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Abstract

Protective measurement is a new measuring method introduced by
Aharonov, Anandan and Vaidman (1993). By a protective measurement,
one can measure the expectation value of an observable on a single quan-
tum system, even if the system is initially not in an eigenstate of the mea-
sured observable. This remarkable feature of protective measurements was
challenged by Uffink (1999, 2012). He argued that only observables that
commute with the system’s Hamiltonian can be protectively measured,
and a protective measurement of an observable that does not commute
with the system’s Hamiltonian does not actually measure the observable,
but measure another related observable that commutes with the system’s
Hamiltonian. In this paper, we show that there are several errors in
Uffink’s arguments, and his alternative interpretation of protective mea-
surements is untenable.

1 Introduction

Aharonov, Anandan and Vaidman (AAV) introduced a new measuring method
called protective measurements in 1993 (Aharonov and Vaidman 1993; Aharonov,
Anandan and Vaidman 1993). By a protective measurement, one can measure
the expectation value of an observable on a single quantum system, even if
the system is initially not in an eigenstate of the measured observable. This
remarkable feature makes protective measurements quite distinct from conven-
tioanl impulse measurements, and as AAV have argued, it may have important
implications on the meaning of the wave fucntion, e.g. it implies that the wave
function should be given an ontological interpretation, as the wave function
of a single quantum system can be directly observed by means of protective
measurements (Aharonov, Anandan and Vaidman 1993).

Although numerous objections to the validity and meaning of protective mea-
surements were raised (see, e.g. Unruh 1994; Rovelli 1994; Ghose and Home
1995), most of these objections have been answered (Aharonov, Anandan and
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Vaidman 1996; Dass and Qureshi 1999; Vaidman 2009). A unique exception
seems to be Uffink’s (1999) objectiorﬂ Uffink argued that only observables
that commute with the systems Hamiltonian can be protectively measured,
and moreover, a protective measurement of an observable does not actually
measure the observable, which may not commute with the system’s Hamilto-
nian, but measure another related observable that commutes with the system’s
Hamiltonian (Uffink 1999, 2012). This alternative interpretation of protective
measurements has been accepted by some authors (e.g. Parwani 2005; Dickson
2007; Saunders 2010; Paracanu 2011), and if it is true, it will “protect the in-
terpretation of the wave function against protective measurements” as Uffink
expected.

In this paper, we will show that there are several errors in Uffink’s arguments,
and his alternative interpretation of protective measurements is untenable. The
paper is organized as follows. In section 2, we first introduce the basic principle
of protective measurements. Then, in section 3, we examine Uffink’s proofs of
his conclusion that only observables that commute with the system’s Hamilto-
nian can be measured protectively. It is shown that there are errors in Uffink’s
original proof and improved proof. In section 4, Uffink’s alternative interpre-
tation of protective measurements is further examined. We argue that Uffink’s
arguments for his interpretation are problematic and unconvincing. In section
5, we give a detailed analysis of the thought experiment used by Uffink to sup-
port his claims. It is argued that Uffink’s analysis of the thought experiment is
incorrect, and the correct analysis of the experiment does not support Uffink’s
alternative interpretation of protective measurements. Conclusions are given in
the last section.

2 Protective measurements

Protective measurement is a method for measuring the expectation value of
an observable on a single quantum system. Like conventional impulse mea-
surement, protective measurement also uses the standard measuring procedure,
but with a weak, adiabatic coupling and an appropriate protection. Its general
method is to let the measured system be in a nondegenerate eigenstate of the
whole Hamiltonian using a suitable protective interaction, and then make the
measurement adiabatically. This permits protective measurement to be able to
measure the expectation values of observables on a single quantum system.

As a simple example of protective measurement, consider a quantum system
in a discrete nondegenerate energy eigenstate |E, ). In this case, the system itself
supplies the protection of the state due to energy conservation and no artificial
protection is needed. The interaction Hamiltonian for a protective measurement
of an observable O in this state involves the same interaction Hamiltonian as
the standard measuring procedure:

In a recent review of my manuscript “Protective Measurement and the Meaning of the
Wave Function” (Gao 2011a), the reviewer said, “the manuscript fails to deal with the most
important of such objections, i.e. J. Uffink in Phys. Rev. A 60: 3474-3481 (1999), a paper
that argues against AAV that the concept of protective measurements has no implication for
the interpretation of the wave function.” (Gao 2011b). Although Vaidman (2009) regarded
Uffink’s objection as a misunderstanding of what the protective measurement is, he gave no
concrete rebuttal.



Hy :g(lf)O®P7 (1)

where P is the momentum conjugate to the pointer variable X of an appro-
priate measuring device. The time-dependent coupling strength g(¢) is also a
smooth function normalized to [ dtg(t) = 1. But different from conventional
impulse measurements, for which the interaction is very strong and almost in-
stantaneous, protective measurements make use of the opposite limit where the
interaction of the measuring device with the system is weak and adiabatic. Con-
cretely speaking, the interaction lasts for a long time 7', and g(¢) is very small
and constant for the most part, and it goes to zero gradually before and after
the interaction.
Let the total Hamiltonian of the combined system be

H(t)=Hs+ Ha+g(t)O ® P, (2)

where Hg and H 4 are the Hamiltonians of the measured system and the measur-
ing device, respectively. Let the initial state of the pointer at ¢t = 0 be |¢(z¢)),
which is a Gaussian wave packet of eigenstates of X with width wg, centered
around the eigenvalue xg. Then the state of the combined system after T is

t=T) = et HOW B, |g()) . (3)

By ignoring the switching on and switching off processesEI, the full Hamiltonian
(with g(t) = 1/T) is time-independent and no time-ordering is needed. Then
we obtain

[t =T) = e " |E,) [6(x0)) (4)
where H = Hg + Ha + 222, We further expand |¢(z¢)) in the eigenstate of

Hy, EJ‘1>, and write

It =1T) :e*iHTch |E,) |E2). (5)

Let the exact eigenstates of H be |¥y, ,,) and the corresponding eigenvalues be
E(k,m), we have

t=T)=> ¢; > e PEmT Wy B, ES) Wy m). (6)

g k,m

Since the interaction is very weak, the Hamiltonian H of Eq. can be
thought of as Hy = Hg + H 4 perturbed by Lfﬁp. Using the fact that % is
a small perturbation and that the eigenstates of Hy are of the form |Ey) |E%),
the perturbation theory gives

Wim) = E)EL)+00/T),
Bkym) = Bt By + 4 (AP +O(1/T?). 7)

2The change in the total Hamiltonian during these processes is smaller than O ® P/T, and
thus the adiabaticity of the interaction will not be violated and the approximate treatment
given below is valid. For a more strict analysis see Dass and Qureshi (1999).



Note that it is a necessary condition for Eq.(7)) to hold that |E)) is a nonde-
generate eigenstate of Hg. Substituting Eq.(7) in Eq.@ and taking the large
T limit yields

[t=T)~ Z efi(EnT+E;T+<O>n<P>j)Cj |E,) |E;‘> . (8)
J
When P commutes with the free Hamiltonian of the device, i.e., [P, H4| = 0,
the eigenstates ‘EJ“> of H4 are also the eigenstates of P, and thus the above
equation can be rewritten as

[t =T) m e BT By e HATHOE (). )

It can be seen that the third term in the exponent will shift the center of the
pointer |¢(xp)) by an amount (O),,:

[t =T) ~ e B THAT B, [¢(a0 + (O)n))- (10)

This shows that the center of the pointer shifts by (O), at the end of the
interaction. For the general case where [P, H4] # 0, we can also obtain the
similar resultf]

3 Must the observable measured protectively com-
mute with the system’s Hamiltonian?

The above example demonstrates that one can measure the expectation value
of an observable on a single quantum system by a protective measurement. The
observable does not necessarily commute with the system’s Hamiltonian, and
the system is not necessarily in an eigenstate of the observable either. This
remarkable feature of protective measurements was challenged by Uffink (1999,
2012). He tried to prove that only observables that commute with the systems
Hamiltonian can be protectively measured. His proof can be basically formu-
lated as follows.

Uffink first defined an operator U,p, that brings about the approximate
evolution Eq. @D exactly for all vectors of the form |¢,,) |x), i.e.:

Uapp = dn) [X) — €77 7E @) e HHATHOMP) ) (11)

Moreover, he gave an explicit expression for U,,, with another observable
O = >, P,OP,, where P, = |¢,)(¢n| is a projector on the eigenstates of
the Hamiltonian Hg:

Uapp — 67i(H5+HA)Tin®P (12)

Since [O, Hg] = 0, it immediately follows that [U,pp, Hg] = 0, or in other words:

Ul HsUspp = Hs. (13)

app

This means that Hg is conserved under the evolution U,pp.

3TFor details see Dass and Qureshi (1999) and Gao (2011c).



Uffink then tried to prove that Us,pp is a good approximation to U only if
the observable O commutes with the system’s Hamiltonian Hg. To say that the
approximation involved in Eq. @D is good means that

(U = Uapp) |¢n) ) | = 0 if 7 — oo (14)

By a series of derivations, Uffink (1999) proved that this happens only if for
almost all values of p:

(G |e!THsTPO) goei(THs+20) |0y s B,6,,, (15)

Utfink (1999) thought that this is equivalent to

e (En=En) (¢ 1670 Hge=0 |6,) = by, (16)

which means that for almost all p € IR,

eipOHseiipO = Hg, (17)

which further implies:

[0, Hs] = 0. (18)

Then Uffink (1999) concluded that the observable whose expectation value is
obtained by protective measurement must commute with the system’s Hamil-
tonian.

However, as admitted also by Uffink (2012), there is an error in the most
crucial step of the proof, namely the derivation from Eq. to Eq. (16)). In
the derivation, it is implicitly assumed that the two operators O (the observable)
and Hg (the system Hamiltonian) are commutative. The exponential function
satisfies the equality eX Y = eXeY only if the two operators X and Y commute.
But the aim of the proof is to prove the commutativity of these two operators.
Thus Uffink’s proof is circular because it presupposes what it sets out to prove.

Uffink (2012) provided an improved proof. He used the Baker-Campbell-
Hausdorff theorem to expand €4 Hge P4, where A is defined as A = %HSJrO:

i —i = ip)k
epAHSe pA:Z(kl Hy, (19)
k=0
where Hy = Hg, Hy = [A,Hg|, Hy = [A,[A, Hg||, H, = [A, H,—1]. Corre-
spondingly, Eq. becomes

(dm|ePA Hse P |¢) = Epbpn. (20)

Since Hj, only contains terms proportional at most to p~ (¥~ when assuming

|p| to be very small, we may only investigate the first two terms of the series
expansion Eq. for an approximate calculation of the total sum.
For k = 0, we get

<¢m‘HO |¢n> - <¢m|HS |¢n> = EnOmn- (21)

This means that Eq. can only hold if the contributions from the terms
with £ > 1 in Eq. vanish in the limit 7 — oo.



For k = 1, there is a contribution to the series expansion of the left-hand

side of Eq. :

ip{dm|H1 [pn) = ip<¢m|[OaHS] |n) - (22)

Note that this term does not depend on 7, and thus it will not be affected by
the limit 7 — oo.

Then Uffink (2012) claimed that the condition Eq. can only hold for
the chosen value of p if the term with & = 1 is exactly zero, namely:

<¢m|[0’ HS] |¢n> =0, (23)

which further implies that [O, Hg] = 0, i.e. the observable O commutes with
the system’s Hamiltonian Hg.

However, it can be seen that Uffink’s new proof does not succeed either.
The reason is that although we may only consider the first two terms of the
series expansion Eq. for an approximate calculation of the total sum, the
approximation cannot be used to prove the strict relation Eq. . That the
term with k£ = 0 is zero only requires that the sum of all terms with & > 1 and
independent of 7 is zero. Since the high-order terms such as the term with k = 2
also contain the terms independent of 7 (and for any finite p, no matter how
small its value is, the values of these terms are not zero in general), we cannot
obtain the result that the term with £ = 1 is exactly zero withour further proof.

In fact, we can give a general arguement against Uffink’s proofs. The validity
of first order perturbation theory and the adiabatic theorem, which have been
widely used and confirmed in quantum mechanics, already implies that Uffink’s
attempt cannot succeed. For according to these theories, Eq. can be
satisfied when the two operators O and Hg are noncommutative (see Section
2). In other words, if Eq. can be satisfied only when the two operators
O and Hg are commutative as Uffink tried to prove, then either first order
perturbation theory or the adiabatic theorem will be wrong.

4 Uffink’s alternative interpretation of protec-
tive measurements

In order to explain away the remarkable features of protective measurements,
Uffink (1999, 2012) proposed an alternative explanation for what happens in a
protective measurement.

As we know, for a protective measurement, the interaction between the mea-
sured system and the measuring device is produced by a very small interaction
term, i.e. g(t)O ® P, that works for a very long time. The smallness is respon-
sible for the fact that |¢,) remains unchanged, and the long time permits that
a non-vanishing effect of the interaction builds up in the state of the device.
According to Uffink’s explanation, the effect that builds up in the course of
time is due only to the part of O that commutes with Hg (namely O). Tt is
only the operator O whose expectation value is revealed, and the procedure is
insensitive to the remainder O — O, i.e. the part of O that does not commute
with Hg. In short, Uffink’s alternative explanation of a protective measurement
is that the procedure does not actually measure the observable O, which may
not commute with the system’s Hamiltonian Hg, but the related observable O,



which commutes with the system’s Hamiltonian Hg. We write the explicit form
of O again:

O=> P,0P, (24)

where P, = |¢,){¢y| is a projector on the eigenstates of the Hamiltonian Hg.

Besides his failed proofs, Uffink’s main argument for his alternative expla-
nation is that the measurement of the related observable O on a system in an
eigenstate |¢,) of Hg also yields the expectation value (O),,. However, it is ob-
vious that this argument alone cannot determine which observable a protective
measurement actually measures; it can be either O or O. In other words, Uffink
did not provide a sufficient reason to favor his explanation and reject the nor-
mal explanation. On the other hand, as we think, there are some good reasons
to favor the normal explanation, namely that what a protective measurement
measures is not O but O.

First of all, as Uffink (2012) also admitted, when the measuring time 7 is
finite, what a protective measurement measures is O, not O. The measurement
of O, which commutes with the system’s Hamiltonian, results in neither entan-
glement between the measured system and the measuring device nor collapse
of the measured state. By contrast, for a protective measurement of O, the
entanglement and collapse can never be completely avoided for any finite 7.
Then in the limit 7 — oo, what the protective measurement measures should be
still O, not O, by continuity. Moreover, the effect that builds up in the course
of a protective measurement for any finite 7 is due not only to the part of O
that commutes with Hg (namely O), but also to the part of O that does not
commute with Hg (namely the remainder O — O), though when 7 — oo, the
effect due to O — O is close to zero.

Next, it can be argued that a protective measurement of O is still proper
when the measuring time 7 is finite but very long so that the adiabatic con-
dition can be satisfied. In this case, even though entanglement and collapse
cannot be completely avoided, their effects can be made arbitrarily small when
7 is arbitrarily large. Thus only a very small ensemble is needed for measur-
ing the expectation value of O by protective measurements (Dass and Qureshi
1999; Gao 2011c). This still presents a striking contrast to conventional impulse
measurements, and the contrast cannot be explained away by Uffink’s proposal.

Lastly, it is worth noting that in realistic situations we normally know which
observable we will measure before a measurement, though in general we don’t
know exactly the state of the measured system and its Hamiltonian. For exam-
ple, when we measure the spin of a particle, we certainly know the observable
we will measure is spin before the measurement, and without this information
we cannot prepare the measurement setting, e.g. a setting with a Stern-Gerlach
magnet. It is the observable O, not the observable O, that we may know before
a measurement, as knowing O requires a full a priori knowledge of the system’s
Hamiltonian, which is generally unavailable before a measurement.

5 A thought experiment

Uffink (1999, 2012) illustrated his conclusions by means of a thought experi-
ment which had been discussed by Aharonov, Anandan and Vaidman (1993).



However, his analysis of the experiment is also problematic.
In the experiment, a charged particle is in a superposition of two states
localized in distant boxes L and R:

1
V2
where |¢1) and |¢r) are the ground states of the box potentials. The question

is whether a protective measurement can demonstrate that the particle is in a
delocalized state. Since this superposition state degenerates with

lp+) = —= (L) + |#r)), (25)

1
V2
a protective procedure is needed to lift the degeneracy. For example, by arrang-
ing that in the region between the two boxes the potential has a large but finite
constant value V' as Uffink suggested, one can achieve that these two states are
no longer degenerate.

Then a protective measurement of the observable:

6-) = = (loL) = or)), (26)

O = —|¢r) (¢L| + |¢r) (PR (27)

on this state will yield its expectation value (O); = 0. This measurement can
be done by sending a charged test particle straight through the middle between
the boxes, perpendicular to the line joining the two boxes, and the trajectory
of the test particle will not deviate.

Uffink (1999) argued that the protective measurement does not demonstrate
that the measured particle is in a delocalized state. His argument is as follows.
Consider the case where the measurement is carried out on a charged particle
prepared in a localized state |¢r). Since this state is not protected, one obtains
the evolution:

1 1
V2 V2

where |x) is the initial state of the test particle, |x4) and |x_) are its final states
in the cases when the measured particle was initially in the states |¢) and |¢_).
Since (O); = (O)_ = 0, the test particle travels a straight trajectory in the
state |x+) as well as in |y_). Thus the test particle will travel on a straight
path, regardless of whether the measured particle is delocalized or not. Based
on this result, Uffink concluded that the above protective experiment provides
no evidence for the spatial delocalization of the measured particle.

At first sight Uffink’s argument seems invulnerable. However, it is not dif-
ficult to find its problems by a careful analysis. The key is to realize that in
order to measure the state of a single system, e.g. whether the system is in a
delocalized state or not, the measured state must be protected beforehand in or-
der that the state does not collapse during the measurement. If a measurement
results in the collapse of the measured state, then the measurement result will
not reflect the actual measured statdﬂ It is obvious that in the above thought

16) 0 = —=(194) +16-)) Ix) = —=(64) Ix+) + [6-) Ix-)), (28)

4This is why a protective measurement needs a protective procedure in general; the pro-
tection permits it to be able to measure the actual state of the measured system.



experiment the measured state |¢) is not protected and will collapse to |x4)
or |x_) after the measurement, which is also admitted by Uffink. Accordingly,
the collapse state and the result of the measurement cannot tell us that the
initial state |¢r) is localized, and thus the experiment cannot be used to sup-
port Uffink’s conclusion. In other words, only when the result of the protective
measurement of |¢r,) is the same as the result of the protective measurement of
|¢+) (for both measurements no collapse happens), can Uffink’s argument hold
true. But certainly these two results are different; for the former, the trajectory
of the test particle deviates, while for the latter the trajectory is a straight path.

Another problem of Uffink’s argument is that the result of the non-protective
measurement of |¢r) is not exactly the same as the result of the protective
measurement of |¢;) or |¢_). The reason is not only that the results of the
protective measurements of |¢,) and |¢_) are not exactly the same, which has
been noticed by Uffink, but also that a non-protective adiabatic measurement
will result in wavefunction collapse as we have noted above. Since the wave-
function collapse is very tiny for the non-protective measurement of |¢) in the
above experiment, this problem may evade Uffink’s scrutiny and lead him to
the wrong conclusion. In order to see more clearly the problem, let’s consider
the protective measurement of a general state:

|¢4) =alor) +b|or), (29)

where a # b, and |a|? 4 |b|? = 1. Since this state degenerates with

[¢-) =b"[or) —a”[Pr), (30)

a similar protective procedure is also needed to lift the degeneracy. For this
general case, the results of the protective measurements of |¢4) and |¢_) will
be obviously different. Therefore, the non-protective measurement of |¢r) =
a*|p4) + blg—) will lead to obvious wavefunction collapse; its result will be
either the result of the protective measurement of |¢ ) with probability |a|? or
the result of the protective measurement of |¢_) with probability |b|?, and corre-
spondingly the measured state |¢;,) will collapse to one of these two states with
the same probabilities. To sum up, the result of a non-protective measurement
cannot reflect the actual measured state and indicate whether the measured
particle is in a localized state or not due to the resulting wavefunction collapse.

6 Conclusions

Uffink’s (1999, 2012) purpose is to prove that only observables that commute
with the system’s Hamiltonian can be measured protectively. If it is indeed the
case, then this restriction will protect the interpretation of the wave function
against protective measurements and save the coherence of alternative interpre-
tations. As we have argued above, however, Uffink’s attempt faile Moreover,
the validity of first order perturbation theory and the adiabatic theorem al-
ready tell us that a protective measurement can measure the expectation value
of an arbitrary observable on a single quantum system. As a result, protective

5 A recent analysis by Pusey, Barrett and Rudolph (2012) also shows that the coherence of
alternative interpretations of the wave function cannot be saved after all.



measurements may have important implications on the meaning of the wave

function®l
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