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Abstract

The permutation symmetry of quantum mechanics is widely thought to imply a sort
of metaphysical underdetermination about the identity of particles. Despite claims to
the contrary, this implication does not hold in the more fundamental quantum field
theory, where an ontology of particles is not generally available. Although permuta-
tions are often defined as acting on particles, a more general account of permutation
symmetry can be formulated using superselection theory. As a result, permutation
symmetry applies even in field theories with no particle interpretation. The quantum
mechanical account of permutations acting on particles is recovered as a special case.

1 Introduction

The permutation symmetry of quantum theory has inspired a long debate about the meta-

physics of identity and such related principles as haecceitism and the identity of indis-

cernibles. Since permutations are normally defined as acting on particles, this debate has

largely proceeded by interpreting quantum physics as a theory of particles. As a result,

there is presently no clear connection between this work and the latest foundational studies

of quantum field theory (QFT), many of which have argued against particle ontologies.

It is not quite right to say that the debate concerning the metaphysics of statistics has

ignored QFT. Rather, parties to this debate have engaged with QFT in a set of idealized

special cases: Fock space QFTs on Minkowski spacetime, which can be treated as particle

1



theories (albeit with the number of particles sometimes indeterminate). More realistic inter-

acting theories and QFTs on curved spacetime–which resist a particle interpretation–have

been ignored.

This is understandable, and hardly surprising. The metaphysical debate is supposed to

concern the implications of permutation symmetry, and of the Bose-Einstein and Fermi-Dirac

statistics obeyed by quantum systems. But permutation symmetry is normally understood

in terms of the effect on the quantum state of permuting some particles. This extends to the

usual mathematical definition, where one defines a representation of the permutation group

acting on the labels for particles appearing in the states. Statistics is then understood in

terms of which particle states are physically allowed; only states that transform a certain

way under the action of permutations are deemed physically possible. How could any of this

work, in the absence of a particle ontology? For QFTs with no particle interpretation, where

does the philosopher interested in permutation symmetry even begin?

We need a generalization of permutation symmetry that remains meaningful even in

QFTs with no particle interpretation. Luckily such a generalization already exists, as a

little-known consequence of the mathematical theory of superselection sectors in the algebraic

approach to QFT (AQFT). By applying this more general definition, we will see that in our

most fundamental quantum theories, permutation symmetry has no implications whatsoever

for the metaphysics of particles–because in the most fundamental permutation symmetric

QFTs, there are no particles. The existing debate concerning identical particles in quantum

mechanics and special relativistic free QFT disappears when more fundamental interacting

and curved-spacetime theories are considered.

As with any philosophical work involving AQFT, any dependency of my argument on

the legitimacy or eventual success of the controversial algebraic approach is potentially con-

cerning. It may help to be upfront about the point of dependency. I have two theses here,

a negative one and a positive one. My negative thesis is that the nonexistence of a particle

interpretation in curved-spacetime and interacting QFTs dissolves the existing debate con-

cerning the metaphysics of identity in quantum physics. As we’ll see in §3, this thesis does

not depend on the algebraic approach. My positive thesis is that even without an ontology

of particles, we can make sense of permutation symmetry in interacting AQFT. Obviously

this does depend on the algebraic approach; I will motivate this choice of framework when

it becomes relevant, in §5.
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2 Particle permutations and Fock space

I’ll begin by laying out the standard definition of permutations as acting on particles. Accord-

ing to the orthodox statistical interpretation of non-relativistic quantum mechanics (QM),

the basic objects are particles whose probabilistic propensities are described by state vectors

in a Hilbert space of wavefunctions. These probabilistic properties of a particle in state ψ are

given by the expectation values 〈ψ|A|ψ〉 of observables represented by self-adjoint operators

A.1

Multiple particles are represented by a tensor product of single-particle Hilbert spaces. So

to represent two identical particles, one would label two copies of the single-particle Hilbert

space H and treat their tensor product H1 ⊗ H2 as the two-particle state space. At this

point something interesting becomes apparent. If ψ and φ are two distinct single-particle

states, one might naively expect the vector |ψ〉1 ⊗ |φ〉2 to represent a possible state in the

two-particle space–intuitively, one in which particle 1 is in state ψ and particle 2 is in state

φ.

But here, as in so many places, quantum mechanics confounds our naive expectations.

The only available two-particle states that involve both a particle in state ψ and a particle

in φ are
1√
2

(|ψ〉1 ⊗ |φ〉2 + |φ〉1 ⊗ |ψ〉2) (1)

and
1√
2

(|ψ〉1 ⊗ |φ〉2 − |φ〉1 ⊗ |ψ〉2), (2)

with state (1) characterizing boson systems and state (2) fermions. What’s most interesting

for present purposes is the way these states transform when the particle labels are permuted.

State (1) is symmetric under such permutations, while (2) is antisymmetric. Equivalently,

each state has as a symmetry some representation of the permutation group on two objects,

1With reservations, I will follow the convention (in the philosophical literature on permutation invariance)
of assuming the orthodox statistical interpretation for purposes of argument. But it deserves to be noted
that this assumption is hardly innocent, given our concern with the metaphysics of particles. The GRW
interpretation of QM, for example, is not fundamentally a particle theory in either its “mass density”
or “flash” formulation. Nonetheless, the assumption is innocent for present purposes, since my ultimate
conclusion is negative: even assuming the orthodox statistical interpretation, permutation symmetry does not
have the metaphysical implications that have previously been claimed for it. Moreover, most of the existing
debate (along with what I have to say) extends straightforwardly to the popular Everett interpretation as
well as the orthodox one.
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S2: the trivial representation for bosons and the alternating representation for fermions. For

three or more particles, multi-dimensional representations become available, allowing parti-

cles with so-called parastatistics which are (perhaps mysteriously) not observed in nature.

This behavior under permutations–and the resultant Bose-Einstein or Fermi-Dirac statistics–

has been thought to entail some novel metaphysics. For example, if we assume that the

probabilistic predictions of a state (its expectation values) exhaust the properties it ascribes

to particles, it can be shown that bosons, fermions and parastatistical particles (“paraparti-

cles”) all violate the principle of the identity of indiscernibles (French and Krause (2006,

150-173)). It has also been suggested that permutation symmetry indicates quantum parti-

cles are not “individuals” meeting the usual modal or logical criteria (French and Krause,

2006, 140-148).2 The fact that neither the individuality nor the non-individuality of quan-

tum particles is logically entailed by the theory has been taken to imply a sort of theoretical

underdetermination: the scientific facts provide no basis for accepting either metaphysi-

cal stance (van Fraassen, 1991, 434-482). In an attempt to dissolve this underdetermination

(among other motivations), structural realists have tried to formulate a metaphysics without

a fundamental ontology of objects (Ladyman and Ross, 2007).3

These questions about the metaphysics of QM are of great intrinsic interest. Since QM has

enjoyed great success, and was for a time the most fundamental theory of matter available, I

see considerable value in determining what a purely non-relativistic quantum universe would

be like. But the correct metaphysics for our own universe is an even more pressing issue–and

in the domains explored by experiment thus far, our universe appears to be relativistic. So

it would be a mistake to ask whether (for example) there are individuals in our own world,

and turn to non-relativistic QM for an answer. Of course, no final answer is available at

present, since the project of physics remains far from complete. But we may hope that a

more fundamental theory like QFT can provide a more reliable answer to our metaphysical

question than QM.

In this spirit, philosophers concerned with the metaphysics of individuals have turned

to QFT on Fock space. For example, Teller (1995, 16-52) has argued that particles in Fock

space, while countable, are manifestly not individuals. If correct, this would resolve the issue

2For example, it is sometimes suggested that “individuals” must be potential bearers of names (French
and Krause, 2006, 198-237).

3In my opinion, a more promising (and precisely formulated) approach along similar lines is that of
Dasgupta (2009).
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of metaphysical underdetermination. Teller reasons as follows: Written in the commonly-

used occupation number basis, Fock space entirely avoids the use of particle labels. For

example, if the vector states |ψi〉 form a basis of the one-particle space, a basis for Fock

space is given by the set of states |n1, n2, n3, ...〉, where n1 is the number of particles in

state ψ1, and so on. So for example, a two-particle state might be written |1, 1, 0, 0, ...〉.
Trivially, this way of representing states draws no distinction between a two-particle state

and the same state after a permutation of the two particles. In particular, there is no way

of representing a non-symmetric state like |ψ〉1⊗ |φ〉2 in the occupation number basis. Thus

Teller concludes that “Fock space realizes the idea of quanta, understood as entities that can

be (merely) aggregated, as opposed to particles, which can be labeled, counted, and thought

of as switched.” On this picture, Fock space particles or “quanta” are not individuals in the

same sense as classical particles.

Teller’s argument fails, however, for reasons pointed out by Huggett (1995, 73-75). Fock

space QFT is not so different from many-particle QM, at least not in the ways most salient

to Teller’s position. Teller’s use of the occupation number basis obscures this fact. There

are other, equally legitimate, ways of representing Fock space states. Consider the fact that

Fock space is given by the direct sum

C⊕H⊕ S+/−(H⊗H)⊕ S+/−(H⊗H⊗H)⊕ ... (3)

where S+/− is the projection operator onto the symmetric (resp. antisymmetric) subspace

in the case of bosons (fermions).4 This means there is nothing wrong with writing down a

Fock space state (in this case a state of indeterminate particle number) as

0⊕ 1√
2

[|ψ〉 ⊕ 1√
2

(|ψ〉1 ⊗ |φ〉2 + |φ〉1 ⊗ |ψ〉2)]⊕ 0⊕ ...,

permitting us, Teller’s claims aside, to label the particles in the two-particle component

of the state and think of them as switched (by permuting them as usual). The apparent

difference between Fock space and the labeled tensor-product Hilbert spaces of QM is simply

an artifact of the occupation number basis.5

4The first term (C) in the direct sum represents the vacuum or “zero-particle” subspace.
5Teller himself notes that Fock space has this direct sum structure, but claims it is significant that the

multi-particle subspaces are (anti-)symmetrized by S+/−, leaving out asymmetric states like |ψ〉1⊗|φ〉2. But
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Butterfield (1993) insists that states of indeterminate particle number, a genuinely new

development of Fock space QFT, frustrate any interpretation in terms of individuals: “For

it seems to me that according to any reasonable notion of an individual (even a very liberal

notion...), the number of individuals must be definite.” (Butterfield, 1993, 474) Although this

is suggestive, I do not see it as a decisive point. In interpretations that take a superposition of

eigenstates of an observable to indicate that the observable’s value is indefinite, it seems quite

likely that the number of individuals will be indefinite even in QM (at least on a common-

sense understanding of composition). For example, whether a given pair of protons form a

helium atom will in some cases be indefinite, as it is when they are in a superposition of a

bound state and a non-bound state. Thus it will be indefinite whether the helium atom exists.

But it is not obvious that this rules out understanding the atom as an individual.6 Similarly,

one might understand QFT as describing individuals which sometimes exist indeterminately.

It appears that QFT on Fock space cannot decisively resolve the metaphysical questions

surrounding identity in quantum theory. But Fock space is not the most general setting for

QFT, and indeed, realistic interacting field theories cannot be formulated on Fock representa-

tions of the algebra of observables. Meanwhile, free QFTs on some curved spacetimes admit

an infinity of inequivalent Fock representations, each with its own definition of “particle,”

and none physically privileged over the others. These more realistic theories do have the

power to resolve (or rather, dissolve) the controversy about identity, because the particles

that caused all the trouble in the first place are not part of their ontology.

3 QFTs without particles

Fock space is used to describe linear or free QFTs, that is, quantum fields which evolve in

the absence of a force law. Such description involves an obvious idealization: real-world

matter is always interacting via some force or other, and although spatially distant systems

can sometimes be treated as non-interacting for practical purposes, strictly speaking we can

it’s hard to see what the difference is supposed to be from many-particle QM, where this also holds true of
each n-particle Hilbert space. Moreover, there is no obstacle to constructing a non-(anti-)symmetrized Fock
space; indeed, such a space will be necessary if we want to represent paraparticles.

6Although the atom is not a fundamental entity, if we can make sense of indeterminate numbers of non-
fundamental entities it does not seem like much of a leap to posit indeterminate numbers of fundamental
entities.
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never really “turn the interaction off.” Similarly, we normally idealize by setting QFT in

Minkowski spacetime and assuming special relativity is exactly true. But it is also possible

to formulate QFT in more general, curved spacetimes, as predicted by general relativity.

This means metaphysical conclusions drawn from interpreting the special relativistic Fock

space formalism are suspect unless they can be reproduced in more physically realistic QFTs,

namely interacting theories and QFTs on curved spacetime.

The interpretation of quantum states as describing particles is one feature of Fock space

that cannot be reproduced when interactions are introduced. Although particles do appear as

an approximate or emergent phenomenon in certain idealized limits, they are not, properly

speaking, part of the theory’s ontology. Meanwhile, in many curved spacetimes it is not

possible to construct a QFT with a physically privileged definition of “particle.” For these

reasons, I think the metaphysical implications of particle permutations in Fock space (as

well as the resulting controversies) can be dismissed, at least where our own physical reality

is concerned.7

Let’s first review the case against a particle ontology for the interacting theory. Fraser

(2008) has argued against the existence of particles in “constructive” interacting AQFTs,

although as she makes clear elsewhere, her argument also applies to the most physically

realistic non-algebraic interacting QFTs (Fraser, 2006, 63-64). Fraser argues first that we

have no grounds for interpreting a QFT as describing particles unless we can represent

it using a Fock space. Fock space is the only known way of representing a system with

infinitely many degrees of freedom as containing countable objects and a Lorentz-invariant

zero-particle vacuum state. Using the constructive φ4 theory as a representative case, she

then shows that attempts to represent an interacting theory on Fock space must fail.

Fraser notes that, due to a foundational theorem called Haag’s theorem, φ4 and other

interacting theories cannot be represented on the same Hilbert space as the free theory. Free

and interacting fields must necessarily be defined on different, unitarily inequivalent Hilbert

space representations. It is therefore impossible to interpret an interacting field as describing

superpositions of free particles (Fraser, 2008, 14-20). A seemingly more promising option

may be to construct a Fock space from the interacting one-particle space instead of the free

single-particle Hilbert space. But Fraser also shows that this method cannot succeed. In

7Of course, if a Bohmian particle interpretation of QFT were adopted this would not be the case, but
recall that the present discussion is restricted to the orthodox statistical approach.
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an interacting theory, there is no covariant way to divide the wavefunctions into positive-

and negative-frequency classes–a crucial step in the construction of a single-particle Hilbert

space. As a result, there is no way to define a one-particle space that can be used to construct

a Fock space (Fraser, 2008, 20-23). And without Fock space, there is no way of representing a

state of the interacting field as containing aggregable particles. The particle concept cannot

be applied to interacting QFT.

Although Fraser’s central example of an interacting theory is an AQFT, her argument also

applies to non-algebraic QFTs unless they are highly idealized. For example, Wallace (2011)

has advocated, as an alternative to AQFT, the interpretation of QFTs which implement

Wilsonian renormalization using short-distance length cutoffs. As Fraser (2006, 63-66) shows,

Haag’s theorem applies to these theories as well, unless they also employ physically unrealistic

long-distance cutoffs. And when Haag’s theorem applies, the interacting theory cannot

be formulated on a Fock space, and so the premises of Fraser’s argument are satisfied.

Moreover, even in theories with long-distance cutoffs, where the free Fock space will be

unitarily equivalent to the Hilbert space of the interacting theory, the resulting “particles”

will not possess the expected physical properties.8 So even rejecting the algebraic approach

will not open the way for an acceptable particle interpretation of interacting QFT.

Particle interpretations also fail to apply when free QFT is formulated on general curved

spacetimes, but for quite different reasons. Here the problem is not that a Fock space

representation is unavailable. Rather, there may be many different Fock representations–

each with a different definition of ‘particle’–and no way to single out one representation as

describing the particle ontology of the theory.

These inequivalent particle concepts appear because when constructing a Fock space, as

already noted, one must divide the one-particle states into positive- and negative-frequency

classes. This method employs a group of timelike isometries of spacetime to determine which

solutions have future-directed momentum (positive frequency) and which have past-directed

momentum (negative frequency). But some curved spacetimes have several different groups

of timelike isometries. Each will correspond to a different Fock space.9 If a moving observer’s

8Renormalization offsets the values of certain quantities, like mass, which indicates that the “particles”
of an interacting theory should possess this renormalized mass rather than the mass characteristic of the
free theory. But if we interpret the interacting states using the free theory’s particle concept, the resulting
particles will not possess the renormalized values. Thanks to David Wallace for pointing this out.

9These Fock space representations are “different” in the sense of being unitarily inequivalent, a concept
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history is given by a family of hypersurfaces related by a given group of isometries, the Fock

space for that group will plausibly correspond to that observer’s definition of “particle.”

There are a couple of ways to understand the resulting problem for particle interpretations.

On one understanding, since one observer’s particle concept may ascribe non-zero particle

number to the state another observer would call a zero-particle vacuum, there is no objec-

tive fact about the particle content of QFT states in curved spacetime (Wald, 1994, 166).

Alternatively, we might want to say that there is no single particle concept that applies to

all the possible states of a QFT on curved spacetime, ruling out a fundamental ontology of

particles for that theory (Ruetsche, 2011, 204-239).

Either way, particle interpretations of QFT on curved spacetime are doomed to fail. And

again, this result is not an artifact of the algebraic approach. The existence of inequivalent

Fock representations can be derived (although perhaps with less mathematical rigor) without

employing AQFT (Birrell and Davies, 1984).

Although free QFTs in Minkowski space can be understood as possessing a particle ontol-

ogy, more fundamental QFTs incorporating interactions and curved spacetime cannot. This

leaves us with no reason to suppose that metaphysical puzzles about the identity of quantum

particles apply to actual objects in our own world. Among other things this undercuts any

motivation, from the permutation symmetry of quantum theory, for structuralist approaches

to the metaphysics of identity. But it also raises a new puzzle, which I will turn to now.

4 Permutation symmetry is a superselection rule

This way of dissolving the metaphysical puzzles raised by quantum statistics leads quite

directly to a new puzzle. As in QM, physical systems in QFT can still be classified into

bosonic, fermionic, and (in physically unrealized examples) parastatistical. Indeed, one of the

most important results of axiomatic QFT, the spin-statistics theorem, would be meaningless

if states could not be classified according to their statistics.

But evidently, the statistics of a quantum field system incorporating interactions or

curved spacetime cannot be defined in terms of permutations acting on particles. So we

are faced with the new problem of explaining exactly what it means for a given QFT to

be a theory of bosons or fermions. Independent of concerns about statistics and identity,

explained in §5.
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a solution to this problem will be a welcome sanity check for existing arguments against

particle interpretations of QFT.

A natural place to begin looking for a solution is superselection theory. It is often pointed

out that the permutation symmetry of quantum mechanics is equivalent to a particular

superselection rule–that is, a restriction on which states can be superposed, or (equivalently)

on which self-adjoint operators can count as representing observable quantities. One of the

great successes of the algebraic approach to QFT is a detailed account of superselection

rules which applies to mathematically rigorous interacting QFTs as well as free theories. So

perhaps the statistical properties of quantum fields can be defined in terms of a superselection

rule, even in the absence of a particle ontology.

Let’s take this one step at a time, starting with ordinary QM (QFT will be treated in

§5). Why, exactly, is permutation symmetry equivalent to a superselection rule?

Superselection occurs when we have a quantity that behaves like electric charge, in the

sense that superpositions of states with different values of the quantity cannot occur. In

nature we never see a pure state that assigns non-zero probability to both charge 0 and

charge +1, for example. The notion of a superposition being forbidden by a superselection

rule can seem a bit murky. If ψ is a vector state with charge 0, and φ a vector state with

charge +1, does the superselection rule imply that the linear combination of these two vectors

doesn’t exist?

As a matter of linear algebra, of course the linear combination exists. What’s going on

is that in the presence of a superselection rule, the linear combination 1√
2
(ψ + φ) represents

a mixed state rather than a pure state. This means that this state is indistinguishable from
1√
2
(ψ+ eiθφ), since the relative phase of the pure states in a mixture is not observable. This

can occur only if we forbid observables that map vector states to states with different charges,

so that (for example) if Aψ is a state with a charge different from ψ’s, A cannot count as

an observable even if it is self-adjoint.10 This condition is equivalent to the existence of an

operator which commutes with all observables; each of its eigenspaces then corresponds to a

particular charge. We call such an operator a superselection operator. In QM, as we shall see,

the unitary operators representing particle permutations are superselection operators. States

10In algebraic terms, this means that the space of states is a direct sum (e.g. H1 ⊕ H2) and that the
algebra of observables is given by the bounded operators on each subspace in the direct sum, rather than on
the whole Hilbert space (e.g., by B(H1)⊕B(H2) instead of B(H1 ⊕H2)).
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from different eigenspaces of these operators cannot be combined in a coherent superposition,

so we call the eigenspaces coherent subspaces.

In QM, permutation symmetry is generally taken to require that no permutation acting

on particles can change the expectation value of any observable. That is, for any permutation

P , observable A and state vector ψ,

〈Pψ|A|Pψ〉 = 〈ψ|A|ψ〉. (4)

This requirement is sometimes referred to as the “Indistinguishability Postulate,” and some-

times simply as “permutation invariance.” Interestingly, it is equivalent to the requirement

that each permutation operator P commute with all observables, i.e. that the permutations

are superselection operators.

What is the analogue of “charge” for the superselection rule (in n-particle QM) that

imposes permutation symmetry? Recall that states of different charge cannot be superposed

to form pure states, a phenomenon which breaks down the space of states into coherent

subspaces of states with the same charge, which are the eigenspaces of the superselection

operator(s). These subspaces are often called superselection sectors. In effect, the values of

charge are labels for the different superselection sectors.

What distinguishes the different superselection sectors for the permutation superselection

rule? The eigenspaces of the permutation operators on n particles will correspond to the

irreducible representations of Sn, the permutation group on n elements. In the familiar case,

one of these representations (the trivial one) corresponds to bosons, while the alternating

representation corresponds to fermions. Clearly no permutation will transform a system of

fermions into a system of bosons. So the analog of charge is the statistics parameter which

labels the irreducible representations of Sn and corresponds one-to-one with the so-called

Young tableau diagrams (Halvorson and Mueger, 2007, 853). In effect, bosons have one

value of this “charge,” another value corresponds to fermions, and additionally there is a

value for each order of para-Bose or para-Fermi statistics.

As we’ve seen, the quantum mechanical account of permutation symmetry as acting on

particles cannot apply to the fundamental ontology of interacting QFT. But permutation

symmetry is equivalent to a particular superselection rule, and a rigorous framework exists

for understanding superselection rules in a broad variety of QFTs, including some interacting
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and curved-spacetime theories. Therefore, as I will establish in what follows, the permutation

symmetry of QFT can still be understood in terms of this superselection rule. To explain

how this is possible, we must first take a look at the mathematical theory of superselection

in algebraic QFT.

5 Superselection theory in algebraic QFT

Before starting in on the details of superselection, I will briefly introduce the reader to AQFT.

I will eventually defend this choice of framework, but the defense will make more sense once

some of its details are on the table. The most basic elements of AQFT are best understood

as a simple generalization of the formalism of ordinary QM. As in QM, the basic elements of

the theory are states and observables. Observables (or physical quantities) are given by the

self-adjoint elements of an abstract C*-algebra A, often called the algebra of observables. A

state (or physical possibility) is then taken to be an assignment of expectation values to every

quantity–mathematically, a functional ω : A→ C which is normed (so that all probabilities

sum to one) and linear. This will be our definition of a state on A.

Since QFT is a relativistic theory, we will need a way of connecting our physical quantities

with the structure of spacetime. In order to implement the spacetime symmetries of special

relativity and impose the requirement of relativistic causation, we need a definition of which

physical quantities take on values in which regions of spacetime. So to each open region O of

spacetime, we assign a subalgebra of the algebra of observables, A(O) ⊆ A. The subalgebra

A(O) is often said to contain all the observables measurable within O, but a better, less

operationalist definition might be: the physical quantities whose values can be instantiated

within O.

The connection between this algebraic formalism and the more familiar picture of states

as density operators in a Hilbert space, and observables as operators on that space, is well

understood. A given Hilbert space, with its associated operators, captures (at least part of)

the physically significant structure of the algebra of observables if it constitutes a representa-

tion of A. A representation is a Hilbert space with a distinguished algebra of operators that

mirror the algebraic structure of A. Mathematically, a representation of A is a pair (H, π)

consisting of a Hilbert space H and a *-homomorphism π from A into B(H) (the bounded

operators on H). The density operators on H will then correspond to a subset of the states
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on A. We call a representation irreducible iff no nontrivial subspaces of H are invariant

under πA.11 We can think of an irreducible representation as one in which the operators in

A “connect” or relate all of the state vectors by mapping between them.

Importantly for present purposes, any reducible representation can be decomposed into

a direct sum of irreducible representations. In this case, we may ask whether a linear com-

bination of state vectors from different irreducible representations denotes a mixed state or

a pure state. If a linear combination denotes a mixed state, clearly the two representations

will behave like different superselection sectors. Thus a systematic way of determining when

states from different representations can be superposed will allow us to reproduce the behav-

ior characteristic of superselection sectors in QM. And in fact, the AQFT formalism gives

us a means of determining when two representations should be counted as different sectors.

A central theorem of AQFT states that every state of the algebra of observables has a

unique “home” representation, where it is represented by a state vector ψ which is cyclic:

GNS Theorem. For each state ω of A, there is a representation (Hω, πω) of A, and a vector

|ψ〉 ∈ Hω such that ω(A) = 〈ψ|πω(A)|ψ〉, for all A ∈ A, and the vectors {πω(A)|ψ〉 :

A ∈ A} are dense in Hω. If ω is a pure state, (Hω, πω) is an irreducible representation.

This representation is unique in the sense that for any other representation (H, π)

satisfying the previous two conditions, there is a unitary operator U : Hω → H such

that Uπω(A) = π(A)U , for all A in A.

This is considered the natural representation for ω to live in, since it contains only states

that can be related to ω by operators in the algebra of observables. The criterion of “same

representation” employed in the GNS theorem is called unitary equivalence.12 In effect, the

theorem tells us that a state’s home representation (often called its GNS representation) is

unique up to unitary equivalence.

Now, it can be shown that two algebraic states of A can be superposed iff their GNS

representations are unitarily equivalent (Baker and Halvorson, 2010, 109fn22). This means

that a superselection sector corresponds to a unitary equivalence class of irreducible rep-

resentations of A. When representations (H, π) and (H′, π′) are unitarily inequivalent, a

11That is to say, if there is no nontrivial subspace S ⊂ H such that π(A)S = S for all A ∈ A.
12Since the unitary intertwiner U provides an isomorphism whose existence implies that the states of the

two representations make the same probabilistic predictions for all observables, unitary equivalence is often
considered sufficient for physical (or at least empirical) equivalence in quantum theory.
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superselection rule forbids the superposition of states from H with states from H′.
This means it is possible in principle to represent superselection rules in AQFT. But one

would prefer something more: the ability to derive which superselection rules hold in a given

theory from the algebra of observables for that theory. A goal of the algebraic approach is to

derive the interesting physical structure of a quantum theory from properties of its algebra

of observables (at least where possible). So rather than treating a theory’s superselection

rules as a brute posit, we would like to be able to derive them from the structure of this

algebra.

In fact, such a derivation is possible. This is the lesson of the Doplicher-Haag-Roberts

(DHR) theory of superselection, one of the landmark results in AQFT. This approach was

first explored by Doplicher et al. (1969).

DHR theory begins by setting a selection criterion to narrow down which states of A are

counted as physically possible. Typically, the number of mathematically well-defined states

on an algebra of observables includes many states with physically unrealistic properties (e.g.,

states of determinate position or momentum in QM). A selection criterion is a condition

states must meet to count as possibilities. Even in the absence of physical justification, a

selection criterion can be useful in constructing new theoretical frameworks. By pretending

that only a narrow class of states are physically possible, we can develop a physical concept

that applies to those states in the hope that it can be further generalized in the future.

In this spirit, the DHR approach relies on a selection criterion which is admittedly too

restrictive to admit all of the known physical possibilities. They require that states meet the

DHR selection criterion: Let (H0, π0) be the GNS representation induced by the priv-

ileged vacuum state ω0 of A. A representation (H, π) of A is DHR iff (1) for each

Minkowksi double cone O, the representations π0|A(O′) and π|A(O′) are unitarily equiv-

alent;13 and (2) (H, π) possesses finite statistics, that is, a finite-dimensional represen-

tation of the permutation group. Here O′ is the spacelike complement of O, π|A(O′)

is the restriction of the representation π to the subalgebra A(O′), and A(O′) is the

C∗-algebra generated by A(O1) with O1 a double cone spacelike separated from O. A

state is DHR if it is representable by a density operator in a DHR representation.

The intuitive idea is that DHR states are states which differ from the vacuum only within a

13A double cone is the intersection (not the union) of two light cones.
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finite spatial region. This requirement is not met by states in electrodynamics, since Gauss’s

law implies that these states are distinguishable from the vacuum everywhere in space.14 On

the other hand, it is possible for asymptotically free theories like chromodynamics and the

electroweak theory to satisfy the DHR condition.

For now, let’s impose the DHR condition as an admitted idealization and see what it gets

us. Recall that our goal is to derive the superselection structure of a QFT from its algebra

of observables. As we’ve seen, a unitary equivalence class of representations of A behaves

like a superselection sector. So when the DHR condition is applied, an equivalence class of

DHR representations will act as a superselection sector for DHR states.

A useful notion in superselection theory is that of an endomorphism: effectively a way of

shuffling around the operators in an algebra without changing its overall algebraic structure.

Since any DHR representation (H, π) is unitarily equivalent to the vacuum outside of some

region O, it is unitarily equivalent to (H0, π0◦ρ) where ρ : A→ A is an endomorphism of the

algebra of observables localized within O (Halvorson and Mueger, 2007, 800-803).15 That

is, acting on the vacuum representation with ρ (by composing π0 with ρ) gives us the DHR

representation (H, π). Whenever ρ and ρ′ map the vacuum representation to the same DHR

representation–physically, whenever they create the same quantity of charge–they will belong

to the same unitary equivalence class ρ̃. It can thus be shown that the DHR representations

correspond one-to-one to the unitary equivalence classes ρ̃ of localized endomorphisms.16 So

we can use localized endomorphisms to stand for DHR representations. For present purposes,

this will be convenient.

Recall that the charges (or additive quantum numbers) of a quantum theory are effectively

labels for superselection sectors. In particle physics, as has been well confirmed by exper-

iment, a theory’s charge quantum numbers are determined by its group of global internal

symmetries (its gauge group). It can be shown that an AQFT’s (unitary equivalence classes

14By contrast, the finite statistics requirement is easily met, since bosons, fermions and paraparticles of
any finite order all satisfy it. States with infinite statistics are often considered almost pathologically strange.

15A *-endomorphism ρ is localized within O iff ρ(A) = A outside O. We also require that endomorphisms
be transportable in the sense that there exist unitary operators in A which map between endomorphisms
localized in different regions (Halvorson and Mueger, 2007, 786, Def. 152). For simplicity one usually deals
only with endomorphisms localized within double cones (so O is only allowed to range over double cones),
but this assumption is eliminable.

16Mathematically, this means that the category of DHR representations of A is naturally isomorphic to
the category ∆ of localized, transportable *-endomorphisms of A (Halvorson and Mueger, 2007, 800-801).
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of) DHR representations, which act as superselection sectors, correspond one-to-one to the

charge quantum numbers one would expect given its gauge group (Baker and Halvorson,

2010, 110-114).

This means that DHR theory successfully predicts the structure of the superselection

sectors for any QFT satisfying the AQFT axioms and the DHR condition. Rather than

simply stipulate which superselection rules hold, we may derive them from the structure

of the algebra of observables. This constitutes one of the greatest explanatory successes of

the AQFT framework. Unfortunately, the domain of this explanation is presently limited

to QFTs satisfying the DHR condition, which we know does not apply to all physically

possible states. But the DHR account has already been generalized to states meeting the

weaker Buchholz-Fredenhagen condition, which requires equivalence to the vacuum in the

causal complement of one spacelike cone, and there is considerable hope for generalizing the

framework further (Doplicher, 2010, 728).

At the beginning of this section, I promised some remarks in defense of my choice of

the AQFT framework. The trustworthiness of AQFT, for physics-based metaphysics, is the

subject of lively debate (Fraser, 2006; Wallace, 2011). For present purposes, though, I think

AQFT is clearly the best framework available, for two reasons. First, even if AQFT is

not a trustworthy source of evidence for metaphysics, it is important that we establish the

conceptual possibility of permutation-symmetric QFTs with no particle interpretation–and

as we will see, AQFT can accomplish this. Second, superselection theory is one of the areas

where AQFT is likely to be a trustworthy source of metaphysical evidence, since it concerns

only the so-called infrared domain.

My first point is easy to grasp if we direct our attention to the dialectic. Recall that our

main concern here is to resolve a conceptual puzzle: how can we make sense of QFTs without

particles, when these theories are supposed to be permutation symmetric and the definition

of permutation symmetry seems to depend on particles? Even if AQFT can teach us nothing

about the metaphysics of the actual world, it can help resolve this puzzle by making clear

why permutation-symmetric AQFTs without particles make conceptual sense. Thus the

negative thesis of this paper–that permutation symmetry in QFT has no consequences for

the metaphysics of identity, since there are no particles in interacting and curved-spacetime

QFTs–escapes the charge of incoherence motivated by this conceptual puzzle.

That said, I also believe that superselection is one of the domains where AQFT can be
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trusted to inform metaphysics. To see why, we must examine the reasons that have been

given not to trust AQFT. The novel feature of the theory, one not treated rigorously by

alternative approaches, is the infinity of inequivalent representations, which result from its

infinitely many degrees of freedom. Infinitely many degrees of freedom become relevant when

one considers the limit of very short distance scales (UV degrees of freedom) or very large

scales (IR degrees of freedom). In AQFT terms, these are associated with two sorts of unitary

inequivalence of representations: local unitary inequivalence, in which representations are

inequivalent even when restricted to finite volumes, and global inequivalence, which only

appears in infinite regions of spacetime.

Wallace (2011) has argued persuasively that AQFT’s infinitely many UV degrees of free-

dom are un-physical artifacts of its mathematical representation, and hence any interpre-

tive implications of locally unitarily inequivalent representations can be disregarded. His

argument, which I accept for present purposes, is that events at very short length scales

(equivalently, very high energies) are outside QFT’s domain of application, and renormaliza-

tion theory gives us positive reason not to trust the theory’s predictions in the UV domain.

Fortunately, the only inequivalent representations relevant to DHR superselection theory are

locally unitarily equivalent, despite being globally inequivalent. In short, Wallace has given

us excellent reason to question AQFT’s predictions concerning locally inequivalent repre-

sentations, but is “happy to grant that long-distance divergences really should be tamed by

algebraic methods,” noting that “most quantum field theorists” can be expected to agree

(Wallace, 2011, 123). Since DHR theory applies only in this long-distance domain where

AQFT’s applicability is not in question, we have excellent reason to treat it as our best,

most fundamental theory for present purposes.

Now that we know how to represent superselection rules in AQFT, the way is open to

investigate permutation symmetry. We will see that, as in QM, permutation symmetry

in AQFT is equivalent to a superselection rule, where the charges correspond to bosons,

fermions and the different orders of parastatistics. We will also see that the action of the

permutation group on physical states in AQFT can be understood perfectly well even in the

absence of a particle interpretation.

17



6 Permutation symmetry generalized

We’ve seen that every DHR representation (up to unitary equivalence) corresponds to a

localized endomorphism of the algebra of observables. Although it isn’t immediately obvious,

these endomorphisms have a natural physical interpretation. They “create” charge, in the

sense that applying an endomorphism localized within O to a state ω will map ω to a different

state that contains some charge initially localized within O.

Endomorphisms are defined as acting on operators in the algebra A. What does it mean

to apply one to a state? Recall that states themselves are functionals on A, which map

operators to their expectation values. This means that ω ◦ ρ = ω(ρ(A)) is also a state for

any localized endomorphism ρ. Applying ρ to ω in this way will alter ω’s expectation values

within the region O where ρ is localized, leaving them unchanged elsewhere. It will also move

ω to a different superselection sector, assuming ρ is non-trivial. In particular, if ω is a state

in the vacuum representation (H0, π0), ρ will take ω to a state in the sector corresponding to

its equivalence class ρ̃, that is, a state of the representation (H0, π0 ◦ ρ). So ρ creates charge,

in this case by mapping a state in the (neutral/un-charged) vacuum sector to a state in a

sector of nonzero charge. In this sense, its effect on a state is somewhat analogous to that

of a Fock space creation operator, the difference being that the latter introduces a single

particle rather than a unit of charge. (From now on, we’ll treat the vacuum as our “basic”

state, setting ω = ω0.)

The key to implementing permutation symmetry (and hence, statistics) in the DHR ap-

proach is the realization that a representation of the permutation group Sn can be constructed

on the charge-creating morphisms. Suppose that ρ1, ρ2, ...ρn are unitarily equivalent endo-

morphisms; physically, this means that acting on a state with ρi generates the same amount

of charge in region Oi that ρj creates in region Oj when it acts on a state. Then, because

the category ∆ of endomorphisms is a tensor category, we have a well-defined notion of the

tensor product of these morphisms, which amounts to composing them:

ρ1 ⊗ ρ2 ⊗ ...⊗ ρn = ρ1 ◦ ρ2 ◦ ... ◦ ρn.

Our choice of a unitary equivalence class of morphisms, along with the symmetry property

of the category ∆, uniquely determines a representation of Sn on this tensor product. If this

is the trivial representation, we say that (H0, π0 ◦ ρi), the sector associated with the ρi, is a
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bosonic sector. If it is the alternating representation, we say the ρi correspond to a fermionic

sector. If the representation is higher-dimensional, the sector is parastatistical.

The physical meaning of permutations acting on endomorphisms isn’t immediately ob-

vious. To understand it, it helps to work within a Hilbert space representation of A that is

a direct sum of sectors. In such a “big” representation (H,Π) = (
⊕

iH0,
⊕

i π0 ◦ ρi), the

sector (H0, π0 ◦ ρi) for each charge ρ̃i will be a coherent subspace. And among the operators

on H, we can find unobservable field operators that create charge by moving states between

these coherent subspaces. In this sense, these field operators act like the morphisms ρi. In

particular, suppose ψ0 is the vector in H corresponding to the vacuum state ω0. Then we can

define Fi to be an operator on H such that Fiψ0 is a vector state in the sector (H0, π0 ◦ρi).17

This whole construction may seem pedantic (why talk about Fi instead of ρi itself?), but in

fact it will allow us to see how the statistics of a sector is reflected in the vector states of

that sector and their behavior under permutations.

First, suppose that ψi = Fiψ0 is a vector state that implements the state ω0 ◦ ρi in the

representation (H0, πi) = (H0, π0 ◦ ρi) corresponding to ρ̃i’s superselection sector. (This

means that all of ψi’s expectation values for the operators πi(A) ∈ πi(A) agree with ω0 ◦ ρi’s
expectation values for the operators A ∈ A.) Then, in the sector corresponding to ρi ◦ ρj,
there will be a state vector FiFjψ0 corresponding to ω0 ◦ ρi ◦ ρj. In effect, this will be a

composite of the vector state ψi (corresponding to the abstract state ω0 ◦ ρi) and the vector

state ψj (corresponding to the abstract state ω ◦ ρj). So let’s define the “product” vector

ψi × ψj to be the vector state FiFjψ0.

Note that the “product” we just defined is not the tensor product on H0. If ψi and ψj

are states in bosonic sectors, for example, ψi×ψj will be a symmetric state, even though the

expression ψi × ψj changes when we permute the indices i and j. So in terms of the tensor

product on H0, we may (for example) have ψi × ψj = 1√
2
(|ψi〉 ⊗ |ψj〉+ |ψj〉 ⊗ |ψi〉).

Now we have the formal machinery in place to see how the statistics of a sector determine

the statistical properties of its states. Suppose ψi and ψj are states in the same sector (which

is to say, they correspond to unitarily equivalent morphisms, i.e. ρ̃i = ρ̃j). Then, if the sector

they live in has Bose statistics, permutations will act symmetrically on the product state

and we will have ψi × ψj = ψj × ψi. On the other hand, if they live in a Fermi sector, we

17In the case of Fock space theories, the field operators Fi will be creation and annihilation operators.
There will not generally be a unique Fi for a given ρi.
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will have ψi × ψj = −ψj × ψi.
In general, if a given sector is identified by the DHR method as bosonic, a vector state

composed of n charges from this sector will transform according to the trivial representation

of Sn under permutations of the order of the n charges. A vector state composed of n charges

from a Fermi sector will transform according to the alternating representation of Sn. The

same formula applies to parastatistics. A composite of n charges from a para-Fermi (resp.

para-Bose) sector of order m will transform according to the mth-order para-fermionic (para-

bosonic) representation of Sn. This may seem no different in substance from the standard

quantum mechanical approach to statistics, and indeed (as we will see) in particle theories

the two are identical. But there is a crucial difference: the entities being permuted are not

necessarily single-particle states. Instead they are charge-creating morphisms.

This allows the DHR picture of statistics to apply even to interacting theories which

lack the Fock space structure needed to sustain a particle interpretation. In her argument

against particles, Fraser (2008) uses the constructive φ4 theory (in two and three spacetime

dimensions) as a representative example. Although as Fraser shows it lacks a particle in-

terpretation, the states of this theory meet the DHR condition, and so the DHR picture of

statistics applies to them. From the point of view of superselection theory, this is pretty

uninteresting, since the superselection behavior of φ4 theory is trivial. Since it treats only

Bose fields and lacks any internal symmetries, all of the theory’s states belong to a single

superselection sector. But there are non-trivial examples as well.

The earliest example of an interacting theory with non-trivial sectors is the Yukawa

interaction in two spacetime dimensions. Summers (1982) proves that this theory satisfies

the DHR condition. It provides a simple model of an interaction between a scalar field and a

spin-1/2 fermion field, approximating the scattering behavior of mesons and nucleons. Due

to the theory’s global U(1) symmetry, its charge quantum numbers are given by the integers

(the charge is carried by the Fermi field). In addition, the sectors break down into Bose and

Fermi sectors, since the theory includes both types of statistics.

If Fraser’s line of argument (recounted in §3) is correct, neither of these theories admits an

ontology of particles. And although no mathematically rigorous form of the Standard Model

has yet been constructed, we can expect these problems for particle interpretations to persist

in future constructive QFTs. So the standard quantum mechanical account of statistics, as

governing what happens to a state when we permute its particles, cannot apply to existing
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interacting theories and probably will not apply to their successors. Nonetheless, there is a

perfectly well-defined sense in which the states of these theories can be classified into Bose,

Fermi and parastatistical states, which correspond naturally to the expected representations

of the permutation group. Because the DHR approach to superselection applies, the states

break down into sectors which uniquely determine their statistical properties.18

The success of DHR is even clearer in curved spacetime. The approach has been gen-

eralized to apply to all globally hyperbolic spacetimes (Guido et al., 2001). Free QFTs on

many of these, e.g. Schwarzschild spacetime, exhibit multiple inequivalent particle concepts

as described in §3. So in fact there are two classes of QFTs without particles where the DHR

account nonetheless applies: constructive QFTs and free QFTs on curved spacetime.

In the absence of particles, the physical interpretation of this formalism is not obvious:

what does it mean physically to permute the morphisms that generate units of charge,

when the morphisms are mathematical objects and units of charge are values of a physical

quantity rather than concrete entities? By analogy, it would make little sense to “permute”

two values of the electric field. I see this as an outstanding question for future research.

One thought: perhaps the permutation invariance of field theories consists in the fact that,

when constructing a charged state from the vacuum, the order in which one generates the

charges does not matter to the physical interpretation of the resulting state. Whether this

is a satisfactory picture or not, the point remains that no particle-based picture will be

satisfactory in interacting theories, and this is sufficient to establish my (negative) thesis.

It will be instructive to perform one further “sanity check” on the DHR approach to

statistics, by verifying that the standard picture of permutations acting on particles emerges

as a special case in Fock space QFTs which do exhibit particle behavior.

7 Particles as a special case

The two canonical examples of QFT on Fock space are the free spin-0 field (real Klein-

Gordon theory) and the free spin-1/2 field (Dirac theory). Since the former is a theory

of bosons and the latter a theory of fermions, these examples taken together encompass

both experimentally observed forms of statistics. We will now see how the DHR approach

18A necessary caveat: of course it has not yet been established that DHR superselection theory can be
generalized to encompass a rigorous version of the Standard Model, if in fact one can be constructed.
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applies to both examples, reproducing the predictions of the standard particle-based picture

of statistics. In short: when we permute particles in a Fock space QFT, from the DHR

perspective we are permuting charge-generating morphisms.

On the standard picture, of course, every state of the Klein-Gordon (KG) theory obeys

Bose-Einstein statistics. In DHR terms, this means there should be no Fermi or parastatisti-

cal sectors. In fact, the superselection theory for KG fields is completely trivial. The theory

has only a single sector. This is the vacuum sector, of course, which must (as always) be a

Bose sector. So for all states ψi, ψj, we will have ψi × ψj = ψj × ψi–every composite state

will be a symmetric state, just as one would expect.

The case of Dirac theory is a little more interesting, because in this case the superselection

theory is (barely) non-trivial. There are two sectors in Dirac theory. One is a Fermi sector,

as one would naively expect. But since Dirac theory includes a vacuum state, there must

also be a vacuum sector for that state to live in. And since every vacuum sector is a Bose

sector, the Dirac theory has both a Bose and a Fermi sector.

This may seem surprising, at first. How can the theory of a fermion field include a sector

with Bose statistics? This becomes clearer if we keep in mind what it means for a sector

to have Bose statistics. It doesn’t mean that the states of that sector, taken individually,

will transform like symmetric wavefunctions when their particles are permuted. Instead it

implies only that, if we form a composite state out of states from that sector, this composite

state will transform symmetrically when we permute the states we composed to form it.

Now suppose that ψ1 is a state of two fermions, and likewise for ψ2. How should we expect

the composite state ψ1×ψ2 to behave when we permute ψ1 and ψ2?
19 To permute ψ1 and ψ2

is, effectively, to permute two pairs of fermions. We switch the two fermions in the state ψ1

with the two fermions in state ψ2. But permuting two pairs of particles makes no physical

difference, even to an antisymmetric state. While performing one particle permutation on

an antisymmetric wavefunction will flip its sign, performing a second permutation flips it

back again, and we are left with the same state we started with. Thus, if ψ1 and ψ2 are

two-fermion states, we should expect that ψ1×ψ2 = ψ2×ψ1. But this is just what it means

for ψ1 and ψ2 to belong to a Bose sector. In general, we should expect states containing even

numbers of fermions to live in a Bose sector rather than a Fermi sector.

19Remember that this product state ψ1 × ψ2 is the one we defined in the previous section, and is not the
same as the tensor product ψ1 ⊗ ψ2.
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In fact, this is exactly how the sectors of the Dirac theory break down. To elaborate with

a bit more formal detail: the state space for Dirac theory is the antisymmetric Fock space,

F = C⊕H⊕ S−(H⊗H)⊕ S−(H⊗H⊗H)⊕ ..., (5)

where S− denotes projection onto the antisymmetric subspace. The terms in this direct sum

break down into two subspaces whose direct sum is the whole Fock space. That is, we have

F = F e
⊕
Fo, where F e, the even subspace, is the subspace of F with even particle number:

F e = C⊕ S−(H⊗H)⊕ S−(H⊗H⊗H⊗H)⊕ ..., (6)

while Fo, the odd subspace, is given by

Fo = H⊕ S−(H⊗H⊗H)⊕ ..., (7)

which includes only states with an odd number of particles.

Acting on the Dirac vacuum state with creation and annihilation operators (or equiv-

alently, with the Dirac theory’s field operators), we can generate the entire antisymmetric

Fock space. However, the field operators of the Dirac theory are not elements of its alge-

bra of observables.20 When we act on the vacuum state with operators from the algebra of

observables, the Hilbert space generated is the even subspace F e, not the full antisymmet-

ric Fock space F . This means that the even subspace, and not the full Fock space, is the

GNS representation of the vacuum state. In the language of superselection theory, the even

subspace is the vacuum sector, and thus the odd subspace must constitute a different super-

selection sector, which must be reachable from the vacuum by the action of charge-creating

morphisms. The theory’s charge-creating morphisms (or rather, the concrete operators that

represent them, which we labeled Fi in §5) must act on a state in the even subspace to gen-

erate a state in the odd subspace, and vice versa. So clearly these are given by the creation

and annihilation operators on the antisymmetric Fock space. In this sense, the n-particle

states of Fock space are generated from the vacuum by (in DHR terms) “adding charges.”21

20The reason for this is that the microcausality axiom of AQFT requires spacelike separated observables
to commute, but spacelike separated spinor fields (like the Dirac field operators) anticommute.

21Thanks to Hans Halvorson for helping to verify these points about the superselection structure of the
Dirac theory.
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As noted above, states with odd numbers of fermions will obey Fermi statistics (in the

DHR sense), while even-numbered states will obey Bose statistics. So we would expect the

even subspace to count as a Bose sector, and the odd subspace as a Fermi sector. Since

the vacuum sector always exhibits Bose statistics, the former is obviously true. And when

we construct the representation of the permutation group on the class of charge-generating

morphisms corresponding to the odd subspace’s superselection sector, indeed we find that it

is a Fermi sector.22 The statistical predictions of the DHR picture reproduce the predictions

of the standard particle picture for free QFTs. Thus the statistics of particles, in those

QFTs that support a particle ontology in the first place, emerge as a special case of the more

general DHR account of statistics for quantum fields.

8 Conclusions

We’ve now seen how to make sense of the notion that a quantum state obeys Fermi-Dirac

statistics, or Bose-Einstein statistics, even if said state cannot be understood as describing a

system of particles. Permutation symmetry can still be understood as a superselection rule,

even in the absence of particles to be permuted. Moreover, we’ve seen that the statistical

properties of particles, for those states that do possess a particle interpretation, emerge as a

special case of this more general picture of statistics.

In the DHR picture, permutations act on the morphisms that connect states of differing

charge. Permutation symmetry then amounts to the notion that the order in which these

morphisms are applied to a state–the order in which charge is formally added to an algebraic

state to generate a different state–does not matter to which state is generated. In the case

of free QFTs admitting a particle interpretation, the charge-creating morphisms can be

represented by particle creation and annihilation operators, and permutation symmetry has

its usual physical interpretation. In the interacting and curved-spacetime field theories that

fall under the domain of DHR, however, this physical interpretation is not available, since a

particle ontology is ruled out by the arguments surveyed in §3.

What to make, then, of the notion that the statistical behavior of quantum particles

22To see why, consider what happens when we change the order in which we act on a state with the operators
representing the morphisms, i.e. the creation or annihilation operators. Since these operators anticommute,
the state is multiplied by -1 when we change the order of two of them. Thus the corresponding representation
of Sn is the alternating representation.
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undermines classical conceptions of individuality, or leaves it indeterminate whether classical

notions of individuality apply? Under the assumption that our most fundamental theory of

matter is non-relativistic QM, or free QFT on flat spacetime, this notion may be of great

interest. But in fact, our most fundamental theories are interacting QFTs and QFTs on

curved spacetime. There is no natural way for these theories to accommodate an ontology

of particles, except as an approximation in the limited domain where they resemble Fock

space QFTs. The reader may be tempted to understand the DHR approach to statistics

as somehow re-casting the existing debate about identical particles in terms amenable to

realistic QFTs. But to the contrary, my point is that there is no analogue of the existing

debate in interacting or curved-spacetime QFTs. So puzzles about the statistical behavior

of quantum particles would seem not to bear on the question of whether the actual world is

made up of individuals. According to the QFTs that offer the best available approximation

to reality, there are no quantum particles, and we have no particular reason to expect that

they will be re-introduced by some later, more fundamental theory.

For those seeking evidence from physics about the nature of identity or individuality in

our universe, there are better places to look than quantum mechanics. One potential source

of insight is offered by those interpretations of quantum theory which do posit particles,

namely Bohmian interpretations. For example, Durr et al. (2005) have advanced a Bohmian

particle theory that can (they argue) reproduce the predictions of interacting QFTs. A study

of whether these Bohmian particles conform to our classical concept of individuals would be

of great value, especially to those tempted by such an interpretation.

The other promising avenue for potential research concerns the treatment of individuals

in spacetime theories, a project which is already underway (see French and Krause, 2006,

65-80). Since QFT is probably best understood as describing the assignment of fundamental

quantities to regions of spacetime (Wallace and Timpson, 2010), it is plausible that the best

candidates for the “individuals” posited by the theory are spacetime points, or spacetime

regions. For this reason it seems to me that spacetime theories, and not basic quantum

mechanics, should be the locus of philosophical debate about the nature of identity and

individuality in modern physics.
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