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Abstract. Mainly on the basis of some notable physical examples reported in a 1929 Oscar 

Chisini paper, in this brief note it is exposed further possible historic-critical remarks on the 

definition of statistical mean which lead us towards the realm of Integral Geometry, via the 

Felix Klein Erlanger Programm. 
 

 

 

1. Introduction 

 

If one identifies, from the mathematical viewpoint, the concept of statistical variable (of Statistic) with that 

of random variable (of Probability Theory) according to what established in (Dall’Aglio, 1987, Capitolo IV, 

§ IV.2), then the notion of mean value may be included in the most general one of expectation value of a 

random variable
1
, in turn included in the wider class of the moments of a random variable. 

  Following (Piccolo, 1998, Capitolo 4), that of mean is a primitive concept for the human being, so that it is 

perceived with immediacy, even if its measure is arbitrary since depending on the synthesis criterion 

adopted; through this last, then, it will be possible to state a formal definition of it. The first notion of mean 

was due to
2
 A.L. Cauchy in 1821 who defined it as an intermediate value between the maximum and 

minimum values of a given statistical variable; such a definition, nowadays is considered as a simple 

internality Cauchy condition. Instead, a great attention had a formal definition of mean value due to Oscar 

Chisini in 1929, according to whom the mean   of given statistical variable X, is that value which, respects 

to another given synthetic function f defined on the frequency distribution of X, leaves invariant the values of 

the latter, that is to say
3
 

 

                                                                                                
   

Following (Girone & Salvemini, 2000, Capitolo 6, § 6.1) and (Ferrauto, 1996, Capitolo 4), this mean value 

  warrants to leave unchanged a predetermined quantity assumed to be invariant, and formally expressed 

by the function f. This Chisini’s theoretical criterion defining a mean, is made operative by specifying the 

function f in dependence on the formal properties (like additivity, multiplicativity or invertibility) of the 

random variable X, so reaching to various possible types of means on the basis of the f chosen (Piccolo, 

1998, Capitolo 4, § 4.2); such a choice is strictly dependent on the context of the involved problem. 

  Other possible definitions of mean have also been proposed, like that according to O. Wald (1950) and that 

according to M. Nagumo, A.N. Kolmogorov and B. De Finetti (Piccolo, 1998, Capitolo 4, § 4.2), which 

substantially make use of methods analogous to the functional one of Chisini whose essential idea is the 

following: through the function f, it is possible to consider the transferability of the initial statistical variable 

X amongst the unities of the statistical population in which it is defined. 

                                                           
1
 In this regards, see also (De Finetti, 1930) and what will be said in Section 2. 

2
 For some related historic-bibliographical notes, see (Berzolari, 1972, Articolo LV, Capitolo II). 

3
 For instance, to get the usual arithmetic mean, we choose the following weighted invariant function     ,…,    
   

 
      and we impose that be    

 
         

     , whence      
 
         

 
    which is the weighted 

arithmetic mean of the variables    with weights   . Instead, the invariant function giving rise the simple geometrical 

mean is as follows     ,…,       
 
   , from which, applying (1), it follows    

 
          

   , whence 

      
 
   

 
. Finally, for the weighted harmonic mean, it is     ,…,       

 
      , hence    

 
        

   
 
      whence        

 
         

 
        which is the weighted harmonic mean with weights   . For further 

information in this regards, see (Girone & Salvemini, 2000, Capitolo 6). 
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In this brief note, we want above all dwell with the notion of mean value according to Chisini, on which 

Bruno De Finetti has mainly based his important paper (De Finetti, 1930). 

 

2. On Chisini’s mean definition  

 

In the general framework of a critical discussion of the notion on mean value in Statistics, De Finetti centers 

his paper on a review of the notion of statistical mean according to Oscar Chisini with its possible features 

and applications, first stating as through it an extension of the concept of mean to an arbitrary random 

variable is also possible. 

  Oscar Chisini, whose main research field was in Algebraic Geometry, in 1929 incidentally was led to 

consider some statistical questions from which derived his brief but meaningful note on the general notion of 

a mean value. In it, he first of all criticizes the old 1821 Cauchy definition of mean simply conceived as a 

certain value comprised between the minimum and maximum values of the set of values of a given variable, 

because it does not provide neither any synthetic information giving a global vision of the phenomenon 

described by this variable nor puts into evidence the typical relative character that a mean must have.       

According to Chisini, these last requirements might be accomplished, for instance, by means of the choice of 

a certain function depending on the observed quantities of this phenomenon, to this purpose referring to 

some meaningful kinematical
4
 and geometrical

5
 problems as practical examples of this his basic point of 

view: for instance, to point out the relative character of the mean, that is to say, its dependence on the 

circumstances of the involved problematic situation, he argues, among others, on a physical problem 

concerning the determination of the mean resistance of three conductors, whose result clearly depend on the 

geometry of the this physical problem which is related to parallel or sequential disposition of these 

conductors. At last, he also considers the determination of this statistical parameter – a mean value – as 

regard very interesting physical problems concerning the oscillations of certain physical systems (like a 

pendulum), in which it is also involved some not negligible geometrical considerations connected, for 

example, to mass distribution problems whose inertial momenta are nothing more that second order 

statistical momenta (see (De Finetti, 1970, Volume I, Capitolo II, §§ 8, 9, 10)). 

  Therefore, Chisini provides a general definition of mean of an arbitrary distribution of a quantity given in 

certain circumstances and situations
6
, as that unique value of it which may be substituted without any change 

in the above contextual problematic framework. To our purposes, we stress on this last peculiarity, that is to 

say, the just mentioned requirement of general invariance about the circumstantial and situational setting of 

the given distribution. In the general case of an arbitrary random variable ξ with distribution given by the 

partition function Φ(ξ), then we should consider a functional of the type  [Φ(ξ)] =            instead of 

          , and request to be valid the condition  [Φ(ξ)] = Fξ(x) if x is the required mean for such a 

random variable, with Fξ(x) = δ(ξ – x) distribution function of the random variable ξ centered at x. Therefore, 

under the hypothesis of invertibility of F, we have x =   
    [Φ(ξ)]). 

  All these above considerations have been drew from the papers (Chisini, 1929) and (De Finetti, 1930). 

In this regards, see also (De Finetti, 1970). 

                                                           
4
 In this regards, it is classical examples those related to the computation of the mean velocity of certain kinematical 

problems, those same usually reported by the common treatises and textbooks on Statistics and Probability Theory; see, 

for instance, besides (De Finetti, 1930), also (Girone & Salvemini, 2000, Capitolo 6, § 6.12) and (Dall’Aglio, 1987, 

Capitolo IV, § 2, Esempio IV.2.1). 
5
 Above all, the examples reported at points 4. and 6. of the paper (Chisini, 1929), are very meaningful to show the 

dependence of some types of means by the geometrical aspects of the problem in which they are involved. In particular, 

the first example reported at point 6. might be extended considering in the formula (12), of the Chisini’s paper, a path 

integral along the distribution line of the values given by x = x(t) instead of a scalar integral which, besides, depends too 

by the geometry of the problem since it is the area underlying this line of equation x = x(t); it is likewise interesting the 

other following examples of the same point 6., from which it result to be always non-negligible the geometrical aspects 

of the considered problem. Finally, the argumentations carried out at the final point 7. clearly show what significant 

effects has a change of independent variables of the function f of (1), leading us toward the more general group theory 

considerations which will be given in the next Section 4. However, for a more in-depth discussion of these type of 

argumentations, see (De Finetti, 1970, Volume I, Capitolo II, §§ 8, 9, 10). 
6
 About the choice of a given mean, De Finetti, in (De Finetti, Volume I, Capitolo II, § 9), speaks of the relative and 

functional meaning that it must be identified for answering to the purpose of the given problem; according to the author, 

this problem’s purpose may be summarized in the German term zweckmässig where zweck means ‘’purpose’’ whereas 

mässig means ‘’suitable’’, that is to say, the aim of the problem must be ‘’suitable to the purpose’’ (zweckmässig). 
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3. A particular case related to non-commutativity. 

 

One of the main formal properties of a statistical mean is that of commutativity, or else its invariance under 

the action of the permutation group. Indeed, following the very important paper
7
 (Stevens, 1946), the first 

measurement approach to statistical variables both qualitative and quantitative, consists in their classification 

according to one of the four main measure levels stated by S.S. Stevens, precisely the nominal, ordinal,  

interval and ratio scales, of which we herein reports what the same Stevens says in (Stevens, 1946, p. 677) 

 

«Paraphrasing N. R. Campbell (Final Report, p. 340), we may say that measurement, in the broadest 

sense, is defined as the assignment of numerals to objects or events according to rules. The fact that 

numerals can be assigned under different rules leads to different kinds of scales and different kinds of 

measurement. The problem then becomes that of making explicit (a) the various rules for the 

assignment of numerals, (b) the mathematical properties (or group structure) of the resulting scales, 

and (c) the statistical operations applicable to measurements made with each type of scale». 

 

Subsequently, at page 678 of (Stevens, 1946), about the description of the third column of the basic Table I 

(see later), he states that 

 

«In the column which records the group structure of each scale are listed the mathematical 

transformations which leave the scale-form invariant. Thus, any numeral, x, on a scale can be 

replaced by another numeral, x’, where x’ is the function of x listed in this column. Each mathematical 

group in the column is contained in the group immediately above it. The last column presents 

examples of the type of statistical operations appropriate to each scale. This column is cumulative in 

that all statistics listed are admissible for data scaled against a ratio scale. The criterion for the 

appropriateness of a statistic is invariance under the transformations in column 3». 

 

We herein report the Table I of (Stevens, 1946) with the additions and corrections given in (Stevens, 1958) 

 
Table I 

Measurement 

Scale 

Basic Empirical 

Operations 

Mathematical 

Group Structure 

Permissible Statistics 

(Invariantive) 

 Typical examples   

        

NOMINAL Determination of 

equalities 

Permutation group x’ 

=  f(x) with f  bijective 

correspondence 

Number of cases, Mode, 

Contingency correlation, 

Information measure 

 Numerations   

ORDINAL Determination of 

greater or less 

Isotonic group x’ = 

f(x) with f injective 

map 

Median, Percentiles, 

Ordinary correlations  

 Intelligence test 

coarse scorings, 

Mineral hardness 

  

INTERVAL Determination of 

equality of 

intervals or 

differences 

General linear group 

x’ = ax+b 

Mean, Standard 

deviation, Rank-order 

correlation, Product-

moment correlation 

 oF and oC 

temperatures, Line 

position, Intelligence 

test standard scorings 

  

RATIO Determination of 

equality or ratio 

Similarity group x’ = 

ax 

Coefficient of variation, 

Geometrical and 

Harmonic means 

 Densities, oK 

temperatures, Sones, 

Brils 

  

        

 

 

                                                           
7
 See also (Ferrauto, 1996, Capitolo 1) and (Piccolo, 1998, Capitolo 2, § 2.3). 
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According to what said by the same Stevens in (Lerner, 1977, Capitolo 3), the central characteristic on which 

is based this scale classification is that of invariance through which it is possible to get an objective scientific 

information from a given set of data if and only if they are invariant respect to a certain group of 

transformations, the invariance group of the given scale. 

  The four measurement levels are cumulative and therefore, in particular, the mathematical properties of one 

level are included into those of the higher levels
8
 (see (Ferrauto, 1996, Capitolo 1)), and hence the 

commutativity, formally given by the invariance respect to the permutation group of the first measurement 

level, is one of the main formal properties owned by the various statistical tools therein mentioned. From this 

last conclusion, it is also possible to argue what follows. 

  Following (Bernardini, 1968, Capitolo XV), (Kittel et al., 1970, Capitolo 2, § 2.6) and (Tonzig, 1981, 3), 

the finite angular displacements and velocities are directional quantities which yet are not of vectorial nature 

because they does not verify the commutative law for the sum, so that it is not possible to consider an any 

their mean in the above sense
9
. On the other hand, the non-commutativity of finite rotations

10
 is due to the 

non-commutativity of the rotation differential operators (generators) Lx, Ly and Lz of the group SO(3), which, 

amongst other, lead to mathematics of the addition of quantum angular momenta and related selection rules. 

These last quantum observables cannot be summed among them with the ordinary rules of a commutative 

algebra but according to the irreducible representation methods of SO(3) (see (Onofri & Destri, 1996, 

Capitolo 8, § 8.3); in particular, it is not possible to consider, for them, the usual statistical means. 

  The observations made so far, above all those related to the basic above mentioned work of Stevens, clearly 

lead us towards a major consideration of the relationships elapsing between Group Theory and Statistic, 

hence between Geometry and Statistic if one takes into account the well-known 1872 Felix Klein Erlanger 

Programm, whose principle of the method sets that the main formal properties of geometrical entities are 

those invariant respect to the action of well-determined groups. Hence, following this Klein’s idea, central 

concepts and tools of Geometry will be those of group invariance and symmetry, this program having had 

notable and fruitful features both in pure and applied mathematics, as well as in Physics: one of these, 

concerns that branch of Mathematics known as Integral Geometry, which is closely connected to the notion 

of geometric probability and related arguments.  

 

4. Towards the Integral Geometry 

 

Following
11

 (Stoka, 1982, Capitolo III), if Gm is an m parameter Lie group of transformations of  n
 of the 

type 

 
                                                       =                                                 

 

depending on m parameters     j = 1, …, m, then a function            is said to be an integral invariant of 

the group Gm if 

 

                                                   
 

                       
 

         

 

for every    n
 for which there exist the given integrals. On the other hand, if 

 

        
          

          
  

 

is the Jacobian determinat related to the variable change                     given by (2), then, from 

(3), it follows that 

 

                                                           
8
 As already said by the same Stevens, when he says that «[…] each mathematical group in the column 3 is contained in 

the group immediately above it». 
9
 Analogously, the usual mean values, in general, cannot be applied to computations involving the so-called intensive 

physical quantities, like the temperatures notwithstanding these last commute among them. 
10

 But not of the infinitesimal ones. 
11

 For a more complete reference, see (Stoka, 1968). 
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Now, the relation (1), written for   instead of  , is of the type (4) when                      and 

         (or a nonzero constant), so that the (1) is a particular case of the more general relation (4). 

  If                      are the infinitesimal generators of Gm, then a theorem of R. Deltheil (see 

(Stoka, 1982, Capitolo III, § 3.1)) states that for            be an integral invariant of Gm it is necessary 

and sufficient that   be solution of the following system of first order partial differential equations 

 

  
 

   

 

   

                                 

 

whence it follows a close relationship between the group structure of Gm and its integral invariant functions 

 . The group Gm is said to be measurable if it admits an unique integral invariant function Φ, at most up to a 

multiplicative constant. 

  Let    be a family of p (    dimensional and q parametric manifolds Vp  of  n
 each of which is given by 

the system of (parametric) equations 

 

                                       

 

with any    analytic and         arbitrary parameters, the variability of this family being given only by the 

variability of these parameters    and not by the functions   . Let   be a group acting on  p, that is to say, 

such that T:  p   p for every T   , and let            
   

 be the internal direct product of the isotropy 

groups    
                         , each of which is a normal subgroup of  . Hence, let         

be the related quotient group which has the property of leaving globally invariant the family    without 

containing any transformation (different from the identity) which leaves invariant every manifold    of  p; 

such a group will be said the maximal invariance group of  p.  

  If    is a Lie group of transformations of  n
 of the type (2), said         the parameters of a manifold   , 

then the parameters         of the manifold   
        will be such that 

 

                                                                     

 

where 

 

                                                                                                           

 

for certain functions   . Therefore, if       is the space of the parameters         of the family  p, 

then to the maximal invariance group   , whose elements are of the type (2), it is possible to associate, 

relatively to the space   , the family of transformations     which form a group isomorphic to    and that 

will be denoted by      ; hence          , the first group being also said associated to    respect to the 

family  p. Thus, if       is a measurable group with invariant integral function           , then we can 

define a measure on  p as follows: said   a subset of  p, we put 

 

                                                               
                   

  

         

 

where    is the bounded set of the parameter space   , corresponding to   through the (5); evidently, such 

a definition depends on the basic isomorphism            Thus, we can now define a geometric 

probability as follows: if      , then the (geometric) probability for a manifold      belongs to   , is 

given by 
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Moreover, if ξ is an arbitrary random variable associated to the set    p, then the h-th geometric moment 

of ξ is defined by 

 

 

    

     
                            

        

                 
        

 

 
 

which, as known
12

, generalize the various notions of means (like the arithmetic, harmonic and geometric 

ones) of the discrete case. From here, it is possible to make out a certain geometric background in Statistic.  

   

6. Conclusions 

 

As seen, the various notions so far introduced strictly depend on the Lie group of transformation    of the 

type (2), of which we have considered a possible isomorphic image, namely      . Furthermore, in these 

discussions it has also been possible to verify as the basic Chisini invariant relation (1) may be included as a 

particular case of the more general invariant relation (4), upon which have been centred the various 

argumentations that followed. In turn, the latter are all closely related to the action of the given Lie group of 

transformations    and its invariants (like (4)), so that the more properly geometric framework might make 

its appearance via the general philosophy of the already cited Felix Klein Erlanger Programm, as regards the 

geometric probability theory as a particular chapter of the Integral Geometry
13

. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
12

 See, for instance, the notion of power mean value of index h for the discrete case in (Girone & Salvemini, 2000, 

Capitolo 6, § 6.11) which, amongst others, contain, as particular cases, the notions of arithmetic, harmonic and 

geometric mean. In turn, this power mean is a particular case (related to the discrete one) of the more general notion of 

h-th moment of an arbitrary random variable (see (Dall’Aglio, 1987, Capitolo IV, § IV.3)). 
13

 For brief historical outlines of this fundamental mathematical branch with related possible applications, see, for 

instance, (Stoka, 1982). 
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