-
dependent identity is extensional identity, or identity of extensions. The

27Discussions of so-called contingent identity are concerned with examples such as the
one given by Gibbard 1975, in which Lumpl (a lump of clay) and Goliath (a statue) exist
at the same place at exactly the same times (they come into and go out of existence
together), while that was not necessarily so. This story relies on treating constitution as
identity (a matter on which CIFOL, as a logic, remains silent), and on an asymmetric
handling of temporal cases “in the real world” and modal cases, which leads to the idea of
world-bound individuals, Lumpl and Goliath, that have counterparts making true modal
properties (such as possibly going out of existence in a different way) that underwrite
the contingency of their identity. CIFOL has no use for this complex machinery, and it
can represent the relevant aspects of the story in a straightforward manner: Allowing for
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definition of the intension of an identity accords with Def. 3:

intM,δ(α1 = α2) =df λγ(extM,δ,γ(α1 = α2)).

Although tedious to prove, it is intuitively reasonable to expect that identity
of intensions of terms α and β suffices for replacement of α by β in an
arbitrary CIFOL context, as long as one doesn’t run up against confusion or
collision of bound variables.

3.1.6 Truth-functional, modal, and quantificational connectives

The clauses for the truth-functional connectives are standard: Taking ¬ and
∧ to be basic, we have the following for the extensions (the intensions are
again defined via Def. 3, being the respective functions from the set of cases
Γ):

extM,δ,γ(¬Φ) =df

{
T iff extM,δ,γ(Φ) = F;
F otherwise.

extM,δ,γ(Φ1 ∧ Φ2) =df

{
T iff extM,δ,γ(Φ1) = extM,δ,γ(Φ2) = T;
F otherwise.

Then the semantics of other truth functional connectives such as the condi-
tional, →, and the biconditional, ↔, fall right out as expected.

For the alethic modal connectives, we employ the standard S5 semantics.
(We beg leave to doubt the usefulness of alethic modalities that rely on
relational semantics.)

extM,δ,γ(�Φ) =df

{
T iff for all γ′ ∈ Γ, (extM,δ,γ′(Φ) = T);
F otherwise.

extM,δ,γ(♦Φ) =df

{
T iff for some γ′ ∈ Γ, (extM,δ,γ′(Φ) = T);
F otherwise.

temporal-modal cases, there is a whole range of cases (in the example, a full history) in
which Lumpl = Goliath holds, and there are cases in which Lumpl 6= Goliath. Using
the notion of an absolute property (see §4.3), CIFOL can even allow that Lumpl and
Goliath fall under different sortal predicates while sharing their extension in many cases:
such an extension is then traced under two different principles of identity, allowing for the
intensional difference of Lumpl and Goliath even if both are proper substances. (On the
issue of whether this makes metaphysical sense, CIFOL, as a logic, remains silent.)
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Again, the intension is derived from the various extensions-in-γ via Def. 3.
As usual, the strong modality � and the weak modality ♦ turn out to be
duals, so that we can treat � as semantically basic and introduce the weak
modality as an abbreviation: ♦ =df ¬�¬.

The semantics of quantifiers is, not surprisingly, more complicated, in
precisely the same fashion as the semantics of quantifiers in classical logic.
Using z, as before, as ranging over Γ 7→ D, we rely on the assignment-shift
notation (Def. 5). Then semantic clauses for the quantifiers come naturally
by quantifying over individual intensions:28

extM,δ,γ(∃xΦ) =df

{
T iff ∃z(z ∈ (Γ 7→ D) and extM,[z/x](δ),γ(Φ) = T);
F otherwise.

extM,δ,γ(∀xΦ) =df

{
T iff ∀z(if z ∈ (Γ 7→ D) then extM,[z/x](δ),γ(Φ) = T);
F otherwise.

Then, by Def. 3,

intM,δ(∃xΦ) =df λγ(extM,δ,γ(∃xΦ)),

and
intM,δ(∀xΦ) =df λγ(extM,δ,γ(∀xΦ)).

Since ∀x and ∃x are interdefinable in the same fashion as in first order logic,
we could stick to the former as basic. Finally, we note that as a result of
the independence of the choice of case, γ ∈ Γ, and the choice of intension,
z ∈ (γ 7→ D), both the Barcan formula, ♦∃xΦ → ∃x♦Φ, and its converse,
∃x♦Φ → ♦∃xΦ, turn out valid, as do the equivalent statements formulated
with � and ∀.29 Both are usually found problematic. Consider the Barcan

28As we mentioned in §2.5 above, logicians mesmerized by two familiar Quinean dogmas
can hardly avoid thinking that it is somehow a requirement of an honest logic that the
values of variables should be extensions, and that to be is to be the value of a variable. To
repeat, CIFOL rejects the first dogma, but is happy to accommodate the second dogma
in the following sense: To be an individual in the concrete world is to be the value of a
variable ranging over individual intensions that fall under some natural sortal. See also
§4.3 below.

29A valid sentence of CIFOL that to the uninformed is more astonishing than the Barcan
formula is this: If Θ is extensional (Def. 13),

M |= �∃xΘx→ ∃x�Θx.

It looks as if there is a permutation-of-quantifiers mistake; but it isn’t so. (It would appear
that the axiom of choice is needed for the proof of validity.)
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formula, and take Φ to stand for “x is a Dodo.” Let us consider an English
sentence that looks like an instance of the Barcan formula scheme:

If it could be that there exists a Dodo, then
there exists something that could be a Dodo. (1)

Now it is true to say that it could be that there exists a Dodo (it wasn’t
necessary that the Dodo became extinct), but it seems false to say that
there exists something that could be a Dodo (after all, only a Dodo could
be a Dodo). This, however, does not exhibit a problem with the validity of
the Barcan formula in CIFOL. Rather, since the range of CIFOL variables
includes the “nonexistent entity,” ∗, the CIFOL correspondent to (1) needs
the existence predicate (Def. 1) in addition to the existential quantifier:

♦∃x(Ex ∧ Dx)→ ∃x(Ex ∧ ♦Dx). (2)

And this formula can be falisfied in CIFOL.
For brevity we only give an explicit model for converse Barcan. A typical

English counterexample takes Φ to stand for “x doesn’t exist”:

If there exists a thing that possibly doesn’t exist, then
possibly there exists a thing that doesn’t exist. (3)

Again, the antecedent is true, but the consequent is even logically false. But
again, the correct rendering of that sentence in CIFOL has to make explicit
the use of the existence predicate, leading to

∃x(Ex ∧ ♦¬Ex)→ ♦∃x(Ex ∧ ¬Ex). (4)

It is easy to show that this formula is not a CIFOL validity. Let Γ = {γ1, γ2}
and D = {∗, a} with a 6= ∗, so that Γ 7→ D can be represented as the set
{a∗, aa, ∗a, ∗∗}.30 Let int(α) = a∗. Then since E(a∗) is true in γ1 but false
in γ2, the antecedent of (4) is true in γ1. But its consequent, being a logical
falsehood, must fail in γ1, thus showing how CIFOL, in which the converse
Barcan formula is a validity, correctly counterexamples the English converse
Barcan lookalike, (3).

30For notation, see the beginning of §5.1.
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3.1.7 Unique existence and definite descriptions

In contrast to the standard Russellian approach, the CIFOL semantics of
definite descriptions, following Frege, treats them as categorematic expres-
sions having the same semantic type as individual constants and individual
variables, namely, Γ 7→ D. As a preliminary, we introduce ∃1xΦ as saying
that there exists exactly one x such that Φ—extensionally speaking. Then
we define extensions and intensions for ι-terms.

Definition 9 (Unique existence)

∃1xΦ↔df ∃x(Φ ∧ ∀y([y/x]Φ→ y = x)).31

Let us abbreviate (Φ ∧ ∀y([y/x]Φ → y = x)) by Φ1. Then, given an assign-
ment δ and a case γ, if extM,δ,γ(∃1xΦ) = T, then there is a unique d ∈ D
such that for any z ∈ Γ 7→ D, we have:

if extM,[z/x](δ),γ(Φ1) = T then z(γ) = d.

We call this d the extensional witness for ∃1xΦ at M, δ, γ. Now we define
definite descriptions as certain ι-terms that have an extension in each case:

Definition 10 (Definite descriptions)

extM,δ,γ(

ιxΦ) =df


∗ iff extM,δ,γ(∃1xΦ) = F,

the extensional
witness for
∃1xΦ atM, δ, γ iff extM,δ,γ(∃1xΦ) = T.

Note that the definite description in CIFOL is a purely extensional construct.
Of course there is an intension for each definite description, defined by Def. 3.
The point, however, is that only extensional information is used, so that the

ι construction applied to extensionally equivalent properties gives rise to
extensionally equivalent terms.32

31Recall that by the convention mentioned at the beginning of §3.1, here and in the
following, y stands for a variable that does not occur in Φ.

32Bressan worked out a useful intensional description construction; because, however,
his account is second order, we do not try to reconstruct it in CIFOL.
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As with Frege and in contrast to Russell and his followers, the semantics
of a definite description is quite independent of the context in which it is
embedded.

Because the CIFOL treatment of definite descriptions is transparent but
unusual, we note that definite descriptions in CIFOL always work properly
for contexts that are extensional (for the notation (extnl x)Φ, see Def. 13
below). That is, the following is valid (see Def. 11):

(∃1xΦ ∧ (extnl x)Φ)→ [ ιxΦ/x]Φ.

The predicate version of this is perhaps easier to read:

(∃1xΘx ∧ (extnl x)Θx)→ Θ( ιxΘx).

3.1.8 Defined predicates

Part of what makes CIFOL easy to use is its unfettered ability to permit
the introduction of new predicates by definition. The following schema is
available for arbitrary Φ, provided one satisfies the standard criteria of elim-
inability and conservativeness, just as in extensional logic—see Suppes 1957,
154.

Definition: �∀x(Px↔df Φ).

At a slightly higher type, a logically equivalent form of definition would
employ λ abstracts:

Definition: �(P =df λxΦ).

It is understood that identity of properties is logically definable at the first
order by, for example, ∀y(Py ↔ λx(Φ)y). The powerful upshot is that there
is no difference, in CIFOL, between the role of predicate letters, P , and
λ-abstracts.

3.2 Truth and validity

The ext/int notation shows off the ease of use and, above all, the uniformity
of CIFOL semantics: The central idea is applied uniformly to every part of
speech. Nevertheless it is helpful to recast the extension of sentences also
in more familiar terms, leaving intension to be construed by way of Def. 3.
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Accordingly, we define a truth predicate, relative to M, δ and γ, in the
common way, first in what Carnap calls “the word language,” and then in a
common symbolic form that we shall use heavily. Then we define validity in
the usual way, assuming as usual thatM = 〈Γ, D, I〉.

Definition 11 (True, valid, |=)

Φ is true onM and δ in γ ↔df extM,δ,γ(Φ) = T.

M, δ, γ |= Φ↔df extM,δ,γ(Φ) = T.

M |= Φ↔df ∀γ ∈ Γ, δ ∈ ∆ (M, δ, γ |= Φ).

|= Φ↔df Φ is valid↔df M |= Φ for all modelsM.

As always, δ can be dropped when irrelevant.

3.3 Proof theory of CIFOL

What is an appropriate proof theory for CIFOL? Bear in mind that CIFOL
is intended to be a first-order limited version of Bressan’s infinitely typed
theory, MLν . Since MLν squarely contains elementary arithmetic, it can-
not have a sound and complete proof theory. (Bressan 1972 offers a kind
of relative completeness; see section N64.) Nevertheless, for routine appli-
cations, the following version of CIFOL proof-theory will do. (1) Take any
formulation of the first order logic of truth functions and quantifiers. (2) Add
postulates characterizing identity as an equivalence relation (thus omitting
the usual replacement principles), and a postulate characterizing necessary
identity as a sufficient condition for replacement of one closed term by an-
other in all (reasonable) CIFOL contexts. Add what is needed to ensure
that Frege-style definite descriptions and first-order-respecting lambda ab-
straction are available. (3) Add standard S5 postulates for necessity and
possibility. (4) Finally, add use of the definitions of absoluteness, etc.: Defs.
13–18. We do not claim that such a proof theory is complete with respect
to the rich CIFOL semantics that we have presented; indeed, it certainly is
not.33 CIFOL remains, however, as a tool that is helpful in the endeavor

33As Bressan has shown, MLν has the resources to formulate an interesting and apt
theory of truth-in-a-case. First he introduces a predicate, ElR, such that the intensions
falling under ElR are in perfect correspondence with the set, Γ, of cases. It is good to think
of ElR as giving an account of “internal cases.” For technical reasons, Bressan switches
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to separate good arguments from bad ones among those framed in CIFOL’s
grammar. We illustrate applications of an informally described CIFOL “nat-
ural deduction” style proof theory in §4.3 and §5.5.

4 CIFOL qualities and CIFOL sortals
We have finished presenting the core of the logic CIFOL in terms of its
primitive grammar, semantics and proof theory: We will add nothing more
“creative.” On the other hand, in our view, no presentation of CIFOL can
be taken to be complete without a family of noncreative definitions char-
acterizing certain logical properties applicable to predicates. We take these
first-order-definable properties of properties to be as much an integral part
of CIFOL as one takes the definitions of addition and multiplication to be
an integral part of Peano arithmetic. Accordingly, we complete our formal
account of CIFOL with seven definitions: Def. 13 of extensionality, Def. 15
of extensionalization and existence, Def. 16 of modal constancy, Def. 17 of
modal separation, Def. 18 of absoluteness, Def. 14 of CIFOL quality, and
Def. 19 of CIFOL sortal. The definitions of modal separation and absolute-
ness are entirely original with Bressan.34 Finally, we set down two theses that
connect certain informal notions with (formal) CIFOL notions. Namely, we
advance the thesis that, up to an idealization, each natural quality satisfies
the defining conditions of a CIFOL quality, and each natural sort satisfies
the defining conditions of a CIFOL sortal.35

We turn now to the key CIFOL definitions of certain properties of prop-
erties; later, in §5, we illustrate their usefulness. This means that we are
going beyond purely logical motivation: Considerations of metaphysics, and

to a second internal representation, El, of the cases. Letting x be an MLν variable
ranging over the internal cases, Bressan uses this equipment to show how to define an
MLν construction that we take to have the sense of “That Φ is true in the internal case,
x.” Bressan’s treatment of this matter appears to go beyond CIFOL as we have presented
it. It seems, however, that redefining CIFOL as containing but a single additional first
order axiom suffices for defining “true in a case.” This theme is developed in Belnap 2013.

34The ability to characterize certain predicates as absolute is, we think, the principal
virtue of systems allowing non-extensional predication. It is an order of magnitude more
important than the ability to theorize wisely about various non-extensional (“opaque”)
contexts of conversational English on which so much of the literature focuses.

35It will be clear that we use “CIFOL quality” and “CIFOL sortal” as technical terms
intended as revelatory of the informal notions of “natural quality” and “natural sortal.” You
will also see from our usage that we are relaxed in our use of “property” and “predicate.”
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specifically the metaphysics of individuals and sorts, will play a guiding role
from now on. We repeat that this will not lead us to tinker with the logic,
but rather enable the easy addition of extra-logical concepts, each with its
characteristic axioms, to do the metaphysical work. An adequate metaphys-
ical picture of individuals and sorts must be based on explicit considerations
of time, modality, and their interaction. These explicit considerations, lead-
ing to cases as moment/history pairs, will be the subject of Part II of this
essay. In this Part, we stick to an abstract notion of cases. The general
idea of tracing an individual across cases via a sortal property can already
be spelled out at that level of generality.

As we noted in §2.4, the semantics of applying a predicate to an argument-
term in a case depends in general on the intension of the argument-term, not
just on its extension in the case. The concept of a property in case-intensional
semantics is therefore broad. Many predicates, however, are “extensional”
(Def. 13): Whether they apply to closed α in case γ depends only on the ex-
tension of α in γ (i.e., on extM,γ(α)). Ordinary natural qualities are like that:
Whether or not Jack is lean is true in case γ depends only on whether Jack
is lean in that very case.36 Other properties are non-extensional: Whether
or not they apply to α in case γ makes reference to other cases. For ex-
ample, when cases are times, simple tensed statements such as Jack was
at home refer to other cases (past time periods), as do simple modals such
as Jack might be at Caroline’s (alternative possibilities). One-word exam-
ples of non-extensional English predicates would be soluble and aggressive,
which are naturally taken to involve reference to possible cases. Among non-
extensional predicates, of paramount importance are “sortals” such as natural
number and horse. We will characterize CIFOL sortals via a pair of inten-
sional properties, meaning thereby to contribute to the clarification of the
interface between logic and metaphysics without ourselves waxing metaphys-
ical. A critical feature of sortals is that they naturally enable tracing across
cases as discussed in §4.3 below. (You will do no wrong if you read “sortal
property” as “tracing property.”)

English tends to carry qualities with adjectives or verbs, while generally
marking sortals with common nouns. Gupta 1980 is a careful and illuminat-
ing formal working-out of this policy. Montague 1973 also treats qualities

36We are thinking of a rough-and-ready notion of “is lean.” If one prefers to analyze
leanness against a background comparative, “is leaner than,” or “is leaner for a boy than,”
CIFOL can handle an analysis that would render “is lean” non-extensional.
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and sortals as different categories of basic expressions. CIFOL, however, un-
like English and Montague and Gupta, does not distinguish qualities and
sortals syntactically. Instead, following Bressan, the distinction is marked
by the properties with which each primitive predicate is endowed by suitable
axioms.37 Whether or not a predicate constant has one of these properties
naturally depends on the interpretation, I. We confine our discussion to one-
place properties, leaving to the reader the easy but tedious generalization to
n-place properties, including the possibility that a relational property might
be of a special type with respect to one argument but not another. It will be
clear that throughout we are ignoring vagueness, just as one does in applying
standard extensional logic.

4.1 Existence and non-existence

We shall treat qualities and sorts separately. There is, however, one property
of properties that might be thought common to every property. Although
case-intensional logic needs to allow for individual intensions representing
that α does not exist in a certain case (by settingM, γ |= α = ∗; see Def. 1),
no matter the application, it would be coherent to insist that every interesting
candidate for a primitive predicate, P , be “existence-implying” in each case:

Definition 12 (Existence-implying) A property Θ is existence-implying
↔df M |= �∀x(Θx→ Ex). For this, we write Exist-imp(Θ).

The restriction to “primitive” would be essential. Being existence-implying
is, for example, not closed under complementation: If Q is introduced by the
definition ∀x(Qx↔df ¬Px) (with P existence-implying), Q is not existence-
implying. Even so, the policy of requiring every primitive predicate to be
existence-implying, although coherent, would create more problems than it
solves. Is it natural to suppose that since Socrates is necessarily a Man, he
must exist in every case? Certainly not if the application is temporal, with
the cases being time intervals. Therefore, it is not a good idea to force Man
to be existence-implying: We want to treat cases or times in which Socrates
doesn’t exist in a way that allows that he is a Man in those cases. We want
to say that the Man, Socrates, didn’t exist before he was born nor after his
death.

37Such axioms are in spirit second order, but technically each is first order.
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This seems more puzzling than it has to be. Keep firmly in mind that
(1) Socrates is represented in CIFOL by an individual intension living from
birth to death if the cases are time intervals, (2) that Man, being a sortal,
is non-extensional, applying to the whole intension, whereas (3) existence
is extensional and case-bound. The times when Socrates doesn’t exist are
marked by setting Socrates= ∗ at those times. Only in this way can we easily
interpret the present truth of “Socrates is a Man who doesn’t (now) exist,
but formerly existed.” In contrast, it may appear suitable to suppose that
a natural quality such as “is six feet tall” be existence-implying: It seems
unnecessary to countenance “Socrates is six feet tall (now) but doesn’t exist
(now).”38

The upshot is that we want the CIFOL representation of Socrates to
have an extension at every case, that extension being ∗ when he doesn’t
exist. Let us emphasize and re-emphasize that the CIFOL representation of
Socrates is a matter of choice, not of metaphysics.39 For instance, science
and metaphysics are hardly likely to totter when faced with the view that
at the present moment, Socrates = Plato, meaning that they have the same
extension, namely, ∗. As logicians, however, we do have to take special
account of the fact that our representations of Socrates and Plato at the
present moment are identical. See our treatment of “modal separation” in
§4.3. We also need to be thoughtful about sentences or terms containing
the symbol, ∗. Doubtless if f represents “the average distance of (. . . ) from
the Sun,” then we should have M, γ |= f(∗) = ∗. If, however, f represents
“the mother of,” then supposing γ is a case or time in which JFK doesn’t
exist but his mother does, even though M, γ |= JFK = ∗, one would want
M, γ |= f(JFK) = Rose Kennedy 6= ∗ (“the-mother-of” is non-extensional).

38Still, in our general formal definition of a CIFOL quality, Def. 14 below, we do not
include the requirement that such a quality be existence-implying. We can easily enter
such a requirement explicitly if that is called for in a specific case.

39Bressan 1972 makes a different choice. We won’t go into the matter except to register
our belief that every way of representing the workings of case-dependently empty names
requires some unexpected complication. Note that on our choice, but not on many others,
we can have names for things of a certain kind in a uniform way: If α is a name for a P ,
then Pα is true in any case. (We don’t have to check whether the bearer of the name still
exists in order to use it properly.)
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4.2 CIFOL qualities are extensional

In a typical application of CIFOL, the vast majority of primitive predicates
will represent “qualities” carried in English by descriptive constructions such
as “smells sweet” or “is six feet to the north of Mary.” The formal mark of
a quality predicate in CIFOL is extensionality (“a rose by any other definite
description would smell as sweet”). Run-of-the-mill extensionality is a local
property; that is, extensionality is case-dependent. Properties that are ex-
tensional in some but not all cases can be useful, but they are comparatively
rare. For this reason, we reserve plain “extensional” for what might be called
“everywhere extensional.”40

Definition 13 (Extensionality, extensional, (extnl x)) A property Θ is
extensional iff it is extensional at every γ ∈ Γ, i.e., iff the following holds:

M |= �∀x ∀ y (x = y → (Θ(x)↔ Θ(y))).

A context Φ, presumably with free x, is extensional with respect to x iff the
following holds:

M |= �∀ y (x = y → (Φ→ [y/x]Φ)).

(extnl x)Φ is to be read as “Φ is extensional with respect to x” and is defined
as follows:

(extnl x)Φ↔df �∀ y (x = y → (Φ→ [y/x]Φ)).

For conceptual bookkeeping, it is convenient to introduce the following bit
of redundancy.

Definition 14 (CIFOL quality) A property, Θ, is a CIFOL quality ↔df

Θ is extensional.

We are now prepared to state a thesis connecting natural qualities with
CIFOL qualities.

40One use of the case-dependent notion that comes to mind is in the characterization of
a property as a “set” when some case, call it γR, is intended as “the real case.” Then it is
good to say that a property is a set only if it is both modally constant and also extensional
in the real case. See Bressan 1973. Another use crops up in connection with the Atn:
construction, as discussed in §5.2.
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Thesis 1 (Qualities) Up to an idealization, natural qualities are CIFOL
qualities; that is, they are extensional.

We said that almost all primitive predicates are extensional. The prime
examples of non-extensional predicates are the absolute predicates, to which
idea we soon turn. First, however, we define the extensionalization of Θ as
the weakest extensional “super-predicate” of Θ, and then we define the result
of forcing an existence-implying version of Θ by deleting from this all the
individual intensions that do not exist (Def. 1).

Definition 15 (Extensionalization and existence: Θ(e) and Θ(e!))

�∀x[Θ(e)x↔df ∃y[y = x ∧ Θy]],

�∀x[Θ(e!)x↔df [Θ(e)x ∧ Ex]].

When Θ represents a sort, it seems that we often want both Θ and either
Θ(e) or Θ(e!), each to do its own job. We postpone illustration until we have
introduced absolute properties, a task to which we now turn.

4.3 CIFOL sortals: modally constant and modally sep-
arated

We will define absoluteness as a conjunction of two other non-extensional
properties of properties, modal constancy and modal separation. This unique
development is an entirely original contribution of Bressan.41 The first of the
two ideas is modal constancy, defined as follows.

Definition 16 (Modal constancy) A property Θ is modally constant
iff

(MConst) M |= ∀x (♦Θx→ �Θx).

Given non-extensional predication, this is “rigidity” of predicates or prop-
erties. (The displayed definition doesn’t work properly if Θ is extensional.
In fact in CIFOL there are only two properties that are both extensional
and modally constant: the modally empty property and the modally univer-
sal property.) Back in the day of Kripke and Putnam, rigidity of singular

41Those familiar with Bressan 1972 will observe that in reworking, adjusting, and sim-
plifying Bressan’s account, we omitted his idea of a “quasi-absolute” property, which is not
useful in CIFOL.
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terms and predicates was often treated as essentially the same property,
distinguished only by grammatical category. Recall, however, that modal
constancy or “rigidity” of singular terms or individual intensions has no use
in CIFOL, and indeed is not expressible (§2.3). In contrast, modal constancy
of properties is exactly the idea of “rigidity” applied to properties: If Θ is
modally constant, then extM,γ(Θ) = extM,γ′(Θ) for all cases γ, γ′ ∈ Γ.42

The second leg on which absoluteness stands is modal separation:

Definition 17 (Modal separation) A property Θ is modally separated iff

(MSep) M |= �∀x∀ y ((Θx ∧ Θy)→ (♦(Ex∧Ey∧x = y)→ �x = y)).

A property is modally separated iff, roughly, individual intensions falling
under it at any case are either everywhere identical or never. The logical
point is that if α falls under a modally separated property at a case, then,
in this special situation, as long as α exists in the case, the extension of α
determines its intension, so that except for cases of non-existence, α1 = α2

being true in some case suffices for replacement of α1 by α2 in any and every
CIFOL context.43 Putting modal constancy together with modal separation
yields absoluteness:

Definition 18 (Absoluteness) A property Θ is absolute iff it is modally
constant and modally separated. Where Θ is a predicate, possibly a λ-predicate,
we let Abs(Θ) abbreviate “Θ is absolute.”

To serve as a convenient companion to “CIFOL quality” (Def. 14), we in-
troduce “CIFOL sortal” as definitionally equivalent to “absolute property,”
in order to emphasize the difference between the formal notion of a CIFOL
sortal and the informal notion of a natural sortal.

42Oddly enough, in CIFOL we use the universal identity of extensions of a property,
Θ (that is, modal constancy), without having any use for the retail identity of individual
extensions of Θ at a pair of distinct cases γ, γ′.

43The concept of modal separation is, perhaps, the single most original idea of Bressan’s
contribution to quantified modal logic. Parks 1972 invoked Bressan’s concept to some
purpose, and Gupta 1980 not only used the concept but significantly elaborated on it.
Aside from these two publications, even as deep and important as is modal separation,
we have been unable to find anything remotely like it in the literature. (Montague’s IL
is powerful enough to define modal separation, but Montague didn’t exercise this power.)
Exercise: Explain why Bressan’s profound ideas have been ignored for four decades.
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Definition 19 (CIFOL sortal) A property, Θ, is a CIFOL sortal ↔df Θ
is an absolute property.

Modal absoluteness provides an analysis of the case-intensional aspects of
natural-language sortal predicates in CIFOL, spelling out formally specifiable
necessary conditions for a predicate to be a natural sortal. There is, however,
no suggestion that absoluteness—or any other formalizable property—fully
captures those properties that a property must have to be a “substance con-
cept” useful in either scientific or metaphysical applications; we do not aim
at giving a sufficient condition. Just for starters, there are just far too many
trivial absolute properties, and absoluteness taken alone omits the pragmat-
ics of scientific properties, along with much else. Bressan speaks of natural
absolute properties, and so shall we.

A sortal property is meant to answer the Aristotelian question of “what a
thing is.” As Aristotle explains in his Categories by the example of Socrates,
to say that he is white (or pale), is not yet to say what he is: That is a merely
contingent (“accidental”) property. In fact, being white is quite plausibly
taken to be an extensional property in the sense of Def. 13: It applies or
doesn’t apply, given an individual and a case, and that is all there is to that.44

The property of being white is ascribed to Socrates purely by considering the
property’s principle of application at a case. To say that Socrates is a man,
however, is to answer the “what is it?” question, according to Aristotle: It
is to say what sort the thing belongs to. A sortal property, such as being
a horse, or a man, supplies not just a principle of application, but also a
principle of identity, or, as we like to say, a tracing principle.45 If we have
said what Socrates is (namely, a man), we have thereby specified something
that he could not not be: This is precisely modal constancy. Being white,
on the other hand, is obviously not modally constant: If Socrates becomes

44Running is another favorite illustration of an accidental property of Socrates. There
is a debate in philosophy of physics whether one can ascribe instantaneous velocities to
things in an intrinsic manner. For an argument to the effect that one cannot, as well as
for some background references to that debate, see Butterfield 2006. We will not need to
enter that debate here, being assured that on the one hand there are certainly at least
some extensional properties, and on the other hand, case-intensional semantics welcomes
non-extensional properties.

45The now common distinction between a principle of application and a principle (or
criterion) of identity (see, e.g., Dummett 1973, p. 546 and Gupta 1980, p. 2) comes from
Geach 1962, §31, who in turn follows Aquinas in “distinguishing general terms as substan-
tival and adjectival.”
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sunburned and turns red, he will cease to be white, but he will not thereby
cease to be Socrates.46 There is also a clear motivation for requiring the
property of being a man to be modally separated: Because Socrates is a
man, he can be traced under that concept from time to time or case to case,
and there cannot exist a man who coincides with him in one case but not
in another.47 Sortal concepts are absolute. Thus, we are prepared to defend
the following thesis:

Thesis 2 (Sortals) Up to an approximation, every natural sortal is a CIFOL
sortal; that is, every natural sortal is absolute, which is to say, is modally
constant and modally separated.

It is instructive to prove that if Θ is a CIFOL sortal, then necessarily, if
α ∈ Θ(e!), there is an unique member of Θ that is extensionally identical to
α; that is, to prove

Fact 1 (From absoluteness to necessary identity)

Abs(Θ)→ �[Θ(e!)α→ ∃x[x = α ∧Θx ∧ ∀y[(y = α ∧Θy)→ �x = y]]].

Note that Fact 1 contains three occurrences of the absolute predicate, Θ, in
predicative position: Once Θ is used in the context of an extensionalization,
Θ(e!), that is used for reporting the local fact that in the case at hand, α is
(extensionally) identical to an intension falling under Θ—recall that Def. 15
defines Θ(e!)α as ∃z(z = α∧Θz)∧Eα. And twice Θ is used as a tracing prin-
ciple that, in effect, traces the individual falling under Θ in the case at hand
to “the same individual” in each case invoked for the necessity statement.

46It is obvious that the compound, “white horse,” definable as the intersection of a quality
with a sortal, is neither extensional nor absolute. Along the same lines, we analyze phased
sortals such as “boy”, which do arguably answer the Aristotelian question of what a thing
is but aren’t modally constant, into a true sortal (“man”) and a quality (“under-age”); see
Wiggins 2001, p. 30ff. In the other direction, in §5.4 we definitely classify “natural number”
as a sortal because it is important that numbers can be traced from case to case, whereas
it would be absurd to think of natural numbers as metaphysically akin to Aristotelian
substances such as horses.

47This is our brief comment on the question of relative identity as raised by Geach 1962:
We hold that Geachean examples necessarily mix true sortal, absolute properties (such as
being a man) with non-sortal properties. For a diagnosis similar in spirit, see Lowe 2009.
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Proof.

1 Abs(Θ) hyp
2 Θ(e!)α hyp
3 x0 = α ∧Θx0 ∧ Eα 2, def, choose x0

4 y0 = α ∧Θy0 hyp, choose y0

5 x0 = y0 ∧ Ex0 3, 4
6 Θx0 ∧Θy0 3, 4
7 ♦(Ex0 ∧ Ey0 ∧ x0 = y0) 5, S5
8 �(x0 = y0) 6, 7, 1 (MSep(Θ))
9 ∀y[(y = α ∧Θy)→ �(x0 = y)] 4–8, (y0/y)
10 ∃x[x = α ∧Θx ∧ ∀y[(y = α ∧Θy)→

�x = y]] 3, 9, (x0/x)
11 �[Θ(e!)α→ ∃x[x = α ∧Θx∧

∀y[(y = α ∧Θy)→ �x = y]]] 2–10, 1, S5
12 Abs(Θ)→ �[Θ(e!)α→ ∃x[x = α ∧Θx∧

∀y[(y = α ∧Θy)→ �x = y]]]. 1–11 �

Put semantically, the relevant logical fact is this: If Abs(Θ),

then ifM, γ |= Θα1 ∧Θα2 ∧ Eα1 ∧ Eα2, then
extM,γ(α1) = extM,γ(α2)→ int(α1) = int(α2).

So the following definition is acceptable whenever Θ is absolute and Θ(e!)α:
αΘ is the intensionally unique individual intension, x, such that x = α∧Θx.

Suppose Θ is carried in English by the common noun, horse, and suppose
α is taking the place of Carlotta’s favorite Christmas present. Then one
might read Fact 1 as follows: If horse is an absolute property [which, of
course, it is], then if Carlotta’s favorite Christmas present is a horse in a
certain case, then Carlotta’s favorite Christmas present is identical (in that
case) to the necessarily unique traceable individual falling under the property
of being a horse. That is, however, such a mouthful that we introduce an
informal device. In English, we permit ourselves to say that α is an absolute
horse, which makes no literal sense, meaning thereby that α falls under the
absolute property of being a horse. In the same spirit, we occasionally say
that some α is an extensional horse, meaning thereby that α is identical, in
the case at hand, to an existing absolute horse.
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5 Illustrations

5.1 The horses

As evidence of its usefulness, we illustrate applications of some central ideas
of CIFOL using an imaginary finite version of “is a horse,” represented by the
predicate, H, which should certainly be an absolute property. We want to
work through the example in detail and with diagrammatic pictures. For this
reason, we imagine that there are five horses, Andy, Doris, Gale, Hal, and
Jack, and four cases, Γ = {γ1, γ2, γ3, γ4}. The four cases may be thought of
as one-hour time periods, with γi starting at, say, i o’clock p.m. on a specific
day.48 Let us suppose that the extensional domain, D, contains at least
{a, b, c, d, e, f, g, h, i, j, k, l, n, ∗}. It will help the imagination to think of the
lettered extensions as being distinct “horse stages” of one or another of the
five horses; and of course all distinct from ∗.49 It is convenient to represent
an individual intension over Γ by a sequence of length four, one entry for
each case; for example, ab∗d, for the individual intension, z (i.e., function
in Γ 7→ D), such that z(γ1) = a, z(γ2) = b, z(γ3) = ∗, and z(γ4) = d.
With that convention in mind, let us suppose that the individual intensions
of the five horses are as follows: int(Andy) = ab∗∗, int(Doris) = ∗def,
int(Gale) = g∗∗∗, int(Hal) = ∗hi∗, and int(Jack) = jkln. Since we have
no information concerning the nature of the “horse stages,” this display of
intensions only tells us about Andy that he exists at times γ1 and γ2, and then
no longer exists.50 In the same way, the intension of Doris tells us that she

48Choosing a set of time periods for the set of cases, Γ, illustrates the flexibility of
CIFOL, and reminds us that CIFOL is logic rather than metaphysics. (We agree that
calling time periods “cases” sounds awkward; see note 14.)

49“Stages,” which Quine 1960 glosses as “brief temporal segments” of, e.g., rabbits (§12),
play a prominent role as objects in metaphysical literature such as Sider 2000. CIFOL,
however, provides only a logic, sans metaphysics. At the risk of sounding parochial, we
wonder whether the metaphysical discussions are too loose to be of help.

50Nothing logically useful comes of comparing extensions across cases. In particular,
there is nothing logical to be gained by using an intension aaaa, nor by insisting that a
and b in the intension ab∗∗ be distinct: Identity/distinctness of extensions across cases
is information that CIFOL cannot use. That should count as a discovery by Bressan.
It follows, as Bressan noted, and as we reported in note 15, that a semantic system in
which each case, γ, is given a distinct domain, Dγ (with or without overlaps, but all
equinumerous), would yield the same logic. (Perhaps it is worth saying explicitly that
comparing extensions at a certain case between individual intensions is quite essential;
that is the work of the sign, =, of case-dependent identity.)

41



begins to exist at time γ2, and then persists through times γ3 and γ4. Gale has
a short but happy life, as indicated by her intension; Hal commences existing
at time γ2, continuing to exist at time γ3, and then no longer exists. And Jack
lives through all four time periods. What, now, about the representation of
the absolute property, H = is a horse? Although the official type of a one-
place predicate such as H has the form Γ 7→ ((Γ 7→ D) 7→ 2), intensions of
this type are easier to visualize if put in a conceptually equivalent form by
construing that type as Γ 7→ ℘(Γ 7→ D), which enables listing, for each case,
the individual intensions (horses) falling under that case. Table 1 therefore
faithfully represents H as modally constant by listing each of the five horse
intensions under every case: If an individual is a horse in any case, then it

H\Case γ1 γ2 γ3 γ4

Andy ab** ab** ab** ab**
Doris *def *def *def *def
Gale g*** g*** g*** g***
Hal *hi* *hi* *hi* *hi*
Jack jkln jkln jkln jkln

Table 1: Horse intension

is a horse in every case, including cases (as marked by ∗) in which it fails
to exist. This representation allows that horses come to be and pass away,
but rules out transubstantiation for horses. Horses cannot turn into other
things: Once a horse, always a horse.

Being a horse is also modally separated: If H(α) and H(β), then if α
and β share some non-∗ horse stage in any one case, then they are identical
individual intensions; which is to say, if horses α and β are distinct horses,
then there is no single case in which they share an extension, other than
possibly ∗ (the sign of non-existence). That is to say, there can be a case
in which two horses both fail to exist. The convenient visual sign of modal
separation in any one case γi is this: If you look at the five intensions listed in
Table 1 under γi, there is no column containing a repetition of anything other
than possibly ∗. Of course because of modal constancy, the same intensions
fall under each γi, so that it suffices to check only a single case.

Let us dwell a bit on the issue of a principle of application vs. a principle
of identity or tracing principle, introduced in §4.3. Any property has to
separate what falls under it from what doesn’t. (Reminder: We make no
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attempt to illuminate vagueness.) Confined to a single case, the best we can
do to check whether an absolute property Θ holds or doesn’t hold of a thing,
α, is to check extensionally (see Def. 13), with due attention to existence: If
α falls under Θ(e!) in case γ, then in that case there is an existing thing αΘ

that is a true Θ and that is identical (extensionally) with α in case γ. (Recall
the remark following the proof in §4.3.) Thus, if α is “Mary’s favorite thing,”
α should not be represented by an individual intension for a horse (because,
for example, there is a case in which α is a mobile phone—or, which is just
as bad, she has different horses as her favorite in different time periods), but
it could be Jack in case γ, and then, H(e!)α would be true, provided he exists
in that case.51

H(e!)\Case γ1 γ2 γ3 γ4

Andy a- - - -b- - ∅ ∅
Doris ∅ -d- - - -e- - - -f
Gale g- - - ∅ ∅ ∅
Hal ∅ -h- - - -i- ∅
Jack j- - - -k- - - -l- - - -n

Table 2: Existence-implying extensionalization of H

Table 2 describes H(e!), relying on the convention that a hyphen in a
certain position indicates, in a manageably brief way, that we are picturing a
(very large) set of individual intensions constructible by putting each member
of D in place of the hyphen. Thus, opposite Andy and under γi, we list every
intension that is identical to Andy in γi, omitting those that have a ∗ in the
γi position.52

Now the work of absoluteness can be stated pictorially. Using Table 2,
pick any intension falling under (for example) γ1 in the extensional Table
2, perhaps a∗c∗ or gdea. Observe that we have extensional-in-γ1 informa-

51We should not think of H vs. H(e!) as exposing an ambiguity in the English use of
“horse”, but rather as a convenient way of handling certain quantificational phenomena
involving “horse.” The lexicon of English has just one entry under “horse”, viz., “a solid-
hoofed plant-eating domesticated mammal with a flowing mane and tail, . . . ,” but on
our analysis, a sentence containing “. . . is a horse” can exhibit quantifier scope ambiguity
reminiscent of the de re/de dicto distinction. See also §5.3 and §5.4 below.

52The a- - - entry under γ1 represents 143 = 2744 entries. By our count, under γ1 there
should therefore be 8232 entries.
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tion only; that is, information that is closed under identity in γ1. Now for
Bressan’s profound observation: This extensional information suffices for de-
termining a unique intension falling under H, either ab** or g***. Given
any intension falling under H(e!), and given the case,53 exactly one horse (one
intension falling under H) is determined. Since H is absolute, then given a
case, extension determines a unique intension. This illustrates the force of
the proof we gave in §4.3.

5.2 The paddocks

To help illustrate how absolute and extensional properties interact, we tem-
porarily enrich CIFOL by adding one-place connectives Atn: to be read “at
γn,” for n = 1, 2, 3, 4.54 The semantics of Atn: is given as follows:

M, δ, γ |= Atn:Φ↔M, δ, γn |= Φ.

Evidently, if Atn:Φ is true at a case γ, it is true at every case (since the At n:
connective always switches evaluation to the specific case γn). At the level
of predicates, this means that a lambda predicate with a leading Atn: will
be modally constant, as we will illustrate.

Imagine now that there are two paddocks, a north and a south, into which
horses are put at various times. Suppose that Andy and Jack are in the north
paddock at γ1, but are moved to the south paddock at γ2, and are then put
back in the barn, while Doris is put in north paddock (only) at γ3 and Jack
is put in the north paddock (again) at γ4. Table 3 represents this supposal,
with N and S representing, extensionally, the occupancy of the north and
south paddocks at each time interval.

Table 4 contains the representations of λxAt 1:Nx and λxAt 2:Sx, each of
which is modally constant.

We’ve come this far in order to conjoin the two properties represented in
Table 4, yielding Table 5; it’s easy.

Given that in our story, it is only Andy and Jack who are in the north
paddock at γ1 and in the south paddock at γ2, this result is an unexpectedly
weird collection of intensions: Most of them are not among the proper horse-
intensions of Table 1. What has gone wrong? Mere extensional properties

53You have to be given the case because modal separation is determined case by case.
54Bressan shows that the effect of quantifying over cases is already available in MLν at

a higher order; see note 33 above.
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γ1 γ2 γ3 γ4

N a- - - ∅ - -e- - - -n
j- - -

S ∅ -b- - ∅ ∅
-k- -

Table 3: Respective occupants of north and south paddocks

γ1 γ2 γ3 γ4

λxAt 1:Nx a- - - a- - - a- - - a- - -
j- - - j- - - j- - - j- - -

λxAt 2:Sx -b- - -b- - -b- - -b- -
-k- - -k- - -k- - -k- -

Table 4: Applying At γ1: and At γ2:

simply do not give us anything we can use if based on more than one case.
They are fine one-case-at-a-time, but the whole thing goes to pieces when
you try to mix multiple cases with extensional properties. What is missing
is the ability to trace individuals between cases, leading to (at best) the
gerrymandered horses of Table 5. What is needed is the absolute property
of being a horse. Then it all comes right: If you meet what we have so far
with H, you arrive at Table 6. The tracing power of the absolute property
of being a horse returns us to sanity.

5.3 Essential properties: sex

Let’s look at how a definite description works, say, ιxNx (the occupant of the
north paddock), in connection with “essential” properties. Keep in mind that
according to Table 3, N is extensional. First we identify the description’s
intension according to Def. 10 by consulting that table, recalling that we get
a ∗ in any case without exactly one entry (because we are counting distinct
extensions):

int( ιxNx) = ∗∗en.

That is, in some cases ιxNx is a female, Doris in γ3, and sometimes a male,
Jack in γ4, and sometimes “the occupant of the north paddock” doesn’t exist
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γ1 γ2 γ3 γ4

λx(At 1:Nx ∧ At 2:Sx) ab- - ab- - ab- - ab- -
ak- - ak- - ak- - ak- -
jb- - jb- - jb- - jb- -
jk- - jk- - jk- - jk- -

Table 5: Gerrymandered horses found in north paddock at γ1 and in south
paddock at γ2

γ1 γ2 γ3 γ4

λx(At 1:Nx ∧ At 2:Sx ∧Hx) ab∗∗ ab∗∗ ab∗∗ ab∗∗
jkln jkln jkln jkln

Table 6: Absolute horses found in north paddock at γ1 and in south paddock
at γ2

(either because there is no occupant of the north paddock, in γ2, or more
than one, in γ1). This seems outrageous until one recalls that the range of x
includes all individual intensions, including gerrymandered horses.

There are male horses and there are female horses, properties that may
be represented with the extensional accounts pictured in Table 7.

γ1 γ2 γ3 γ4

M = Male a- - - -b- - ∅ ∅
∅ -h- - - -i- ∅
j- - - -k- - - -l- - - -n

F = Female ∅ -d- - - -e- - - -f
g- - - ∅ ∅ ∅

Table 7: The extensional, existence-implying properties Male and Female.

It is common coin that the sex of each horse is a property that is “es-
sential” to it, qua horse.55 “Horse” in the preceding sentence is used once
in the context, H(e!), which produces an extensional construct, and once in

55We are using “essential” in a minimal sense here, meaning just that the sex of a horse
is a property such that in all cases in which the horse exists, it has that property.
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the absolute sense, H. The first occurrence is extensionalized; a horse, for
instance, has a sex no matter how you describe it. It is equally true that each
particular horse (at the case in question) has its sex as an essential property,
qua horse, but certainly not qua occupant of the north paddock, which is
male in some cases and female in others. The second occurrence is not ex-
tensional: You need to use “horse” (H) as a tracing principle as you move
from case to case. Following that trace, you find out that either necessarily
the horse is male in every case in which it exists, or necessarily the horse is
female in every case in which it exists. Even though the sex of the occupant
of the north paddock, i.e., the sex of ιxNx, varies case by case (because of
gerrymandering), its sex qua horse does not vary as you trace it from case
to case.

As many philosophers have noted, English is not altogether convenient
for sorting out the matter. CIFOL notation helps.

M |= ∀x[H(e!)x→ ∀y[(x = y ∧Hy)→ (�(Ey →My) ∨�(Ey → Fy))]].

The use of H(e!) in this “constant sex” principle tells us that it applies to each
existing horse, “under every description,” as the saying goes, which is precisely
what is wanted. The use of the absolute notion of “horse” represented by Hy
is required because the extensional characterization of x by H(e!)x is not
enough to support the use of x inside a modal context. If all you know of x
is that H(e!) applies to it, you do not have enough information to allow you
to trace a value of x from case to case. That is the point of the “qua horse”
clause. When y is characterized by an absolute property, you know that you
can safely trace the value of y between cases.

What about the sex of the horse in the north paddock? Essential or not?
The syntactic ambiguity of the question is well known. Here is how it goes in
CIFOL, where, as in many other treatments, the ambiguity is one of scope
illustrating de re vs. de dicto.

De re, true. Necessarily, the occupant of the north paddock is, qua horse,
either essentially56 male or essentially female:

�∀x[(Hx ∧ x = ιyNy ∧ Ex)→ (�(Ex→Mx) ∨�(Ex→ Fx))].

You might think that the antecedent forces us to take the intension of
x as ∗∗en—which is indeed the intension of ιyNy; but that’s not an inten-
sion falling under the absolute concept “horse” (as opposed to falling under

56I.e., necessarily-if-existent.
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H(e)). Instead, the antecedent asks us to consider—case by case—any horse-
intension existing in that case and (extensionally) identical to ∗∗en, which
comes down to ∗def (Doris) in case γ3 and jkln (Jack) in case γ4. And each
of these intensions is (extensionally) either male in all cases in which it exists
or female in all cases in which it exists. It figures: CIFOL’s treatment is
exactly right.

De dicto, false. Necessarily, either the occupant of the north paddock is
essentially male or the occupant of the north paddock is essentially female:

�(�(E( ιyNy)→M( ιyNy)) ∨�(E( ιyNy)→ F ( ιyNy))).

Here we are looking at only the one intension, ∗∗en. But now the dis-
junction comes out false, since that intension is neither male in every case in
which it exists, nor female in every such case. Again, the CIFOL treatment
is entirely accurate.

Although it would be possible to present the de re/de dicto contrast in
CIFOL using the Russellian account of definite descriptions, it seems to us
that the present formulation, taking definite descriptions as categorematic in
the Frege-Bressan way, is cleaner and more intuitive.

5.4 Natural numbers

Bressan 1972 shows how one obtains a natural absolute concept, N, of “nat-
ural number” (= non-negative integer) in case-intensional higher-order type
theory (MLν), by verbatim adoption of the usual extensional theory, but
using �(x = y) in place of x = y everywhere except in the Peano axiom
0 6= n + 1 (p. 100), which should retain its extensional meaning. In this
development, each natural number is identified with an extensional second-
order property. For example, the number 2 is identified with the second-order
property of first-order properties of applying to exactly two things (counting
extensionally):

2 =df λP (∃x∃y(x 6= y ∧ Px ∧ Py ∧ ∀z(Pz → (z = x ∨ z = y)))).

In this context, it is more idiomatic to say “class” instead of “property” (ob-
serving that CIFOL, being innocent of metaphysics, does not distinguish the
two): The number 2 is identified with the second-order class of first-order
classes that contain exactly two things; the class 2 will be extensional. The
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absolute third-order class, N, of natural numbers is identified with the class
containing 0 and all its successors.57 By this construction, it is only right and
proper that the extension of the term (numeral) “2” in a case, γ, can differ
from the extension of “2” in another case, γ′, depending on which first-order
properties happen to apply to exactly two things in these cases. So even nu-
merals shouldn’t be “rigid designators” that have the same extension in every
case! What is logically important, is that the third-order property of being
a natural number, N, is absolute, so that we can trace numbers across cases.
Let’s see by example howMSep works for N. For instance, since 1 and 2 each
fall under N, MSep requires, in effect, that there is no possible case in which
they agree: usingMν for a model appropriate for MLν , Mν |= ¬♦(1 = 2).
But fortunately it cannot be thatMν , γ |= 1 = 2 for some γ, for that would
require the impossibility that the class of classes having exactly one member
in γ be the same as the class of classes having exactly two members in γ
(counting extensionally).

It seems a shame to apply Bressan’s sophisticated theory of numbers to
Quine’s over-familiar example of the number of planets, but in truth it can’t
hurt. Now, in order to stay within the confines of CIFOL, we suppose that
N is brought down to the first order as an absolute property, and that each
numeral is brought down to the first order as a term, n, with the standard
Peano properties. Everybody agrees that the sentence,

The number of planets is necessarily greater than seven,

has two readings, and is true under one and false under the other. The CIFOL
analysis is as follows. We use a term, α, for the definite description, “the
number of planets” (remember from §3.1.7 that definite descriptions are just
terms, with an intension and with an extension at each case, so abbreviating
the description as a general term α does not beg any questions). We use a
one-place predicate, G, for “is greater than seven.” In the case at hand, γ,
the number of planets is eight (recently downgraded from nine); in another
possible case, γ′, it is four.

De dicto, false. The first reading (“de dicto”), on which the sentence is
false, is:

�∀x((Nx ∧ x = α)→ Gx),

57We omit details.
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“in every case, if there is a natural number that is the number of planets in
that case, then that that number is greater than seven.” This is false because
in case γ′, the natural number four is equal to the number of planets, and
four is not greater than seven.

De re, true. The second reading (“de re”), on which the sentence comes
out true in case γ (even though false in case γ′), is:

∀x((Nx ∧ x = α)→ �Gx),

“for any absolute natural number that is equal to the number of planets in
the case at hand, in every case, that number is greater than seven.” This is
true because eight is greater than seven in any case.

On the de re reading, the absolute concept, N, plays an important role:
Given the case at hand, γ, the extension of α (“the number of planets”) at γ
determines a unique absolute natural number, eight, due to modal separation.
There are many individual intensions that have the same extension-at-γ as
α (“Mary’s favorite number” may be among them), but there is only one
absolute natural number-intension among them. If we change the reading to
demand not true natural numbers but only intensions that are extensionally
equal to a natural number in the case at hand, we obtain a reading on which
our sentence is false even in case γ:

∀x((N(e!)x ∧ x = α)→ �Gx),

“for any intension that is equal to an absolute natural number and that
is equal to the number of planets in the case at hand, in every case, that
intension is greater than seven.” This is false because, for example, the
intension of α itself fulfills the antecedent, but not the consequent. CIFOL
delivers the verdict that even the sentence,

The number of planets is a natural number,

has two readings, under one of which it is false: It is true that N(e!)α, but
false that Nα.58

58To repeat, it is the sentence that has two readings, not N. See note 51.
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5.5 Testing horses for the X aberration

Next we go through an important kind of application of CIFOL, namely,
to an ineliminable use of possibility in scientific discourse. (Bressan 1972
offers a detailed argument for the necessity of using possibility and absolute
properties in hard science.)

Horses sometimes have chromosomal aberrations (Bugno et al. 2009). For
some of these there is an accurate test. We assume that one of these is “the
X aberration,” which can always be revealed by “the X test,” the result of
which is stated in terms of an appropriate natural number, “the X number,”
which we may think of as 1 when the horse has the X aberration and 0 when
not. Let us assume that the X test is seldom administered, but it always can
be administered (it’s possible that it is administered) for any extensionally
characterized horse, and it is always accurate. In other words, it is not only
possible to administer the X test to any horse, securing an X number, but
in addition any further possible X test on that horse will give the same X
number.

We must use absolute properties for tracing individuals between diverse
cases, such as those encountered in speaking of possible tests. In the example
at hand, it is horses and natural numbers that must be traced. In terms of
notation, let X(α, y) be a predicate meaning that the X test is carried out on
α with resulting X number y. So our existence-and-uniqueness assumption
is this, assuming that variables are chosen so as to avoid conflict:

(%) H(e!)(α)→ ∃x[x = α ∧ Ex ∧Hx∧

∃y[♦(Ny ∧ Ey ∧X(x, y))∧

∀z[♦(Nz ∧ Ez ∧X(x, z))→ y = z]]].

“Given any extensionally identified existing horse, α, there is an absolute
horse, x, identical to α, such that it is possible to carry out the X-test on x
yielding absolute numerical result y, and such that every possible X-testing
of x yields a numerical result extensionally identical to y.”59 It is critical
that values of each variable be characterized as falling under some absolute

59It is obvious that the limitation Ex is needed, since it makes no sense to test a horse,
α, at a case in which α doesn’t exist. On the other hand, Ey and Ez are redundant,
assuming the theory of the natural numbers, N, adumbrated in §5.4 according to which
they all exist in every case; that is, Exist-imp(N) (see Def. 12).
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property. In the present example, (%), we can verify that the values of each
of x, y, and z are so characterized.

In order to strengthen our claim to the usefulness of CIFOL, we wish
to prove that, given the absoluteness of H and N, the final case-dependent
identity, y = z, can be raised to a strict identity, �(y = z); that is, letting
X ′(v, w) abbreviate ♦(Nw ∧ Ew ∧X(v, w)) and let Y (w) abbreviate
w = α ∧ Ew ∧Hw:

Fact 2 (Raising to a strict identity)

(Abs(N) ∧ Abs(H))→

[H(e!)(α)→ [∃x[Y x ∧ ∃y[X ′(x, y) ∧ ∀z[X ′(x, z)→ y = z]]]]→
[H(e!)(α)→ [∃x[Y x ∧ ∃y[X ′(x, y) ∧ ∀z[X ′(x, z)→ �y = z]]]]]

Proof.

1 Abs(H) ∧ Abs(N) hyp
2 (%) hyp
3 H(e!)α hyp
4 x0 = α ∧ Ex0 ∧Hx0 ∧ ∃y[X ′(x0, y)∧

∀z[X ′(x0, z)→ y = z]] 2,3, choose x0

5 X ′(x0, y0) ∧ ∀z[X ′(x0, z)→ y0 = z] 4, choose y0

6 X ′(x0, z0) hyp, choose z0

7 ♦(Ny0 ∧ Ey0 ∧X(x0, y0)) 5, def
8 ♦(Nz0 ∧ Ez0 ∧X(x0, z0)) 6, def
9 ♦Ny0 ∧ ♦Nz0 7, 8, S5
10 �Ny0 ∧�Nz0 9, 1 (MConst(N))
11 Ny0 ∧ Nz0 10, S5
12 Ey0 ∧ Ez0 11, Exist-imp(N)
13 y0 = z0 5 (z0/z), 6
14 ♦(Ey0 ∧ Ez0 ∧ y0 = z0) 12, 13, S5
15 �(y0 = z0) 1, 11, 14 (MSep(N))
16 ∀z[X ′(x0, z)→ �(y0 = z)] 6–15 (z0/z)
17 ∃y[(X ′(x0, y) ∧ ∀z[X ′(x0, z)→ �(y = z)]] 5, 16 (y0/y)
18 ∃x[x = α ∧ Ex ∧Hx ∧ ∃y[X ′(x, y)∧

∀z[X ′(x, z)→ �(y = z)]]] 4, 17 (x0/x)
19 H(e!)(α)→ ∃x[x = α ∧ Ex ∧Hx∧

∃y[X ′(x, y) ∧ ∀z[X ′(x, z)→ �(y = z)]]] 3–18
20 1→ (2→ 19) 1, 2–19 �
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As promised, line 19 is just like (%), except that y = z is promoted to a
strict identity. It is worth noting how the various simple features of CIFOL
work together to produce this result.

Fact 2 amounts to showing that the result of the testing is invariably
intensionally unique (same individual intension). This in turn would justify
a Mach-style definition of “the X number” of each horse, parallel to the Mach
definition of “the mass of body b” as detailed in Bressan 1972, §§N18–N23.
As far as we can see, none of the extensionalist first order quantified modal
logics with only extensional predication possesses sufficient sophistication to
handle the argument that is the backbone of the example.60

6 Summary
Let us look back at what has been achieved, and forward to what remains to
be done. In this essay, we argued for ideals of ease of use, uniformity, expres-
sive power, and usefulness at which a successful combination of modal logic
with first order quantification theory should aim (§1). We reviewed several
systems on the market in §1.3 and complained that they fail to live up to our
ideals largely because (a) they treat the issue of tracing individuals across
cases as a matter of logic, (b) are thereby forced to rely on choices with detri-
mental effects on ease of use and uniformity, and (c) disallow non-extensional
predication. We introduced our system CIFOL, a legitimate descendant of
Bressan 1972, with the express aim and promise that these problems in com-
bining modality and quantification can be overcome. In our introduction of
the basics of the system in §2, we stressed that a key conceptual ingredient in
our approach is to depart from focusing on possible worlds, and to welcome
the broader notion of possible cases. This notion may be given both a purely
modal, a temporal, or a temporal-modal interpretation, or indeed any other
useful interpretation. We stressed in §2.5 that this change of perspective on
the underlying possibilities brings with it a liberating change of perspective
on the values of variables. Yes, values of variables can be individuals of the
concrete world, but no, these values are not extensions, but intensions.

In §3 we introduced the formal semantic machinery of CIFOL. The main
points are (a) a fully general application of Carnap’s method of extension
and intension, whereby each expression has an extension in each case, and

60Gupta 1980 escapes this verdict by building Bressanian tracing via absolute concepts
directly into his quantifier semantics. See §1.3 above.
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an intension that is the pattern of extensions across cases, (b) as a result,
the uniform semantical treatment of individual expressions, including definite
descriptions, (c) a single, uniform semantical rule for non-extensional predi-
cation which adds expressive power (§3.1.3), and (d) the specific requirement
that identity be extensional (§3.1.5). On that basis, a simple treatment of
modal operators as quantifiers over possible cases and of first-order quantifi-
cation was possible.

§3, which constitutes the full definition of the “creative” part of CIFOL as
a logical system, contains no discussion of individuals, substances, “rigid des-
ignators,” “trans-world identity,” sortal terms, or any other issues of modal
metaphysics. While this may on a first view look like a restriction of the
usefulness of CIFOL as a quantified modal logic, in reality it only shows that
CIFOL is properly a logic and not a logic-cum-metaphysics. As far as logic
is concerned, it is simply not settled whether there are any individuals, sub-
stances, or kinds. The usefulness of CIFOL is shown, in our view, by the fact
that it includes a simple and general definitional interface that allows for the
extra-logical discussion of issues of individuals and the like. We described
this interface in §4, in which we introduce the CIFOL-definable notions of
extensional CIFOL quality vs. absolute CIFOL sortal (Def. 14 and Def. 19,
respectively). We illustrated the use of absolute properties for tracing indi-
viduals across cases in §5, commenting on the issues of essential properties,
modality de dicto vs. de re, and the testing of individuals for traits. To re-
peat, these are extra-logical matters; the fact that they can be successfully
and perspicuously discussed in CIFOL, however, is a strong point in favor
of the system as an easy-to-use, uniform, expressively powerful, and useful
intensional logic.

In the present Part I of this essay, we have had recourse to a tempo-
ral, or temporal-modal, interpretation of the set of cases where that seemed
appropriate for purposes of illustration. We have not given a formal the-
ory for the temporal application—the length of the present essay forces us
to defer this discussion to Part II. Briefly, the issue is as follows. A proper
treatment of temporal-modal cases in the formal framework of branching his-
tories (Thomason 1970) brings with it new challenges both of a formal and
of a metaphysical nature. Formally, we will need to generalize the notion of
an absolute property in order to deal with possible variations of extensions
across different cases belonging to the same moment in a branching struc-
ture. Metaphysically, we will need to extend the notion of an individual to
a branching framework. Many arguments against branching as a representa-
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tion of real future possibility rely on intuitive, sketchy complaints about the
notion of a “branching individual” and its possible futures. We believe that
the formal framework of CIFOL provides the necessary stable logical back-
ground and formal interface to address these difficult challenges in Part II.
It is certainly worth the effort: A successful formal model of individuals in
a branching framework will make possible a perspicuous formal perspective
on what it is to be like one of us: a proper individual facing a future of real
possibilities.
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