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Abstract

It is argued that the components of the superposed wave function of a
measuring device, each of which represents a definite measurement result,
do not correspond to many worlds, one of which is our world, because
all components of the wave function can be measured in our world by a
serious of protective measurements, and they all exist in this world.

In standard quantum mechanics, it is postulated that when the wave func-
tion of a quantum system is measured by a macroscopic device, it no longer
follows the linear Schrödinger equation, but instantaneously collapses to one of
the wave functions that correspond to definite measurement results. However,
this collapse postulate is ad hoc, and the theory does not tell us why and how a
definite measurement result appears. There are in general two ways to solve the
measurement problem. The first way is to integrate the collapse evolution with
the normal Schrödinger evolution into a unified dynamics, e.g. in the dynami-
cal collapse theories (Ghirardi 2008). The second way is to reject the collapse
postulate and assume that the Schrödinger equation completely describes the
evolution of the wave function. There are two main alternative theories for
avoiding collapse. The first one is the de Broglie-Bohm theory (de Broglie 1928;
Bohm 1952), which takes the wave function as an incomplete description and
adds some hidden variables to explain the emergence of definite measurement
results. The second one is the many-worlds interpretation (Everett 1957; De-
Witt and Graham 1973), which assumes the existence of many equally real
worlds corresponding to all possible results of quantum experiments and still
regards the unitarily evolving wave function as a complete description of the
total worlds.

Although the many-worlds interpretation is widely acknowledged as one of
the main alternatives to quantum mechanics, its fundamental issues, e.g. the
preferred basis problem and the interpretation of probability, have not been
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completely solved yet (see Barrett 1999, 2011; Saunders et al 2010 and refer-
ences therein). In this note, we will argue that the existence of many worlds
seems inconsistent with the results of protective measurements (Aharonov and
Vaidman 1993; Aharonov, Anandan and Vaidman 1993; Aharonov, Anandan
and Vaidman 1996; Vaidman 2009; Gao 2011).

According to the many-worlds interpretation, the components of the wave
function of a measuring device, each of which represents a definite measurement
result, correspond to many worlds, one of which is our world (Vaidman 2008;
Barrett 2011). It is unsurprising that the existence of such many worlds may
be consistent with the results of conventional impulsive measurements1, as the
many-worlds interpretation is just invented to explain the emergence of these
results, e.g. the definite measurement result in each world always denotes the
result of a conventional impulsive measurement. However, this does not guar-
antee consistency for all types of measurements. It has been known that there
exists another type of measurement, the protective measurement (Aharonov
and Vaidman 1993; Aharonov, Anandan and Vaidman 1993; Aharonov, Anan-
dan and Vaidman 1996). Like conventional impulsive measurement, protective
measurement also uses the standard measuring procedure, but with a weak,
adiabatic coupling and an appropriate protection. Its general method is to let
the measured system be in a nondegenerate eigenstate of the whole Hamilto-
nian using a suitable protective interaction, and then make the measurement
adiabatically. This permits protective measurement to be able to measure the
expectation values of observables on a single quantum system. In particular, the
wave function of the system can also be measured by protective measurement
as expectation values of certain observables (see the Appendix)2.

It can be seen that the existence of many worlds seems inconsistent with
the results of protective measurements. The reason is that the whole super-
posed wave function of a measuring device, if it indeed exists as assumed by
the many-worlds interpretation, can be directly measured by a serious of pro-
tective measurements in our world3. The result of the protective measurement
as predicted by quantum mechanics indicates that all components of the wave
function of the measuring device exist in our world. Therefore, according to
protective measurements, the superposed wave function of a measuring device
do not correspond to many worlds, one of which is our world. Concretely speak-
ing, there are no many copies of the measuring device, each of which is in one
world and obtains a definite result; rather, there is only one measuring device
that obtains no definite result in our world. In this way, protective measurement
seems to provide a strong argument against the many-worlds interpretation.

Several points needs to be clarified regarding the above argument. First
of all, the above argument does not depend on how many worlds are precisely
defined in the many-worlds interpretation. In particular, it is independent of

1It should be pointed out that the consistency is still debated due to the controversial
interpretation of probability. For more discussions see Saunders et al (2010) and references
therein.

2Note that the earlier objections to the validity and meaning of protective measurements
have been answered (Aharonov, Anandan and Vaidman 1996; Dass and Qureshi 1999; Vaid-
man 2009; Gao 2012).

3Protective measurement generally requires that the measured wave function is known
beforehand so that an appropriate protective interaction can be added. But this requirement
does not influence our argument, as the superposed wave function of a measuring device can
be prepared in a known form before the protective measurement.
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whether worlds are fundamental or emergent, e.g. it also applies to the recent
formulation of the many-worlds interpretation based on a structuralist view on
macro-ontology (Wallace 2003). The key point is that all components of the
superposed wave function of a measuring device can be detected by protective
measurements in a single world, namely our world, and thus they all exist in
this world. Therefore, it is impossible that the superposed wave function of a
measuring device corresponds to many worlds, only one of which is our world.
Note that this objection is more serious than the problem of approximate de-
coherence for the many-worlds interpretation (cf. Janssen 2008). Although the
interference between the nonorthogonal components of a wave function can be
detected in principle due to the unitary dynamics, it cannot be detected for indi-
vidual states, but only be detected for an ensemble of identical states. Moreover,
the presence of tiny interference terms in a (local) wave function in our world
does not imply that all components of the wave function wholly exist in this
world. For example, it is possible that each world has most of one component
of the wave function that represents a definite measurement result and tiny
parts of other components, and this picture is consistent with the many-worlds
interpretation.

Next, the above argument is not influenced by environment-induced deco-
herence. Even if the superposition state of a measuring device is entangled
with the states of other systems, the entangled state of the whole system can
also be measured by protective measurement in principle (Anandan 1993). The
method is by adding appropriate protection procedure to the whole system so
that its entangled state is a nondegenerate eigenstate of the total Hamiltonian
of the system together with the added potential. Then the entangled state can
be protectively measured. On the other hand, we note that if environment-
induced decoherence is an essential element of the many-worlds interpretation,
then the theory will be inconsistent with standard quantum mechanics. When
a measuring device is isolated from environment, standard quantum mechanics
still predicts that the device can obtain a definite result, while the many-worlds
theory will predict the opposite due to the lack of environment-induced deco-
herence.

Thirdly, the above argument does not require protective measurement to be
able to distinguish the superposed wave function of a measuring device from
one of its components, or whether the superposed wave function collapses or
not during an impulsive measurement. Since the determination demands the
distinguishability of two non-orthogonal states, which is prohibited by quantum
mechanics, no measurements consistent with the theory including protective
measurement can do this. What protective measurement tells us is that such a
superposed wave function, whose existence is assumed by the many-worlds inter-
pretation, does not correspond to many worlds as assumed by the many-worlds
interpretation. In other words, protective measurement reveals inconsistency of
the many-worlds interpretation. Fourthly, we stress again that the principle of
protective measurement is independent of the controversial process of wavefunc-
tion collapse and only depends on the linear Schrödinger evolution and the Born
rule. As a result, protective measurement can (at least) be used to examine the
internal consistency of the no-collapse solutions to the measurement problem,
e.g. the many-worlds interpretation, before experiments give the last verdict4.

4For a more detailed analysis of the implications of protective measurement see Gao (2011).
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Lastly, we discuss a possible way to refute the above argument against the
many-worlds interpretation. According to the principle of protective measure-
ments, only observers (or measuring devices) whose states are not entangled
with the superposed wave function of a measuring device can make a protec-
tive measurement of the wave function, and an observer who is decoherent with
respect to the outcomes obtained by the device cannot make such a measure-
ment. Then it seems that, by insisting that there is no branching and no worlds
without decoherence, one can refute the above argument. For the observers in
each world must be already decoherent with respect to the outcomes obtained
by the device, and thus they cannot make the protective measurement which is
required by the argument5.

However, this view contradicts the assumption that worlds, no matter they
are emergent or fundamental, are objective in the many-worlds interpretation.
The objectivity of worlds means that everything in the universe, whether or not
it interacts with the measured system and the decoherent device or observer,
has a copy in each world, though these copies may be the same6. In a physical
theory where the minds of observers play no special role, a measurement result,
once it has been recorded by a measuring device or an observer, should exist
objectively, and in particular, it should exist for any observer in the world, in-
dependently of whether the observer makes a measurement or knows the result.
Under this objectivity assumption, the above argument against the many-worlds
interpretation is valid. For our world is also one of the assumed branching worlds
represented by the components of the wave function of a measuring device, and
observers in this world are not necessarily decoherent with respect to the out-
comes obtained by the device, and thus those independent observers can make
a protective measurement of the superposed wave function of the device, whose
result will indicate that the whole superposed wave function exists in our world.
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Appendix: Protective measurement of the wave
function of a single quantum system

As a simple example of protective measurement, consider a quantum system in
a discrete nondegenerate energy eigenstate |En〉. In this case, the system itself
supplies the protection of the state due to energy conservation and no artificial
protection is needed.

The interaction Hamiltonian for a protective measurement of an observable
A in this state involves the same interaction Hamiltonian as the standard mea-
suring procedure:

HI = g(t)PA, (1)

where P is the momentum conjugate to the pointer variable X of an appro-
priate measuring device. The time-dependent coupling strength g(t) is also a
smooth function normalized to

∫
dtg(t) = 1. But different from conventional

impulse measurements, for which the interaction is very strong and almost in-
stantaneous, protective measurements make use of the opposite limit where the
interaction of the measuring device with the system is weak and adiabatic. Con-
cretely speaking, the interaction lasts for a long time T , and g(t) is very small
and constant for the most part, and it goes to zero gradually before and after
the interaction.

Let the total Hamiltonian of the combined system be

H(t) = HS +HD + g(t)PA, (2)

where HS and HD are the Hamiltonians of the measured system and the mea-
suring device, respectively. Let the initial state of the pointer at t = 0 be
|φ(x0)〉, which is a Gaussian wave packet of eigenstates of X with width w0,
centered around the eigenvalue x0. Then the state of the combined system after
T is

|t = T 〉 = e−
i
h̄

∫ T
0

H(t)dt |En〉 |φ(x0)〉 . (3)

By ignoring the switching on and switching off processes7, the full Hamiltonian
(with g(t) = 1/T ) is time-independent and no time-ordering is needed. Then
we obtain

|t = T 〉 = e−
i
h̄HT |En〉 |φ(x0)〉 , (4)

where H = HS +HD + PA
T . We further expand |φ(x0)〉 in the eigenstate of HD,∣∣Ed

j

〉
, and write

|t = T 〉 = e−
i
h̄HT

∑
j

cj |En〉
∣∣Ed

j

〉
, (5)

7The change in the total Hamiltonian during these processes is smaller than PA/T , and
thus the adiabaticity of the interaction will not be violated and the approximate treatment
given below is valid. For a more strict analysis see Dass and Qureshi (1999).
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Let the exact eigenstates of H be |Ψk,m〉 and the corresponding eigenvalues be
E(k,m), we have

|t = T 〉 =
∑
j

cj
∑
k,m

e−
i
h̄E(k,m)T 〈Ψk,m|En, E

d
j 〉|Ψk,m〉. (6)

Since the interaction is very weak, the Hamiltonian H of Eq.(2) can be
thought of as H0 = HS + HD perturbed by PA

T . Using the fact that PA
T is a

small perturbation and that the eigenstates of H0 are of the form |Ek〉
∣∣Ed

m

〉
,

the perturbation theory gives

|Ψk,m〉 = |Ek〉
∣∣Ed

m

〉
+O(1/T ),

E(k,m) = Ek + Ed
m +

1

T
〈A〉k〈P 〉m +O(1/T 2). (7)

Note that it is a necessary condition for Eq.(7) to hold that |Ek〉 is a nonde-
generate eigenstate of HS . Substituting Eq.(7) in Eq.(6) and taking the large
T limit yields

|t = T 〉 ≈
∑
j

e−
i
h̄ (EnT+Edj T+〈A〉n〈P 〉j)cj |En〉

∣∣Ed
j

〉
. (8)

When P commutes with the free Hamiltonian of the device, i.e., [P,HD] = 0,
the eigenstates

∣∣Ed
j

〉
of HD are also the eigenstates of P , and thus the above

equation can be rewritten as

|t = T 〉 ≈ e− i
h̄EnT−

i
h̄HDT− i

h̄ 〈A〉nP |En〉 |φ(x0)〉 . (9)

It can be seen that the third term in the exponent will shift the center of the
pointer |φ(x0)〉 by an amount 〈A〉n:

|t = T 〉 ≈ e− i
h̄EnT−

i
h̄HDT |En〉 |φ(x0 + 〈A〉n)〉. (10)

This shows that the center of the pointer shifts by 〈A〉n at the end of the
interaction. For the general case where [P,HD] 6= 0, we can also obtain the
similar result. Thus protective measurement can measure the expectation value
of the measured observable in the measured state.

Let the explicit form of |En〉 be ψ(x), and the measured observable A be
(normalized) projection operators on small spatial regions Vn having volume vn:

A =

{
1
vn
, if x ∈ Vn,

0, if x 6∈ Vn.
(11)

The protective measurement of A then yields

〈A〉 =
1

vn

∫
Vn

|ψ(x)|2dv = |ψn|2, (12)

where |ψn|2 is the average of the density ρ(x) = |ψ(x)|2 over the small region
Vn. Then when vn → 0 and after performing measurements in sufficiently many
regions Vn we can measure ρ(x) everywhere in space.
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Similarly, let the measured observable be B = 1
2i (A∇ + ∇A). Then the

protective measurement of B then yields

〈B〉 =
1

vn

∫
Vn

1

2i
(Ψ∗∇Ψ−Ψ∇Ψ∗)dv =

1

vn

∫
Vn

|j(x)|2dv. (13)

This is the average value of the flux density j(x) in the region Vn. Then when
vn → 0 and after performing measurements in sufficiently many regions Vn we
can measure j(x) everywhere in space.

Since the wave function ψ(x, t) can be uniquely expressed by ρ(x, t) and
j(x, t) (except for a constant phase factor):

ψ(x, t) =
√
ρ(x, t)e

im
∫ x
−∞

j(x′,t)
ρ(x′,t)dx

′/h̄
, (14)

the whole wave function of the measured system can be measured by protective
measurement.
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