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Abstract

Randomized Controlled Trials (RCTs) are currently the gold standard within evidence-

based medicine. Usually, they are conducted as sequential trials allowing for monitoring

for early signs of effectiveness or harm. However, evidence from early stopped trials is

often charged with being biased towards implausibly large effects (e.g., Bassler et al. 2010).

To our mind, this skeptical attitude is unfounded and caused by the failure to perform

appropriate conditioning in the statistical analysis of the evidence. We contend that a shift

from unconditional hypothesis tests in the style of Neyman and Pearson to conditional

hypothesis tests (Berger, Brown and Wolpert 1994) gives a superior appreciation of the

obtained evidence and significantly improves the practice of sequential medical trials,

while staying firmly rooted in frequentist methodology.

1 Introduction

Randomized Controlled Trials (RCTs) – trials where patients are randomly assigned to a

treatment and a control group, while controlling for possible confounders – are currently the

gold standard within evidence-based medicine (Worrall 2007). Usually, they are conducted

as sequential trials allowing for monitoring for early signs of effectiveness or harm.

Monitoring refers to the analysis of data in sequential trials carried out as they accumulate,

open to the possibility of stopping the trial before the planned conclusion. By terminating

a trial when overwhelming evidence for the effectiveness or harmfulness of a new drug is

available we can bound the prohibitive costs of a medical trial and protect in-trial patients
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against receiving inferior treatments. Thus, monitoring contributes to meeting ethical and

epistemic requirements that clinical investigators are confronted with.

However, monitoring in sequential trials also gives rise to a number of fascinating method-

ological debates. First, the two grand schools of statistical inference – Bayesian and frequentist

inference – are in outright conflict about how to plan and to evaluate a sequential trial. Sec-

ond, the early termination of sequential trials raises a bulk of concerns: For instance, is it

ethically mandatory to stop a trial that indicates the possibility of serious adverse effects,

jeopardizing the health of actual patients? Or should the treatment be continued in order to

avoid that a successful drug is prematurely rejected, which would deprive future patients of

an effective cure?

While we cannot adjudicate these far-reaching questions, we follow Worrall (2008: 418)

that “no informed view of the ethical issues [...] can be adopted without first taking an

informed view of the evidential-epistemological ones”. Thus, we will analyze the statistical

methodology of sequential medical trials, focussing on evidence provided by trials stopped

early for benefit. In the medical literature, such evidence often meets skeptical reactions:

RCTs stopped early for benefit [...] show implausibly large treatment effects,

particularly when the number of events is small. These findings suggest clinicians

should view the results of such trials with skepticism. (Montori et al. 2005: 2203)

This standpoint is affirmed by the recent STOPIT-2 metastudy where Bassler et al. (2010:

1187) blame truncated RCTs with “appreciable overestimates of effect”. However, we do

not share the pessimistic conclusion of these authors. While we believe that some of their

criticisms of experimental practice in medicine are valid, we believe that the main issue is

not a bias inherent in stopping early for benefit, but the fallacious statistical interpretation of

such trials. These misinterpretations are, to our mind, mainly caused by a lack of awareness

about issues in statistical methodology that also troubles other disciplines, such as economics

and psychology.

Our essay takes the following route. First, we expose the arguments for and against the

presence of bias in early stopped trials and explain why this problem is related to principled

questions in statistical methodology (Sect. 2). Subsequently, we argue that the real problem

is the use of unconditional error assessments in sequential trials, rather than the often-

invoked divide between Bayesians and frequentists (Sect. 3). Then we show that conditional
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frequentist tests (e.g., Berger, Brown and Wolpert 1994; Berger 2003) reconcile the need for

valid post-experimental appraisal of the evidence with preference for frequentist methods and

performance measures in the regulatory framework of medical trials (Sect. 4). Finally, we

wrap up our results and sketch how a superior methodological framework can improve the

design and practice of sequential trials and eventually lead to better decisions (Sect. 5).

2 Stopping on a random high?

The practice of stopping RCTs early for benefit has been subject to severe epistemological

criticism: trials stopped early for benefit show implausibly large treatment effects, relative to

what the medical community would be inclined to expect. In a review of 134 trials stopped

early for benefit, Montori et al. (2005) point to an inverse correlation between sample size and

treatment effect: the smaller the sample size achieved by the trial at the moment of stopping,

the larger the estimate it provided for the effect. The more recent study by Bassler et al.

(2010) shows that truncated trials report significantly higher effects than trials that were not

stopped early.

The danger in stopping a trial for apparent benefit consists in promoting a treatment that

is actually less efficacious. For instance, Mueller et al. (2007) report a case of two leukemia

treatments where interim analyses suggested a high relative risk reduction (53% and 45%)

in a particular chemotherapy regimen. However, that assessment had to be reversed after

completion of the trial. In practice, the problem with truncated RCTs is often aggravated

by improper reporting: crucial elements of trial design such as sample size, points of the

interim analysis, or possible ex-post adjustments of effect estimates are missing in a majority

of published trials (Montori et al. 2005).

The aforementioned objections severely threaten the reliability of early stopped trials, as

well as their reputation in the medical community. Thus, if investigators wish to stop a trial

early, they might do so at the risk of ending up with a result that the medical community does

not trust. This situation threatens to nullify the possible advantages of monitoring mentioned

in the introduction.

The claim of bias made against trials that stop early is based upon an argument that

is known in the medical literature under the name of “stopping on a random high”. The

argument builds on the consideration that evidence suggestive of a strong treatment effect
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can be observed just by chance. Thus, if several interim analyses are performed, sometimes

the trial will be stopped for benefit just by chance, exaggerating a small or null effect. It may

even be the case that the trend would vanish or even reverse, if the trial were continued, as

happened in the leukemia example mentioned earlier.

The validity of this argument has been questioned by several methodologists, especially

by those that are familiar with a Bayesian framework. Goodman, Berry and Wittes (2010)

argue that the difference observed in the metastudies of Montori et al. (2005) and Bassler

et al. (2010) was actually predictable: highly efficacious treatments will naturally be more

prone to early termination for benefit. Hence, the observed difference in estimated effect size

is precisely what we should expect. Comparing early stopped to completed trials amounts,

as highlighted by Berry, Carlin and Connor (2010), to selecting the trials to be compared on

the basis of their outcome.

Is there a methodologically sound way to account for the worry expressed by the “stopping

on random high” intuition? We think that the uneasiness in the medical community is not

so much about stopping early, but about trials with implausibly large effects – these effects

require, in the words of Mueller et al. (2007), “astute clinicians” to make an appropriate

interpretation of the results. In the upcoming section we will argue that this uneasiness

is caused by the Achilles’ heel of statistical methodology in sequential medical trials: the

subscription to unconditional inference procedures.

3 Problems with unconditional inference in sequential medical

trials

Sequential medical trials usually control the reliability of a testing procedure from a pre-

experimental point of view, by means of Type I and Type II error rates. These error proba-

bilities are extremely important for proper experimental design, and they get a lot of attention

from a regulatory point of view. Moreover, frequentist statisticians and philosophers of science

have argued that if the sampling plan is violated, the error probabilities cannot be properly

controlled and are actually inflated far beyond acceptable (Mayo and Kruse, 2001).

However, adherence to a proper sequential sampling plan is not sufficient to secure a

reliable result. As mentioned at the end of the last section, prior knowledge or empirically-
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based prior expectations are highly relevant for sound decision-making in the medical arena

(cf. Mueller et al. 2007). Yet, at the present state they do not enter the decisions that are

ultimately made, except in a methodologically unsatisfactory ad hoc way.

In this respect, Bayesian methods have the potential to alleviate the problems with mon-

itoring discussed above. Bayesian reasoners assign a prior probability distribution over the

values of the parameter of interest (e.g., relative risk reduction). This distribution represents

their subjective uncertainty about the true value of the parameter. By means of Bayes’ The-

orem, this distribution is updated to a posterior distribution that synthesizes the observed

evidence with the background knowledge.

Goodman (2007) argues that the inclusion of relevant prior information inherent in the

Bayesian framework provides a natural way to account for the relevance of contextual knowl-

edge in medical decision-making. From a Bayesian point of view, successful previous studies

on a treatment make a positive result for the current trial more expected and thus support

the decision to stop early, while on the other hand, negative results of other studies throw a

skeptical light on significant observed effects. Thus, unexpected results will be balanced by

the prior and lead to a more conservative conclusion than if Bayesian methods had not been

used.

In particular, it can be explained that truncated trials provide, ceteris paribus, less confi-

dence than trials with a comparable effect size that were completed. The smaller the actual

sample, the more will the posterior distribution resemble the prior distribution (for a given

effect size). So it appears that the worries of Montori et al. (2005) and Bassler et al. (2010)

– overestimation of treatment effect in truncated RCTs – are naturally accounted for.

Despite the advantages just outlined, there are some serious counterarguments to the

viability of Bayesianism in clinical trials. A first issue is that some of the philosophical

implications of Bayesian inference – such as the evidential, post-experimental irrelevance of

experimental design – conflict with the need to carefully plan and conduct sequential medical

trials. This is unacceptable to regulatory bodies that are keen to promote proper design of

medical trials as a means to ensure the validity of trial results (cf. FDA 2010).

Moyé (2008) has also highlighted a non-sociological point: the problematic specification

of a prior belief function.1 While “objective”, non-informative priors (Jeffreys 1961; Bernardo

1Similar worries arise regarding the definition of an appropriate loss function required for a Bayesian decision
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1979) respond too easily to implausibly large effect sizes, the history of medical trials shows

that subjective beliefs about the efficacy of a drug are all too often overturned by surprising

findings. The latter problem hampers the use of properly subjective priors and, according to

Moyé, it persists even if data from meta-analyses are taken into account.

We consider these worries legitimate and we think they may represent a crucial counter-

indication to the use of Bayesian methods in healthcare assessment, even though some of the

issues are regulatory rather than epistemological. That said, we believe that the often-cited

antagonism between Bayesians and frequentists rests on the false presumption that either of

the two is right while the other is wrong. In fact, we suggest to replace that antagonism by

the contrast between conditional and unconditional procedures. By “conditional”, we refer

to statistical procedures that quantify the conclusiveness of a test result by conditioning on

part of the observed data, while “unconditional” refers to the absence of such conditioning.

Arguably, what is most disturbing to the medical community is the fact that, according

to current unconditional procedures, a truncated trial has prima facie the same reliability as

a trial carried to the planned end. This is because Neyman and Pearson’s type I and II error

rates are unconditional quantities, that is, they are insensitive to whether the data are just

at the significance boundary or far beyond it. By contrast, in a conditional perspective, the

error associated with a particular conclusion depends on the observed data: the larger the

observed difference is, the lower the probability that the null is rejected erroneously.

Practitioners that rely on unconditional inference have an hard time to find informative

and reliable post-data assessments of the evidence. Often, they report the observed p-value

to quantify the conclusiveness of the rejection of the null. However, p-values really combine

the worst of all worlds. Since comprehensive and devastating criticisms of using p-values in

scientific experiments have been delivered elsewhere (Royall 1997; Goodman 1999), we only

mention their most fundamental failures: they neither possess a valid frequency interpretation

nor do they provide a useful measure of confidence in the null hypothesis.

Moving to confidence intervals is often suggested as a way of circumventing the p-value

problem (e.g., Cumming and Finch 2005). However, “confidence interval” is a misnomer: a

95% confidence interval merely specifies the set of parameter values that are consistent with

the observation at the 95% level. This does not mean that we should have 95% confidence that

model.

6



the confidence interval includes the parameter value. In fact, the degree of confidence is just

an average coverage rate over intervals from repeated random samples; it is not the coverage

probability of the one particular interval that the investigator happens to get. Therefore, it

should not come as a surprise that some confidence intervals include the entire sample space,

raising the question of what we have actually learned (cf. Seidenfeld 1981).

Finally, we contend that the unconditional nature of Neyman-Pearson hypothesis tests is

the culprit for their shortcomings. To motivate and to defend this claim, we walk the reader

through an example by Cox (1958) and Royall (1997: 74–75).

Suppose that we test H0 : N (0, σ2) against H1 : N (1, σ2) with known σ2, and that the toss

of a fair coin decides whether we draw N=1 or N=100 i.i.d. observations. It seems natural

to apply the most powerful test at the 5% level in either case. However, the probabilistic

mixture of the two most powerful tests at the 5% level is not the most powerful test in the

overall exmperiment. We can do better if we reject H0 for x1 > 1.282 in the case of N=1,

while rejecting H0 if x̄ > 0.508 in the case of N=100. Both procedures are tests at the 5%

level, but the second, “gerrymandered” test has a greater power (69%) than the mixture of

unconditional tests (63%).

Neyman-Pearson methodologists may be inclined to dismiss the second test because not

all of its components are tests at the 5% level. However, from an unconditionalist (pre-

experimental) viewpoint, only the overall error rates should count. Here, the superior power

features speak for the second, gerrymandered test. This problem reveals the tension between

the pre-experimental design of unconditional procedures, and the need to efficiently learn

from the actual data. Unconditional error rates and confidence intervals do not address that

second goal:

Now if the object of the analysis is to make statements by a rule with certain

specified long-run properties, the unconditional test [. . . ] is in order. [. . . ] If,

however, our objective is to say what we can learn from the data we have, the

unconditional test is surely no good. (Cox 1958: 360)

The example can, of course, be easily generalized. It undermines the view that uncondi-

tional, pre-experimental error probabilities can qualify the goodness of an inference. In the

next section we will see how conditioning on the relevant chunks of information overcomes

the problems of unconditional inference and resolves the methodological confusion about
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interpreting truncated RCTs, without altering or abandoning the framework of frequentist

statistics.

4 Conditional Frequentist Inference

Conditional inference tries to improve upon unconditional procedures by quantifying the

degree of confidence that we can have in our conclusions as a function of the observed evidence.

More precisely, conditional inference builds on the strength of the observed evidence. As we

will show in this section, it can be justified from both the Bayesian and the frequentist

perspective. The idea comes up for the first time in Cox’s (1958) seminal paper, and has been

developed later by Kiefer (1977) and Berger (2003), together with various co-authors.

The main idea can be motivated by a very simple example (Kiefer 1977; Berger 2003).

Two observations X1 and X2 are taken with probability law

Xi =


θ + 1 with probability 1/2

θ − 1 with probability 1/2

If we now construct a confidence interval for θ, then the interval Cθ(·, ·) defined by

Cθ(X1, X2) :=


X1 + 1 ifX1 = X2

(X1 +X2)/2 ifX1 6= X2

has an unconditional coverage of 75%. Yet, this does not seem to be a sensible conclusion

regarding the confidence that the data warrant with respect to the true value of θ. Dependent

on whether we observe |X1 −X2| = 0 or |X1 −X2| = 2, we are entitled to a statement with

(a posteriori) confidence 50% and 100%, respectively. The unconditional coverage of 75%

neglects that, after learning the strength of the evidence (that is, the value of |X1 −X2|), we

are in a much better position to assess the confidence which the data grant about our inference.

Thus, conditioning on the value of |X1 −X2| improves the accuracy of our conclusions.

It is also noteworthy that the probability distribution of |X1 − X2| does not depend on

the value of θ. That is, |X1 − X2| is an ancillary statistic with regard to θ. In particular,

conditioning on the value of |X1 − X2| is quite different from Bayesian conditionalization:

where Bayesian change their subjective probability distributions by conditioning on the entire
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data, conditioning on the value of |X1 −X2| just helps to better appreciate the (frequentist)

interpretation of the data.

If this idea is applied to hypothesis testing, which is the major issue in medical trials,

unconditional error rates are replaced by a conditional error probability. In the following we

will outline the basic idea of conditional tests, following Berger, Brown and Wolpert (1994).

Consider, for the purpose of mathematical convenience, the case of testing a point null

hypothesis H0 : θ = θ0 against the simple alternative H1 : θ = θ1 in some probability model

(X ,B(X ); θ ∈ Θ). Define f0(x) and f1(x) as the probability densities of data x ∈ X under

the hypotheses H0 and H1, and let F0 and F1 be the corresponding cumulative distribution

functions.

F0(x) := PH0(X ≤ x) F1(x) := PH1(X ≤ x)

Let the Bayes factor B(x) := f0(x)/f1(x) be the ratio of the probability density functions,

and let

Xs := {x ∈ X |B(x) = s ∨B(x) = F−10 (1− F1(s))} (1)

It is easy to check that Xs has the same probability density under H0 and H1, for all values

of s. The intuitive idea is that any Xs contains two values that have the same strength of

evidence under H0 and H1. The outcome space is thus partitioned into subsets Xs.

The conditional error probability can now be calculated by conditioning on the particular

set Xs in which the observed data fall. In particular, we can define a conditional frequentist

test by

T ∗(X) =


RejectH0 ifB(X) < 1

AcceptH0 ifB(X) ≥ 1

and for observed B(x) = s, we report conditional error probabilities

α(s) = PH0(rejectH0|X ∈ Xs) =
s

1 + s

β(s) = PH1(acceptH0|X ∈ Xs) =
1

1 + s

where the latter equalities have been proven by Berger, Brown and Wolpert (1994, Theorem

1). Clearly, by using the conditional instead of the unconditional error probabilities, we gain

a much better appreciation of the chance of a wrong decision, given the particular data that

we have observed. The higher the Bayes factor, the more confident we can be about an
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acceptance of the null, and vice versa. In particular, the classical, unconditional test just

detects whether the data are within or outside the rejection region (and leaves the rest to the

notorious p-values) whereas the conditional test allows for a fine-grained, properly frequentist

discrimination among trials with significant outcomes.

Before moving to the Bayesian interpretation of conditional tests, we would like to briefly

discuss a couple of objections that could be made from within the frequentist perspective.

First, it could be argued that T ∗ makes it far too easy to reject the null (B(X) < 1)

whereas in medicine, evidence has to be really strong before we are convinced of the efficacy

of a new treatment and approve of the drug. To this we simply respond that T ∗ has been

selected because of its simplicity, but it is of course possible to change the rejection region

according to contextual requirements.

Second, the use of the Bayes factor may indicate that the conditional test is actually a

Bayesian test in frequentist cloths. However, B(X) possesses a frequentist interpretation, too,

since it identifies the most powerful frequentist test in the simple vs. simple testing problem.2

Third, there may be worries about the scope of the above procedure which we have only

explained for the easiest possible case of hypothesis testing. However, Berger, Boukai and

Wang (1997) have extended conditional tests to simple vs. composite testing problems, and in

particular, to the two-sided null hypothesis testing problems that frequently occur in RCTs.

We now explain why T ∗ is also a valid Bayesian test. Assume that the prior probabil-

ities are balanced: P (H0) = P (H1) = 1/2. This may be defended as a useful neutrality

assumption. Then, the posterior probability of H0 and H1 can be written as

P (H0|x) =
(
1 +B(x)−1

)−1
=

B(x)

1 +B(x)

P (H1|x) = (1 +B(x))−1 =
1

1 +B(x)

Thus, we see that the posterior probabilities of H0 and H1 correspond to the conditional

error probabilities for rejecting H0 and H1, respectively. Indeed, the decision to accept H0

will be wrong whenever H1 is actually true, that is, with probability 1/1 + B(x). Thus,

Bayesians and frequentists can conduct the same (conditional) test and obtain the same nu-

merical conclusions. But for the purposed of medical practice, philosophical questions about

2This is the content of the Neyman-Pearson Lemma. Furthermore Berger (2003) introduced a conditional

test that relies on the p-value as the conditioning statistics and yields the same post-data error probabilities

as T ∗.
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the interpretation of probability are clearly secondary as long as there is methodological agree-

ment on procedures and post-experimental data assessment (cf. Berger 2003). In this sense,

conditional inference is a genuine reconciliation of Bayesian and frequentist methodology and

a real asset for practitioners.

As a last point in indicating the advantages provided by the conditional frequentist frame-

work, we discuss its application to sequential analysis. The proponents of conditional testing

have stressed repeatedly that one of the main motivations of conditional inference was the

desire to improve upon the practice of sequential testing, particularly in medicine. Here the

benchmark is Wald’s (1947) famous Sequential Probability Ratio Test, that is

TN (X) :


RejectH0 and stop sampling ifB(X1, . . . , XN ) ≤ C−

AcceptH0 and stop sampling ifB(X1, . . . , XN ) ≥ C+

with associated (unconditional) error probabilities

α = PH0(B(X1, . . . , XN ) ≤ C−)

β = PH1(B(X1, . . . , XN ) ≥ C+).

While these unconditional error probabilities are (i) misleading and (ii) very hard to calcu-

late, Berger, Brown and Wolpert (1994) have suggested a conditional interpretation of this

test, choosing C+ and C− such that F0(C
−) = 1 − F1(C

+), and reporting conditional error

probabilities

α(B(X1, . . . , XN )) =
B(X1, . . . , XN )

1 +B(X1, . . . , XN )
(2)

β(B(X1, . . . , XN )) =
1

1 +B(X1, . . . , XN )
. (3)

Thus, the conditional framework can be straightforwardly applied to sequential medical trials,

and it has significant advantages. First, the assessment of the error probability depends on

the observed data and is thus way more informative than in the unconditional framework.

This alleviates the interpretational problem mentioned in Section 2, since conditional error

allows medical readers to assess the confidence in the outcome based on the observed data.

It seems reasonable to maintain that medical investigators should be more concerned with

the actual probability of drawing the wrong inference than with the absolute (unconditional)

error rate of the testing procedure.
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As a further point, the error probabilities (3) and (4) are independent of the stopping

rule, that is the sampling plan determining when the trial is terminated. In a RCT, the

stopping rule can never be fully specified, since one cannot cover in advance all eventualities

that might happen during a sequential trial. Independence from the stopping rule entails that

interpretation of the results and assessment of error are possible even if the stopping rule was

misspecified or could not be adhered to due to unforeseen circumstances.

This should not be misunderstood as the claim that pre-data analysis and experimental

design are superfluous. Unfortunately, Berger, Brown and Wolpert (1994: 1803) make a claim

into that direction, but given the strong emphasis on careful design by methodologists and

regulatory bodies (cf. Moyé 2008; FDA 2010), this is unlikely to increase the acceptance of

the conditional approach among medical practitioners. We would like to stress that no such

claim is required for making a case for the superiority of the conditional frequentist approach.

Moreover, since conditional tests can be conducted from both a Bayesian and a frequentist

perspective, practitioners do not have to decide for either camp.

There are also interesting implications for the philosophy of statistics: if the “error statis-

ticians” (Mayo 1996) are right that learning from error is indeed a cornerstone of inductive

inference, then a move to conditional inference may protect their framework against the

objections that we have mentioned in Sect. 3. In particular, there is no need to tie an error-

statistical methodology to unconditional inference. However, further developing this line of

thought goes beyond the scope of this paper.

5 Conclusions

In this paper we have analyzed the impact of statistical methodology on a substantive ethical

and societal question, namely data monitoring in sequential medical trials. In the medi-

cal literature, trials stopped early for benefit are often charged with being biased towards

implausibly large treatment effects (e.g., Bassler et al. 2010).

We think that this worry is based upon a misinterpretation of sequential trials that is

in turn due to shortcomings of standard frequentist procedures. It has been argued (e.g.,

Goodman 2007) that a Bayesian perspective overcomes this problem: if a trial is stopped

early because of an implausibly large effect, blending its result with a (conservative) prior

probability distribution naturally mitigates the conclusion. However, as a matter of research

12



tradition and regulatory requirements – in particular, concerns about individual biases in

generating prior distributions –, the Bayesian framework does not provide an easy way out.

In this essay we contend that the real issue is not the contrast between Bayesian and

frequentist methodology. Rather, we are concerned about the shortcomings of unconditional

inference. We have elaborated that while unconditional error probabilities may be helpful in

the design of an experiment, they do not tell us what we have actually learned from the data.

We have therefore defended proper conditioning – calculating error probabilities conditional

on the strength of the observed evidence – as a way of curing the deficits of unconditional

frequentist inference. This approach has a natural application to sequential testing and both

a valid Bayesian and a valid frequentist interpretation.

This approach holds considerable promise for the interpretation of early stopped trials

in medicine. The possibility of post-data assessments of the probability of an erroneous

conclusion represents an invaluable asset for the practitioner and the decision-maker. The

results of a medical trial tell much more than the simple acceptance or rejection of a scientific

hypothesis: they indicate where evidence is strong and where it is inconclusive, indicating the

need for further research. Conditional inference, we believe, can improve the methodology of

clinical trials because it allows to take this additional information into account. In conclusion,

a clearer view on issues in statistical methodology can help to better appreciate data from

sequential medical trials and lead to more efficient and ethically superior decisions in medical

research.
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