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Abstract

The logical theory of branching space-times (Belnap, Synthese
1992), which provides a relativistic framework for studying ob-
jective indeterminism, remains mostly disconnected from the dis-
cussion of space-time theories in the philosophy of physics. Ear-
man has criticized the branching approach and suggested “prun-
ing some branches from branching space-time” (2008).

This paper identifies the different—order-theoretic vs. topological—
points of view of both discussions as a reason for certain misun-
derstandings, and tries to remove them. Most importantly, we
give a novel, topological criterion of modal consistency that use-
fully generalizes an earlier criterion, and we introduce a differential-
geometrical version of branching space-times as a non-Hausdorff
(generalized) manifold.

1 Introduction

Discussions of determinism and indeterminism play an important role in
many areas of philosophy. In philosophy of science, they have acted as probes
into the basic structure of many physical theories; in philosophical logic, such
discussions have triggered the development of a number of different logical
systems, some of which have found applications in computer science.
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When it comes to defining indeterminism, one can discern two related,
but technically different approaches. The basic idea behind indeterminism
is that given the way things are at one moment in time, more than one
future course of events is possible. One way to spell this out is to start with
a class of separate possible courses of events and the notion of a state at a
moment. If the same state occurs in at least two different courses of events
that disagree about the future development after the respective occurrences,
the class is indeterministic. If that class is given via a scientific theory, that
theory is accordingly diagnosed to be indeterministic. As a way of classi-
fying scientific theories, this approach was pioneered by Montague (1962).
After several refinements (see, e.g., Earman (2006)), many of which were
triggered by specific issues of space-time theories, this approach grounds
the generally accepted definition of indeterminism for scientific theories: “a
theory is deterministic if, and only if: for any two of its models, if they
have instantaneous slices that are isomorphic, then the corresponding final
segments are also isomorphic” (Butterfield, 2005).

A different way to model indeterminism is to start not with separate
courses of events (called “models” in the above quote, but see §2) to be
matched via their states at moments, but with a unified structure of mo-
ments within which one can identify the possible courses of events—histories—
as substructures. This approach is more in line with an indexical under-
standing of branching future possibilities, according to which different pos-
sible courses of events can literally share a past segment. Such branching
history structures were developed in Prior’s tense logic (Prior, 1967); an
important early paper is Thomason (1970). In so-called “branching time”
(BT; a somewhat misleading label, as time does not branch, only temporal
histories do), a single history is pictured as a linearly ordered set of mo-
ments carved from a global partial ordering of moments. BT is used as a
background for the “seeing to it that” logic of agency (Belnap et al., 2001)
and arguably corresponds well to the phenomenology of an open future.
The framework is however non-relativistic: a moment (an element of the
ordering) has to represent all of space simultaneously.

Theories of branching space-times (BST) extend the branching histories
idea by taking histories to be space-times rather than linearly ordered chains
of moments. Belnap’s version of BST (BST92; Belnap, 1992) provides a
mathematically rigorous theory of objective indeterminism in a relativistic
setting. BST92 retains BT’s underlying algebraic approach of starting with
a partially ordered set that can be called Our World as it represents all
events that are, were or will be possible. The notion of modal consistency,
i.e., possible co-occurrence within a single consistent course of events, which
in the case of BT comes down to order-relatedness (linearity), has to be
extended: In the case of BST92, consistency is taken to mean the existence
of a common upper bound (two events are compatible if there is, so to
speak, a perspective from which both events have occurred). Building on
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that definition, the histories in Our World are defined as maximally modally
consistent subsets. These histories represent the possible courses of events
in our world—complete space-times—that branch off from one another at
choice points whose future light cones differentiate the histories.

Despite its relativistic soundness and some applications to physical the-
ories (e.g., Placek, 2010), BST has not been much referenced in discussions
of space-time theories, even when such discussions are concerned with ques-
tions of determinism and indeterminism. In fact, BST92 and some related
BST theories have received a fair share of critique based on technical consid-
erations of the space-time models of general relativity (Earman, 2008). Some
of that criticism does not apply to BST92 since it only points out conceptual
unclarities in relatives of that framework and not in BST92 itself, but there
remains an important point of criticism in that BST92 corresponds poorly
to general relativity’s background in differential geometry. While some re-
cent publications (e.g., Placek and Belnap, 2012) have begun to address this
worry, we agree that so far, no extant formal specification of BST fully meets
the critique.

This paper spells out an overarching framework that is meant to do
justice both to the logical aspects of BST and to the physical considerations
supporting general relativistic space-time theories. It will be proved that
our framework, which deviates from the mentioned theory of BST92 in some
technical details, is truly a theory of branching (in the sense of logic) space-
times (in the sense of general relativity).

2 Terminology

When discussing formal models that incorporate modality, such as theories
of branching histories, it is important to use terminology that allows to make
some necessary distinctions. Modal consistency (“modal flatness”) is usually
a property of substructures and not of a full structure, which incorporates
different alternatives and is therefore meant to be modally inconsistent. We
suggest to distinguish:

• a logical theory, specified via a set of axioms in some formal language,

• models of a logical theory, i.e., structures fulfilling the axioms,

• a physical theory, which normally should not be identified with some
axiomatic framework,

• a solution to the equations of the theory, which is a mathematical
structure, and can often be identified with a history (a complete pos-
sible course of events), and

• the metaphysical notion of a world as something that is unified by
“suitable external relations” (Lewis, 1986, 208).
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It is common to identify the notions of model, solution to the equations,
history, and (possible) world. This identification is however not mandatory,
and in fact positively harmful when it comes to BST. A history (possible
course of events) indeed has to be “modally flat”, containing no modally
incompatible events. In the case of BST, models however contain more than
one history, and each model (in the logical sense) specifies a world (in the
given metaphysical sense). Following Belnap, we propose to call such a world
(a model of BST) “Our World” rather than a “possible world”, since the
notion of a possible world tends to trigger the image of modal consistency
(while, to repeat, this is not part of the definition of what a world is).

3 An overview of BST92

Here we give the axiomatic basis of BST92, due to Belnap (1992, 2003).
Later on we will deviate from this framework in a small but substantial
matter of topological detail in order to move it closer to general relativity.

A model of BST92 is a non-empty partial order 〈W,≤〉 (a nonempty set
W together with a transitive, antisymmetric relation ≤)1 subject to the set
of constraints given below. Elements of W are called possible point events,
or, briefly, events. Let H ⊆ ℘W be the set of maximal upward directed
subsets of W . (In a partial order, a set is upward directed iff for any two
of its elements a and b, there is an element c s.t. a ≤ c and b ≤ c. We
often shorten to “directed”.) Elements of H, i.e., maximal directed subsets
h ⊆ W , are called histories. A chain in W is a linear subset, i.e., a subset
c ⊆W s.t. for any x, y ∈ c we have either x ≤ y or y < x.

The axioms of BST92 are as follows:

• 〈W,≤〉 is a nonempty, dense partial order without maxima.

• Each lower bounded chain C ⊆W has an infimum in W , written inf C.

• Each upper bounded chain C ⊆W has a supremum-in-h (suphC) for
each history h ∈ H for which C ⊆ h.

• (Prior choice principle.) If C ∈ h − h′ is a lower bounded chain in h
none of whose elements is an element of h′, then there is a choice point
c ∈ h ∩ h′ such that c is maximal in h ∩ h′, and c < C (i.e., for all
e ∈ C, we have c < e).

Note that by the given definition, histories are downward closed: if e ∈ h
and f ∈W s.t. f ≤ e, then also f ∈ h. Accordingly, if c is a lower bounded
chain in history h, then inf c ∈ h as well.

1We will also use the relation symbol “<”, which is defined in the usual way: x < y iff
(x ≤ y and x 6= y).
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As a first link with space-time theories, we can give a generic definition
of the causal and the chronological past and future of events in a BST92
model, as follows:

Definition 1 Given a BST92 model 〈W,≤〉, an event e ∈ W lightlike pre-
cedes f ∈W (in symbols: eCf) iff e ≤ f and there is only a single maximal
chain that has e as its first and f as its last point. Event e chronologically
precedes f (in symbols: e� f) iff e < f and it is not the case that eC f .

Based on these notions we can define the notions of the causal and the
chronological future (and analogously, past) of an event e ∈W , as usual:

Definition 2 Given a BST92 model 〈W,≤〉 and some e ∈ W , the causal
future of e, J+(e), and the chronological future, I+(e), are defined as fol-
lows:

J+(e) := {f ∈W | e ≤ f}; I+(e) := {f ∈W | e� f}.
The corresponding past notions are:

J−(e) := {f ∈W | f ≤ e}; I−(e) := {f ∈W | f � e}.

4 The Hausdorff property in space-time theories

A topological space 〈X,R〉, where X is a nonempty set and the topology
R ⊆ ℘X is the collecion of open sets, is Hausdorff if any two elements of X
can be separated by disjoint open sets.2 Hausdorffness forbids, intuitively
speaking, the existence of “unseparably close points”, or perhaps “doubled
points” or “points that occupy the same position”. The branching real line
pictured in Fig. 1 is a simple example of a non-Hausdorff space. Following
Hajicek (1971), who credits Geroch for the notation, we will write xY y
to indicate that the points x and y violate the Hausdorff condition, i.e.,
that x and y cannot be separated by disjoint open sets. In Fig. 1 we have
01 Y 02. The notation usefully suggests graphically that in such a case, x and
y “branch off” from some common trunk, like the left part of the branching
lines of Fig. 1. In fact, in our examples below such x and y will always be
different limits of a single converging sequence.

As defined, BST92 does not come with a topology. One natural topology
has recently been discussed extensively by Placek and Belnap (2012). With
respect to this topology, the Hausdorff property generically fails in models
of BST92. Models of BST92 are, however, not locally Euclidean and thus
do not form (generalized) manifolds.3

2For a simple introduction to relevant formal definitions and background, see, e.g.,
Mendelson (1990).

3A manifold is, roughly, a topological space that is locally Euclidean and that, therefore,
locally “looks like” Euclidean space of a specific dimension. Malament (2012) gives a nice
introduction to this and other notions from differential geometry. Normally, manifolds are
required to be Hausdorff. A generalized manifold is allowed to be non-Hausdorff.
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Figure 1: The branching real line as a simple non-Hausdorff space. A basis
for the topology is given by the open intervals in both tracks, reaching into
the common part on the left.

Is non-Hausdorffness a good idea for grounding BST? The discussion of
this issue is somewhat tangled. Earman (2008) in his overview of “individ-
ual branching” for single space-times concludes that the only viable path to
individually branching space-times comes from non-Hausdorff models, be-
cause other approaches (e.g., so-called trousers worlds) appear unfeasible.
While we follow Earman in this assessment, we want to stress that BST—at
least in the form of BST92 and in the form that we are trying to develop
further here—is meant to give not a picture of a single space-time that
somehow branches (perhaps like an amoeba undergoing fission), but to inte-
grate several histories within one logical model. The branching (overlapping)
histories are individually non-branching and in fact Hausdorff space-times.
Still, it is useful to look at the physicists’ discussion of non-Hausdorffness
that Earman references.

In mathematical physics, Hajicek (1971) proves an important result
about solutions to the Einstein field equations whose maximal analytic ex-
tensions are non-Hausdorff: Roughly, a non-Hausdorff space-time either fails
to be strongly causal, or it admits bifurcating geodesics. He interprets this
result as showing that “all such [i.e., non-Hausdorff] space-times must be
weakly acausal” (Hajicek, 1971, 75), which would indeed be reason enough
for a physicist to shun non-Hausdorff space-times. It is interesting to see
how Hajicek supports his interpretation of his theorem. Commenting on
bifurcating curves, he writes:

It is easily seen that such curves can only exist in a non-Hausdorff
space. Then, if we have some system of ordinary differential
equations which has locally a unique solution [. . .] it is immediate
that this system cannot have two different solutions [. . .] unless
these solutions form a bifurcate curve. Therefore, in view of the
classical causality conception coinciding with determinism it is
sensible to rule out the bifurcate curves. (Hajicek, 1971, 79)
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The dialectics is thus as follows: A result from mathematical physics (Ha-
jicek’s Theorem 4) establishes (roughly) that in non-Hausdorff space-time
models there is either a violation of strong causality, or there are bifurcating
curves. An appeal to determinism rules out the latter; considerations of
physicality rule out the former. This amounts to rejecting non-Hausdorff
models.

We agree with this argument completely. If BST were to give models
of a single space-time, these models should not contain bifurcating curves,
and most probably they shouldn’t be weakly acausal either, so that non-
Hausdorffness would be ruled out. If one however takes up the issue of
non-Hausdorff models in order to build formal models for indeterminism,
which is what drives the development of BST, then the above argument
obviously pulls no weight. The main challenge for bringing together BST
and general relativity, in our view, lies not in non-Hausdorffness, but in the
failure of BST92 to provide generalized manifolds.4

5 Simple branching: generalized Minkowskian mani-
folds

We move on to the construction of simple branching models that provide a
bridge between the logical, order-theoretic point of view of BST (histories,
i.e., single space-times, as directed sets) and the topological point of view of
general relativity (a single space-time as a differential manifold).5

The main technical challenge is to define structures in which two or more
space-times are pasted together in such a way that the resulting object is
locally Euclidean and makes sense as a model of objective indeterminism.
In this paper we discuss the simplest case of such pasting, which is to paste
together m Minkowski space-times (of dimension n > 1) at the origin, to
arrive at a structure Mn

m. There are various choices for this pasting, de-
pending on whether the m origins are represented by one or by m different
points in the resulting structure, and on how the rim of the future light cone
at the origin is handled. BST92’s prior choice principle demands to identify
the m origins as one point, but to keep separate the rim of the future light
cones above the origin. This is what breaks local Euclidicity: on such a
structure, one cannot define a locally Euclidean topology (unless one gives
up connectedness, which is not an interesting option). Since we want to

4We hereby follow Earman (2008, 198f.): “topological spaces that are not locally Eu-
clidean cannot be assigned a differentiable structure, and such a structure is essential in
formulating the very notion of a Lorentzian metric and in formulating the Einstein field
equations”. Thus, if we want to remain close to general relativity, we had better arrive at
a generalized manifold.

5For reasons of space, the following discussion is quite compressed. For a more detailed
exposition, see Müller (2011).
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define generalized manifolds, we have to ascertain local Euclidicity. This
means that we need to differ from BST92 in the pasting construction.

Our choice is to define structures of m-fold branching, n-dimensional
Minkowski space-time Mn

m as follows:6

Definition 3 (Mn
m) The m-fold branching, n-dimensional Minkowski space-

time Mn
m is defined from the n-dimensional Minkowski space-time Mn (for

simplicity, we use Rn with the Minkowskian ordering ≤M ) by setting a to-
be-multiplied region V to be the future light cone of the origin, including the
rim of the light cone and the origin itself:

V := J+(0) = {x ∈Mn | 0 ≤M x}; V̄ := Mn − V ; Vi := V × {i};

defining m layers, for i = 1, . . . ,m, to be

Ln
i := (V̄ × {1}) ∪ Vi;

and pasting them via

Mn
m :=

m⋃
i=1

Ln
i .

The ordering ≤ on Mn
m is the union of the usual Minkowskian orderings in

the layers, and the locally Euclidean topology R is given via the countable
basis of open balls with rational center coordinates x and rational radius r
in the finitely many layers i = 1, . . . ,m,

Bi(x, r) := {〈y, j〉 ∈ Ln
i | d(x,y) < r & j ∈ {1, i}}.

Note that the layers themselves, each of which is homeomorphic to Rn, are
open sets in this topology, and that for i 6= j, Ln

i −Ln
j = Vi. Note also that

∂Vi = ∂J+(0)× {i}.
6For a similar construction in the context of BST92, which however does not lead to

generalized manifolds, see, e.g., Wroński and Placek (2009). An Mn
m-like construction is

given in Visser (1996, 251–255); the book contains many pointers to relevant literature.
Visser calls his construction a “branched spacetime” (252), without however making any
connections to the philosophical/logical discussions about branching space-times. Penrose
(1979, 593) has a suggestive drawing of a branching space-time; while Penrose is not ex-
plicit about the topology, and his Figure 12.3(a) may suggest choice points à la BST92, he
seems to have our option in mind as well, since he writes: “on each branch the wavefunc-
tion starts out as a different eigenvector . . . ” (Penrose, 1979, 594; italics mine). Deutsch
(1991) refers to this discussion; his remarks about “a larger object which has yet to be
given a proper geometrical description” (3207) may be read as pointing in the direction
of something like our Mn

m structures, or their generalizations mentioned below. McCabe
(2005) reproduces Penrose’s figure. He remarks that such figures themselves are open
to different interpretations and do not need to be read as implying non-Hausdorffness;
this is in line with our view that there are in fact multiple options for pasting. However,
McCabe does not discuss in much detail the price that has to be paid for dropping local
Euclidicity in avoiding non-Hausdorffness, remarking that “it is a debate which has not
been conducted in the literature” (McCabe, 2005, 670). We agree with Earman that local
Euclidicity has to be taken very seriously, and we will continue to hold on to it.
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6 Capturing modal consistency

Our structures Mn
m are still partial orders, as in BST92, but we want to move

from the order-theoretic to a generalizable, topological characterization of
modal consistency. Intuitively and by the pasting construction, the maximal
modally consistent subsets of Mn

m should be exactly the layers Ln
i , i =

1, . . . ,m. These cover the whole of Mn
m without any gaps or holes, and

they are also individually such that in each layer, each space-time point of
Minkowski space-time Mn occurs exactly once. These layers are also the
histories in the sense of the usual, order-theoretic definition of BST92: each
layer is a maximal directed set in Mn

m.7 The question before us is how
to capture this intuitive notion of modal consistency in purely topological
terms.

Hajicek (1971) defines the useful notion of an H-submanifold of a Y -
manifold (where the “H” stands for “Hausdorff”, “Y ” graphically repre-
sents non-Hausdorffness as branching, and a Y -manifold is a generalized
manifold):

Definition 4 (H-manifold) Given a Y -manifold M , a subset A ⊆ M is
an H-submanifold iff A is open, connected, Hausdorff, and maximal with
respect to these properties. (I.e., every proper superset of A is either not
open, not connected, or not Hausdorff.)

Hajicek (1971) also suggests to write Y L
M for the set of points in M that

are non-Hausdorff related to some point in L,

Y L
M := {x ∈M | ∃ y ∈ L xY y}.

On our way towards a useful generalized notion of modal consistency, we
note some facts about the points in Mn

m that are non-Hausdorff related to
some other point (obviously there are no such points in case m = 1):

Lemma 1 Let M := Mn
m for some n ∈ N and some m ≥ 2. Then for

x = 〈x, i〉, y = 〈y, j〉 ∈M we have

xY y iff x = y, i 6= j, and x ∈ ∂J+(0).

Accordingly,

YM
M = {〈x, i〉 | x ∈ ∂J+(0) & i ∈ {1, . . . ,m}},

and for L := Ln
i a layer (i ∈ {1, . . . ,m}), we have

Y L
M = {〈x, j〉 | x ∈ ∂J+(0) & j ∈ {1, . . . ,m} & j 6= i}.

7Obviously the layers are directed sets, being order isomorphic to Mn, which is directed.
For maximality, observe that any “new” element to be added to Ln

i has to come from Vj

with j 6= i; by the definition of the ordering, the resulting superset of Ln
i is not directed.
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Using a further lemma, we can then prove that the layers of Mn
m are in fact

H-submanifolds:8

Lemma 2 Let M = Mn
m for some n, m, and let L := Ln

i ⊆ M be a layer
(i ∈ {1, . . . ,m}). Then L is an H-submanifold of M .

However, the notion of an H-submanifold is not sufficient as an analysis of
modal consistency, given that we also want the other direction of Lemma 2:

Fact 1 M := M2
2 has an H-submanifold that is not equal to one of the

layers Ln
i , i = 1, 2.

Proof by example: We divide the rim of the forward light-cone of the origin
into a left and a right part, which are allowed to overlap at the origin:

Jl := {〈t, x〉 ∈ J+(0) | x ≤ 0}, Jr := {〈t, x〉 ∈ J+(0) | x ≥ 0}.

We have Jl ∪ Jr = J+(0) and Jl ∩ Jr = {0}. Now consider the set

A := M − ((Jl × {1}) ∪ (Jr × {2})),

i.e., A is the whole of the pasted space M without half of the rim of the
forward light-cone in each layer. Note that the origin in both layers is
removed in constructing A, which makes it intuitively weird. But as a
fact, A is a H-submanifold of M . This follows directly from Hajicek (1971,
Theorem 2). So, we know that not every H-submanifold can be taken to be
a history.

By a more detailed consideration of this and other examples, we are
finally led to our official topological definition of a maximal consistent set,
or a history:9

Definition 5 Given M = Mn
m for some n and m, a history in M is a subset

h ⊆ M that is maximal with respect to the properties of being (i) open, (ii)
connected, (iii) Hausdorff, and (iv) for each subset C ⊆ h, if ∂C 6= ∅, then
h ∩ ∂C 6= ∅ as well.

As a test for the usefulness of this definition, we can now indeed prove both
directions of the analogue of Lemma 2:

Lemma 3 Given M = Mn
m for some n and m, a subset A ⊆M is a history

according to Definition 5 iff A = Ln
i for some i ∈ {1, . . . ,m}.

Definition 5 can be applied to any H-manifold, it is not limited to the
structures Mn

m with respect to which it was motivated. So we have arrived
at a general definition of modal consistency in branching space-times.

8For details, see Müller (2011).
9For details, see again Müller (2011).
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7 Conclusion

In this paper we have given an overview of the main challenges facing the
construction of explicit formal models for indeterminism in a general rel-
ativistic setting. The best extant candidate framework for such models is
Belnap’s BST92. Some criticisms leveled against the project of construct-
ing branching space-times seem misplaced as they rely on the idea that in
BST, a single space-time should somehow branch or bifurcate. We agree
that this should be avoided. The branching in BST is of a modal nature,
and as single space-times are modally consistent, they themselves do not
branch. The BST approach, once it is followed with mathematical rigor,
and once a topology is defined, does however lead to non-Hausdorff models.
Again, a fair share of the criticism of non-Hausdorff models only applies to
single space-times and not to BST structures. There is however one specific
challenge that has so far not been met: BST92 does not define generalized
manifolds, and therefore the link with general relativity is not satisfactory.
We believe that we have met this challenge, at least for simple structures.

In this paper we have defined a method for pasting Minkowski space-
times in a locally Euclidean way, such that the resulting structures are gen-
eralized manifolds. We have also given a novel definition of modal consis-
tency, which is purely topological and which generalizes the order-theoretic
definition in terms of directedness on which BST92 is built.

A lot remains to be done. So far we have only investigated the simplest
structures: pasted Minkowski space-times. We propose that locally, any
useful branching space-time should look like one of the Mn

m we have defined
here. The study of global features of our BST models, however, has to be
left for future work.
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