
The Evolution of Bayesian Updating

Abstract

An evolutionary basis for Bayesian rationality is suggested, by consid-
ering how natural selection would operate on an organism’s ‘policy’ for
choosing an action depending on an environmental signal. It is shown that
the evolutionarily optimal policy, as judged by the criterion of maximal
expected reproductive output, is the policy which for each signal, chooses
an action that maximizes conditional expected output given that signal.
An organism using such a policy is behaving as if it were a Bayesian
agent with probabilistic beliefs about the states of nature, that it updates
by conditionalization, and whose choice behaviour obeys expected util-
ity maximization. This suggests a possible route by which Bayes-rational
creatures might have evolved. However this conclusion needs qualifying,
since it relies on the assumption that expected reproductive output is the
sole determinant of evolutionary success, which is not always true.

1 Introduction

Bayesian updating, also known as ‘conditionalization’, is a rule specifying how
a prior probability distribution should be updated to a posterior distribution
in the light of new information. The rule is often interpreted epistemically: it
specifies how an agent should change their epistemic state over time in response
to new evidence, where an ‘epistemic state’ is represented by a probability dis-
tribution over some specified set of alternatives.

There has been considerable philosophical discussion of the normative status
of Bayesian updating. Does rationality require an agent to update using the
Bayesian rule? If so, can the rule be justified from more primitive rationality
requirements? Is it the unique rule that can be so justified? Are there situations
where Bayesian updating should not be used? Works addressing these questions
include Brown [1], Maher [20], van Fraassen [33], Christensen [2], Lewis [19], and
more recently, Greaves and Wallace [13], and Leitgeb and Pettigrew [17].

Here I focus on a different though related issue. Instead of asking whether
Bayesian updating is a requirement of rationality, I ask whether it is a require-
ment of evolutionary optimality. Changing one’s beliefs in response to evidence
is an aspect of cognition, and it seems likely that at least some aspects of cogni-
tion, animal and human, have been shaped by natural selection. This prompts
the question of how selection would have operated on updating rules. An organ-
ism’s updating rule affects its epistemic state, which in turn affects its behaviour;
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so different updating rules will lead to different behaviours, and thus have dif-
ferent consequences for survival and reproduction. Can we show that organisms
using Bayesian updating would have enjoyed a selective advantage over those
updating in some other way?

This question is an aspect of the broader issue of whether natural selection
will tend to produce rational behaviour. A number of authors have examined
whether rational-choice norms such as transitivity of preference, maximisation
of expected utility, and consistency of time-preference can be derived from an
underlying evolutionary model (cf. Cooper [3], Houston, McNamara and Steer
[15], Robson [26], Skyrms [30]). However the question of whether Bayesian
updating can be derived from evolutionary principles has never been considered,
so far as I know. Here I sketch a tentative answer to that question.

The structure of this paper is as follows. Section 2 briefly discusses the use
of Bayesian concepts in evolutionary biology. Section 3 constructs a simple ex-
ample to compare the fitness consequences of different ways that an organism’s
behaviour might be sensitive to information that it receives. Section 4 gener-
alises the example into an abstract characterization of the optimal policy for
choosing an action in the light of new information. Section 5 discusses how this
optimal policy might be implemented by an organism. One possibility is that
organism has an internal probabilistic representation of its environment, which
it updates in a Bayesian manner; this suggest a possible evolutionary route
to Bayesian updating. Section 6 relates our argument to certain ‘pragmatic’
arguments for Bayesian updating that have been made in a rational-choice con-
text. Section 7 qualifies our argument by highlighting an implicit assumption
on which it rests.

2 Bayesianism in Evolutionary Biology

Some readers may be surpised by our discussing Bayesian principles in an evo-
lutionary context, on the grounds that non-human animals lack the cognitive
sophistication required to have probabilistic beliefs about the world, less still
to update them. But in fact, behavioural ecologists make widespread use of
Bayesian ideas to think about animal behaviour, especially in foraging theory
(cf. McNamara, Green and Olsson [23]).

A typical Bayesian approach in foraging theory is to assume that animals
have some prior information about an environmental parameter, represented
by a probability distribution. For example, the animal may ‘know’ that food
patches are of two types, good and bad, whose relative frequencies are 1/3 and
2/3 respectively. This knowledge may either be genetically encoded or acquired
by the animal through its experience. So before beginning foraging in any
particular patch, the animal’s prior belief that it is a good patch is 1/3. As the
animal begins to forage, it updates its belief about the type of patch it is in. If
the probability that it is in a bad patch becomes sufficiently high, the animal
may choose to move on. Many optimal foraging models aim to derive a precise
prediction about when an animal should move from one patch to another.
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In models of this sort, talk of an animal’s ‘knowledge’ or ‘information’ is
usually intended behaviouristically. Saying that the animal ‘knows’ that 1/3 of
food patches are good means that the animal behaves as if it knows this, as
manifested in its choices. There is no great puzzle about how an animal could
come to exhibit such behaviour. Natural selection leads to adaptive behaviour,
one aspect of which is choosing the action appropriate to the environment. If
the environment can be in a number of different states, and the appropriate
action depends on the state, then to behave adaptively an animal will need to
be sensitive to the states’ probabilities of occurrence. If the animal chooses
between actions according to maximization of expected reproductive output –
one standard definition of adaptive behaviour – then it is behaving as if it knows
the true probability distribution on the states, knows the payoffs, and is able to
calculate expectations.

Understanding ‘knowledge’ in this behaviouristic way may seem quite dif-
ferent from how the notion is understood in epistemology. But in fact many
Bayesian decision theorists, notably Savage [28], have argued for a behaviouris-
tic interpretation of probabilistic beliefs, according to which an agent’s subjec-
tive probabilities (and utilities) are derived from their choices between uncertain
prospects, which are in principle observable; this interpretation is orthodox in
contemporary economics, if not in contemporary epistemology. So in fact, evo-
lutionary biologists’ use of Bayesian concepts to model animal behaviour is not
such a radical departure.

There is abundant evidence that organisms of all taxa make adaptive use of
information about their environment; see Giraldeau [10] for a review. In some
cases natural selection can encode information about the environment into the
genome, so organisms are born with innate knowledge of environmental param-
eters. In other cases selection cannot do this, as the environment changes too
fast; but information about the environment can also be obtained by organisms
during their lifetime, through experience. Often a combination of genetically-
encoded and acquired information is used by organisms to guide their behaviour.
These facts, which are almost platitudes in biology, do not imply that organisms
are behaving like Bayesian agents; it is perfectly possible that they process infor-
mation in a non-Bayesian way. But there is empirical evidence that organisms
do sometimes reason in a Bayes-like manner, in that they appear to combine
prior knowledge with new information to form an updated ‘worldview’, which
then informs their behaviour1 (cf. Valone [32]).

Interestingly, many facets of the theory of Bayesian rationality have evolu-
tionary applications. For example, the famous ‘value of information’ theorem,
due originally to F. P. Ramsey [25] and I. J. Good [11], has recently been applied
in an evolutionary setting by McNamara and Dall [22]. The Ramsey/Good the-
orem states that cost-less information is always valuable, in that an agent who
updates on new information before choosing an action will achieve expected
utility no lower, and usually higher, than one choosing without the benefit of

1Again, this should be interpreted behaviouristically, i.e. the organisms behave as if they
are incorporating the new information in a Bayesian way. It is not assumed that Bayesian
calculations are actually going on in the organisms’ brains, though this is possible.
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No predator snake leopard
Stay put 10 0 0

Climb 5 4 0
Flee 6 1 2

Table 1: Payoffs for Three Alternative Actions

the information. McNamara and Dall [22] interpret the theorem biologically,
as showing that information is a ‘fitness enhancing resource’, since it cannot
reduce, and will usually increase, an organism’s expected reproductive output.

The ‘value of information’ theorem assumes that agents, or organisms, incor-
porate the new information by Bayesian updating. This assumption is crucial
to the theorem; if non-Bayesian update rules are permitted, the desired result
does not go through. Indeed the assumption of Bayesian updating is widespread
in behavioural ecologists’ discussions of adaptive information use, but is never
explicitly questioned. (This is reminiscent of the situation in probabilistic epis-
temology in the 1960s, where Bayesian updating was tacitly assumed but not
explicitly discussed, until Hacking [14] observed that requiring an agent’s cre-
dences to satisfy the probability calculus at every instant does not imply that
she use the Bayesian update rule.) In what follows, I explicitly consider the
adaptive significance of Bayesian updating.

3 A simple example

To fix ideas, consider a simple example. An organism is foraging for food in
a predator-strewn area. Predators are of two types, snakes and leopards. If
no predator is present, the best thing to do is stay put and forage. If a snake
is present, the best thing to do is to climb a tree. If a leopard is present, the
best thing to do is flee. Both climbing and fleeing are costly in terms of time
and energy, to different extents. Payoffs for the three actions, as a function
of the state of the world, are shown in Table 1; these payoffs are measured in
increments of biological fitness, i.e. number of offspring.

What action should the animal choose to maximise its expected payoff?
That depends on the probabilities of the three states of the world. Suppose
that the probabilities of the three states are:

P(no predator) = 1/2, P(snake) = 1/3, P(leopard) = 1/6

(These probabilities can be thought of as the relative frequencies with which
each state occurs in the relevant local ecology.) Then, the expected payoff
from each action is:

V (stay put) = 10(1/2) + 0(1/3) + 0(1/6) = 5
V (climb) = 5(1/2) + 4(1/3) + 0(1/6) = 3.83
V (flee) = 6(1/2) + 1(1/3) + 2(1/6) = 3.67

4



So the evolutionarily optimal action is to stay put. Organisms choosing to
stay put will on average leave more offspring than those choosing either of the
other two actions. If the organism’s choice behaviour has been optimised by
natural selection, or if it has learnt which action is optimal, then it will stay
put.

Now suppose that prior to choosing an action, the organism receives a signal
which indicates whether a predator is present or not. So the signal has two
values: ‘safe’ and ‘unsafe’. The signal is perfectly reliable, i.e. indicates ‘unsafe’
iff a predator is present, but cannot discriminate between leopards and snakes.
(So an unsafe signal means just that that the ‘no predator’ state of the world
does not obtain.) The organism’s choice of action may depend on which signal
is received. So the organism needs to have a ‘policy’, i.e. a specification of which
action to take for each value of the signal. There are 9 (=32) possible policies,
in this example. Let us consider three policies in particular.

Suppose firstly that the organism ignores the signal, and always chooses the
action optimal for the situation in which no signal is received, i.e. stay put. So
the organism’s policy is ‘if safe, stay put; if unsafe, stay put’. Let us denote
this policy ‘Ignore’. The policy may seem unpromising, intuitively, but it could
reflect the organism’s cognitive limitations. If an organism’s choice behaviour
has been fashioned by natural selection, but it is incapable of attending to the
signal, or lacks behavioural plasticity, it might use a policy like ‘Ignore’.

Secondly, suppose that the organism does attend to the signal, and adopts
a ‘maximin’ strategy, i.e. it chooses the action which maximizes the minimum
payoff it will receive, in the light of the information provided by the signal. So if
the safe signal is received it chooses to stay put, obviously. If the unsafe signal
is received it chooses to flee, as this guarantees it a payoff of at least 1. So its
policy is ‘if safe, stay put; if unsafe, flee’. Lets us call this policy ‘Maximin’.
The policy reflects a high degree of risk aversion. By choosing to flee rather
than climb when the unsafe signal is received, the organism forgoes a possible
payoff of 4 in order to definitely avoid a payoff of 0.

Thirdly, suppose that the organism behaves like a Bayesian. On receipt of a
signal, the organism chooses an action that maximises its conditional expected
payoff, given the signal.2 So if the safe signal is received, the organism chooses
to stay put - as the conditional expected payoffs are then 10, 5 and 6 for stay
put, climb and flee respectively. (This is because the conditional probability
of the ‘no predator’ state, given the safe signal, is 1.) What if the unsafe
signal is received? The conditional probabilities of the ‘no predator’, ‘snake’
and ‘predator’ states, given an unsafe signal, are 0, 2/3 and 1/3 respectively.
The conditional expected payoffs for staying put, climbing and fleeing are then
0, 8/3 and 4/3 respectively, so the organism will choose to climb. Its policy is
therefore ‘if safe, stay put; if unsafe, climb’. Let us call this policy ‘Bayes’.

Which of our three policies - ‘Ignore’, ‘Maximin’ and ‘Bayes’ - is the best,
from an evolutionary point of view? To answer this question, we need to com-

2Note that this action need not be unique. If it is not unique, for one or more values of
the signal, then ‘the Bayes policy’ is really a class of policies each of which achieves maximum
conditional expected payoff. See section 4.
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pute the expected payoffs accruing to an organism that uses each of the policies.
Consider firstly ‘Ignore’. Since an organism using ‘Ignore’ chooses to stay put
whether or not a signal is received, its expected payoff is:

V [Ignore] = 10(1/2) + 0(1/3) + 0(1/6) = 5

What about ‘Maximin’? An organism using ‘Maximin’ stays put if a safe sig-
nal is received but flees otherwise. With probability 1/2 no predator is present,
so the safe signal is sent, so the organism stays put and earns a payoff of 10.
With probability 1/3 a snake is present, so the unsafe signal is sent, so the or-
ganism flees and earns a payoff of 1. With probabilty 1/6 a leopard is present,
so the unsafe signal is sent, so the organism flees and earns a payoff of 2. Its
expected payoff is therefore

V [Maximin] = 10(1/2) + 1(1/3) + 2(1/6) = 5.67

By a similar logic, the payoff to an organism using the Bayes policy is :

V [Bayes] = 10(1/2) + 4(1/3) + 0(1/6) = 6.33

Therefore, the Bayes policy yields the highest expected payoff. If all three
policies are found in a population, natural selection will favour the Bayes policy
over the other two. Over time, evolution should convert the population to the
Bayes policy, driving the other two policies extinct. This suggests, obviously in a
preliminary way, that evolution might produce organisms that behave as if they
were rational Bayesian agents, whose subjective probabilities over the states of
nature match the objective frequencies and who incorporate new information
by conditionalization. A stronger argument for this conclusion would need to
show that no concievable policy does better than the Bayes policy; see section
4.

Both the Bayes and the Maximin policies, in this example, may seem com-
putationally demanding. The Bayes policy is defined as that policy which for
each signal, picks an action that maximizes conditional expected payoff given
that signal. However we need not assume that an organism, to implement the
Bayes policy, actually computes conditional expected payoffs. If the organism,
on receipt of a signal, chooses an action that does in fact maximize condi-
tional expected payoff, then it is by definition implementing the Bayes policy.
A ‘policy’, as we have defined it, is simply a complex behavioural disposition,
or function from signals to actions. How an organism might implement a policy
is discussed in section 5.

Our simple example bears a close relation to the biological version of the
Ramsey/Good ‘value of information’ theorem. In effect, the Ramsey/Good
theorem shows that an organism using the Bayes policy will achieve greater
expected payoff, hence evolutionary success, than the policy we have called ‘Ig-
nore’. But it says nothing about other non-Bayesian policies, such as ‘Maximin’
for example. However, it is straighfoward to show that the Bayes policy out-
performs any other policy, so is evolutionarily optimal. That is the task of the
next section.
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4 Can’t do Better than Bayes 3

The framework we adopt directly generalizes the previous example. There is
a finite set S of states of nature; S = {θ1, ..., θk}. There is a finite set U of
actions that the organism may perform. The payoff from an action depends on
the state of nature. The payoff from action u ∈ U if the state of nature turns
out to be θi is Vi(u). As before, payoffs are measured in increments of biological
fitness.

There is a finite set E of possible signals, or items of evidence, that the
organism may receive; E = {E1, ..., En}. In the example above we assumed
that the signal set partitioned the states of nature, i.e. each state of nature was
compatible with exactly one signal, but no such assumption is made here. There
is a joint probability distribution p on SxE, reflecting the freqeuncy with which
each (state, signal) pair occurs. The marginal probability of state θi is p(θi),
and of signal Ej is p(Ej). We assume that p(θi) > 0 for all i and p(Ej) > 0
for all j, i.e. each state occurs with positive probability, and similarly for each
signal.

An organism’s ‘policy’ specifies an action u ∈ U for every possible signal
Ej ∈ E. Thus a policy is simply a function from E to U . The set of all policies
is denoted X. For any policy x ∈ X, we let x(Ej) ∈ U be the action specified
by that policy when signal Ej is received; for convenience, we will write x(Ej)
as xj .

Consider an arbitrary policy x ∈ X. What is an organism’s expected payoff
from using policy x? Suppose firstly that the true state of nature is θi. Then,
the expected payoff from policy x equals:∑

Ej

p(Ej/θi).Vi(xj) (1)

The justification for (1) is clear. p(Ej/θi) is the probability that signal Ej is
received given that the state of nature is θi. Vi(xj) is the payoff from choosing
action xj – the action specified by policy x when the signal received is Ej – in
state of nature θi. Expression (1) is thus the expected payoff to an organism
using policy x when the true state is θi. Taking the expectation of (1) across
states of nature thus gives us the overall expected payoff to policy x :∑

θi

p(θi)
∑
Ej

p(Ej/θi).Vi(xj) (2)

Now recall the Bayes policy discussed above. In our simple example above,
there was a unique Bayes policy, since for each signal there was a unique action
that maximized conditional expected payoff given the signal. But in the general
case this need not be so: for some signals, there may be more than one action
satisfying this maximization constraint. So we need to consider the class of
Bayes policies B ⊂ X, where each b ∈ B is a policy that, for each signal Ej ∈ E
chooses an action bj ∈ U that maximises conditional expected payoff given Ej .

3Thanks to John McNamara and Cedric Paternotte for help with this section.
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We wish to show that a policy is evolutionarily optimal if and only if it is a
Bayes policy; as before, ‘evolutionarily optimal’ means ‘earns an expected payoff
greater than or equal to every other policy’. To show this, consider any Bayes
policy b ∈ B. Substituting b for x in expression (2) thus gives us the expected
payoff to a Bayes policy :∑

θi

p(θi)
∑
Ej

p(Ej/θi).Vi(bj) (3)

Our first task is to show that expression (3) is greater than or equal to (2),
i.e. policy b has expected payoff greater than or equal to policy x.

Since b is a Bayes policy, we know that it satisfies the condition:
For every signal Ej ,∑

θi

p(θi/Ej).Vi(bj) ≥
∑
θi

p(θi/Ej).Vi(u) for all actions u ∈ U (4)

Applying inequality (4) to the particular action xj ∈ U gives:∑
θi

p(θi/Ej).Vi(bj) ≥
∑
θi

p(θi/Ej).Vi(xj) (5)

Applying Bayes’ theorem and dividing across by p(Ej):∑
θi

p(θi).p(Ej/θi).Vi(bj) ≥
∑
θi

p(θi).p(Ej/θi).Vi(xj) (6)

Summing over all the signals:∑
Ej

∑
θi

p(θi).p(Ej/θi).Vi(bj) ≥
∑
Ej

∑
θi

p(θi).p(Ej/θi).Vi(xj) (7)

Reversing the order of summation:∑
θi

p(θi)
∑
Ej

p(Ej/θi).Vi(bj) ≥
∑
θi

p(θi)
∑
Ej

p(Ej/θi).Vi(xj) (8)

But the LHS of (8) is the expected payoff to policy b (expression (3)), while
the RHS is the expected payoff to policy x (expression (2)). So policy b is
evolutionary optimal. Since nothing has been assumed about policy b except
that it is a Bayes policy, we can conclude that every Bayes policy is evolutionarily
optimal.

To show the converse, consider another policy y which is not a Bayes policy.
Thus for some signal Ec:∑

θi

p(θi/Ec).Vi(yc) <
∑
θi

p(θi/Ec).Vi(bc) (9)

Applying Bayes’ theorem:
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∑
θi

p(θi).p(Ec/θi).Vi(yc) <
∑
θi

p(θi).p(Ec/θi).Vi(bc) (10)

Since b is a Bayes policy, we know from (6) that for all signals Ej :∑
θi

p(θi).p(Ej/θi).Vi(yj) ≤
∑
θi

p(θi).p(Ej/θi).Vi(bj) (11)

From (10) and (11), we can deduce that, summing over all the signals:∑
Ej

∑
θi

p(θi).p(Ej/θi).Vi(yj) <
∑
Ej

∑
θi

p(θi).p(Ej/θi).Vi(bj) (12)

Reversing the order of summation:∑
θi

p(θi)
∑
Ej

p(Ej/θi).Vi(yj) <
∑
θi

p(θi)
∑
Ej

p(Ej/θi).Vi(bj) (13)

But the LHS of (13) is the expected payoff to policy y, while the RHS is
the expected payoff to the Bayes policy b. So any policy that is not a Bayes
policy earns a strictly lower expected payoff than a Bayes policy, so cannot be
evolutionarily optimal. Therefore an evolutionarily optimal policy must be a
Bayes policy.

Taken togther, (8) and (13) tell us that a policy is evolutionarily optimal if
and only if it is a Bayes policy. So organisms that implement Bayes policies will
leave more offspring, on average, than ones that do not. Over time, we would
expect the non-Bayes policies to be eliminated by natural selection.

5 Discussion

What exactly does the foregoing argument show? The argument seems to supply
an evolutionary basis for Bayesian updating, by showing that it follows from the
standard Darwinian assumption that animal behaviour is well-adapted, hence
designed to maximise the animal’s expected reproductive output. However,
some care is needed before adopting this interpretation. Typical discussions
of Bayesian updating ask how an agent does or should update their epistemic
state on receipt of information, where an epistemic state is represented by a
prior probability distibution over some appropriate algebra. But our argument
above makes no mention of ‘epistemic states’ or ways of updating them, and
makes no assumption that the organisms in question are capable of being in
such states. We have assumed only that the organisms are behaviourally plas-
tic, and capable of modifying their behaviour in repsonse to an environmental
signal. Our argument provides a precise characterization of the ‘best’ way for
an organism to let its choice of action depend on the signal it receives, as judged
by the criterion of maximum expected reproductive output.
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To get from this behaviourist starting point to something more epistemic,
we need to consider how an organism might implement an evolutionarily opti-
mal policy, as characterized above. One possibility is this: the organism oper-
ates with an internal ‘belief-like’ representation of the environment, an internal
‘desire-like’ representation of the outcomes (or payoffs), and uses a ‘choice rule’
to determine which action to pick, depending on which belief and desire states
it is in. On receipt of a signal, the organism uses an ‘update rule’ to go from one
belief state to another. Given a generic psychological make-up of this sort, which
is presumably applicable to at least some higher animals as well as humans, an
evolutionarily optimal policy is straightforward to implement.

To see this, suppose we take a ‘belief state’ to be a subjective probability
distribution over the states of nature and signals, and a ‘desire state’ to be a real-
valued utility function on the outcomes (or action-state pairs). In particular,
suppose that the organism’s initial belief state, prior to receiving a signal, is
equal to the true prior distribution p, and its utility function is equal to the
true payoff function V (or an affine transformation thereof). Suppose that
the organism’s choice rule is ‘maximize expected utility, relative to my current
belief state’, and that its update rule is Bayesian conditionalization. Then, it
follows that the organism will implement an evolutionarily optimal policy as
characterized in section 4; this can be seen by direct inspection of expression
(3).

What could license the assumptions that the organism’s initial belief state
is correct, i.e. matches the true distribution on the states, and that its util-
ity function matches the true payoff function? A short answer is ‘evolution by
natural selection’. As discussed in section 2, organisms often have information
about the environment ‘pre-programmed’ into their genome, as a result of nat-
ural selection in the past, and are often equipped with ‘appropriate’ desires for
surviving and reproducing. (For example many animals are born with an in-
nate ability to determine who their close relatives are, and innate preferences
for some food items over others.) In short, it is plausibly an adaptive advantage
to have correct probabilistic beliefs about the world, and desires for things that
objectively enchance reproductive success. From an adaptationist perspective,
therefore, the assumptions in question do not seem unreasonable.

Given these assumptions, our argument shows that an organism will imple-
ment an evolutionarily optimal policy if it chooses between actions in accor-
dance with expected utility maximization relative to its current belief state,
and always updates its belief state by the rule of conditionalization. Therefore,
two standard principles of Bayesian rationality fall out of the requirement of
evolutionary optimality. This suggests that, other things being equal, natural
selection should lead to organisms that satisfy these Bayesian principles.

This conclusion needs qualifying in a number of ways. Firstly, the inference
from ‘is evolutionarily optimal’ to ‘is likely to have evolved’ can obviously be
questioned; this is a well-known issue in the literature on adaptationism. Sec-
ondly, defining optimality in terms of maximal expected reproductive output
raises some tricky theoretical issues, discussed in the next section. Thirdly, our
argument does not show that the only way for an organism to implement an
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evolutionarily optimal policy is to operate with internal belief-like and desire-
like representations which combine and update in accordance with Bayesian
principles. This last point merits some brief discussion.

It is well-known from the work of Gerd Gigerenzer and colleagues [7, 8] that
adaptive behaviour may be produced by simple heuristics, or rules-of-thumb,
which are computationally less demanding than optimality calculations. This
general point applies to our problem of choosing an optimal policy, or function
from signals to actions. Even if there are many states of nature and many
signals, an organism might still be able to implement an optimal policy by
a simple heuristic such as ‘if signal x is received, run away; otherwise, stay’,
depending on the payoff function. And in fact, many simple animals exhibit
behavioural plasiticity in response to environmental cues but presumably do
not operate with a belief-like representation of the environment at all; so the
issue of how to update does not arise. Of course in a purely ‘as if’ sense, these
animals are behaving like Bayesian agents so long as they are implementing an
optimal policy, as our argument shows. But we should not blur the distinction
between organisms which implement an optimal policy by using a heuristic, and
ones which operate with internal belief-like and desire-like representations and
are thus capable of satisfying Bayesian principles in more than an ‘as if’ sense.
An important question is when evolution will lead to organisms of each type.
This question is not addressed by the foregoing analysis; see Sterelny [31] for a
sketch of a possible answer.

To sum up: one way an organism might implement an evolutionarily opti-
mal policy, though not the only way, is to follow standard Bayesian maxims for
choosing between actions and for updating beliefs. So long as the organism’s
initial belief state and utility function are ‘objectively correct’ in the sense spec-
ified above, adhering to these Bayesian maxims is sufficient to ensure that the
organism’s policy, i.e. function from signals to actions, is evolutionarily opti-
mal. This suggests a possible route by which Bayes-rational creatures might
have evolved.

6 Relation to the Brown/Maher argument

It is worth relating our evolutionary argument to a related argument found in
the rational choice literature. Both Brown [1] and Maher [20] try to justify
Bayesian conditionalization by arguing that it follows from the injunction to
maximize expected utility.4 They consider an agent with a prior subjective
probability distribution over a set of states of nature, a set of possible actions,
and a utility function defined on the (state, action) pairs. The agent receives a
signal, updates to a new probability distribution, then chooses an action that
maximises expected utility relative to this new distribution. Brown and Maher
then show that in order to maximize expected payoff with respect to the agent’s

4A related argument is given by Greaves and Wallace [13]. All of these arguments, and
our own, are arguably just elaborations on a point first made by Ramsey [25].
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prior distribution, their update rule should be conditionalization. They interpret
this to mean that rationality requires an agent to update in a Bayesian way.

What is the logical relation between the Brown/Maher result and our own?
Our result shows that, to maximise expected payoff relative to a prior distribu-
tion p, an organism should choose a policy which, for each signal, maximizes the
conditional expected payoff given the signal. The Brown/Maher result shows
that, to maximize expected payoff relative to a prior distribution p, an agent
should update by conditionalization, given that its choice of action in its updated
state goes by maximization of expected payoff relative to that state. In our frame-
work the prior p is interpreted as the objective frequency distribution on the
states and the payoff function as the fitness function; while in the Brown/Maher
framework, the prior p is the agent’s subjective prior and the payoff function is
their utility function. But leaving aside these interpretive differences, what is
the formal relationship between the results?

The answer is that the Brown/Maher result is a special case of our own.5 In
effect, the Brown/Maher argument identifies a particular way of implementing
an optimal policy, for an agent who uses an update rule to go from belief state
to belief state, and a choice rule to go from belief state and utility function to
choice of action. Brown/Maher assume that the choice rule is expected utility
maximization relative to the updated state, and then show that the update rule
should be conditionalization. Our result is more general, in that it does not
assume from the outset that the organism implements its policy by using an
(update rule, choice rule) combination at all. However, it follows directly from
our result that if an organism implements its policy this way, and if its choice
rule is ‘maximize expected payoff relative to the updated state’, then its update
rule should be conditionalization – which is the Brown/Maher result. This
follows directly from the characterization of an optimal policy in expression (3).

To see that our result is stronger than the Brown/Maher result, notice that
their’s leaves open the possibility that an agent could earn a higher expected
payoff, relative to the prior distribution p, by using an update rule other than
conditionalization and a choice-of-action rule other than maximize expected
payoff. This possibility is not ruled out by the Brown/Maher agument, since
they take for granted that the choice-of-action rule is maximize expected payoff.
(This is quite reasonable given their aim. It would be rather odd for a rational
agent to use expected payoff maximization in the prior state p to decide what
update rule to employ, and yet not use expected payoff maximization in the
updated state to decide what action to choose. But it is a logical possibility.)
However, our result rules the possibility in question out. Since the combination
(conditionalization, expected payoff maximization) implments an optimal pol-
icy, it follows that no other combination can do better, even if choice-of-action

5Two slight qualifications are needed here. Brown’s argument makes the restrictive as-
sumption that the signal set partitions the set of states of nature, as in our simple example in
section 3, which is a special case. Maher’s argument relaxes this assumption and also adopts
the framework of ‘causal decision theory’ in the sense of Lewis [18]. Our formal framework
of section 4 also relaxes the partioning assumption, but does not deal with the additional
complexities raised by causal decision theory.
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rules other than expected payoff maximization are permitted.

7 A Qualification

The foregoing argument rests on an important assumption, namely that ex-
pected payoff, i.e. expected reproductive output, is the right criterion of evolu-
tionary success. But in fact this is not always the case. It is well-known that
in certain situations, the expected performance of a strategy (or phenotype) is
not the sole determinant of whether it will evolve; variability in performance
can also matter (cf. Frank and Slatkin [6], Gillespie [9], Seger and Brockmann
[29]). How does this complication affect the foregoing argument?

Expected reproductive output is an appropriate criterion of evolutionary
success (or ‘definition of fitness’) when two conditions are met. Firstly the
population must be large, and secondly the probability distribution over states
of nature that any organism faces must be independent across the members of
the population. These conditions jointly ensure that the average reproductive
success of the cohort of organisms using a given strategy will be very close to
that strategy’s expected success. The large population condition will often be
satisfied, but the independence condition is more problematic.

In the predator example of section 3, the independence condition seems rea-
sonable. The probability that organism A encounters a snake while foraging
may well be independent of the probability that organism B does; risks of this
sort are sometimes called ‘idiosyncratic’. But in other cases risks will be ag-
gregate. The weather is an obvious example, as it affects many organisms at
once. If there is a 5% chance of a harsh winter, this risk will obviously not
be independent across all members of a biological population. Real organisms
probably face both idiosyncratic and aggregate risks, in varying combinations
depending on the context.6

Where risks are aggregate, the strategy with the highest expected reproduc-
tive output need not be evolutionarily optimal. The variance in output matters
too, and selection will penalize strategies with a high variance. In such a case,
our simple argument for the evolutionary optimality of Bayesian updating does
not apply.

Robson [27] has shown that where there is a component of aggregate risk,
‘irrational’ behaviour may evolve, in that organisms whose choice behaviour
violates expected utility maximization may have a selective advantage; a similar
result was independently shown by McNamara [21]. This remarkable result
arises because the determinant of evolutionary success is how well one does
relative to others. With aggregate risk, optimal behaviour requires that an
organism use a biased probability distribution, which shifts probability mass
away from states of nature where the whole population does well and onto states
where it does badly. The optimal behaviour is the one that maximises ‘expected’

6Note that idiosyncratic and aggregate are the ends of a continuum; intermediate degrees
of correlation are also possible.
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payoff relative to this biased distribution, rather than the true distribution.7

It follows that evolution will favour choice behaviour that is sensitive to the
variance as well as the expectation of reproductive output, and thus that violates
expected utility maximization.

A precisely parallel argument could be constructed for the case of Bayesian
updating. With aggregate risk, an organism which uses a non-Bayesian updating
rule could conceivably have a selective advantage over one which uses Bayesian
updating, so ‘irrational’ updating could evolve. This follows directly from the
Robson/McNamara argument for how expected utility violations can evolve,
combined with the argument of the previous section. If an organism imple-
ments its policy, i.e. function from signals to actions, by using an (update rule,
choice-of-action rule) combination, and if its choice-of-action rule is ‘maximize
expected payoff relative to the updated belief state’, then conditionalization will
be the optimal update rule if and only if expected payoff maximization is the
appropriate criterion of optimality.

This suggests that in theory, organisms whose behaviour is mediated by in-
ternal belief-like and desire-like states might do best to use Bayesian updating
some of the time but not always. In a circumstance where risks are idiosynractic,
as in our predator example, an organism should incorporate new information
by Bayesian updating, assuming that its choice-of-action rule is ‘maximize ex-
pected payoff in the updated state’. But where risks are aggregate, as in the
weather example, a non-Bayesian update rule may be evolutionarily superior.
(Nothing general can be said about what the best non-Bayesian rule will be; it
depends on the details of the example.) However to implement this selectively
Bayesian strategy would be extremely difficult, for it would require being able to
distinguish aggregate from idiosyncratic risks. It seems unlikely that organisms
can do this.

An interesting response to the Robson/McNamara argument comes from
Grafen [12] and Curry [4], who argue that rational behaviour can be restored
if in every state of nature, payoffs are computed relative to the population av-
erage; see Okasha [24] for discussion. So an organism needs to consider not
the absolute number of offspring that an action will bring in a given state of
nature, but rather what fraction of the total population’s reproduction it will
achieve in that state. The expected value of this fraction across states of nature
provides a correct criterion of evolutionary success, even where risks are aggre-
gate. In short, evolutionary optimality requires maximising expected relative
reproductive output. If an organism’s utility function depends suitably on rel-
ative reproductive output, expected utility maximisation will be evolutionarily
optimal.

The Curry/Grafen point implies that in principle, our argument for the
evolution of Bayesian updating can be rescued. However again, it seems very
unlikely that an organism can know the relative reproductive output that an
action will bring – for this depends on the rest of the population. Tailoring its

7Conceptually this is similar to what decision theorists call non-expected utility maximi-
sation; see Okasha [24] for discussion.
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choices to the criterion of expected relative output will probably be cognitively
impossible. Most likely, the best the organism can do is to use absolute re-
productive output as a proxy for relative output, and attempt to maximise the
former. But this is an empirical claim; it would be falsified if it were discovered
that animals do in fact respond differently to aggregate and idiosyncratic risks.

Where does this leave us? The criterion of expected reproductive output is
commonly used by evolutionary modellers, even though it is known not to be
universally applicable. Where it is inapplicable, our argument for the evolution-
ary optimality of Bayesian updating does not work. In principle the argument
can be salvaged by the Curry/Grafen move, but at the expense of making im-
plausible assumptions about the ability of organisms to tailor their choices to
relative reproductive success. So on balance, there is certainly some reason to
think that Bayesian updating will evolve by natural selection, but the case is
not watertight.

A final consideration is this. It is well-known that humans are not good
Bayesians, in either a conscious or an ‘as if’ sense. Even intelligent people are
notoriously poor at explicitly calculating conditional probabilities, and human
choice behaviour is typically inconsistent with our having underlying probabilis-
tic beliefs at all (Kahneman, Tversky and Slovic [16], Ellsberg [5]). If Bayesian
updating is adaptively advantageous, it might seem surprising that humans are
not better at it. Seen in this light, the fact that our evolutionary argument
is not watertight is perhaps no bad thing. This is not to say that the reason
why our argument is not watertight – the fact that some risks are aggregate
– explains why humans have not evolved to be good Bayesians. But it is an
intriguing possibility, worthy of further exploration.

References

[1] P. M. Brown. Discussion: Conditionalization and expected utility. Philos-
ophy of Science, 43:415–419, 1976.

[2] D. Christensen. Clever bookies and coherent beliefs. Philosophical Review,
(2):229–247, 1991.

[3] W. S. Cooper. The Evolution of Reason. Cambridge University Press,
Cambridge, 2003.

[4] P. Curry. Decision making under uncertainty and the evolution of interde-
pendent preferences. Journal of Economic Theory, 98:357–369, 2001.

[5] D. Ellsberg. Risk, ambiguity and the Ellsberg paradox. Quarterly Journal
of Economics, 75(4):643–669, 1961.

[6] S. A. Frank and M. Slatkin. Evolution in variable environments. American
Naturalist, 136(2):244–260, 1990.

[7] G. Gigerenzer and P. Todd. Simple Heuristics that Make us Smart. Oxford
University Press, Oxford, 1999.

15



[8] G. Gigerenzer, P. Todd, and T. Pachur, editors. Heuristics: the Founda-
tions of Adaptive Behaviour. Oxford University Press, Oxford, 2011.

[9] J. Gillespie. Natural selection for variances in offspring number: a new
evolutionary principle. American Naturalist, 111:1010–1014, 1977.

[10] L. Giraldeau. The ecology of information use, 4th edition. In Behavioural
Ecology, pages 42–88. Blackwell, Oxford, 1997.

[11] I. J. Good. On the principle of total evidence. British Journal for the
Philosophy of Science, 17:319–321, 1967.

[12] A. Grafen. Formal darwinism, the individual-as-maximising-agent analogy,
and bet-hedging. Proceedings of the Royal Society B, 266:799–803, 1999.

[13] H. Greaves and D. Wallace. Justifying conditionalization: Conditionaliza-
tion maximizes expected epistemic utility. Mind, 115:607–632, 2006.

[14] I. Hacking. Slightly more realistic personal probability. Philosophy of Sci-
ence, 34(4):311–325, 1967.

[15] A. I. Houston, J. M. McNamara, and M. D. Steer. Do we expect natural
selection to produce rational behaviour? Philosophical Transactions of the
Royal Society B, 362:1531–1543, 2007.

[16] D. Kahneman, P. Slovic, and A. Tversky, editors. Judgement under Uncer-
tainty Heuristics and Biases. Cambridge University Press, Oxford, 1982.

[17] H. Leitgeb and R. Pettigrew. An objective justification of Bayesianism II:
the consequences of minimizing inaccuracy. Philosophy of Science, 77:236–
272, 2010.

[18] D. Lewis. Causal decision theory. Australasian Journal of Philosophy,
59:5–30, 1981.

[19] D. Lewis. Why conditionalize? In Papers in Metaphysics and Epistemology,
pages 403–407. Cambridge University Press, Cambridge, 1999.

[20] P. Maher. Diachronic rationality. Philosophy of Science, 59:120–141, 1992.

[21] J. M. McNamara. Implicit frequency-dependence and kin selection in fluc-
tuating environments. Evolutionary Ecology, 9:185–203, 1995.

[22] J. M. McNamara and S. Dall. Information is a fitness-enhancing resource.
Oikos, 119:231–236, 2010.

[23] J. M. McNamara, R. F. Green, and O. Olsson. Bayes’ theorem and its
applications in animal behaviour. Oikos, 112:243–251, 2006.

[24] S. Okasha. Optional choice in the face of risk: Decision theory meets
evolution. Philosophy of Science, forthcoming 2011.

16



[25] F. P. Ramsey. Weight or the value of knowledge. British Journal for the
Philosophy of Science, 41:1–4, 1990.

[26] A. Robson. Evolution and human nature. Journal of Economic Perspec-
tives, 16:89–106.

[27] A. Robson. A biological basis for expected and non-expected utility. Journal
of Economic Theory, 68:397–424, 1996.

[28] L. J. Savage. The Foundations of Statistics. Wiley, New York, 1954.

[29] J. Seger and H. J. Brockmann. What is bet-hedging? Oxford Surveys in
Evolutionary Biology, 4:182–211, 2002.

[30] B. Skyrms. Evolution of the Social Contract. Cambridge University Press,
Cambridge, 1995.

[31] K. Sterelny. Thought in a Hostile World. Blackwell, Oxford, 2003.

[32] T. J. Valone. Are animals capable of Bayesian updating? Oikos, 112:252–
259, 2006.

[33] B. van Fraassen. Laws and Symmetry. Oxford University Press, Oxford,
1989.

17


