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1. Introduction 

 

The structure of a differentiable manifold defines one of the most important mathematical object or entity 

both in pure and applied mathematics
1
. 

  From a traditional historiographical viewpoint, it is well-known
2
 as a possible source of the modern concept 

of an affine differentiable manifold should be searched in the Weyl’s work
3
 on Riemannian surfaces, where 

he gave a new axiomatic description, in terms of neighborhoods
4
, of a Riemann surface, that is to say, in a 

modern terminology, of a real two-dimensional analytic differentiable manifold. Moreover, the well-known 

geometrical works of Gauss and Riemann
5
 are considered as prolegomena, respectively, to the topological 

and metric aspects of the structure of a differentiable manifold. 

  All of these common claims are well-established in the History of Mathematics, as witnessed by the work 

of Erhard Scholz
6
. As it has been pointed out by the Author in [Sc, Section 2.1], there is an initial historical-

epistemological problem of how to characterize a manifold, talking about a ‘’dissemination of manifold 

idea’’, and starting, amongst other, from the consideration of the most meaningful examples that could be 

taken as models of a manifold, precisely as submanifolds of a some environment space  n
, like some 

projective spaces  ( m
) or the zero sets of equations or inequalities under suitable non-singularity 

conditions, in this last case mentioning above all of the work of Enrico Betti on Combinatorial Topology 

[Be] (see also Section 5) but also that of R. Lipschitz on Analytical Mechanics. Scholz states that this last 

originary conception of a number manifold as zero sets of equations or inequalities under suitable non-

singularity conditions, was the most general one reached at the time, although the Betti work was limited to 

the global case and not to the local one. It was only thanks to the Dini’s work on implicit function theory that 

such a primary character was explicitly and rigorously stated, becoming generally known
7
, putting in 

evidence what role has played this Dini’s work, but nevermore quoting it below, making seem it little 

relevant for the following developments. 

  Instead, in this first paper, we want to point out other, besides little investigated, viewpoints on the same 

historical question, as regards the fundamental role played just by the works of Ulisse Dini on implicit 

function theory
8
 and its geometrical applications, in the (‘implicit’) institution of the modern structure of a 

differentiable manifold. Exactly, we want first to show, without entering into a detailed formal discussion, as 

                                                           
1 See [Mu, Chapter 5, Section 23]. 
2
 See, for instance, [Sc] and [Ma]. 

3 See [We1].  
4
 Mainly following Klein’s work on the same subject. 

5 Nevertheless, taking into account what said in the Introduction of [MR], we may state: «[...] that, for a modern reader, 

it is very tempting to regard his [that is, by Riemann] efforts as an endeavor to define a ‘’manifold’’, and it is precisely 

the clarification of Riemann’s ideas, as understood by his successors, which led gradually to the notions of manifold 

and Riemannian space as we know them today». In this regards, see also what will be said in next Section 9 of this 

paper. 
6
 See [Sc], where, however, the Whitney’s work is not cited. 

7
 Scholz thereupon mention [GP] and [Jo] as main dissemination sources of the Dini’s work on implicit function theory: 

as we will see later, he has made right considerations as regard the Italian edition of [GP], but not for [Jo] which does 

not in any way quote the Dini name in the related Numéros 90-95 devoted to the implicit function subject. 
8
 And, in general, by the role played by the whole doctrine field of implicit function theory along his historical 

development. Moreover, as concerns the case properly herein considered, a very fundamental role is played by the 

Dini’s work on systems of implicit functions in the real field. 
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the Dini’s works on implicit functions provide pivotal and crucial syntactic tools which were at the 

foundations of the modern theory of differentiable manifolds (and of other mathematical aspects of 

differential and algebraic geometry), in the sense that will be briefly outlined in Section 9. Indeed, according 

to [KP, Chapter 1, Section 1.3], the whole doctrine field of implicit function theory has constituted an 

essential and powerful formal paradigm in Mathematics, of which here we want to give only some of its 

possible applicative implications concerning certain aspects of the Foundations of Modern Differential 

Geometry.  

  Following this last viewpoint, in this paper we want only to start with putting historiographical
9
 in evidence 

the emergence of the Dini’s work on implicit function theory
10

 in the birth of the concept of a differentiable 

manifold. Without this fundamental analytic work by Dini, it is very likely that such an important 

mathematical structure wouldn’t have seen light in the realm of the mathematical objects, that it to say, such 

a structure wouldn’t have been explicitly stated in the form which we know nowadays
11

: to see this, it is 

enough what follows. According to what said in [So, Chapter 3, Section 1.1], we can indeed state that 

 

  Although a differentiable manifold is described as an abstract geometrical object, the [explicit] idea of a 

manifold derives from rather concrete examples
12

, namely nonsingular varieties of  n
, defined as follows 

 

A non-empty set V   n 
is called a p-dimensional differentiable variety of   n

 if, to each point x    n
, there 

exist a neighborhood U of x in  n
 and m = n   p differentiable functions Φ1 ,…, Φm on U, such that  

i) the matrix  
   

   
   i=1,…,m, j=1,…,n, has rank m at every point x     

ii) V                                   if non-empty. 

 

Let Ω be a non-empty open subset of  n
 and let f1,…, fm be m functions which are differentiable on Ω. Then, 

the set 

 

S = {x;  x   Ω, f1(x) =   = fm(x) = 0, rank  
      

   
  = m}, 

 

if not empty, is a p-dimensional differentiable variety of  n
 as just defined above: in fact, we can choose the 

same functions f1,…, fm  at every point x   S and observe that the set 

 

U = {x; x   Ω,  rank  
      

   
  = m} 

 

is open. Then, every x   S has a neighborhood U such that rank  
      

   
  = m for all x   U and  

 

S   U ={x; x   U, f1(x) =   = fm(x) = 0}. 

 

It now follows, by [Dini’s] implicit function theorem, that, if Ω is an open subset of  n
 and f1,…, fr are r 

differentiable functions on Ω, then the set 

 

V = {x; x   Ω, f1(x) =   = fr(x) = 0}  

 

is a p-dimensional differentiable variety of  n 
if every point x   V has a neighborhood in  n 

where the matrix 

 
      

   
  i = 1,…,r, j = 1,…,n has constant rank

13
 m < n and m is the same at every x   V.  

                                                           
9
 In the sense that here shall limit us to mention some works and papers related to this subject, without any other formal 

in-depth study (that, on the other hand, should also be necessary, even from an historical viewpoint). 
10

 Above all, but not only, as concern his contributions to the theory of the systems of implicit functions. 
11

 In the sense of what we will be stated in the final Section 9. 
12

 Build up, as we will see, just by means of the Dini’s implicit function theorem. 
13

 In general, rank  
      

   
  = m   min {r, n} for all x   V. 
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By the local parametrization theorem, which is a consequence of the implicit function theorem, a p-

dimensional differentiable variety V of  n 
has the following two properties 

 

1. to every point x   V, there exist an open subset Ω   n 
and an injective map Φ: Ω    n 

such that 

Φ(Ω) is an open neighborhood of x in V,  

2. there exist an open subset U of  n
, with Φ(Ω)   U, and a differentiable map ψ: U    n

 such that 

the map ψ   Φ is the identity on Ω. 

 

Obviously, there are several choices for the set Ω and the map Φ. Every pair (Φ(Ω), Φ) is called a 

coordinate neighborhood of V. The map Φ and its inverse, the restriction of ψ to Φ(Ω), determine a 

homeomorphism of Ω onto Φ(Ω). Finally, the generalization of the above properties 1. and 2. to topological 

spaces, not necessarily subsets of some Euclidean space, led to the general structure of a differentiable 

manifold. 

 

On the other hand, in [Wl, Chapter I, p. 10], after having expounded a modern version of Whitney’s theorem, 

(see [Wl, Chapter I, Section 1, Theorem 1.10], the Author states that  

 

  «This theorem [of Whitney] tells us that all differentiable manifolds (compact and non-compact) can 

be considered as submanifolds of Euclidean space, such submanifolds having been the motivation for 

the definition and concept of manifold in general».  

   

Taking into account possible hypotheses on the origins of mathematical entities briefly recalled in the final 

Section 9 of this paper, it is clear as all of these considerations about the origins of the concept of the 

strutture of a differentiable manifold, may be seen as the result of that objectivation process there mentioned, 

applied to the proof procedures of Dini’s implicit function theorems. On the other hand, and this is an 

uncommon case in mathematics, the degree of generality and abstractness of the given mathematical object 

so obtained is not higher than those of the  n
 as proves the fundamental Whitney’s work (see next Section 

2), so that we may think the Dini’s theory on implicit functions as a theory, in a certain sense, deductively 

equivalent to the modern abstract theory of differentiable manifold, via the basic works of Hassler Whitney
14

 

which will be briefly sketched in the next section. 

 

2. The papers of Hassler Whitney 

 

Hassler Whitney
15

 (1907-1989) was graduated in Mathematics from Yale University in 1928 and received 

his doctorate degree from Harvard University in 1932. He gave, amongst other, fundamental contributions to 

the topology of manifolds with many related papers of which here we recall only those pertinent to our 

purposes. 

  In [Wh1], the Author prove some important theorems on the differentiable (and, when possible, even 

analytic) extension, to  n
,
 
of a given continuous function f defined on a bounded or unbounded nonempty 

closed set A of  n
, starting from the notion of derivative which arise naturally from the consideration of 

Taylor’s formula
 
and reaching to considerable results also through the use of some approximation methods 

of Real Analysis, amongst to which the Weierstrass’ polynomial approximation theorems, mainly to obtain 

possible analytic extensions
16

. 

  The results obtained in the above mentioned papers have been extensively used in proving the fundamental 

theorems stated in the main Whitney’s paper [Wh5]. In Introduction to [Wh2], the Author states as follows 

 

  «A differentiable manifold is generally defined in one of two ways; [according to O. Veblen and 

J.H.C. Whitehead
17

] as a point set with neighbourhoods homeomorphic with Euclidean space  n
, 

                                                           
14 For a modern treatment of the theory of differentiable manifolds strictly related to Dini’s and Whitney’s theorems 

(and for other interesting imbedding results), see, for example, [Na].  
15

 See, for example, [Ar] for the brief biobibliographic notices herein remembered. 
16 The arguments treated in [Wh1] have been further investigated by the Author in subsequent papers, amongst to which 

[Wh2], [Wh3] and [Wh4]. 
17

 These Authors give an abstract definition of a manifold that seems disregards the previous work made by H. Weyl on 

Riemann surfaces and mentioned in the above Section 1 (see also next Sections 6 and 7 for more information). 
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coordinates in overlapping neighbourhoods being related by a differentiable transformation, or 

[according to Dini’s implicit function theory] as a subset of  n
, defined near each point by expressing 

some of the coordinates in terms of the others by differentiable functions.  

  The first fundamental theorem is that the first definition is no more general than the second; any 

differentiable manifold may be imbedded in Euclidean space. In fact, it may be made into an analytic 

manifold in some  n
». 

 

Subsequently, he improved and extended part of these results, mainly as regard the imbedding results: for 

instance, his celebrated imbedding theorem was first stated in [Wh5] for compact manifold, and extended to 

every manifold in [Wh7, II.8], together to further improvements carried out on the dimension of the real 

imbedding space. As already said, in [Wh5] Whitney use many results of [Wh1] and, especially, of
18

 [Wh6], 

thanks to which, in [Wh5, II.8, Theorem 1], he proves (a first version of) the following, celebrated 

(Whitney’s) imbedding theorem  

 

  «Any C
r
-manifold of dimension m (with r ≥ 1 finite or infinite) is C

r
-homeomorphic with an analytic 

manifold in Euclidean space  m+1
».  

 

It has been possible to achieve many results of [Wh5] on the basis of the fundamental paper [Wh6], and vice 

versa. In particular, and this is a crucial point for our purpose, in [Wh6, II.6] the Author recall some 

fundamental lemmas related to the implicit function theory, which are indeed forms of implicit function 

theorem with uniformity and continuity conditions, as the same Author says at the end of Section II.6. These 

last results, amongst other things, will be used in proving the fundamental Theorem I of [Wh6, I.3]. 

  Finally, we recall what he says in [Wh6, I.1] 

 

  «Let f1, ..., fn−m be differentiable functions defined in an open subset of  n
. At each point p at which 

all fi vanish, let the gradient  f1, ...,  fn−m be independent. Then the vanishing of the fi determines a 

differentiable manifold M of dimension m. Any such a manifold we shall say is in ‘’regular position’’ 

in  n
. Only certain manifolds are in regular position [...]. The purpose of the paper is to show that any 

m-manifold M in regular position
19

 in  n
 may be imbedded into a (n   m)-parameter family of 

homeomorphic analytic manifold; these fill out a neighborhood of M in  n
. We may extend the above 

definition as follows: M is in regular position if, roughly, there exist n   m continuous vector functions 

in M which, at each point p of M, are independent and independent of vectors determined by pairs of 

points of M near p. If M is differentiable, the two definitions agree; the  fi are the required vectors. 

The theorem holds also for this more general class of manifolds». 

 

Clearly, again the recalls to the Dini’s work on implicit functions are evident. Moreover, the Lemmas 4 and 5 

of [Wh6, II] (which, as already said, are equivalent forms of Dini’s implicit function theorems) are largely 

used in proving the fundamental theorem I of [Wh6, I.1], given in [Wh6, II.7] for differentiable manifolds, 

on the basis of the previous Lemmas 2 and 3 which give sufficient conditions for the various related 

Jacobians be nonzero with suitable coordinate changes. In [Wh6, II.7], Whitney redefines a differentiable 

manifold just through these Lemmas 3 and 4, hence according to the Dini’s work on implicit functions. 

                                                                                                                                                                                                 
However, the book [VW] is quoted, for instance, in [Wh5, p. 645, Footnote 

2)
]. Further, since [VW] is intended to be a 

companion book of [Ve1], it might be of a some interest, from the historical viewpoint, to remark as the latter, in 

Section 3 of Chapter V, treat with questions inherent to spaces immersed into an Euclidean environment, mentioning 

the related previous partial works of H. Maschke, L. Ingold and others; in [Ve1], on the other hand, Weyl is, for 

instance, quoted in Section 16 of Chapter II and in Section 21 of Chapter III, for which it is very unlikely that, at least 

Veblen, didn’t know the celebrated work [We1]. 
18 Although this paper immediately follows [Wh5] in the publication on The Annals of Mathematics, nevertheless it is 

very likely that it was already known, at least in the main contents, to the author before preparing [Wh5], because its 

results are used and quoted in the latter. Vice versa, results of [Wh5] are also used and cited in [Wh6], so that it is 

presumable that both papers have been composed almost together, even if a certain precedence should be given to 

[Wh6] than to [Wh5], because the first was received, by the redaction of The Annals of Mathematics, on February 26, 

1935 (and in revised form on February 10, 1936), while the second was received on February 10, 1936 (the same 

submission date of the revised form of [Wh6]) and immediately accepted. 
19

 The Author then specifies that any differentiable manifold of  n
 necessarily is in regular position therein.  
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Furthermore, as it has subsequently been done after the Whitney’s work
20

, the Theorem 2 of [Wh5, II.8], 

nowadays called regular value theorem, may be re-expressed and simplified through the implicit function 

theorem, starting from the original Whitney’s proof, with few modifications. Further, the implicit function 

theorems, via the Whitney’s work, are at the basis of the important notion of transversality, a modern 

differential topology tool
21

 that specifies the already mentioned intuitive concept of ‘’generic position’’ 

(drawn from Algebraic Geometry) of a manifold
22

. However, on the basis of what established at the end of 

Section 2, we are mainly interested to the above fundamental Theorem 1 of [Wh5, II.8], because this 

imbedding theorem, amongst other things, provides a certain logical-syntactic equivalence between the 

theory of differentiable manifolds according to the explicit definition given by Weyl (that is to say, the 

modern one) and that implicitly deducible by the above mentioned Dini’s work. 

  It will be necessary to return later on the aspects of Hassler Whitney work related to the use of 

approximation methods. 

 

3. The Implicit Function Theorem: a brief historical sketch 

 

The most complete work on the history of implicit function theory, which we mainly follow, is
23

 [KP]; 

furthermore, a very interesting short history of implicit function theory, in particular that that goes from 

Cauchy to Dini, is findable in [HR, Section IV], which we also follow for some respects, together to [KP]. 

  The prolegomena to the idea for the implicit function theorem can be traced both in the works of I. Newton, 

G.W. Leibniz, J. Bernoulli and L. Euler on Infinitesimal Analysis, and in the works of R. Descartes on 

algebraic geometry. Later on, in the context of analytic functions, J.L. Lagrange found a theorem that may be 

seen as a first version of the present-day inverse function theorem
24

. Subsequently, A.L. Cauchy gave, in 

1831 (when he was in Turin – see [KP, Chapter 2, Section 2.1] and next Footnote 
61

) and in 1852, the first 

rigorous formulations of the previous results on implicit functions, providing existence and uniqueness 

results in the case of regularity C
1 

and only for one variable (real or complex), assuming that such functions 

were expressible as power series, a restriction first removed later by Dini
25

. It follow some works of A.A. 

Briot and C. Bouquet
26

 but only for one variable (see [BB]), until the work of Ulisse Dini, in 1876, with his 

lecture notes [Di1], where he states the Implicit Function Theorem in the rigorous form found in most 

textbooks today, with basic results of existence, regularity and uniqueness for functions of n (≥ 1) variables 

and of regularity class C
r 
(r ≥ 1), but only in the real scalar field

27
; further, he also gave, for the first time, 

formulations of this theorem for systems of two or more functions of this type, which constitutes just the 

main mathematical tool thereupon to the leitmotiv of this paper
28

.  

  After the work of Dini, it follow some partial improvements of his results by other authors. We here in 

primis recall the little known work [Sd] of Elcìa Sadun
29

, who first remembers the importance of the Dini’s 

work on implicit functions made in [Di1], hence he exposes some further improvements and generalizations 

to it, together with interesting geometrical applications also relatively to the complex scalar field. Then, we 

also recall those achieved, as regards the scalar field (from   to  ), by C. Jordan in the 1893 second revised 

                                                           
20 See, for instance, [Hi, Section 1.1], [Hi, Theorem 3.2] and [Na]. 
21 See [Hi]. 
22

 This last remark about the origins of the notion of transversality (from implicit function theorems) is a further 

example confirming what will be said in Section 9 about the origins of a mathematical entity. 
23

 For some aspects of this history, see also [MR]. Moreover, as already said, very interesting historical notes on 

implicit function theorems are given in Section IV of [HR] where, amongst other things, it is also affirmed which 

important role have played such a theory in Mathematics: the Authors, indeed, say that the «[…] classical Implicit 

Function Theorem is imbedded in many parts of mathematics, including differentiable manifolds and optimization 

theory […]» (see [HR, Section III, Remark 7, e)]). On the basic role played by implicit function theory in mathematics, 

see [KP] and also [HG] and references therein. 
24

 See also [Kr, Section 2] for certain limitations to this theorem.  
25 See [Ca, p. 431] and [Hb, Volume I, Chapter V, Section 316]. 
26

 See [HR, Section IV], and references therein, for a more complete discussion of this, till to the modern treatments. 
27

 Nevertheless, in [Di1, Chapter XIII, Section 166], Dini himself states that the complex case is easily deducible from 

the real one considering the usual decomposition of a complex function in the form f(x,y)=g(x,y)+ih(x,y), with g and h 

real functions. 
28

 Indeed, it is just the work of Dini on systems of implicit functions to constitute one of the main formal tool used by 

Whitney in his works and, in general, in the theory of differentiable manifold.  
29

 This work is almost never cited about history of implicit function theory and hence it would deserve further attention. 
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edition of [Jo], but these does not seem to go beyond those of Dini. It follow, then, the contributions by E. 

Lindelöf in 1899, who also considered analytic functions of many variables in the complex scalar field and 

proved the implicit function theorem by means of power series expansion which, as said above, was a 

restriction first removed by Dini. Finally, other contributions were given by W.F. Osgood in 1901, É. 

Goursat in 1903 and E.H. Young in 1909; in particular, Young’s Theorem has a weaker assumption than 

Dini’s one, since it requires a lower order differentiability
30

. 

  In conclusion, we may state that the classical form of implicit function theorem is that given by Dini, with 

results of existence, uniqueness and regularity C
r 
(r ≥ 1), in the real scalar field

31
, for functions and above all 

for systems of functions of one or more variables, having, at least, regularity C
1
; similar smoothness 

assumptions have then formed the backbone of most proofs since then of the various forms of implicit 

function theorems
32

. All of the subsequent works on implicit functions start from this fundamental Dini’s 

work which, however, remains the central pillar of all implicit function theory as concerns the real scalar 

field and functional systems.  

  On the other hand, following [KP, Chapter 2, Section 2.1] and as already said at the beginning of this 

section, the main historical contributions to the history of implicit function theory, on which Krantz and 

Parks focusing their attention, are those due to Newton, Cauchy and Lagrange, the main mathematicians 

upon whose works is centered the whole Chapter 2 of their book, affirming then that «[…] the real variable 

form of the implicit function theorem was not enunciated and proved until the work of Ulisse Dini (1845-

1918) that was first presented at the University of Pisa in the Academic Year 1876-1877. In the remainder of 

this Chapter, we will describe the contributions of Newton, Lagrange and Cauchy mentioned above. The 

real-variable approach, going back to Dini, is pervasive throughout the rest of this book».  

  From the whole book of these Author, it clearly emerges the fundamental paradigmatic role played by 

implicit function theorem in Mathematics. 

 

3.1 An intersection with the history of the Calculus of Variations 

 

To our historical ends, it is necessary, here, to recall some historical aspects related to the connection 

between the history of calculus of variations and the Dini’s work on implicit function theory, mainly 

following [Go]. In fact, among other things, the implicit function theorems have played a fundamental role in 

the calculus of variations, so that many interesting historical notices on these may be traced in the history of 

the calculus of variations.   

  At the turn of the 19th-Century, a number of mathematicians (among to which O. Veblen, W.F. Osgood and 

G.A. Bliss), who later became leaders in American mathematical community, went to Germany to study. 

Among these were W.F. Osgood and E.R. Hedrick, who made available, in the United States of America, the 

ideas of Weierstrass and Hilbert in the calculus of variations. William Fogg Osgood
33

 (1864-1943) was 

graduated from University of Harvard, going subsequently to study in Göttingen and Erlangen with Felix 

Klein, and having taught at Harvard from 1890 to 1933, whereas Oswald Veblen
34

 (1880-1960) received the 

major mathematical training from University of Chicago by O. Bolza, H. Maschke and E.H. Moore, and 

taught at Princeton from 1905 to 1932. Oskar Bolza (1857-1942), amongst other, taught at the University of 

Chicago from 1892 to 1910 and had Gilbert Ames Bliss (1876-1951) as doctoral student at Chicago. The 

latter studied in Göttingen during the year 1902-1903 and, subsequently was also a strict collaborator of 

Veblen at Princeton from 1905 to 1908; in various summer or autumn terms from 1906 to 1911, he gave 

courses at Wisconsin, Chicago, Princeton and Harvard (see [Gr2]). Next to George D. Birkhoff
35

, Veblen 

was the most influential force in American mathematics and, although not of Birkhoff’s status, he had a 

personality which was much more appealing to Europeans, perhaps due to his past training in Germany.  

                                                           
30

 See [HR] and references therein. 
31

 This might seem one of the main limitations to the Dini’s work on implicit functions if one neglected what said in the 

previous Footnote 
27

, whereas as concerns the hypothesis of C
1
 regularity, see also what will be said in the next Section 

4.2. 
32

 However, for further remarks on the regularity assumptions made by Dini thereupon his theorems on implicit 

functions, see also what will be said in the next Section 4.2. 
33

 See [Ar] and [Re]. 
34

 See [Ar] and [Re]. 
35

 See [Re]. 
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Following what says H.H. Goldstine in [Go, Sections 5.13, 7.2 and 7.3], in the basic work
36

 [Os1] the 

Author, besides to give a clear and succinct survey of Weierstrass’ ideas, for proving some field local 

existence results in the calculus of variations uses an implicit function theorem due to Dini which was given 

in 1877-1878 Pisa lectures and appeared in the first of Dini’s two known volumes Analisi Infinitesimale (that 

is to say, [Di1]). Nevertheless, by the references given in [Os1] and [Os2], Osgood surely known the Dini’s 

work on implicit function theory, besides the original Dini’s work [Di1], also from the related chapters 

devoted to this subject by the well-known treatise on Infinitesimal Calculus, and monographs on its 

applications, of that time, amongst to which [GP] and [Bl2, Chapter I, Section 1, p. 7, Footnote *] which
37

, in 

turn, refer to the original Dini’s treatise [Di1]. Furthermore, among the references quoted at the beginning of 

[BFHW, Band II, Zweiter Teil, Artikel B.1] and [BFHW, Band II, Erster Teil, Erste Hälfte, Artikel A.1 und 

A.2], it is mentioned many Italian treatises on Infinitesimal Calculus, amongst which above all
38

 [GP] and 

[Pa], both with German translation: in particular, in [Pa] are quoted the Dini’s lessons [Di1] and [Di3], the 

former as regards his work on implicit functions
39

, whereas the first printed version of the Dini’s work on 

implicit function theory is in [GP] (see [HR, Section IV, p. 25]). 

  Moreover, an important historical survey of implicit function theorem can be found in [BFHW, Band II, 

Zweiter Teil, B.1.a), Section I.5, p. 19, Footnote 
30)

 and B.1.b), Section IV.44, pp. 103-105, Footnotes 
247), 248), 

249)
] and [BFHW, Band II, Erster Teil, Erste Hälfte, A.2.c), Section II.9, pp. 71-73, Footnotes 

69), 69a)
], in 

which
40

 it is clear as well-known were these Dini’s works. In particular, amongst others, Osgood, Bolza and 

Bliss (see also next section for this last author) were mathematicians whose works have made
41

 large use of 

the Dini’s implicit function theorems. For instance, in
42

 [Bo2, German Translation, Vierte Kapitel, Abschnitt 

22, a), p. 159, Footnote 
1)

], Bolza explicitly mention, for first, the lessons [Di1] in a chapter
34

 devoted to 

recall the main principles on real function theory in view of their applications to the calculus of variations. 

                                                           
36

 See also the treatise [Os2] which, as an enlarged and revised edition of the first Osgood’s Article published in 

[BWFH, Band II, Zweiter Teil, Artikel B.1], was one of the main work on function theory of the time (see [Ko]).  
37

 See also [Jo, Tome I, Chapitre VII, Numéros 90-95], where, yet, there is no any explicit reference to the Dini’s work. 
38

 As regards [GP], see also what said in the immediately following footnote.  
39

 See [Pa, Parte I, Prefazione, p. IX] in which the Author mention all of the references used in drawing this his first 

volume, among to which the Dini’s one [Di1] (there called Lezioni di Calcolo – litografate) and the same [GP]. Instead, 

the Italian edition of [GP] largely mention both [Di1] and [Di3]: precisely, in the introductory Annotations No. 1 to No. 

200 (see [GP, pp. VII-XXXII], in which each number refers to the corresponding section of the main text, albeit those 

total, there present, be 216), where, amongst other things, it is also contained some interesting historical-bibliographical 

notes, the lessons [Di1] are cited in the Annotations No. 103 and in No. 110 to No. 120, these last being just those 

including the corresponding sections (from No. 110 to No. 117, included among the Abschnitten 5-8 of the Viertes 

Kapitel of the German edition) treating the implicit function theory. Nevertheless, and this is quite strange, the German 

translation of [GP], contain neither the above mentioned Annotations of the Italian edition nor any other reference, 

referring to the Italian edition for any other thing; moreover, some other Italian treatise on Infinitesimal Calculus, like, 

for example, those of E. Cesàro ([Ce]) and G. Vivanti ([Vi]), widely quote [Di3] but not [Di1]. All this, together to the 

lack of an official in print publication of the lessons [Di1], maybe contributed to the misunderstanding of the Dini’s 

work here discussed. 
40

 The first reference is related to the Chapter, of the Volume II.2, entitled B.1 Allgemeine Theorie der analytischen 

Funktionen a) einer und b) mehrere komplexen Größes, which belongs to the Article written by F.W. Osgood with 

heading title B. Analysis der Komplexen Größen, whereas the second reference is relative to the Chapter, of the Volume 

II.3.1, entitled 9. Funktionen von mehreren Variabein, which belongs to the Section C. Differentialrechnung of the 

Article written by Aurel E. Voss (1845-1931) with heading title A.2 Differential- und Integralrechnung. 
41

 In a certain sense, almost paradoxically, it might be possible to say that they have done ‘’implicitly’’ use of the Dini’s 

work on implicit functions. It is as if, almost for a historical accident, this Dini’s work had undergone that sneering fate 

inflicted by its name itself: rerum sunt consequentia nominum rather than the Justinian I nomina sunt consequentia 

rerum (Corpus Iuris Civilis, Institutiones Iustiniani, Libro II: Res, VII-3), if one wishes to use, in this case, an adapted 

inverse form of a well-known Latin rhetorical phrase. But, yet, one of main aim of the historical-scientific eponymy (in 

this case, related to the History of Mathematics), is just that trying to remedy to this sort of unpleasant historical 

drawbacks (see also Remark 2 of Section 9). 
42

 The German translation of the initial American version, is an enlarged and revised edition (of thirteen chapters and 

about 700 pages) of this last (of seven chapters and about 270 pages): for instance, the Dini’s lessons [Di1], in 

correspondence to his work on implicit function theory, is quoted (together with others, among to which that of 

Genocchi and Peano [GP]) in the Viertes Kapitel, Hilfssätze über reelle Funktionen reeller Variabeln, at the Abschnitt 

22, Ein Satz über eindeutige Abbildung, und seine Anwendungen, which is not included in the American edition where, 

in the Preface, the Author quotes only the Dini’s work [Di3] in addition to [BFHW], [GP], [Jo] and others.  
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On the other hand, seen that Whitney was student at Harvard in the1930s, it is very likely that he however 

had attended at the various lectures (mainly, but not only, on the calculus of variations) of Veblen as 

professor in that University or in the various summer or autumn terms, hence known his works, whence, in 

particular, also the above mentioned Dini’s ones
43

 since, without doubts, his lecture notes [Bl2] were largely 

known among the American mathematical community, as results to be from what stated in [Gr2].  

  Furthermore, the treatise of E.W. Hobson
44

 (which was one of the main English language treatises since its 

first 1907 edition) deals with the Dini’s work on implicit function theorems, with possible their extensions
45

, 

after the Cauchy’s work. The Dini’s work on implicit functions is also cited in the well-known paper [Yo1] 

and in the textbook [Yo2, Chapter XI, Section 38, p. 48]. In any case, therefore, the whole work of Ulisse 

Dini was surely known and widely appreciated, at least in the American mathematical community, as 

witnessed by the obituary of W.B. Ford
46

, read before the American Mathematical Society in September 3, 

1919, in which it is clearly recalled the main mathematical contributions of Dini, among to which those just 

related to implicit functions.  

  In this regards, at first, Ford states that 

 

  «If we inquire in a more detailed sense what his relations to mathematics actually were and what his 

special achievements, it may be noted in the first place that his earliest researches lay in the field of 

infinitesimal geometry; more specifically, in the determination of the form and properties of certain 

partial differential equations which arise in the theory of applicable surfaces. His work in this 

connection, though extending over no more than six years (1864-1870), gave rise to some eighteen 

memoirs dealing chiefly with general problems in the theory of curvature and geodesies, some of 

which had been proposed earlier by Beltrami. At this early period of his life, however, Dini had not 

yet begun the researches for which he is to be regarded as famous nor had he in fact even entered 

seriously into that broad field, namely pure analysis, in whose development he was destined soon to 

play an active part. The transition of his interest and labours to this latter field took place about 1870. 

At this comparatively early date it will be recalled that the newer and more rigorous analysis (the so-

called ‘’modern analysis’’ of today) was but little known to the world at large, the spirit of its methods 

being virtually confined to the limited school of pupils immediately surrounding Weierstrass in 

Germany. Nevertheless, once Dini had turned his efforts in this direction, he appears to have reached 

within a remarkably short time a full appreciation of these newer ideas and methods. In fact, he 

straightway acquired such a critical insight into their significance and developed such ability and 

confidence in their use that he was soon independently at work carrying out for himself their manifold 

consequences, especially their bearing upon those concepts which lie at the foundation of analysis. 

Thus, by the year 1877, or seven years from the time he began he published the treatise, since famous, 

entitled ‘’Foundations for the Theory of Functions of Real Variables’’ (Fondamenti per la teorica 

delle funzioni di variabili reali – [Di3]). Much of what Dini here sets forth concerning such topics as 

continuous and discontinuous functions, the derivative and the conditions for its existence, series, 

definite integrals, the properties of the incremental ratio, etc., was entirely original with himself and 

has since come to be regarded everywhere as basal in the real variable theory. The book has, in fact, 

served as a model the world over and even at this date, which is more than forty years since its 

publication, it still affords one of the best available expositions of the basal concepts of analysis as 

regarded from the standpoint of modern rigor, evidence of which may be found, for example, in the 

fact that as late as 1902 an authorized translation of the work was published in German». 

 

 

 

                                                           
43

 On the other hand, from an online examination of the related databases of the various American university libraries 

here mentioned (amongst which Princeton, Harvard, Yale and Chicago), it turns out to be that all of the Dini’s works 

are present therein, just including [Di1], [Di2] (above all, these last) and [Di3], but it has not been possible go back to 

their effective acquisition date; nevertheless, since the autographed lessons [Di1] went ran out in 1905-1906 (according 

to what Dini himself says in [Di2, Volume I, Prefazione, p. V]), it is very likely that such works were acquired in a 

period ranging about their publication date. In any case, the lessons [Di2] were present almost everywhere. 
44

 See [Hb, Vol. I, Chapter V, Section No. 316 to No. 319], where the work [Di1] is explicitly mentioned.  
45

 Such extensions were made possible thanks to some preliminary lemmas due to O. Bolza (see [Bo2]) and Hobson 

himself (see [Hb, Vol. I, Chapter V, Section 317] and references therein). 
46

 See [Fo]. 
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Then, Ford proceeds saying as follows 

 

  «With the assurance once gained that he was working upon well-grounded principles and definitions 

[of Infinitesimal Calculus
47

], Dini next proceeded to apply them in an extended and detailed sense. 

Thus, during 1877-78 he reworked and treated in his lectures a wide variety of topics taken from the 

usual course in higher analysis. In particular, he here gave for the first time a rigorous treatment of 

the general theory of implicit functions. His numerous researches at this period were left unpublished, 

however, being preserved only in lithograph form (Analisi Infinitesimale – [Di1]). Not until the later 

years of his life did he undertake the considerable task of arranging the whole for publication, but it 

may now be found, together with much supplementary material, in his four large volumes published as 

late as 1915 entitled Lessons in Infinitesimal Analysis (Lezioni di Analisi Infinitesimale – [Di2])». 

 

However, Dini’s theorems on implicit functions have also played a fundamental role in proving many 

important results in the calculus of variations through suitable reformulations and/or extensions of them as, 

for instance, those given by W.F. Osgood (see [Os1]) and O. Bolza (see [Bo1], [Bo2] and [Bl2, Chapter I, 

Section 4]), some of which are briefly recalled in [Go], so that it has been almost forced to recall, although 

sketchily, the main points of the history of calculus of variations properly related to this subject. From this, it 

followed as these Dini’s works on implicit function theorems surely were already known to the German 

mathematical community between the 19th- and 20th-Century as witnessed, for instance, by the well-known 

fundamental Encyklopädie der Mathematischen Wissenschaften (see [BFHW] as regard the volumes devoted 

to Analysis) and reference quoted therein
48

.  

  Moreover, as we will see in the next Section 3.2, the implicit function theorems have been one of the main 

research argument of the first decades of the 20th-Century, among many mathematicians of the American 

mathematical community of the time, as witnessed by the numerous publications made on this, so that these 

last discussions about the knowledge of implicit function theory must hold also as concerns the general  

framework of the American mathematical research of that time. 

 

3.2 On a work of Gilbert A. Bliss 

 

Although it might seem little known from an historiographical viewpoint, the 1909 Gilbert Ames Bliss 

paper
49

 [Bl2] – which plays, as we shall see, a not negligible role for our historical purposes – was instead 

well-known among the mathematical community of the time
50

. It contain the lectures delivered by the Author  

before members of the American Mathematical Society, in connection with the summer meeting held at the 

Princeton University in September 15 to 17, 1909, and published in revised and enlarged form in 1913, 

within the series of Colloquia inaugurated by the American Mathematical Society since 1896.  

  In the Introduction, the Author states as follows 

 

  «The existence theorems to which these lectures are devoted have been the subject of a long sequence 

of investigations extending from the time of Cauchy to the present day, and have found application at 

the basis of a variety of mathematical theories including, as perhaps of especial importance, the 

theory of algebraic functions and the calculus of variations. If a single solution (a;b) = (a1,…, am; 

b1,…, bn) of a set of equations 

                                                           
47

 In drawing up the Fondamenti [Di3], which were written before [Di1], though in a short time one from the other. 
48

 As regard the volumes of this monumental and basic work, relatively to the Mathematical Analysis
 
(Zweiter Band in 

Drei Teilen, precisely II.1.1, II.1.2, II.2, II.3.1 and II.3.2), in the bibliographies related to each Article of it, the Italian 

works and papers on this subject (as, for instance, those of F. Casorati, G. Vivanti, G. Peano, U. Dini, V. Volterra, L. 

Tonelli, E. Pascal, S. Pincherle, G. Morera, E. Cesàro and others) are widely quoted, together their works. On the other 

hand, Dini himself, in [Di2, Volume I, Parte I
a
, Prefazione, p. 5], remembers as his autographed lessons [Di1] have been 

more and more times recalled by the various Authors of this Encyklopädie ([BFHW]), in spite of such lessons were not 

in print published edition (which would have facilitated their circulation in literature).  
49

 Evidently, the drawing up of this paper has been surely made before September 15-17, 1909 (that are the dates in 

which was held this Princeton Colloquium), hence, very likely, when Bliss was research joined with Veblen and others, 

at Princeton (for what said in Section 3.1). 
50

 For instance, it was cited by many remarkable and well-known works and papers of that time (as, for instance, by 

[Cm], [Et], [La], [Ln], etc, many of which read before the meetings of the American Mathematical Society), so that the 

contents of [Bl2], together to the references therein quoted, were well-known. 
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(1)                                             fα(x1, x2,…, xm; y1,…, yn) = 0           (α = 1,…, n) 

 

is known, then in a neighborhood of (a;b) there is one and only one other solution corresponding to 

each set of values z in a properly chosen neighborhood of the values a, and in the totality of solutions 

(x;y) so defined the variables y are single-valued and continuous functions of the x’s. If a set of initial 

constants (ξ; η1, η2,…, ηn) is given, then in a neighborhood of these values there is one and but one 

continuous arc  

 

  y = yα(x)                (α = 1,…, n) 

 

satisfying the differential equations 

 
   

  
                                 (α = 1,…, n) 

 

and passing through the initial values η when x = ξ. The formulation and first satisfactory proofs of 

these theorems, at least for the case where only two variables x, y are involved, seem to be ascribed 

with unanimity to Cauchy. For the implicit functions his proof rested upon the assumption that the 

function should be expressible by means of a power series, and the solution he sought was also so 

expressible, a restriction which was later removed with remarkable insight by Dini. For a differential 

equation, on the other hand, Cauchy assumed only the continuity of the function g and its first 

derivative for y, and his method of proof, with the well-known alteration due to Lipschitz, retains 

today recognized advantages over those of later writers Lipschitz, retains to-day recognized 

advantages over those of later writers. 

  In the following pages (§§ 1-16) the two theorems stated above are proved with such alterations in 

the usual methods as seemed desirable or advantageous in the present connection. The proof given for 

the fundamental theorem of implicit functions is applicable when the independent variables x are 

replaced by a variable p which has a range of much more general type than a set of points in an m-

dimensional z-space
51

. It is not necessary always to know an initial solution in order that others may 

be found. In the treatment of Kepler’s equation, for example, which defines the eccentric anomaly of a 

planet moving in an elliptical orbit in terms of the observed mean anomaly, one starts with an 

approximate solution only and determines an exact solution by means of a convergent succession of 

approximations. This procedure is closely allied to a method of approximation due to Goursat (§ 3), 

suggested apparently by Picard’s treatment of the existence theorem for differential equations. One of 

the principal purposes of the paragraphs which follow, however, is to free the existence theorems as 

far as possible from the often inconvenient restriction which is implied by the words ‘’in a 

neighborhood of’’, or which is so aptly expressed in German by the phrase ‘’im Kleinen’’. It is evident 

from very simple examples that the totality of solutions (x;y) associated continuously with a given 

initial solution of a system of equations f = 0 of the form described above, cannot in general have the 

property that the variables y are everywhere single-valued functions of the variables x, and the result 

of attempting, perhaps unconsciously, to preserve the single-valued character of the solutions has 

been the restriction of the region to which the existence theorems apply. In order to avoid this 

difficulty and to characterize to some extent the totality of solutions associated continuously with a 

given initial one in a region specified in advance, the writer has introduced (§ 5) the notion of a 

particular kind of point set called a sheet of points. In a suitably chosen neighborhood of a point (a;b) 

of the sheet there corresponds to every set of values x sufficiently near to the values a, exactly one 

point (x;y) of the sheet, and the single-valued functions y so determined are continuous and have 

continuous first derivatives. This condition does not at all imply that there are no other points of the 

sheet outside the specified neighborhood of the point (a;b) and having a projection x near to a. With 

the help of the notion of a sheet of points, it can be concluded that with any initial solution (a;b) of the 

                                                           
51

 The notion of a ‘general range’ has been elucidated by E.H. Moore in The New Haven Mathematical Colloquium, 

page 4, the special cases which he particularly considers being enumerated on page 13. An application of the method of 

§ 1 of these lectures when the range of p is a set of continuous curves, has been made by C.A. Fischer, A generalization 

of Volterra’s derivative of a function of a line, PhD Dissertation, Chicago (1912). 
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equations f = 0 there is associated a unique sheet S of solutions whose only boundary points are so-

called exceptional points where the functions f either actually fail, or else are not assumed, to have the 

continuity and other properties which are demanded in the proof of the well-known theorem for the 

existence of solutions in a neighborhood of an initial one. It is important oftentimes to know whether 

or not a sheet of solutions is actually single-valued throughout its entire extent, and a criterion 

sufficient to ensure this property has also been derived (§ 7).  

  On the basis of these results some important theorems concerning the transformation of plane 

regions into regions of another plane by means of equations of the form 

 

(2)                                                     x1 = ψ1 (y1,y2),    x2 = ψ2 (y1,y2) 

 

as in the theory of conformal transformation, have been deduced (§ 8). If the functions ψ have suitable 

continuity properties and a non-vanishing functional determinant in the interior of a simply closed 

regular curve B in the y-plane, and if B is transformed into a simply closed regular curve A of the x-

plane, then the equations define a one-to-one correspondence between the interiors of A and B, and 

the inverse functions so defined have continuity properties similar to those of ψ1 and ψ2. This is but a 

sample of the theorems which may be stated. Others are also given (§ 8) which apply to the 

transformation of regions not necessarily finite, and to systems containing more than two equations.  

  The theory of the singularities of implicit functions is of considerable difficulty and has been but 

incompletely developed. For a transformation of the form above in which the functions ψ1, ψ2 are 

analytic, the singular point to be studied, at which the functional determinant D = ∂(ψ1,ψ2)/∂(y1,y2) 

vanishes, as well as its image in the x-plane, may both without loss of generality be supposed at the 

origin. The most general case under these circumstances is that for which the determinant D does not 

vanish identically and the equations ψ1 = 0, ψ2 = 0 have no real solutions in common near the origin 

except the values y1 = y2 = 0 themselves. It is found that the branches of the curve D = 0 bound off 

with a suitably chosen circle about the origin a number of triangular regions. Each of these regions is 

transformed in a one-to-one way into a sort of Riemann surface on the z-plane which winds about the 

origin and is bounded by the image of the boundary of the triangular region (see § 11, Fig. 6). If the 

signs of D in two adjacent triangular regions are opposite, then their images overlap along the 

common boundary; otherwise they adjoin without overlapping. At any point of one of the Riemann 

surfaces the inverse functions defined by the transformation are continuous and in the interior of the 

surface they have everywhere continuous derivatives. These results are obtained by means of 

applications of the theorem described above for the transformation of the interior of a simply closed 

curve B; and the same method of procedure would undoubtedly be of service when the curves ψ1 = 0, 

ψ2 = 0 have real branches through the origin in common, which must occur whenever they have 

common points in every neighborhood of the values y1 = y2 = 0. The case where the determinant D 

vanishes identically is also considered (§ 12).  

  For the singularities of implicit functions defined by a system of equations f = 0 there is a 

generalization of the preparation theorem of Weierstrass (§ 9) suggested to the writer by some 

remarks in the introduction of Poincare’s Thesis, and by a study of the elimination theory of 

Kronecker for algebraic equations. The theorem is presented here (§ 13) for two equations and two 

variables y1, y2  in the form originally given at the time of the Princeton Colloquium, but the method of 

proof is similar to that of a later paper and applies with suitable modifications to a system containing 

more equations and independent variables. These results can not by any means be said to afford a 

complete characterization of the singularities of implicit functions, but it is hoped that they may be 

useful in paving the way for researches of a more comprehensive character. 

  The writer published some years ago a paper
52

 concerning the extensibility of the solutions of a 

system of differential equations, of the form specified above, from boundary to boundary of a finite 

closed region R in which the functions gα are supposed to have suitable continuity properties. In the 

last chapter of these lectures the character of the region has been generalized so that no restrictions 

as to its finiteness or closure are made, and it is shown that the approximations of Cauchy converge to 

a solution over an interval in the interior of which the limiting curve is continuous and interior to R, 

while at the ends of the interval the only limit points of the curve are at infinity or else are on the 

                                                           
52

 G.A. Bliss, The solutions of differential equations of the first order as functions of their initial values, Annals of 

Mathematics, 6 (1904) pp. 49-68. 
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boundary of the region. The solutions so defined are continuous and differentiable with respect to 

their initial values, a property which once proved is of great service in many of the applications of the 

existence theorems. One situation in which these results have an important bearing is related to a 

partial differential equation of the first order 

 

F(x, y, z, ∂z/∂x, ∂z/∂y) = 0. 

 

When this equation is analytic, any analytic curve C, which is not a so-called integral curve, defines 

uniquely an analytic surface containing the curve and satisfying the differential equation. The 

uniqueness in this case is a consequence, in the first place, of the fact that an analytic surface is 

completely determined when an initial series defining its values in a limited region is given, and, in the 

second place, of the theorem that at a given point and normal of the initial curve C satisfying the 

differential equation there is but one series defining an integral surface including the points of C and 

having the given initial normal. It is not self evident in what sense a solution of a non-analytic 

equation is uniquely determined by an initial curve, as may be seen by very simple examples. An initial 

curve which is not an integral curve will in general have associated with it, however, a strip of 

normals which satisfy the partial differential equation, and whose elements as initial values determine 

a one-parameter family of characteristic strips simply covering a region Rxy of the xy-plane about the 

projection of the initial curve C. There is one and but one integral surface of the differential equation 

with a continuously turning tangent plane and continuous curvature, which is defined at every point of 

the region Rxy and contains the initial curve C and its strip of normals (§ 19)». 

 

Subsequently, in [Bl2, Chapter I, Section 1], the Author says as follows  
 

  «The fundamental theorem of the implicit function theory states the existence of a set of functions  

 

    yα = yα (x1,…, xm)           (α = 1,…, n) 

 

which satisfy a system of equations of the form 

  

(1)                                            fα (x1,…, xm; y1,…, yn) = 0      (α = 1, …, n) 

 

in a neighborhood of a given initial solution (a;b). Dini’s method
53

 for the case in which the functions 

f are only assumed to be continuous and to have continuous first derivatives, is to show the existence 

of a solution of a single equation, and then to extend his result by mathematical induction to a system 

of the form given above, a plan which has been followed, with only slight alterations and 

improvements in form, by most writers on the theory of functions of a real variable. In a more recent 

paper
54

 of Goursat has applied a method of successive approximations which enabled him to do away 

with the assumption of the existence of the derivatives of the functions f with respect to the 

independent variables x. One can hardly be dissatisfied with either of these methods of attack. It is 

true that when the theorem is stated as precisely as in the following paragraphs, the determination of 

the neighborhoods at the stage when the induction must be made is rather inelegant, but the 

difficulties encountered are not serious. The introduction of successive approximations is an 

interesting step, though it does not simplify the situation and indeed does not add generality with 

regard to the assumptions on the functions f. The method of Dini can in fact, by only a slight 

modification, be made to apply to cases where the functions do not have derivatives with respect to the 

variables x. The proof which is given in the following paragraphs seems to have advantages in the 

matter of simplicity over either of the others. It applies equally well, without induction, to one or a 

system of equations, and requires only the initial assumptions which Goursat mentions in his paper». 

                                                           
53

 ‘’U. Dini, Lezioni di Analisi infinitesimale, vol. 1, chap. 13. For historical remarks, see Osgood, Encyclopädie der 

Mathematischen Wissenschaften, II, B 1, § 44 and footnote 30’’: this is the original footnote * of [Bl2, Chapter I, 

Section 1, p. 7], and we think that Bliss did refer to [Di2] instead of [Di1] when cites Dini (see also [BWFH] and the 

above Section 3.1, for exact references); in this regards, see also what has been said in the previous footnote 
43

. 
54

 É. Goursat, Sur la théorie des fonctions implicites, Bulletin de la Société mathématique de France, 31 (1903) pp. 184-

192. 
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From what said above by Bliss, it is evident the primary role played by the implicit function theorems, from 

Cauchy to Dini, in the proof of the various existence theorems given by the Author in his Lectures; above all, 

the Dini’s work on implicit function theory, generalizing and extending the previous results achieved by his 

predecessors (amongst to which, A.L. Cauchy), has played a very crucial role in proving these and, in 

general, in proving many existence theorem of differential equation theory with related geometrical 

applications
55

. In particular, for trying to extend the univocity of the solutions of a system of equations of the 

type (1) from a neighborhood to a wider region, the Author introduces, on the one hand, the new notion of a 

sheet of points in relation to ordinary points of implicit functions, studying also the related coordinate 

changes (2), whereas, on the other hand, he introduces a construction quite similar to that of a Riemann 

surface but in relation to singular points of implicit functions
56

, studying the related geometrical properties 

under coordinate transformations of the type (2), and also through some local approximation theorems (as 

the Weierstrass’ preparation theorem) as regard some types of algebraic functions
57

. 

  However, this work of Bliss, of which here we have only briefly recalled those points closely related to our 

purposes, would need for further historiographical recognitions also as regard its possible historical 

connections with other aspects of the History of Mathematics (as, for example, those concerning the history 

of Riemann surfaces delineated in [We1]). Nevertheless, as said in the above Section 3.1, Bliss was a strict 

research collaborator of Veblen at Princeton, just in the period in which he wrote and presented these 

Princeton Colloquium Lectures, so that it is surely possible to affirm as the arguments and subjects treated by 

them were well-known within the American mathematical community (and not only this) of that time, if 

nothing else for having delivered these lecture before members of the American Mathematical Society. 

These last discussions about Bliss work presentation are also valid as concerns the paper [Bl1] (from which 

shall derive [Bl2]), in which is quoted too the above Dini’s work on implicit functions since 1911, because 

this communication was read before the American Mathematical Society on October 28, 1911. 

  In conclusion, from all what has been said so far, it emerges as the Dini’s work on implicit function 

theorem was well-known (albeit not always explicitly mentioned) in the international mathematical 

community, in particular in the American Mathematical Society as witnessed by the many research papers 

published
58

 just on this argument, in the first decades of the 20th-Century, since at least the Dini’s printed 

lessons [Di2] were surely well-known and materially available
59

. 

                                                           
55

 Besides [Bl1] and [Bl2], many other interesting geometrical applications of implicit functions (which might also have 

a some historical interest as regard the argument of this paper), are considered, for instance, in [Cm], [Dn] and [Lo]. 
56

 Just these last considerations should be retaken in another place in relation to the work of Hermann Weyl on Riemann 

surfaces and its possible relationships with implicit function theory. 
57

 Besides, the Author give, in [Bl] and [Bl2, Chapter II, Sections 8, 9], a proof of the Weierstrass preparation theorem 

(published in 1886 but known in lectures since 1860 – see [HR, p. 28]) which is independent by the theory of complex 

variable just by means of the Dini’s theorems. In this regard, see also [Bl1] and [Cl], in which the implicit function 

theorems are largely used as tools in proving generalized versions of this Weierstrass’ result, and vice versa (for some 

respects), so that there exist not negligible relationships among these theorems (see also [KP, Chapter 5] and Section 8 

of this paper). For instance, in the papers [Cm] and [Dn] are showed basic formal liaisons between certain forms of 

Weiertrassian implicit function theorem (today known as Weierstrass Preparation Theorem, and exposed in the Chapter 

Einige auf die Theorie der analytischen Funktionen mehrerer Veränderlichen beziehende Sätze of K. Weierstarss, 

Abhandlungen aus der Funktionenlehre, Verlag Von Julius Springer, Berlin, 1886) and those related to the Dini’s 

theory, obtaining interesting comparison results having also useful geometrical implications, above all taking into 

account the Bliss work [Bl1]. Above all in [Cm] are mentioned interesting references (also the Cauchy’s Turin Memoir) 

which refer both to the implicit function theorems of the Theory of Real Functions and the various forms of Weierstrass 

preparation theorems, which, besides, would deserve further historical attentions. 
58

 See [Bl], [Bl1], [Bl2], [Cm], [Dn], [Et], [Gr1], [Ht], [HG], [Lm], [Ln], [Mm] and [Mr], almost all in the main 

publications of the American Mathematical Society (that is to say, the Transactions of the AMS and the Bulletin of the 

AMS) as communications first read before the various meetings of this celebrated institution (this increasing their 

knowledge within the mathematical community). 
59

 See Footnote 
43

. 
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4. On the work of Ulisse Dini
60

 

 

Ulisse Dini was born in Pisa on November 14 (α), 1845 and died in his hometown on October 28, 1918 (Ω). 

He was a student both of Ottavio Fabrizio Mossotti (1791-1863) and Enrico Betti (1823-1892). The first was 

a physicist and a mathematician, deeply influenced by the works of J.L. Lagrange
61

, that taught Geodesy at 

the University of Pisa in the days of Dini student. The second was professor of Mathematical Physics at the 

University of Pisa and supervisor of the Dini’s thesis
62

. In 1864, Dini started to publish with a paper on an 

argument of his graduation thesis suggested by Betti; this first paper was followed by many other works on 

Differential Geometry and Geodesy. In that period, Dini was into a scientific friendship with E. Beltrami 

which taken the Geodesy Chair of the late Mossotti; at the same time, Dini was into direct touch with G.F.B. 

Riemann, at the time visiting professor in Pisa under Betti’s interests, in the period 1862-1865. 

  In 1865, Dini spent one year of postgraduate research under the supervision of J. Bertrand and C. Hermite 

in Paris
63

: this was a period of high mathematical activity for him and many publications came out of the 

research he undertook during Parisian period of study, where he further developed his graduated thesis 

arguments with more researches above all in Differential Geometry and Geodesy, but also in Algebra and 

Analysis. In 1866, Dini came back to Pisa, where he started his teaching career at the Royal University of 

Pisa, as professor of Geodesy and Advanced Analysis
64

. Nearly seventy, notwithstanding many practical 

difficulties and political troubles, also due to his profound nationality sense which seen him actively 

involved in the historical events of the time, for his teaching assignments, Dini settled important and original 

works on a rigorous revision of the mathematical foundations of Analysis, with his celebrated Lezioni di 

Analisi Infinitesimale (see [Di1] and [Di2]) and, above all, with the Fondamenti per la teorica delle funzioni 

di variabili reali (see [Di3]): as we shall say, the latter were written before the former, which were drawn up 

also taking into account them. As recalled in [Bi1] and [DBI], according to Luigi Bianchi (who was one of 

the best students of Dini, in turn himself world-renowned mathematician), these last Dini’s works were 

amongst the early devoted to a rigorous setting of Infinitesimal Calculus: in particular, the in print published 

                                                           
60

 For the various biographical notes recalled in this Section and hereafter, see [Bi], [Fo] and [DBI, Vol. XL, pp. 162-

165]. See also [Sn] and [Tr]. Furthermore, Dini biobibliographical notes are also given by J.C. Poggendorff in [BLH] 

and by C.C. Gillespie in [Gl, Vol. IV, p. 102], to further testify the knowledge of Dini’s work abroad since the 

beginnings of the 20th-Century.  
61 On the other hand, O.F. Mossotti was a close colleague and collaborator of G.A.A. Plana at Torino, and the latter was 

a pupil of J.L. Lagrange at the Parisian École Polytechnique. Moreover, seen his fundamental work on Mathematical 

Analysis (also as concern the implicit functions), it also might be of a certain historical interest, in this particular 

context, to recall as A.L. Cauchy was also professor of Mathematical Physics at the Royal University of Turin from 

1831 to 1833 (see [Te]), in the same period in which taught Plana, where he held the Chair of Sublime Physics (this 

having been the name of the time given to Mathematical Physics) that was of A. Avogadro since 1820. Besides, Cauchy 

gave the first rigorous formulation of existence results for implicit functions just in the Turin period (see [KP, Chapter 

2, Section 2.1] and also what said in Section 3), in the paper Résumé d'un Mémoire sur la mécanique cèleste et sur un 

nouveau calcul appelé calcul des limites (also known as Turin Memoir), presented in a meeting of the Accademia delle 

Scienze di Torino on October 11, 1831, starting from the previous work of his former teacher Lagrange on this subject, 

and whose results will be retaken in the subsequent paper Mémoir sur l’application du Calcul infinitésimal à la 

détermination des fonctions implicites presented at L’Académie des Sciences de Pàris on February 23, 1852 (besides, 

this celebrated Cauchy memory is also mentioned in [Os2, II.1, Zweites Kapitel, Abschnitt 1, Anmerkung 1), p. 83] as 

Turiner Abhandlimg vom 11 Oktober 1831). Hence, without doubt, there was a scientific (even  human, amongst some 

of them, age permitting) reciprocal knowledge, at least as concern the works developed by these Authors, and namely 

among Dini, Mossotti (via Plana, with), Lagrange and Cauchy. 
62 There are really few doubts on the educational importance played, among others, by the work and teaching of 

Mossotti and Betti on the formation of Dini’s scientific outlook. Further, a considerable educational and intuitive role is 

also played by the university curricula of that time, especially that of Geodesy teaching for developing geometrical 

intuition and visual and imaginative skills (which are among the main functions through which the human mind thinks). 

Nevertheless, these last considerations cannot be correlated, in a rigorous and direct manner, to the subject treated in 

this paper (at least, from what has been said so far) as regard the origins of the notion of a differentiable manifold. 
63 See [Lo]. 
64

 It wouldn’t be historically irrelevant to know the exact subject program of this particular matter of the time, which, 

nowadays, it might be considered corresponding to a teaching of name ‘Mathematical Analysis and Geometry’. Indeed, 

following what said by Enea Bortolotti at the point 9. of his Introduzione ai lavori geometrici di Ulisse Dini (see [Di4, 

Volume I, pp. 195-209]), the Geodesy teaching hold by Dini was mainly centred on the first elements of Differential 

Geometry of Surfaces, hence on the geometrical applications of differential calculus. 
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edition of the Lezioni di Analisi Infinitesimale ([Di2]) were widely known in the whole international 

mathematical community, constituting one of the main references on this matter
65

. In all of these works, it 

have been inserted many original unpublished results and contributions by the Author: of fundamental 

importance were the new results achieved in the differential calculus by Dini and, amongst these, in 

particular the (so-called Dini’s) theory of implicit functions (in [Di1] and [Di2]) as regards his Lezioni, 

whereas another paper would be necessary for a minimal historical recognition of the Dini’s work regarding 

the Fondamenti. Following [DBI], the Lezioni – where, for the first time, was exposed, inter alia, the 

rigorous theory of implicit functions – were known in Italy and abroad, and provided to the diffusion of the 

modern analysis. 

  For our purposes, in the following subsections we briefly expose some of the main historical accounts on 

such celebrated Dini’s works, which constitute milestones of the international mathematical literature 

concerning the Infinitesimal Calculus and its Geometrical Applications.  

 

4.1 On the autographed Dini’s lessons ([Di1])  

   

We are properly interested both to the first autographed lessons Analisi Infinitesimale ([Di1]) and to the in 

print published version of them [Di2]. As regards the former, some first valuable historical notes are 

furthermore findable in the Preface to [Di2, Volume I] by the Author himself, these last lessons being 

reviewed in the next section. 

  Their exact original title is Analisi Infinitesimale, Lezioni dettate nella Regia Università di Pisa dal Prof. 

Cav. Ulisse Dini, Anno Accademico 1877-78. These are the lessons given by the Author in the Academic 

Year
66

 1876-1877 at the Royal University of Pisa, of which there exist two contemporaneous autographed (or 

lithographed) editions: the edition published by the printing-works Bertini, and that published by the 

printing-works Gozani, both editions being in an unique volume, divided into two parts: the first devoted to 

the Differential Calculus (with Chapters I to XXXII), the second devoted to the Integral Calculus (with 

Chapters I to XXIII). The theory of implicit functions according to Dini, is expounded, for the first time, in 

the Chapter (of [Di1]), of Parte I
a
, entitled 

 

XIII. Derivate e differenziali dei vari ordini di funzioni implicite di una o più variabili indipendenti, 

 

which comprise the Sections  No. 138 to
67

 No. 166, whereas in the Chapter (of [Di1]) of Parte I
a
, entitled 

 

XV. Cangiamento delle variabili indipendenti, 

 

Dini deal with certain first forms (even if incomplete) of the so-called inverse function theorem
68

. In the 

Sections No. 138 to No. 166, Dini introduce the notions of an implicit function of two or more variables, 

discussing their uniqueness, existence and C
1
-regularity properties first for a single implicit function with 

their derivatives of order greater or equal to the first, then extending these results to systems of implicit 

functions, together to some interesting geometrical applications of these results.  Finally, in the following 

Chapters (of [Di1]) of Parte I
a
, precisely the Chapters XVII to XXXII, Dini expose the main geometrical and 

analytical
69

 applications of some theorems of the previous Chapters XIII to XV of Parte I
a
: just to give an 

example, it is noteworthy what Dini states in Sections from No. 375 to No. 377 of Chapter XXX (and also in 

                                                           
65

 In this regards, Giovanni Sansone, in the Preface to [Di4, Vol. I], said that «the ‘Lezioni di Analisi Infinitesimale’ 

([Di2]) were a work universally known which, since their first lithographed editions, had great diffusion both in Italy 

and abroad». 
66

 As recalled in the subtitle to the main one, of the title page of [Di2, Volume I, Parte I
a
]. 

67
 In particular, in Section No. 140, he says that his treatment is limited to the real case – even if, in Section No. 166, he 

concludes affirming that the complex case is easily reducible to the real one – whereas in Sections No. 157 to No. 162, 

he considers the first treatment of systems of implicit functions of two or more real variables. 
68

 We recall the equivalence between the implicit function theorem and the inverse function one (see, for instance, [Pr] 

and also [KP]). 
69 Where, amongst other things, the Author also uses the famous Dini’s numbers of Mathematical Analysis, which were 

introduced, for the first time, in the Fondamenti per la teorica delle funzioni di variabili reali ([Di3]) that, as already 

said, were drawn up before [Di1]. 
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Chapter XXXI) on some problems inherent the osculation
70

 sphere of an hump curve, in which he 

continuously use his results on implicit functions, established in the Parte I
a
, in deducing the main properties 

of this sphere approximating the given hump curve in one of its point. Precisely, in Section No. 375, he uses 

the implicit function theorem to prove the existence of explicit equations representing a piece of a curve 

passing through a prefixed point (of this hump curve) and always having a determined tangent in it, 

resembling the characteristic procedure of local linear approximation
71

, typical of the manifold structure.  

  Nevertheless, new and remarkable geometrical applications of the theory developed in Parte I
a
 (in 

particular, as concerns the theory of implicit functions developed in Chapter XIII and the theory of variable 

changes of Chapter XV), will be inserted in the subsequent in print publication of these 1877 lectures, which 

will take place at the first of 1900s, as we shall see in the next section. Indeed, amongst other, further 

interesting historical accounts on these first autographed Dini’s lessons [Di1] – and on [Di3] – will be given 

in the discussions of the next section related to [Di2]. 

 

4.2 On the Dini’s in print published lessons ([Di2])   

 

At the beginning of the 20th-Century, Dini published a new revised and enlarged edition of these previous 

lessons [Di1], into two volumes (and each volume, into two parts), and, in this regards, it is fundamental 

what he says in the Preface to [Di2, Volume I]. What follows is mainly drawn from it
72

. 

  In this Preface, Dini first expose the main motivations which were at the basis of the drafting of the initial 

lessons
73

 [Di1]. He recalls what was the state of the Infinitesimal Calculus in that period which, 

notwithstanding the first rigorousness attempts already made, among others, by N.H. Abel, A.L. Cauchy and 

P.G.L. Dirichlet, it still persisted not negligible gaps in this respect, as also pointed out by some remarkable 

authors like H.A. Schwartz, R. Dedekind, G. Cantor, G.F.B. Riemann, H. Hankel, E. Heine, K. Weierstrass 

and E.H. Du Bois-Reymond. Taking into account the works of these last mathematicians, Dini started to 

drawing up his celebrated Fondamenti per la teorica delle funzioni di variabili reali ([Di3]) in the 1870s, 

and, almost at the same time, to drawing up his lessons [Di1]: the former were in print published in 1877, 

but, for various reasons, the latter were left in the autographed form. In this 1907 Preface, Dini himself regret 

of this failed publication since, in his opinion, these lessons had many interesting and original new points 

which would have could draw the attention of other scholars: this is what he says in the Footnote (*) of [Di2, 

Volume I, pages IV-V], outlining some of these new points. Dini himself, in such a Preface, moreover says 

that already these his lithographed lessons had a wide diffusion among the Italian mathematicians who 

always quoted such lessons in their work, but also complaining, yet, of the fact that such references to his 

work were quite scarce in the foreign treatises on Infinitesimal Calculus
74

, except the already mentioned 

Encyclopädie der Mathematischen Wissenschaften. On the other hand, the same Dini affirms that in 1879, 

the French mathematician M.G. Fauré-Bignet, by means of their common friend Ernesto Padova, asked to 

him if it was possible to have a French translation of these Pisa lessons
75

 that, for Italian Editor’s troubles,  

was delayed until the beginning of the 20th-century, with the initial aim to publish the original 1877 lessons 

without changes or additions but that it will be kept as such, partially
76

, for the Parte I
a
 of Volume I, making 

changes and insertions in Parte II
a
 of Volume I, so obtaining a revised and enlarged edition as regard both the 

parts of Volume II. Finally, Dini drawn up the Volume I placing, before the old Parte I
a
 of [Di1], an 
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 Roughly, the osculation falls into the surface contact class of order major or equal to two, whereas the tangency is a 

surface contact of order one. 
71

 The original Dini’s discussions and argumentations developed in Section No. 375 (and, in general, all those related to 

Chapters XVIII to XXXII) are quite particular and they would require a more in-depth analysis. 
72

 Precisely, the whole Dini’s treatise in two volumes, include only two Prefaces, one for the first volume (see [Di2, 

Volume I, Parte I
a
, pp. III-VII]), the other for the second one (see [Di2, Volume II, Parte I

a
, pp. III-IV]).   

73
 In this regards, see also [Bt] as concern the Dini’s contributions to the Foundations of Analysis in the period from 

1860s through 1870s. 
74

 Nevertheless, here we have tried to refute, in part, this Dini’s bitterness, itemizing instead many foreign treatises 

which quote the Dini’s lessons [Di1] (but with some reserve regarding the French literature). 
75

 And this proves as these autographed lessons were also well-known in the French mathematical community, in spite 

of they had been scarcely cited in the relative French literature of the time. 
76

 Adding many footnotes to integration of the text. Dini decided to start the printed version of [Di1], initially without 

carrying out changes or further additions, because, above all, motivated by the will of giving an historical witness of 

what was the Pisa teaching of Infinitesimal Calculus in the 1870s, but subsequently making substantial enlargements 

mainly (but not only) concerning the geometrical applications of differential calculus and the integral calculus. 
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Introduzione formed by some preliminary chapters of [Di3], numbered as Chapters I to VII. It follow the part 

entitled Calcolo Differenziale, formed by the Chapters I to XVII, just as the Parte I
a
 of [Di1], and the part 

entitled Applicazioni Geometriche del Calcolo Differenziale, with Chapters XVII to XXXVI, that, as it see, 

is enlarged respect to the same part of [Di1], which contained the Chapters XVII to XXXII. 

  The related Dini’s editorial plan expected a treatise on Infinitesimal Calculus in two volumes, the first 

devoted to Differential Calculus, the second  to the Integral Calculus. The first volume was already expected 

into two parts, the first devoted to the exposition of the doctrine field of the Differential Calculus, the second 

to its geometrical applications. From the properly typographical point of view, on the one hand, materially 

there exists a unique first volume of a total of 720 pages, in which it is not explicitly neither specified nor 

mentioned, in nowhere the text, this division into two parts, while, on the other hand, materially there also 

exist two separated tomes for the Volume I, the first containing the Parte I
a
, recalled in the title page as  

  

Vol. I – Calcolo Differenziale 

(1
a
 PARTE) 

 

and in the external back cover, whereas the second one has no title page, starting with a page having only the 

central headline 

 

APPLICAZIONI GEOMETRICHE 
DEL CALCOLO DIFFERENZIALE 

 

without any reference to Parte II
a
, which is written only in the external back cover, like in the Parte I

a
 case.        

  On the other hand, the Author himself, in the Preface to Volume I, often speak of two parts of this volume, 

while in other place of the same work (as in the second volume, when he refers to the first one), he does not 

mention any part of this
77

. Thus, a certain ambiguity may arise about the originary typographical setting of 

this first volume which, however, is little relevant from an historical viewpoint because this Volume I was 

conceived in the same period and published, as a whole, in the 1907, both as a unique volume and as a 

volume into two parts: the only utility of this distinction may turn out to be useful at level of citations, the 

Parte I
a
 quoted as concerns the theory of Differential Calculus, and the Parte II

a
 quoted as concern its 

geometrical applications. Instead, it is quite different the situation as regards the Volume II because its Parte 

I
a
, of pages 1-468, was published in 1909, with Chapters I to XVII, whereas its Parte II

a
, of pages 471-1056, 

was published in 1915, with Chapters XVIII to XXXII; the Parte II
a
 of the old lessons [Di1], devoted to the 

integral calculus, contained the Chapters I to XXIII. 

  To our purposes, it is notable to analyze some of the new contents added both to Chapters XIII and XV of 

[Di2, Volume I] and to the various subsequent chapters related to the geometrical applications, compared to 

the same chapters of [Di1]; in particular, the applications of many results of Chapters XIII and XV are 

pervasive throughout the rest of this Parte II
a
 of Volume I. As properly regards the Chapter XIII of [Di2, 

Volume I], the new additions are mainly inserted as footnotes, and concern the regularity and uniqueness 

conditions for the existence of the derivate of first order of an implicit function, as well as local 

approximations of an implicit function through Taylor’s developments: for instance, it is fundamental to 

point out as Dini himself, contrarily to what commonly affirmed
78

, had already stated both weakest regularity 

conditions respect to the C
1
 one, supposing only continuity and finiteness of the related implicit function 

without any other conditions to its derivate, and further improvements on uniqueness conditions
79

. Moreover, 

many interesting geometrical examples are reported as an application of the theoretical concepts and 

methods there developed, which will be further retaken in the part concerning the geometrical applications 

(that is to say, in the Parte II
a
 of Volume I). 
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 Moreover, Giovanni Sansone, in the Prefazione to the Ulisse Dini’s mathematical works (see [Di4, Volume I, 

Prefazione, p. 2]), speaks of the Lezioni di Analisi Infinitesimale ([Di2]) as a work in four volumes, that is to say, the 

Volume I and Volume II with their respective Parte I
a
 and Parte II

a
. Furthermore, these printed version of the original 

Dini’s autographed lessons, in the Elenco delle Pubblicazioni di Ulisse Dini of [Di4, Volume I, pp. 12-16], are quoted 

at the publication No. 58) as follows: Lezioni di Analisi Infinitesimale, Vol. I, p. I, Pisa, Nistri, 1907, pp. CI+372; Vol. 

I, p. 2
a
, Pisa, Nistri, 1907, pp. 373 a 720 (besides mistaking the number of chapters of p. I). See also [DBI, Vol. XL, pp. 

162-165] where are quoted four volumes for the Lezioni di analisi infinitesimale.  
78

 In [Di2, Volume I, Chapter XIII, Section 149, Footnote (*), p. 204]. See, for instance, [HR] as regard the attempts to 

weaken the C
1
-regularity conditions of the Dini’s implicit function theorem. 

79
 See [Di2, Volume I, Chapter XIII, Section 150, Footnote (*), p. 205]. 
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Generally, Dini follows his own original ways of treating the applications of differential calculus to 

geometrical questions, and one of these consists just in considering repeatedly geometrical entities defined 

implicitly which distinguishes himself by the other well-known treatise on differential geometry (like [Bi3]).  

In this case, so to adduce some examples appropriate to our purposes, it is remarkable to observe as in the 

Sections 275 of Chapters XIX and in the Section 366 of Chapter  XXVI (of the geometrical applications), the 

implicit function theorems are applied for the existence and uniqueness of the tangent line and plane at a 

regular or singular point respectively of a curve or of a surface given in implicit form, from which it follows 

that, in such cases, only local results may be obtained
80

, this being just the essence of the implicit function 

theorem paradigm as a main formal tool to study the local nature of a geometrical entity, given in implicit 

form, by means of other geometrical entities (determined by it) given in an explicit form just thanks to this 

tool
81

. As already said, Dini used it in a pervasive and original manner throughout his Parte II
a
 of Volume I.  

  According to what said in [En, Libro I, Capitolo IV, § 41], among the main international treatises on 

Infinitesimal Calculus
82

, it is just mentioned the two related works of Dini, that is, his Lezioni di Analisi 

Infinitesimale ([Di1]) and the Fondamenti per la teorica delle funzioni di variabile reale ([Di3]), recalled as 

the ones that have provided a first (and, in a certain sense, definitive) systematic and rigorous critical 

treatment of the Calculus (above all in the printed version [Di2]). Moreover, in [En, Libro III, Capitolo II, § 

10], it is said that, in the second half of the 19th-Century, the main authors who have set up a new and fully 

rigorous theoretical rearrangement of the Calculus, were Weierstrass in Germany and Dini in Italy, their 

works – affirms Enriques – becoming rapidly known in all of the world. 

 

5. The paper of Henry Poincaré 
 

Following E. Scholz
83

, in the paper [Po] it may be found a possible source of the concept of a manifold. In 

fact, Henry J. Poincaré, in [Po, Sections 1-4], also following part of the fundamental work
84

 of E. Betti [Be], 

gave a constructive definition of (unilateral/bilateral
85

) manifold as follows. 

  If x1, ..., xn are generic variables of  n
 (n ≥ 2), then he considers the following system of p equalities and q 

inequalities 

 

(1)                         F1 (x1, ..., xn) = 0, ...., Fp (x1, ..., xn) = 0, φ1 (x1, ..., xn) > 0, ...., φq (x1, ..., xn) > 0, 

 

with Fi , φj continuous and uniform functions, with continuous derivatives in such a way that the Jacobian 

determinant J = det ||∂Fi /∂xk || be non-zero in each point of the common definition domain of the Fi. When 

rank ||∂Fi /∂xk || = p, then the system (1) defines a manifold of dimension n – p. If p = 0, we have a so-called 

domain. 

  Subsequently, Poincaré proves
86

 as a manifold of dimension m = n   p defined by the system (1), is  

equivalent to the formal object defined by a system of equations of the following type  

 

                                                           
80

 It is above all noteworthy the fact that this Parte II
a
 of [Di2, Volume I] is one of the few work of the time, devoted to 

the differential geometry, in which are defined and treated the main geometrical elements (as tangent, normal, 

osculations, etc) for geometrical entities defined implicitly (for instance, differently from the well-known treatise [Bi3], 

which considers only entities explicitly defined, except the case of enveloping entities – likewise for its next editions). 
81

 In this regards, the Hadamard work [Ha] has been written in order to may extend, as far as possible, this point of 

view, from the local to the global, starting from the known results on implicit functions of the time, and reaching to the 

celebrated Hadamard global inverse function theorem (see [KP, Chapter 4, Section 6.2]). From this last viewpoint, see 

also the work [Gu1] for interesting geometrical applications of implicit function theory. 
82

 In addition to those of Dini, it is recalled other well-known treatises as those of A. Genocchi (as edited by G. Peano), 

C. Jordan, J. Tannery, O. Stolz, C. de la Vallée Poussin, C. Carathéodory, E. Cesàro, C. Arzelà and E.W. Hobson. 
83

  See [Sc] and also [Mc]. 
84

 Which, besides, it would deserve further attentions for its historical importance relatively to the Combinatorial 

Topology, together to the related little known work of Alberto Tonelli (1849-1920), entitled ‘’Osservazioni sulla teoria 

delle connessioni: nota’’, Atti della Reale Accademia dei Lincei, Serie 2, Annata 272, Volume 2, 1874-1875, pp. 594-

601 (besides cited, amongst others, by Weyl in [We1, Chapter I, Section 6, p. 33, Footnote 
14)

] about some interesting 

geometrical immersion problems). 
85 The distinction between unilateral and bilateral manifolds is given in [Po, Section 8]; we herein refer to the bilateral 

case. Further, in this context the recalls to the constrained systems of Analytical Mechanics might also be recognized. 
86

 See [Po, Section 3]. 
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(2)                                                      x1 = θ1 (y1, ..., ym), ...., xn = θn (y1, ..., ym), 

 

plus a certain number of inequalities of the form ψi (y1,…, ym) > 0, making use of the implicit function 

theorem (but without explicitly mentioning it). Further, Poincaré himself, at the beginning of [Po, Section 3], 

says that an m-dimensional manifold may be defined only by the system (2), without additional inequalities, 

when the variables y1,…,ym are independent among them.  

  In any way, the recalls to the implicit function theory (or to its equivalent forms as inverse function 

theorem) are evident. However, the main historical interest of the paper [Po] is related to the sources of 

Algebraic Topology, and not, in general, to the birth of a (possible) concept of differentiable manifold
87

.  

 

6. On the work of Hermann Weyl 
 

According to the official history of mathematics, the definition of a complex two-dimensional topological 

manifold, as today known, was exposed, for the first time, in [We1, Section 4], whereas in [We1, Section 6],  

the Author gives the notion of a differentiable structure on such a manifold type.  

  The Weyl’s analysis starts from a geometrical representation of an analytic form (according to Weierstrass 

and Riemann), and attaining to a particular structure of (Riemann) surface
88

, through the new topological 

developments achieved by D. Hilbert and others. In particular, the new local Hausdorff’s concept of  

‘’neighborhood’’ of a point, played a crucial role in the Weyl’s construction of a topological manifold
89

.  

  Moreover, some geometric and analytic function theory aspects of Complex Analysis of the time
90

, have 

also played a very important formal role in the Weyl’s work, first of all, the works of Weierstrass
91

 on 

analytic function theory, and on the related concept of analytic form, according to the theoretical approach 

for studying hyperbolic and elliptic functions due to his teacher Christoph Gudermann (1798-1852), which 

was mainly centered on the use of power series expansion techniques, in turn based on the well-known work 

of Lagrange on analytic functions that, as briefly mentioned in Section 3, is also closely related to the history 

of implicit functions
92

. Besides, the notion of analytic form follows from the consideration of those points in 

which an analytic function is not regular, for example having there a pole or a branch point of finite order, 

and in this seems evident a methodological analogy with what said in the previous section 3.2, as concerns 

the work of Bliss on the singular points of implicit functions (see [Bl1] and [Bl2]). 

  The central Weyl’s idea is that of local homeomorphism of a manifold with  n
. Subsequently, Weyl 

introduces a differentiable structure on a topological manifold by means of such a local homeomorphism of 

this manifold with  n
, taking into account some fundamental works of Felix Klein, who wrote a fundamental 

monograph
93

 on Riemann surfaces, on the basis of a definition of it more general than the formulation used 

by Riemann in his studies on the theory of analytic functions.   

  As said by the same Weyl, these Klein’s works seem to assume an important role in the (Weyl’s) definition 

of a differentiable structure on a manifold. Furthermore, the Klein’s Erlanger Program viewpoint seems also 

to be at the basis of the Weyl’s definition of ‘’compatibility relations’’ among ‘’local coordinate systems’’ of 

a generic point of the manifold, since he introduces a group of local coordinate transformations Γ that leave 

fixed the origin of   ; such a group characterizes the manifold, and Weyl, in this regards, talks about surface 

of type Γ.  

  Later on
94

, in [We2], the Author shall make use of the main notions and structures introduced in [We1], in 

the applicative context of General Relativity, reaching to remarkable results in this field. 

 

 

 

                                                           
87

 See [Sa]. On the other hand, in this paper, none differential structure is introduced, so that, if one want just to put it 

into historical relationship with the origins of the notion of manifold, then it should refer to the notion of affine 

topological manifold rather than the differential one. 
88

 Which is not a surface in the sense of Analysis Situs (see, for instance, [Ve2]). 
89

 For an historical account related to the passage from the notion of local to the global one in Geometry, see [Co] 

(where, yet, Dini is not quoted). 
90

 In this regards, see also what will be said in Section 8. 
91

 Indeed, the Section 1 of the first Chapter of [We1] starts just with the Weierstrass’ concept of an analytic function. 
92

 Hence, we return again to the history of implicit function theory.  
93

 See [Kl1], and also [Kl2]. 
94

 In [We2]. 
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7 On the works of O. Veblen and J.H.C. Whitehead 

 

In the paper
95

 [VW1], Oswald Veblen and his former student John Henry Constantine Whitehead introduce 

the definition of an n-dimensional (regular) affine manifold through the basic notion of coordinate system 

and related transformations, through to which it is possible to reach to the fundamental notion of allowable 

coordinate systems on the basis of the analytical properties of the transformations between them, one of the 

main mathematical tool to establish these being just given by the implicit function theorems, that, in turn, 

leads to the characterizing notion of regular transformation. Precisely, in the Introduction, the Authors 

define 

 

  «a manifold as a class of elements, called points, having a structure which is characterized by means 

of coordinate systems», 

 

where the notion of (local) coordinate system is the same of the Weyl’s one
96

. Then, they introduce the 

notion of regular transformation by means of the Dini’s implicit function theorems
97

. This notion is puts at 

the foundation of a definition of regular manifold, through the further notion of pseudo-group of 

transformations 
98

 via three groups of axioms that, on the whole, characterize the concept of manifold
99

. The 

subsequent sections of [VW1] are devoted to the consistency and independence of the previous groups of 

axioms, to some topological considerations and to few analytic applications (some of which are, for instance, 

related to the differential absolute calculus). Even in this case, the Dini’s implicit function theorems play a 

crucial role in the definition of manifold – as well as that of a fundamental syntactic tool to be largely used – 

since this last object is characterizable (according to Weyl) as an abstract entity locally diffeomorphics to  n
, 

via allowable (through regular transformations) local coordinate systems
100

, hence indirectly reconnecting, 

from a formal viewpoint, to these Dini’s works.  

  From these few considerations, it seems therefore reasonable to affirm as one of the main characterizing 

idea
101

, that gradually led to the structure of a differentiable manifold, was that related to the local (and not 

global, in general) invertibility of a regular coordinate transformation between allowable coordinate systems, 

whose main formal tool is just provided by the implicit function theory as formulated in the Dini’s sense, of 

which especially importance is played by those chapters (of [Di1] and [Di2]) related to the systems of 

implicit functions or two or more variables
102

. 

  In [VW2, Chapter III, Section 1], the Authors argue about allowable coordinate systems, asserting as 

follows 

 

  «In general, it is desirable to use a much larger class of coordinate systems, so that the 

transformation of coordinates shall be as general as they can be without destroying the significance of 

the analytic expressions which are to be used. The theory of transformations which we shall use 

depends upon the implicit function theorem in much the same way that algebra contained in Chapter I 

(of [VW2]) depends upon Cramer’s rule for solving linear equations».  

 

And the next Section 2 of Chapter III of [VW2], is just devoted to summarize the main facts about the 

implicit function theorems, considered as a tool analogous to Cramer’s rule, following the Chapitre II of the 

Tome I of Goursat’s treatise
103

 [Gu]. Nevertheless, Veblen mentions and uses
104

 the Dini’s works on implicit 

                                                           
95

 And, more extensively, in [VW2], the latter being considered, by Veblen himself, as a companion to [Ve1]. 
96

 Even if Weyl is not explicitly quoted, nevertheless it is, for instance, mentioned at page 557 of [VW1] as concerns his 

book [We1], so that, despite this, it is unthinkable that Veblen and Whitehead did not know the Weyl’s work [We1] on 

these arguments, also in relation to the drawing up of [VW2]. See also Footnote 
17

. 
97

 See [VW1, p. 552]. 
98

 See [KN] or [Ch]. 
99

 See the above Section 5. 
100

 Besides, the Authors devote the Section 2 of Chapter III of [VW2] to explain the implicit function theorem as a 

fundamental tool that will be used in the remaining text. 
101

 And, in this regards, again we refer to what will be said in Section 9. 
102

 And Dini’s was really the first (from an historiographical viewpoint) author to give a rigorous treatment of systems 

of implicit functions in [Di1]. 
103

 Also this treatise, as that of C. Jordan (see [Jo]), does not explicitly mention the related Dini’s work. 
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functions both in [Ve1, Chapter II, Section 4, p. 15, Footnote 
†
] and in [Ve1, Chapter V, Section 7, pp. 74-75, 

Footnote *] in which he follows, respectively, the already mentioned Goursat’s treatise [Gu] and the 

Osgood’s treatise [Os2] where, as we will see in the next section, the Dini’s work [Di1] is clearly mentioned 

to this purpose.  

  On the other hand, any systematic work on tensor calculus cannot to leave aside from questions inherent 

coordinate transformations and related arguments (as functional determinants and implicit function 

theorems
105

) and, in this regards, Veblen does not make exception (see [Ve1, Chapter I, Section 5]). To this 

point, therefore, it is necessary to make some useful historical remarks on Osgood’s treatise [Os2], which, 

we repeat, was one of main treatise on function theory of that time. 

  In conclusion, the work of Veblen and Whitehead [VW2], albeit important per se, does not seems to be so 

original and fundamental from an historiographical point of view in the search for the real origins of the 

concept of a differentiable manifold, since, as seen, it is directly and indirectly correlated, with few 

substantial changes, to the previous Weyl’s work on Riemann surface [We1]. These last conclusions have 

would been possible only by a careful formal analysis directly carried out on their text and not by means of 

what is said by the secondary historical and historiographical literature on it (see Remark 2 of Section 9). 

 

7.1 On W.F. Osgood ‘Lehrbuch der Funktionentheorie’  

 

In [Os2, Band I, Zweites Kapitel, Abschnitt 4, pp. 47-52], it is recalled the main results established by 

Cauchy and Dini as concern implicit functions (mentioning
106

 the Dini’s work [Di1] in Footnote 
**)

 of page 

47), saying, besides, as Dini, in [Di1], have generalized and extended – and, in some respects, simplified – 

the previous works on implicit functions of his predecessors, above all Cauchy, and for not having, for first, 

made use of the power series expansions as done by this last. Moreover, Osgood gave a very clear rigorous 

reformulation, with the aid of graphical representations, of the original Dini’s proof of his theorem on the 

existence and unicity of implicit functions, with numerous illustrative examples.  

  On the other hand, reconnecting us to what said in the previous section about the Weyl’s works on Riemann 

surfaces, Osgood himself, in [Os2, Band I, Achtes Kapitel, Abschnitt 11, pp. 345-347], as regards the 

Grundlagen der allgemeinen Theorie der Funktionen einer komplexen Größen, consider just the results 

achieved on implicit function theory as basic tools for studying Riemannian surfaces deduced from analytic 

forms: precisely, given a complex algebraic function of the type G(w,z) = 0, he considers its decomposition 

into the sum of two real algebraic functions as follows G(w,z) = P(u,v; x,y) + iQ(u,v; x,y), with P and Q real 

polynomials, then apply Dini’s theorems on systems of implicit functions, just to the systems formed by 

these two real polynomials to obtain, via Cauchy-Riemann monogenic conditions
107

, the following surface 

equations
108

 u = φ (x,y) and v = ψ (x,y). 

                                                                                                                                                                                                 
104

 Moreover, in [Ve1, Chapter III, Section 22, p. 48, Footnote *], it is mentioned the fundamental work of A. Capelli, 

Lezioni sulla teoria delle forme algebriche, Pellerano, Napoli, 1902. Thereafter, in [Gr1, page 520, Footnote †], it is 

reported the following footnote «With the definition of compactness phrased in this way, it is possible to avoid any use 

of the postulate of Zermelo. Cfr. Cipolla, Atti della Accademia Gioenia in Catania, vol. 6 (1913), Memoir V, Sul 

postulalo di Zermelo e la teoría dei limiti delle funzioni», so that even the acts of the Accademia Gioenia di Catania  

were known in the American mathematical community. This, of course, does not have nothing to do with the historical 

questions here treated, but, from an historiographical viewpoint, it indirectly proves, as in part already said in the above 

Section 3.1, as the works of Italian mathematicians of the time were well-known in the international mathematical 

literature, even in the original Italian language. This might already be seen by a simple look of the various references 

quoted in any related Litteratur (or reference list) placed before each Kapitel of the well-known Encyclopädie der 

Mathematischen Wissenschaften (see [BFHW]). Hence, the same discourse should also hold for the Dini’s works [Di1] 

and [Di2] which nevertheless didn’t have had any foreign translation. 
105

 See, for instance, the Capitolo I of Parte Prima of the celebrated work T. Levi-Civita, Lezioni di Calcolo 

Differenziale Assoluto, Alberto Stock Editore, Roma, 1925, where, amongst other things, the Author largely use the 

formal tools therein introduced for immersion problems of manifolds (defined according to Riemann) into Euclidean 

spaces. However, here it is opening another historical question, precisely that relative to the possible historical role 

played by the implicit function theory in tensor calculus development, which cannot be treated in this place. 
106

 Also mentioning the work [GP]. 
107

 Through which it is possible to get a nonzero value of the relative functional determinant (Wronskian) computed at 

an arbitrary point of           . 
108

 Also in this case we can identify the action of main paradigmatic role played by the implicit function theorem, in 

finding these local explicit surface equations from the implicit one.    
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Furthermore, the implicit function theory in complex scalar field, is also widely used in many parts
109

 of 

[Os2, Band II.1], which concern the Grundlagen der allgemeinen Theorie der Funktionen mehrerer 

komplexen Größen, especially as regards the formal study of algebraic functions from the complex analysis 

viewpoint.  

  However, from these last interesting points here mentioned about such fruitful correlations of implicit 

function theorems with algebraic function theory (and that will be further discussed in the next Section 8), it 

is possible to observe what crucial role has also played the implicit function theory in developing some basic 

chapters of the theory of complex algebraic surfaces.  

 

7.2 On O. Veblen and J.H.C. Whitehead ’Foundation of Differential Geometry’ 

 

To our purposes, it is notable, above all in view of what will be briefly said in the next Section 9, to state 

what follows relatively to a formal (above all, syntactic) equivalence between different possible definitions 

of a constrained system of Analytical Mechanics which, in turn, is closely connected to that of a 

differentiable manifold.   

  With extreme concision, but in a rigorous manner (as his style), Vladimir I. Arnold, in his celebrated 

textbook [An], has proved a kind of rigorous formal equivalence between the usual modern notion of a 

differentiable manifold according to Weyl, that deducible by the Dini’s work on systems of implicit 

functions (in the sense that we want emphasizes in this place) and the principle of virtual work of analytical 

mechanics in one of its equivalent formulations known as D’Alembert-Lagrange principle. All this is simply 

meaningful of, at least, one secure point: the last two formal tools just mentioned, syntactically provide the 

central idea of a certain, new local
110

 mathematical property of an as much new given formal object, in 

general not globally thinkable: from here, it follows just the notion of a differentiable manifold, according to 

a general, possible mechanism of mathematical creativity that will be briefly delineated in Section 9. 

  On the other hand, the notion of parallel displacement, which is strictly related to that of the principle of 

virtual work (after Tullio Levi-Civita original paper) is also a geometrical argument treated in many sections 

of the Chapter V of [VW2] (as well as by the major part of the treatises on differential geometry and tensor 

calculus of the time, as well as, of course, by almost all of the textbooks on analytical and rational 

mechanics) with interesting historical notes, also in connection
111

 with the paper [Bl2] as concern some 

existence theorems for certain differential equations involved in the resolution of the equations related to 

such a notion of parallel displacement, in the general framework of the geometry of tangent space to a 

manifold in a given point of it. These last discussions, in short, point out as a complete and organic historical 

recognition of the origins of the notion of a differentiable structure cannot leave aside from certain basic 

aspects of the history of Analytical Mechanics (as, for example, those related to the Lagrange and Lipschitz 

works).  

 

8. The role of Dini’s theory on implicit functions in differential geometry: first conclusions 
 

In this paragraph, we want, in conclusion, put in evidence the existence of some possible, relevant logical 

(and historical – see next Remark 2) links between the theory of implicit functions, in particular as settled 

after the work of Ulisse Dini, and the construction of the abstract theory of a (topological and differentiable) 

affine manifolds, although they are not immediately evident from the historical viewpoint
112

. 

  As already said in Section 1, it is possible to build up a theory of affine manifolds in  n
, by means of the 

Dini’s implicit function theorems and the related inverse function theorems: see, for instance, the excellent 

and organic treatment of this given in
113

 [Pi2, Parte I
a
, Capitolo 2, Paragrafo 2 and Parte II

a
, Capitolo 7, 

Paragrafo 3]) or the as much good exposition given in [De, 2° Volume, Cap. V]; see also [Vl, Volume IV, 

                                                           
109

 As in the Erstes Kapitel, Abschnitten 6 und 7, whereas the whole Zweites Kapitel has title Implizite Funktionen, 

Teilbarkeit. 
110

 And not global, in general, as can be, for example, that given by a system of linear equations formally regulated by 

the Cramer’s rule, and of which the Dini’s work on implicit functions would be a certain generalization and extension 

of it (to the non-linear case). 
111

 See [Bl2, Chapter V, Section 13]. 
112

 See the discussion of Remark 2 of Section 9. 
113

 By one of the most thorough and complete Italian treatise on Mathematical Analysis, that of Bruno Pini. 
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Articolo I, § 2]. See also [Sh, Chapter 1, Section 2, pp. 23-28] in which it speaks just of submanifolds 

described implicitly. 

  The implicit function theorems and the inverse function theorems, characterize the local structure of any 

manifold
114

. Moreover, a manifold (in  n
) may be think, in a certain sense, as the zero values of a given 

system of functions of the type (1) (equivalent to (2)), discussed in the previous Section 5, and here we does 

not develop the detailed calculations connected with these well-known claims, since we have mainly 

historical interests
115

. Therefore, from what has been said so far, there are very few doubts on the 

fundamental formal role played by the Dini’s work on implicit functions theory in contributing to establish 

the structural foundations of the modern concept of an affine differentiable manifold, at least in the 

mathematical philosophy sense which will be briefly developed in the next Section 9. 

  Nevertheless, it would be an historical mistake to think that Ulisse Dini had explicitly in mind such a 

manifold theory (although only in  n
): in fact, he set, say implicitly, only the fundamental formal tools need 

for the subsequent modern and explicit axiomatic construction of an abstract affine manifold, as, for instance, 

showed by the formal examples of Section 1, even if
116

 it is possible to presume that some eventual, partial 

hints would have also could to arise by the original geometrical applications of differential calculus made in 

Parte II
a
 of [Di2, Volume I]. In herein current state of the research, we may only to say that between the 

Dini’s work on implicit functions and the theory of manifolds, as showed too by the discussions of Sections 

2 and 7.2, there only exist strong links of formal nature
117

 through to which it has been possible to identify 

some typical local (and, in general, not global) analytical properties which, in turn, have led – through that 

general objectivation process (see next Section 9) which constitutes a sort of abstract reification 

(hypostatization
118

) of a mathematical entity providing a new object – to the institution of a new formal 

object called manifold, according to one of the main characteristics of the already mentioned paradigmatic 

role of implicit function theorem.  

  Further, we have already mentioned the possible role played by Algebraic Geometry
119

 and Complex 

Analysis regards to the formation of the modern concept of a differentiable manifold and we wish to outline 

some further few words about these last important aspects. As concerns the algebraic geometry context, in 

Section 3 we have only said as some works of R. Descartes might be considered as a sort of prolegomena to 

the birth of implicit function theorem, but this historical link seems to be quite little influent from the 

syntactical viewpoint. Instead, a very fundamental role is played by complex analysis in connection with the 

geometric theory of complex functions, hence from the complex algebraic geometry viewpoint, since the 

works of H. Weyl. In fact, the Weyl’s work [We1], as said in Section 6, is mainly centered on the rigorous 

study of the geometrical representation of certain analytic forms, in turn in relationship with the previous 

studies on Riemann surfaces made (in [Kl1]) by Felix Klein on the same subject. The work of Weyl, as said, 

is mainly centered on the theory of analytic functions according to Karl Weierstrass, applied to the 

Riemann’s theory of algebraic functions and their Abelian integrals, towards the construction of a Riemann 

surface, reaching to a particular method of construction of it, by Weyl himself called the Riemann-Klein 

approach.  

  In the Preface to [We1], Weyl outlines a brief historical account of the motivations which were at the 

source of his work. Stemmed by a winter semester course held at Göttingen in 1911-1912, three events have 

had a decisive influence on the form of his book: the 1909 F. Brouwer works on topology, the P. Koebe 

proof of the uniformization theorem and the Hilbert’s establishment of the foundation on which Riemann had 

built his structure and which was now available for uniformization theory, that is to say, the Dirichlet 

principle. Besides this, as already said, the previous Klein’s works on Riemann surfaces have also played a 

                                                           
114

 See, for instance, the parametrization technique given by [Se, Capitolo 5], [He, Chapter 5] and [ST, Chapter 5, 

Sections 3 and 4]). In particular, in [Th, Chapter 15], the Author establish two main theorems which show that, locally, 

n-surface and parametric n-surface are the same thing, in order to do this being necessary to use the inverse function 

theorem; moreover, we recall that the inverse of a parametrization is defined to be a chart of this n-surface. 
115

 Even if such a type of study would result to be necessary if one must to identify historical connections of the 

epistemological type in the sense of Remark 2 of Section 9. However, to this purpose, see also [Gi, Capitoli VII e VIII] 

and [Pr, Capitolo 4]. 
116

 And this presumption would be very hazarded at this stage of the historical research herein undertaken if one, for 

instance, did not make an historical recognition in the sense delineated in the Remark 2 of Section 9.  
117

 Which, despite all, have also a their own (far from negligible) historical importance, as it will result to be from the 

discussions of Section 9. 
118

 For this, see for instance [Cl, Chapter 1, p. 12]. 
119

 See, for instance, [KP]. 
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fundamental role in the development of Weyl’s work. On the other hand, taking into account what said in 

Sections 3.2 and 7.1, it has seen as the theory of implicit functions has also played a fundamental role in the 

theory of algebraic functions and related geometrical applications as witnessed by the fundamental Osgood’s 

articles in [BFHW], which surely couldn’t be unknown to Weyl
120

.  

  From all this, it is possible to guess
121

 some non-negligible influences also played by the 19th-Century 

Algebraic Geometry, especially as regards the theory of algebraic functions, in the development of some 

crucial aspects of the theory of differentiable manifolds, above all in  , because many algebraic geometry 

tools and methods are applied to the study of the so-called Riemannian surfaces of an algebraic function. On 

the other hand, a posteriori, these historical conjectures could find some further partial (syntactical) 

confirmations by the so-called Nash-Tognoli imbedding theorems of Algebraic Geometry
122

, a sort of 

algebraic geometry analogous of the Whitney’s imbedding theorems, which prove as any compact smooth 

manifold is diffeomeorphic to a well-defined nonsingular real algebraic manifold. Moreover, certain 

extended forms of implicit and inverse function theorems to real algebraic geometry, have played a 

fundamental role both in developing a so-called ‘’semi-algebraic differential geometry’’ (see [BCR, Chapter 

2]) and to prove the above mentioned Nash-Tognoli imbedding theorems (see [BCR, Chapter 14]). Hence, in 

conclusion, also some fundamental works of 19th-Century algebraic geometers, mainly regarding algebraic 

functions and the theory of algebraic surfaces, might be considered to have a some influence (in the sense 

specified in Section 9) on the possible sources of the main formal aspects of a differentiable manifold 

structure, as witnessed by the Weyl’s work.  

  Nevertheless, just the comparison with the Nash-Tognoli theorems mentioned above, does not have any 

historical importance in the precise question related to the born of modern theory of differentiable manifolds, 

differently by the case of the Dini’s and Whitney’s works: this last discussion is, simply, a remark that has a 

some sense only in regards to the fact related to a some possible historical influence played by ideas, 

methods and tools developed by the already mentioned wide geometric immersions problematic
123

 which. On 

the other hand, a sort of historical influence, in a certain sense inverse to that just mentioned above, may be 

identified relatively to one of the many definitions of algebraic variety of Algebraic Geometry, that given by 

André Weil in
124

 [Wi, Chapter VII, Section 3] in which the Author gives a definition of abstract algebraic 

variety following that of a differentiable manifold.  

 

9. On the nature of mathematical objects: first brief outlines 

 

The book [Gs] has been written by one of the leading mathematician in the field of Calculus of Variation and 

its Applications, to whom active experience of pure mathematician he has successfully joined an outstanding 

historical competence: making valuable use of his former research work in pure mathematics, the Author is 

one of the most suitable scholars to give a direct evidence of how a mathematical thought may be creative 

and original in thinking and finding new objects, or ideas, which have a some slightest scientific foundation. 

  According to what says Enrico Giusti in [Gs] after having passed into examination the main historical cases 

thereupon such a context, one of the main way to reach a new mathematical object or entity, is that 

consisting in a sort, say, of objectivation process which is a type of abstract reification (hypostatization) of 

the mathematical proof procedures already established – for instance coming from resolutions of previous 

                                                           
120

 To claim this, it is enough to recall as, for instance, the Osgood’s article [BFHW, Band II, Zweiter Teil, Artikel B.1] 

is, amongst other, quoted by Weyl in [We1, Chapter I, Section 1, p. 1, Footnote 
2)

]. On the relationships between 

implicit function theory and algebraic functions, see above all [Os2, II.1] (in particular, its Zweites Kapitel) and also 

[Bi2, Capitolo VII, §§ 70-80] and [Pi, Capitolo VIII, §§ 154-157 e Capitolo XIII, §§ 243-250]. Moreover, the 

arguments of Chapter VII of [Bi2] are preliminary to those of Chapter VIII devoted to the introduction of the concept of 

a Riemann surface, following a line of thought in some respects analogous to the Weyl’s one. See also [Ju] for 

interesting relationships between the theory of implicit functions and the theory of algebraic functions oriented toward 

Riemann surfaces. 
121

 Above all, from the Weyl’s work ([We1]); see also [Mc]. 
122

 See [BCR, Chapter 14]. On the other hand, the same John Nash, together – but independently each from the other – 

to Jürgen Moser, proved a more general and abstract form of implicit function theorem, known as Nash-Moser implicit 

function theorem (see [KP]), for his researches on the imbedding of Riemannian manifolds (see [HH]). 
123

 In this regards, it might be of a some interest to see also what has said Ford (in [Fo]) about the works of Dini on 

infinitesimal geometry related to problems inherent partial differential equations on given applicable surfaces (see also 

the above Section 3.1). 
124

 See also [Fu, Chapter 6, Section 2]. 
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problems – from which it can arise, at a certain point, a clear and conscious insight institutionalizing this new 

formal object or entity.  Now, the case related to the structure of differentiable manifold, is just one of this, 

according to what has been said above, confirming, therefore, what hypothesized by Giusti: indeed, the 

notion of such a geometrical structure can be seen as the result of such an objectivation process related to the 

proof (and, in  lesser part, to the eventual geometrical meaning) of the implicit function theorems, above all 

according to the Dini’s work on systems of implicit functions (albeit in  n
), as well as, for certain aspects, to 

the mathematical properties concerning the principle of virtual works, as already said in Section 7.2.  

  Another, fundamental example of the same type
125

, also confirming the above Giusti’s hypothesis
126

, is that 

related to the institution of the formal topological notion known as Stone-Čech compactification of natural 

numbers   – namely denoted by β  – because, following what said in [Eg, Chapter 3, p. 179], its, as say, 

‘implicit’ constitution has had place along the proof of the celebrated A. Tychonov theorem on the 

compactness of the topological product of an arbitrary family of compact spaces, then ‘explicited’
127

 

                                                           
125

 Maybe more meaningful of that here considered. 
126

 Which, besides, is very close to the Weyl’s conception of mathematical construction (see [Cs, Capitolo XII, § 1]) as 

due to the inter-relationships between logic and mathematical processes which are the two fundamental generative 

processes of any mathematical construction.  
127

 Hence, we might, in a certain sense, to think such an objectivation process as due, roughly speaking, to a sort of 

‘’passage from the implicit towards the explicit’’(with the proper precautions as concern the possible meaning of these 

last terms). On the other hand, the adjectives ‘implicit’ and ‘explicit’ are often used in mathematics but in a roughly 

sense and in different contexts: for instance, the same Weyl quotes that «The most general concept [of surfaces 

imbedded in spaces] is probably found explicitly first in Koebe’s work […]» (see [We1, Chapter I, Section 6, p. 33, 

Footnote 
14)

]); then, another example of this passage but as concerns the aspect more properly formal, in [Et, page 316, 

Footnote †], as regards the application of a given theorem, the Author states that «The theorem [of K. Carathéodory, 

Vorlesungen über réelle Funktionen, Teubner, Leipzig, 1918, Satz 5, p. 678] made use of here is not explicitly stated by 

Carathéodory, but is implicit in the existence theorem for differential equations cited above [Theorem I of [Et]]», for 

more details referring to the other his paper H.J. Ettlinger, On Continuity in Several Variables, Bulletin of the American 

Mathematical Society, 33 (1) (1927) pp. 37-38, where, at the very beginning, it is stated that «The following theorem on 

the continuity of a function of several variables is contained implicitly in a theorem on the existence of solutions of 

differential equations by Carathéodory. It is of a general nature and independent of the context in which it is found. It 

is, therefore, worth while isolating and signalizing it». Nevertheless, another, very emblematic example of the 

opposition «implicit vs explicit» in Mathematics from which it may arises a mathematical entity, is given by the 

definition of probability. Indeed, following [Cs, Capitolo 1, § 3], the birth of the notion of probability has undergone a 

similar process: from an implicit definition used by B. Pascal in the half of the 17th-Century, both G.W. Leibniz on the 

one hand and P.S. Laplace on the other, have later gave an explicit definition of probability on the basis of the previous 

implicit definition by Pascal, reaching to the classical definition of probability as ratio between favourable cases and 

possible cases which, in turn, led to the explicit frequentist definition of probability according to J. Venn (1866). 

Thereafter, it have seen the explicit subjectivist definition of probability according to B. De Finetti and F.P. Ramsey 

(1920) and the criticisms moved by A.N. Kolmogorov to them, wishing only an axiomatic definition of probability – 

hence implicit, according to what states Weyl in [We3, Capitolo 1, § 4, p. 34] – which he shall give in 1933 (see [Cs, 

Capitolo 2, § 6]); Kolmogorov stated that the explicit definitions of probability aren’t of pertinence of mathematical 

probability theory but of mathematical philosophy; see also [Cs, Capitolo 4, § 1; Capitolo 6, § 1] as regard further 

discussions upon the explicit definitions. Therefore, the dialectic process «implicit versus explicit» has the status of a 

real general paradigmatic process of creation of a mathematical entity according to what has been said above. From a 

properly psychological stance, this process might be put into correspondence with the so-called Gestaltic switches inter 

alia recalled by T.S. Kuhn to explain certain aspects of scientific revolutions. Finally, as regards the historical 

importance played by this process, A. Weil in [Wi1, Capitolo I, § II], arguing about the history of factorization of prime 

numbers, recalls some particulars concerning the historical antecedents of the Euclidean algorithm in finding the 

greatest common divisor of two integers and stating as it was the result of a typical process (of mathematical creativity), 

that according to which a given mathematical entity has been (implicitly of necessity) discovered in different contexts 

much time before the substantial and formal identity of these discoveries began to be perceived (explicitly) as an unique 

mathematical entity or object. Moreover, Weil written a fundamental paper (see [Wi2]) on the relationships between 

mathematics and its history, covering many points common to the Federigo Enriques thought on a certain identification 

of these two disciplines; in the same paper, then, he states that «the ability to recognize the dark and/or incipient form of 

the mathematical ideas [that is to say, in implicit manner present] as well as to follow their traces in the many disguises 

that them may assume before manifest themselves in the full light of day [that is to say, their explicitation], is very likely 

to be combined with a mathematical talent better than the average one; but, even more than this last, such an ability is 

an essential component of this talent. That that makes the mathematics very interesting is just the first appearing of 

concepts and methods devoted to emerge only subsequently into the conscious mind of mathematicians; the main scope 

of the historian is just that of freeing them as well as retracing their factual or missing influences on the successive 
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contemporaneously, but independently one from the other, by Eduard Čech and Marshall H. Stone, who have 

based their works (above all, the first author) just on this Tychonov’s theorem proof. 

 

  Remark 1. It could seem incoherent and inhomogeneous the historical recognition here made about some 

historical aspects related to the history of implicit function theory and its formal methods, in particular 

oriented towards the Dini’s work thereupon made. Indeed, such tools have been identified in the many, quite 

different mathematical contexts, and here only recalled from the historiographical point of view (implicit 

function theorem paradigm). Nevertheless, if one points out what has been the real intention which has 

motivated the drawn up of this paper, then it is possible to avoid such an initial criticism.  

  Indeed, the main aim of this first paper is that of having tried to put the attention on another possible 

methodological viewpoint in doing History of Mathematics, precisely that consisting in examining, in a 

detailed manner, the properly mathematical works carried out by the various authors under historical inquiry, 

above all in consideration of what established in Section 9 (mainly based on the meaningful work [Gs]). 

Following this principle of the method, it has been possible to identify as the whole theory of implicit 

functions has played a fundamental role both in differential and algebraic geometry, in this first paper having 

pointed out only few historiographical facts: precisely, such tools have played a fundamental role in the birth 

of the notion of affine differentiable manifold both through the Whitney’s works (this aspect having been the 

main subject of this first paper) and through the Weyl’s work on Riemann surface (this aspect having been 

only briefly mentioned here).  

  On the other hand, it is just this last Weyl’s work that led us towards the context of algebraic geometry: in 

fact, as already said in Section 6, this Author attained to his notion of a (two-dimensional) differentiable 

manifold by means of geometric and analytic properties of analytic forms which, in turn (as said at the end of 

Section 8), are also closely related to the implicit function theory in the complex scalar field. Now, only 

following such a historical research methodology it has been possible to identify such new types of historical 

connections (see also next Remark 2) among mathematical contexts quite far among them and not always 

directly correlated through the usual historical connections. 

 

  Remark 2. From a properly historical point of view, perhaps this paper identifies another possible historical 

connection. Precisely, from an historiographical viewpoint, there exist, roughly, various types of historical 

connections (or correlations), which are the main study objects of the historical sciences, if one does not 

consider their mere chronicle-historical aspects: a direct historical connection is given, for example, by an 

explicit and direct mention or quotation, by the author under examination, of a given historical source (work, 

paper, thought, person, etc) belonging, for instance, to another given source, so that we refer to the so-called 

primary literature of the cited source; an indirect historical connection is given, instead, by the same type of 

the previous historical recall but by means of the use of secondary literature through which the quoted 

source is not explicitly and directly mentioned, but we alludes to it, as say, for ‘interposed person’ or else for 

relata refero, albeit, in any case, it is always possible, with a certain degree of accuracy, date back to the 

given source.  

  Finally, there also exists another possible historical connection – which we might call epistemological or 

theoretical connections – not included in the previous ones, an example of which is just that given by the 

case here considered. Indeed, due to the various reasons above exposed
128

, the implicit function theorem, in 

the Dini’s form, is, yep, widely used in a given context (in this case, that related to the origins of the structure 

of a differentiable manifold), but often without put the right emphasis on the relevant syntactic role played 

by this recurrent formal tool within the various proof processes in which it is involved, sometimes even 

without in no way mentioning it. Therefore, in this first paper, we have tried to rebuild up the possible 

historical and historiographical paths of the recurrent attendance
129

 of this formal tool in proving many 

pivotal results from which derives the notion of a differentiable manifolds. The evidences thereafter of the 

                                                                                                                                                                                                 
developments». On the other hand, such a typical formal process «implicit towards explicit» it is also present in the 

formal development of Theoretical Physics where, for instance, it speaks, following D. Bohm, of an explicit order and 

of an implicit one (see [Le, Section 8, pp. 95-96]). Finally, on implicit definitions in Mathematics from an 

epistemological and education standpoint, see also [Pk]. 
128

 The main of which being that due either to the lack of an in print published version of the original autographed 

lessons [Di1] or to the negligence by both of some authors (even Italians) and of some translators/curators in quoting 

the Dini’s work on implicit functions (see, for instance, the case of the German translation of [GP]). 
129

 Almost ‘’ghostlike’’, if it is improperly allowed to use a metapsychic term but that ‘makes the idea’. 
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fact that such a formal tool didn’t can be unknown at the time
130

, as well as its relationships with the Dini’s 

work, have also emerged by particular reconstructions inherent both the internal and external history, 

assisted by historiographical basis
131

: in fact, from an internal history viewpoint, we have tried to identify the 

various teaching liaisons among the authors under examination which were possible, from an external history 

viewpoint, through the identification of the possible interpersonal relationships which have occurred among 

them. For instance, as regards this last point, we have identified certain scientific-human clusters
132

 in which 

it has been possible to establish direct and indirect relationships (both scientific and/or human, the latter 

when possible) among their members: two of these
133

 are, on the one hand, that involving Lagrange, Cauchy, 

Plana, Mossotti and Dini as made in Section 4, and, on the other hand, that involving Bolza, Osgood, Bliss, 

Veblen and Whitney as seen in Section 3.1. Sometimes, this last type of historical/historiographical 

connections may be reduced to a long series of direct and indirect historical connections, but it may occur the 

case that such a reduction is not feasible (or it results to be quite unreliable), so that it is possible build up it 

only at the theoretical level, analyzing the related formal developments inherent the historical subject under 

consideration
134

, reaching exactly to the emergence of an epistemological connections, like that here 

identified as regards the structure of a differentiable manifold. This last historiographic methodology, from a 

general standpoint, is also supported by C.N. Yang
135

 according to which «a concept, especially a scientific 

concept, does not have a full meaning if it is not defined respect to that context of knowledge from which it 

has derived and developed».  

  It is just this last type of historical connections identified according to this last viewpoint, those that can be 

put into close correlation with what has been said at the beginning of this section about a possible origin of 

the mathematical entities. 
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 As clearly it results from what has been said so far. 
131

 As, for instance, those given by the various bibliographical researches.  
132

 Which, besides, seem resembles the various graphs of the recent, so-called mathematical genealogies that have much 

in common with the above mentioned historical connections.  
133

 Another possible and interesting scientific-human cluster of this type has glimpsed as regards the Weyl’s work on 

Riemann surfaces (and its correlations with algebraic function theory and the theory of algebraic surfaces), involving, 

amongst others, Riemann, Klein, Weierstrass and others. 
134

 Often, this type of historical studies can lead to new theoretical results, as witnessed by what say the Authors of 

[HR] at the beginning of Section IV of their paper, precisely: «We originally developed the general theorems [on 

implicit functions] to solve an applied problem [see the paper [23] of [HR]]. However, attempts to ascertain their 

novelty led to an historical study, and we present a few of the highlights that may be of interest to some readers». 

Another, in some respects analogous, example of this type of methodology is given by the celebrated studies conducted 

by C.L. Siegel – who was also a profound scholarly of History of Mathematics – on the 1850s Riemann unpublished 

manuscript, the so-called Riemanns Nachlaß, from which he deduced, in 1932, a fundamental result of the theory of 

Riemann zeta-function, namely the well-known Riemann-Siegel formula. Furthermore, a quite similar method has been, 

in a very originally manner, fruitfully adopted by the Authors in drawing up most parts of their book [GPV], directly 

basing on the original sources; accordingly, it also contain many interesting historical notes. 
135

 Precisely, see the Preface to [Ya]. 
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