
Protective Measurement and the Meaning of the

Wave Function

Shan Gao∗

January 6, 2013

Abstract

This article analyzes the implications of protective measurement for the
meaning of the wave function. According to protective measurement,
the mass and charge of a charged quantum system are distributed in
space, and the mass and charge density in each position is proportional
to the modulus squared of the wave function of the system there. It is
argued that the mass and charge distributions are not real but effective;
they are formed by the ergodic motion of a localized particle with the
total mass and charge of the system. Moreover, the ergodic motion is
arguably discontinuous and random. Based on this result, we suggest
that the wave function in quantum mechanics describes the state of
random discontinuous motion of particles, and at a deeper level, it
represents the property of the particles that determines their random
discontinuous motion. In particular, the modulus squared of the wave
function (in position space) gives the probability density of the particles
being in certain positions in space.

1 Introduction

The physical meaning of the wave function is an important interpretative
problem of quantum mechanics. Notwithstanding more than eighty years’
developments of the theory, however, this is still a debated issue. It has been
widely argued that the probability interpretation is not wholly satisfactory
because of resorting to the vague concept of measurement - though it is still
the standard interpretation in textbooks nowadays (Bell 1990). On the other
hand, the meaning of the wave function is also in dispute in the alternatives
to quantum mechanics such as the de Broglie-Bohm theory and the many-
worlds interpretation (de Broglie 1928; Bohm 1952; Everett 1957; De Witt
and Graham 1973). In view of this unsatisfactory situation, it seems that
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we need a new starting point to solve this fundamental interpretive problem
of quantum mechanics.

The meaning of the wave function is often analyzed in the context of
conventional impulsive measurements, for which the coupling interaction
between the measured system and the measuring device is of short dura-
tion and strong. Even though the wave function of a quantum system is in
general extended over space, an ideal position measurement will collapse the
wave function and can only detect the system in a random position in space.
Then it is unsurprising that the wave function is assumed to be related to
the probabilities of these random measurement results by the standard prob-
ability interpretation. However, it has been known that there exists another
kind of measurement that is less directly related to the collapse of the wave
function, namely the protective measurement (Aharonov and Vaidman 1993;
Aharonov, Anandan and Vaidman 1993; Aharonov, Anandan and Vaidman
1996). Protective measurement also uses a standard measuring procedure,
but with a weak and long duration coupling interaction and an appropriate
procedure to protect the measured wave function from collapsing. These
differences permit protective measurement to be able to gain more informa-
tion about the measured quantum system and its wave function, and thus
it may help to unveil more physical content of the wave function. In this
paper, we will analyze the possible implications of protective measurement
for the meaning of the wave function.

The plan of this paper is as follows. In Section 2, we first introduce the
principle of protective measurement. It is stressed that protective measure-
ment can measure the expectation values of observables for a single quantum
system, and these expectation values are physical properties of the system,
not properties of an ensemble of identical systems. Section 3 gives a typi-
cal example of such properties, the mass and charge density. According to
protective measurement, the mass and charge of a charged quantum sys-
tem are distributed throughout space, and the mass and charge density in
each position is proportional to the modulus squared of the wave function
of the system there. In Section 4, the physical origin of the mass and charge
density is then investigated. It is argued that the mass and charge density
of a quantum system is not real but effective; it is formed by the ergodic
motion of a localized particle with the total mass and charge of the system.
Moreover, the ergodic motion is discontinuous and random. Based on this
result, we suggest in Section 5 that the wave function in quantum mechan-
ics describes the state of random discontinuous motion of particles, and at
a deeper level, it represents the property of the particles that determines
their random discontinuous motion. According to this interpretation, the
modulus squared of the wave function (in position space) not only gives
the probability density of the particles being found in certain locations as
the probability interpretation holds, but also gives the objective probability
density of the particles being there. Conclusions are given in the last section.

2



2 Protective measurements

Protective measurement is a method to measure the expectation values of
observables on a single quantum system. A general scheme is to let the
measured system be in a nondegenerate eigenstate of the whole Hamilto-
nian using a suitable protective interaction, and then make the measurement
adiabatically so that the state of the system neither changes nor becomes
entangled with the measuring device appreciably. In this way, protective
measurement can measure the expectation value of an observable on a single
quantum system. In the following, we will introduce the principle of protec-
tive measurement in more detail (Aharonov and Vaidman 1993; Aharonov,
Anandan and Vaidman 1993)1.

2.1 Measurements with natural protection

As a typical example, we consider a quantum system in a discrete nonde-
generate energy eigenstate |En〉. In this case, the system itself supplies the
protection of the state due to energy conservation and no artificial protection
is needed.

The interaction Hamiltonian for a protective measurement of an ob-
servable A in this state involves the same interaction Hamiltonian as the
standard measuring procedure:

HI = g(t)PA, (1)

where P is the momentum conjugate to the pointer variable X of an ap-
propriate measuring device. Let the initial state of the pointer at t = 0 be
|φ(x0)〉, which is a Gaussian wave packet of eigenstates of X with width w0,
centered around the eigenvalue x0. The time-dependent coupling strength
g(t) is also a smooth function normalized to

∫
dtg(t) = 1. But different

from conventional impulsive measurements, for which the interaction is very
strong and almost instantaneous, protective measurements make use of the
opposite limit where the interaction of the measuring device with the system
is weak and adiabatic, and thus the free Hamiltonians cannot be neglected.
Let the Hamiltonian of the combined system be

H(t) = HS +HD + g(t)PA, (2)

where HS and HD are the Hamiltonians of the measured system and the
measuring device, respectively. The interaction lasts for a long time T ,
and g(t) is very small and constant for the most part, and it goes to zero
gradually before and after the interaction.

1Although there appeared numerous objections to the validity of protective measure-
ments (see, e.g. Unruh 1994; Rovelli 1994; Ghose and Home 1995; Uffink 1999), these ob-
jections have been answered (Aharonov, Anandan and Vaidman 1996; Dass and Qureshi
1999; Vaidman 2009; Gao 2012).
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The state of the combined system after T is given by

|t = T 〉 = e−
i
~
∫ T
0 H(t)dt |En〉 |φ(x0)〉 . (3)

By ignoring the switching on and switching off processes2, the full Hamilto-
nian (with g(t) = 1/T ) is time-independent and no time-ordering is needed.
Then we obtain

|t = T 〉 = e−
i
~HT |En〉 |φ(x0)〉 , (4)

where H = HS +HD + PA
T . We further expand |φ(x0)〉 in the eigenstate of

HD,
∣∣∣Edj 〉, and write

|t = T 〉 = e−
i
~HT

∑
j

cj |En〉
∣∣∣Edj 〉 , (5)

Let the exact eigenstates of H be |Ψk,m〉 and the corresponding eigenvalues
be E(k,m), we have

|t = T 〉 =
∑
j

cj
∑
k,m

e−
i
~E(k,m)T 〈Ψk,m|En, Edj 〉|Ψk,m〉. (6)

Since the interaction is very weak, the Hamiltonian H of Eq.(2) can be
thought of as H0 = HS +HD perturbed by PA

T . Using the fact that PA
T is a

small perturbation and that the eigenstates of H0 are of the form |Ek〉
∣∣Edm〉,

the perturbation theory gives

|Ψk,m〉 = |Ek〉
∣∣∣Edm〉+O(1/T ),

E(k,m) = Ek + Edm +
1

T
〈A〉k〈P 〉m +O(1/T 2). (7)

Note that it is a necessary condition for Eq.(7) to hold that |Ek〉 is a non-
degenerate eigenstate of HS . Substituting Eq.(7) in Eq.(6) and taking the
large T limit yields

|t = T 〉 ≈
∑
j

e−
i
~ (EnT+Edj T+〈A〉n〈P 〉j)cj |En〉

∣∣∣Edj 〉 . (8)

For the special case when P commutes with the free Hamiltonian of the

device, i.e., [P,HD] = 0, the eigenstates
∣∣∣Edj 〉 of HD are also the eigenstates

of P , and thus the above equation can be rewritten as

|t = T 〉 ≈ e−
i
~EnT−

i
~HDT−

i
~ 〈A〉nP |En〉 |φ(x0)〉 . (9)

2The change in the total Hamiltonian during these processes is smaller than PA/T ,
and thus the adiabaticity of the interaction will not be violated and the approximate
treatment given below is valid. For a more strict analysis see Dass and Qureshi (1999).
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It can be seen that the third term in the exponent will shift the center of
the pointer |φ(x0)〉 by an amount 〈A〉n:

|t = T 〉 ≈ e−
i
~EnT−

i
~HDT |En〉 |φ(x0 + 〈A〉n)〉. (10)

This shows that at the end of the interaction, the center of the pointer has
shifted by the expectation value of the measured observable in the measured
state.

For the general case when [P,HD] 6= 0, we can introduce an operator

Y =
∑

j〈P 〉j
∣∣∣Edj 〉 〈Edj | and rewrite Eq.(8) as

|t = T 〉 ≈ e−
i
~EnT−

i
~HDT−

i
~ 〈A〉nY |En〉 |φ(x0)〉 . (11)

Then by rechoosing the state of the device so that it is peaked around a
value x′0 of the pointer variable X ′ conjugate to Y , i.e., [X ′, Y ] = i~,3 we
can obtain

|t = T 〉 ≈ e−
i
~EnT−

i
~HDT−

i
~ 〈A〉nY |En〉

∣∣φ(x′0)
〉

= e−
i
~EnT−

i
~HDT |En〉 |φ(x′0+〈A〉n)〉.

(12)
Thus the center of the pointer also shifts by 〈A〉n at the end of the inter-
action. This demonstrates the generic possibility of the protective measure-
ment of 〈A〉n.

It is worth noting that since the position variable of the pointer does
not commute with its free Hamiltonian, the pointer wave packet will spread
during the long measuring time. For example, the kinematic energy term
P 2/2M in the free Hamiltonian of the pointer will spread the wave packet
without shifting the center, and the width of the wave packet at the end
of interaction will be w(T ) = [1

2(w2
0 + T 2

M2w2
0
)]

1
2 (Dass and Qureshi 1999).

However, the spreading of the pointer wave packet can be made as small
as possible by increasing the mass M of the pointer, and thus it will not
interfere with resolving the shift of the center of the pointer in principle.

As in conventional impulsive measurements, there is also an issue of re-
trieving the information about the center of the wave packet of the pointer
(Dass and Qureshi 1999). One strategy is to consider adiabatic coupling of
a single quantum system to an ensemble of measuring devices and make im-
pulsive position measurements on the ensemble of devices to determine the
pointer position. For example, the ensemble of devices could be a beam of
atoms interacting adiabatically with the spin of the system. Although such
an ensemble approach inevitably carries with it uncertainty in the knowl-
edge of the position of the device, the pointer position, which is the average

3Note that it may not always be possible to physically realize the operator Y , and an
operator canonically conjugate to Y need not always exist either. For further discussions
see Dass and Qureshi (1999).
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of the result of these position measurements, can be determined with arbi-
trary accuracy. Another approach is to make repeated measurements (e.g.
weak quantum nondemolition measurements) on the single measuring device
(Dass and Qureshi 1999). This issue does not affect the principle of pro-
tective measurements. In particular, retrieving the information about the
position of the pointer only depends on the Born rule and is independent of
whether the wave function collapses or not during a conventional impulsive
measurement.

2.2 Measurements with artificial protection

Protective measurements can not only measure the discrete nondegenerate
energy eigenstates of a single quantum system, which are naturally protected
by energy conservation, but also measure the general quantum states by
adding an artificial protection procedure in principle (Aharonov and Vaid-
man 1993). For this case, the measured state needs to be known beforehand
in order to arrange a proper protection.

For degenerate energy eigenstates, the simplest way is to add a poten-
tial (as part of the measuring procedure) to change the energies of the other
states and lift the degeneracy. Then the measured state remains unchanged,
but is now protected by energy conservation like nondegenerate energy eigen-
states. Although this protection does not change the state, it does change
the physical situation. This change can be brought to a minimum by adding
strong protection potential for a dense set of very short time intervals. Then
most of the time the system has not only the same state, but also the original
potential.

The superposition of energy eigenstates can be measured by a similar
procedure. One can add a dense set of time-dependent potentials acting
for very short periods of time such that the state at all these times is the
nondegenerate eigenstate of the Hamiltonian together with the additional
potential. Then most of the time the system also evolves under the original
Hamiltonian. A stronger protection is needed in order to measure all details
of the time-dependent state. One way is via the quantum Zeno effect. The
frequent impulsive measurements can test and protect the time evolution of
the quantum state. For measurement of any desired accuracy of the state,
there is a density of the impulsive measurements which can protect the state
from being changed due to the measuring interaction. When the time scale
of intervals between consecutive protections is much smaller than the time
scale of the original state evolution, the system will evolve according to its
original Hamiltonian most of the time, and thus what’s measured is still the
property of the system and not of the protection procedure (Aharonov and
Vaidman 1993).

Lastly, we note that the scheme of protective measurement can also be
extended to a many-particle system (Anandan 1993). If the system is in a
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product state, then this is easily done by protectively measuring each state
of the individual systems. But this is impossible when the system is in an
entangled state because neither particle is then in a unique state that can be
protected. If a protective measurement is made only on one of the particles,
then this would also collapse the entangled state into one of the eigenstates
of the protecting Hamiltonian. The right method is by adding appropriate
protection procedure to the whole system so that the entangled state is a
nondegenerate eigenstate of the total Hamiltonian of the system together
with the added potential. Then the entangled state can be protectively
measured. Note that the additional protection usually contains a nonlo-
cal interaction for separated particles. However, this measurement may be
performed without violating causality by having the entangled particles suf-
ficiently close to each other so that they have this protective interaction.
Then when the particles are separated they would still be in the same en-
tangled state which has been protectively measured.

2.3 Further discussions

According to the standard view, the expectation values of observables are
not the physical properties of a single system, but the statistical properties
of an ensemble of identical systems. This seems reasonable if there exist
only conventional impulsive measurements. An impulsive measurement can
only obtain one of the eigenvalues of the measured observable, and thus
the expectation value can only be defined as a statistical average of the
eigenvalues for an ensemble of identical systems. However, as we have seen
above, there exist other kinds of quantum measurements, and in particular,
protective measurements can measure the expectation values of observables
for a single system, using an adiabatic measuring procedure. Therefore,
the expectation values of observables should be considered as the physical
properties of a single quantum system, not those of an ensemble (Aharonov,
Anandan and Vaidman 1996)4.

It is worth pointing out that a realistic protective measurement (where
the measuring time T is finite) can never be performed on a single quantum
system with absolute certainty because of the tiny unavoidable entanglement
in the final state5. For example, we can only obtain the exact expectation
value 〈A〉 with a probability very close to one, and the measurement may
also result in collapse and its result be the expectation value 〈A〉⊥ with a

4Anandan (1993) and Dickson (1995) gave some primary analyses of the implications
of this result for quantum realism. According to Anandan (1993), protective measure-
ment refutes an argument of Einstein in favor of the ensemble interpretation of quantum
mechanics. Dickson’s (1995) analysis was more philosophical. He argued that protective
measurement provides a reply to scientific empiricism about quantum mechanics, but it
can neither refute that position nor confirm scientific realism, and the aim of his argument
is to place realism and empiricism on an even score in regards to quantum mechanics.

5This point was discussed and stressed by Dass and Qureshi (1999).
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probability proportional to ∼ 1/T 2, where ⊥ refers to a normalized state
in the subspace normal to the initial state as picked out by the first-order
perturbation theory(Dass and Qureshi 1999). Therefore, a small ensemble
is still needed for a realistic protective measurement, and the size of the
ensemble is in inverse proportion to the duration of measurement. However,
the limitation of a realistic protective measurement does not influence the
above conclusion. The key point is that the effects of entanglement and
collapse can be made arbitrarily small, and a protective measurement can
measure the expectation values of observables on a single quantum system
with certainty in principle (when the measuring time T approaches infi-
nite). Thus the expectation values of observables should be regarded as the
physical properties of a quantum system.

In addition, we can also provide an argument against the standard view,
independently of the above analysis of protective measurement. First of
all, although the expectation values of observables can only be obtained by
measuring an ensemble of identical systems in the context of conventional
impulsive measurements, this fact does not necessarily entail that they can
only be the statistical properties of the ensemble. Next, if each system in
the ensemble is indeed identical as the standard view holds (this means
that the quantum state is a complete description of a single system), then
obviously the expectation values of observables will be also the properties of
each individual system in the ensemble. Thirdly, even if the quantum state
is not a complete description of a single system and additional variables are
needed as in the de Broglie-Bohm theory (de Broglie 1928; Bohm 1952), the
quantum state of each system in an ensemble of identical systems is still the
same, and thus the expectation values of observables, which are calculated
in terms of the quantum state, are also the same for every system in the
ensemble. As a result, the expectation values of observables can still be
regarded as the properties of individual systems.

Lastly, we stress that the expectation values of observables are instanta-
neous properties of a quantum system (Aharonov, Anandan and Vaidman
1996). Although the measured state may be unchanged during a protec-
tive measurement and the duration of measurement may be very long, for
an arbitrarily short period of time the measuring device always shifts by
an amount proportional to the expectation value of the measured observ-
able in the state according to quantum mechanics (see Eq. (9)). Therefore,
the expectation values of observables are not time-averaged properties of a
quantum system defined during a finite period of time, but instantaneous
properties of the system defined during an infinitesimal period of time or at
a precise instant.
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3 On the mass and charge distributions of a quan-
tum system

According to protective measurement, the expectation values of observables
are properties of a single quantum system. Two examples of such properties
are the mass and charge distributions of a quantum system. In this section,
we will present a detailed analysis of these properties.

3.1 A general argument

Consider a quantum system in a discrete nondegenerate energy eigenstate
ψ(x). We take the measured observable An to be (normalized) projection
operators on small spatial regions Vn having volume vn:

An =

{
1
vn
, if x ∈ Vn,

0, if x 6∈ Vn.
(13)

The protective measurement of An then yields

〈An〉 =
1

vn

∫
Vn

|ψ(x)|2dv = |ψn|2, (14)

where |ψn|2 is the average of the density ρ(x) = |ψ(x)|2 over the small region
Vn. Then when vn → 0 and after performing measurements in sufficiently
many regions Vn we can measure ρ(x) everywhere in space.

Since the measured state ψ(x) is not changed during the above protec-
tive measurement (in the limit T → ∞), the measurement result, namely
the density ρ(x), reflects (one part of) the actual physical state of the mea-
sured system. What density, then, is ρ(x)? If the observable An and the
corresponding interaction Hamiltonian are physically realized by the elec-
tromagnetic or gravitational interaction between the measured system and
the measuring device, then the measured density ρ(x) (multiplied by the
total charge or mass of the measured system) will be the charge density or
mass density of the measured system6. In other words, the measurement
result will show that the mass and charge of a quantum system such as an
electron is distributed throughout space, and the mass and charge density
of the system in each position x is proportional to the modulus squared of
its wave function there, namely the density ρ(x). In the following, we will
give a more specific example to illustrate this important result.

6Strictly speaking, the mass density is m|ψ(x)|2 + ψ∗Hψ/c2 in the non-relativistic
domain, but the second term is very small compared with the first term and can be
omitted.
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3.2 A specific example

Consider the spatial wave function of a single quantum system with negative
charge Q (e.g. Q = −e)

ψ(x, t) = aψ1(x, t) + bψ2(x, t), (15)

where ψ1(x, t) and ψ2(x, t) are two normalized wave functions respectively
localized in their ground states in two small identical boxes 1 and 2, and
|a|2 + |b|2 = 1. An electron, which initial state is a Gaussian wave packet
narrow in both position and momentum, is shot along a straight line near
box 1 and perpendicular to the line of separation between the boxes. The
electron is detected on a screen after passing by box 1. Suppose the sepa-
ration between the boxes is large enough so that a charge Q in box 2 has
no observable influence on the electron. Then if the system were in box
2, namely |a|2 = 0, the trajectory of the electron wave packet would be a
straight line as indicated by position “0” in Fig.1. By contrast, if the system
were in box 1, namely |a|2 = 1, the trajectory of the electron wave packet
would be deviated by the electric field of the system by a maximum amount
as indicated by position “1” in Fig.1.

We first suppose that ψ(x, t) is unprotected, then the wave function of
the combined system after interaction will be

ψ(x, x′, t) = aϕ1(x′, t)ψ1(x, t) + bϕ2(x′, t)ψ2(x, t), (16)

where ϕ1(x′, t) and ϕ2(x′, t) are the wave functions of the electron influenced
by the electric fields of the system in box 1 and box 2, respectively, the tra-
jectory of ϕ1(x′, t) is deviated by a maximum amount, and the trajectory of
ϕ2(x′, t) is not deviated and still a straight line. When the electron is de-
tected on the screen, the above wave function will collapse to ϕ1(x′, t)ψ1(x, t)
or ϕ2(x′, t)ψ2(x, t). As a result, the detected position of the electron will
be either “1” or “0” in Fig.1, indicating that the system is in box 1 or 2
after the detection. This is a conventional impulsive measurement of the
projection operator on the spatial region of box 1, denoted by A1. A1 has
two eigenstates corresponding to the system being in box 1 and 2, respec-
tively, and the corresponding eigenvalues are 1 and 0, respectively. Since the
measurement is accomplished through the electrostatic interaction between
two charges, the measured observable A1, when multiplied by the charge
Q, is actually the observable for the charge of the system in box 1, and its
eigenvalues are Q and 0, corresponding to the charge Q being in boxes 1 and
2, respectively. Such a measurement cannot tell us the charge distribution
of the system in each box before the measurement.
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Fig.1 Scheme of a protective measurement of the charge density of a
quantum system

Now let’s make a protective measurement. Since ψ(x, t) is degenerate
with its orthogonal state ψ

′
(x, t) = b∗ψ1(x, t) − a∗ψ2(x, t), we need an ar-

tificial protection procedure to remove the degeneracy, e.g. joining the two
boxes with a long tube whose diameter is small compared to the size of the
box7. By this protection ψ(x, t) will be a nondegenerate energy eigenstate.
The adiabaticity condition and the weakly interacting condition, which are
required for a protective measurement, can be further satisfied when assum-
ing that (1) the measuring time of the electron is long compared to ~/∆E,
where ∆E is the smallest of the energy differences between ψ(x, t) and the
other energy eigenstates, and (2) at all times the potential energy of inter-
action between the electron and the system is small compared to ∆E. Then
the measurement by means of the trajectory of the electron wave packet is a
protective measurement of the charge of the system in box 1. The trajectory
of the electron wave packet is only influenced by the expectation value of the
charge of the system in box 1, and the wave packet will reach the position
“|a|2” between “0” and “1” on the screen as denoted in Fig.1. Since the
measurement does not disturb the measured system, its result reflects the
actual charge distribution of the system in box 1. Concretely speaking, the
result of this protective measurement, namely the expectation value of the
charge Q in the state ψ1(x, t), |a|2Q, indicates that there exists a charge
|a|2Q in box 1.

Here it may be necessary to further clarify the meaning of charge dis-
tribution as a property of a quantum system. Any physical measurement

7It is worth stressing that the added protection procedure depends on the measured
state, and different states need different protection procedures in general.
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is necessarily based on some interaction between the measured system and
the measuring system. One basic form of interaction is the electrostatic
interaction between two electric charges as in the above example, and the
existence of this interaction during a measurement, which is indicated by
the deviation of the trajectory of the charged measuring system such as an
electron, means that the measured system also has the charge responsible
for the interaction8. Then at least in the sense that any part of a physical
entity has electrostatic interaction with another charged system such as an-
other electron, we can say that the physical entity has charge distribution in
space9. In the above example, the definite deviation of the trajectory of the
electron will reflect that there exists a definite amount of charge in box 1,
and the extent of the deviation will further indicate how much charge there
is there.

It should be noted that the existence of such a charge distribution does
not imply that two quantum systems interact directly by way of their charge
distributions as in classical mechanics. In other words, the existence of the
charge distribution can be consistent with quantum mechanics, in which
the interaction between two quantum systems is always described by the
interaction potentials in the Schrödinger equation. As we will see in the
next section, however, the consistency will restrict and even determine the
existing form of the charge distribution of a quantum system.

4 The physical origin of the mass and charge dis-
tributions

We have argued that the mass and charge of a quantum system are dis-
tributed throughout space, and the mass and charge density in each position

8If one denies this point, then it seems that one cannot obtain any information about
the measured system by the measurement. Note that the arguments against the naive
realism about operators and the eigenvalue realism in the quantum context are irrelevant
here (Daumer et al 1997; Valentini 2010).

9This is consistent with the anti-Humean position about laws of nature in contemporary
philosophy. According to this view, laws are grounded in the ontology, and the theoretical
terms (expressed in the language of mathematics) connect to the entities existing in the
physical world. It is essential for a property to induce a certain behaviour of the objects
that instantiate the property in question, while the law expresses that behaviour. For
example, the parameter we call “charge” in the Schrödinger equation refers to a property
of quantum systems. This property is not a pure quality, but a disposition whose manifes-
tation is the electromagnetic interaction between the systems as expressed qualitatively
and quantitatively by the Schrödinger equation. In this way, laws are suitable to figure in
explanations answering why-questions, and they reveal the real connections that there are
in nature. By contrast, according to Humeanism, the laws are mere means of economical
description, and they do not have any explanatory function. They sum up what has hap-
pened in the world; but they do not answer the question why what has happened did in
fact happen, given certain initial conditions. Note that there are a number of substantial
philosophical objections against Humeanism (see e.g. Mumford 2004).

12



is proportional to the modulus squared of the wave function of the system
there. In this section, we will further investigate the physical origin of the
mass and charge distributions. As we will see, the answer may provide an
important clue to the meaning of the wave function.

Historically, the charge density interpretation for electrons was originally
suggested by Schrödinger when he introduced the wave function and founded
wave mechanics (Schrödinger 1926). Schrödinger clearly realized that the
charge distribution cannot be of classical nature because his equation does
not include the usual classical interaction between the distributions. Pre-
sumably since people thought that the charge distribution could not be
measured and also lacked a consistent physical picture, this initial inter-
pretation of the wave function was soon rejected and replaced by Born’s
probability interpretation (Born 1926). Now protective measurement re-
endows the charge distribution of an electron with reality. The question is
then how to find a consistent physical explanation for it10. Our following
analysis can be regarded as a further development of Schrödinger’s idea to
some extent. The twist is that the charge distribution is not classical does
not imply its non-existence; rather, its existence points to a non-classical
picture of quantum reality hiding behind the wave function.

4.1 The mass and charge distributions are effective

As noted earlier, the expectation values of observables are the properties of
a quantum system defined either at a precise instant or during an infinites-
imal time interval. Correspondingly, the mass and charge distributions of
a quantum system, which can be protectively measured as the expectation
values of certain observables, have two possible existent forms: it is either
real or effective. The distribution is real means that it exists throughout
space at the same time. The distribution is effective means that at every
instant there is only a localized, point-like particle with the total mass and
charge of the system, and its motion during an infinitesimal time interval
forms the effective distribution. Concretely speaking, at a particular instant
the mass and charge density of the particle in each position is either zero (if
the particle is not there) or singular (if the particle is there), while the time
average of the density during an infinitesimal time interval gives the effective
mass and charge density. Moreover, the motion of the particle is ergodic in
the sense that the integral of the formed mass and charge density in any
region is required to be equal to the expectation value of the total mass and
charge in the region. In the following, we will determine the existent form
of the mass and charge distributions of a quantum system.

10Note that the proponents of protective measurement did not give an analysis of the
origin of the charge distribution. According to them, this type of measurement implies
that the wave function of a single quantum system is ontological, i.e., that it is a real
physical wave (Aharonov, Anandan and Vaidman 1993).
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If the mass and charge distributions are real, then any two parts of the
distributions, e.g. the two wavepackets in box 1 and box 2 in the example
given in the last section, will have gravitational and electrostatic interactions
described by the interaction potential terms in the Schrödinger equation11.
The existence of such gravitational and electrostatic self-interactions for in-
dividual quantum systems is inconsistent with the superposition principle
of quantum mechanics (at least for microscopic systems such as electrons).
Moreover, the existence of the electrostatic self-interaction for the charge
distribution of an electron also contradicts experimental observations. For
example, for the electron in the hydrogen atom, since the potential of the
electrostatic self-interaction is of the same order as the Coulomb potential
produced by the nucleus, the energy levels of hydrogen atoms will be remark-
ably different from those predicted by quantum mechanics and confirmed by
experiments if there exists such electrostatic self-interaction. By contrast,
if the mass and charge distributions are effective, then there will be only
a localized particle at every instant, and thus there will exist no gravita-
tional and electrostatic self-interactions of the effective distributions. This
is consistent with the superposition principle of quantum mechanics and the
Schrödinger equation.

Since this argument is pivotal for our later discussions, we will give a
more detailed analysis here. It can be seen that the existence of the mass
and charge distributions poses a puzzle. According to quantum mechanics,
two charge distributions such as two electrons, which exist in space at the
same time, have electrostatic interaction described by the interaction po-
tential term in the Schrödinger equation, but in the example given in the
last section, the two charges in box 1 and box 2 have no such electrostatic
interaction. This puzzle is not so much dependent on the existence of mass
and charge distributions as properties of a quantum system. It is essen-
tially that according to quantum mechanics, the wavepacket ψ1 in box 1
has interaction with any test electron (e.g. deviating the trajectory of the
electron wavepacket), so does the wavepacket ψ2 in box 2, but these two
wavepackets, unlike two electrons, have no interaction.

Facing this puzzle one may have two choices. The first one is simply
admitting that this is a distinct feature of the laws of quantum mechanics,
but insisting that the laws are what they are and no further explanation
is needed. In our opinion, this choice seems to beg the question and is
unsatisfactory in the final analysis. A more reasonable choice is to try to
explain this puzzling feature of the evolution of the wave function, which is
governed by the Schrödinger equation12. After all, there is only one actual

11According to quantum mechanics, two real mass and charge distributions such as two
electrons have gravitational and electrostatic interactions described by the interaction
potential terms in the Schrödinger equation. Moreover, these two distributions will be
entangled and their wave function will be defined in a six-dimensional configuration space.

12An immediate explanation may be that why the two wavepackets with charges have no
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form of the mass and charge distributions, while there are two possible forms
as given above, and we need to determine which possible form is the actual
one.

The above argument provides an answer to this question13. The reason
why two wavepackets of an electron, each of which has part of the electron’s
charge, have no electrostatic interaction is that these two wavepackets do not
exist at the same time, and their charges are not real but effective, formed
by the motion of a localized particle with the total charge of the electron.
If the two wavepackets with charges, like two electrons, existed at the same
time, then they would also have the same form of electrostatic interaction
as that between two electrons. The lack of such interaction then indicates
that the two wavepackets of an electron exist in a way of time division, and
their charges are effectively formed by the motion of a localized particle with
the total charge of the electron. Since in this case there is only a localized
particle at every instant, there exist no electrostatic self-interactions of the
effective charge distribution formed by the motion of the particle. Note that
this argument does not assume that real charges that exist at the same time
are classical charges and they have classical interaction14.

To sum up, we have argued that the superposition principle of quantum
mechanics requires that the mass and charge distributions of a quantum
system such as an electron are not real but effective; at every instant there
is only a localized particle with the total mass and charge of the system,
while during an infinitesimal time interval the ergodic motion of the particle
forms the effective mass and charge distributions, and the mass and charge
density in each position is proportional to the modulus squared of the wave
function of the system there.

4.2 The ergodic motion of a particle is discontinuous

Which sort of ergodic motion? This is a further question. If the ergodic
motion of a particle is continuous, then it can only form the effective mass
and charge density during a finite time interval. But according to quantum
mechanics, the effective mass and charge density is required to be formed
by the ergodic motion of the particle during an infinitesimal time interval
(not during a finite time interval) near a given instant. Thus it seems that
the ergodic motion of the particle cannot be continuous. This is at least

electrostatic interaction is because they belong to one quantum system such as an electron,
and if they belong to two charged quantum systems such as two electrons, then they will
have electrostatic interaction. However, this explanation seems still unsatisfactory, and
one may further ask why two wavepackets of a charged quantum system such as an electron,
each of which has charge, have no electrostatic interaction.

13In some sense, this argument provides an explanation of why there is no gravitational
and electrostatic self-interaction terms in the Schrödinger equation.

14By contrast, the Schrödinger-Newton equation, which was proposed by Diosi (1984)
and Penrose (1998), describes the gravitational self-interaction of classical mass density.
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what the existing theory says. However, there may exist a possible loophole
here. Although the classical ergodic models that assume continuous motion
are inconsistent with quantum mechanics due to the existence of a finite
ergodic time, they may be not completely precluded by experiments if only
the ergodic time is extremely short. After all quantum mechanics is only an
approximation of a more fundamental theory of quantum gravity, in which
there may exist a minimum time scale such as the Planck time. Therefore,
we need to investigate the classical ergodic models more thoroughly.

Consider an electron in a one-dimensional box in the first excited state
ψ(x) (Aharonov and Vaidman 1993). Its wave function has a node at the
center of the box, where its charge density is zero. Assume the electron
performs a very fast continuous motion in the box, and during a very short
time interval its motion generates an effective charge distribution. Let’s see
whether this distribution can assume the same form as e|ψ(x)|2, which is
required by protective measurement15. Since the effective charge density is
proportional to the amount of time the electron spends in a given position,
the electron must be in the left half of the box half of the time and in the
right half of the box half of the time. But it can spend no time at the center
of the box where the effective charge density is zero; in other words, it must
move at infinite velocity at the center. Certainly, the appearance of velocities
faster than light or even infinite velocities may be not a fatal problem, as our
discussion is entirely in the context of non-relativistic quantum mechanics,
and especially the infinite potential in the example is also an ideal situation.
However, it seems difficult to explain why the electron speeds up at the node
and where the infinite energy required for the acceleration comes from.

Let’s further consider an electron in a superposition of two energy eigen-
states in two boxes ψ1(x) + ψ2(x). In this example, even if one assumes
that the electron can move with infinite velocity (e.g. at the nodes), it can-
not continuously move from one box to another due to the restriction of
box walls. Therefore, any sort of continuous motion cannot generate the
effective charge distribution e|ψ1(x) + ψ2(x)|2. One may still object that
this is merely an artifact of the idealization of infinite potential. However,
even in this ideal situation, the model should also be able to generate the
effective charge distribution by means of some sort of ergodic motion of
the electron; otherwise it will be inconsistent with quantum mechanics. On
the other hand, it is very common in quantum optics experiments that a
single-photon wave packet is split into two branches moving along two well

15Note that in Nelson’s stochastic mechanics, the electron, which is assumed to undergo
a Brownian motion, moves only within a region bounded by the nodes (Nelson 1966).
This ensures that the theory can be equivalent to quantum mechanics in a limited sense.
Obviously this sort of motion is not ergodic and cannot generate the required charge
distribution. This conclusion also holds true for the motion of particles in some variants
of stochastic mechanics (Bell 1986; Vink 1993), as well as in the de Broglie-Bohm theory
(de Broglie 1928; Bohm 1952).
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separated paths in space. The wave function of the photon disappears out-
side the two paths for all practical purposes. Moreover, the experimental
results are not influenced by the environment and experimental setup be-
tween the two paths of the photon. Thus it seems impossible that the photon
performs a continuous ergodic motion back and forth in the space between
its two paths.

In view of these drawbacks of the classical ergodic models and their
inconsistency with quantum mechanics, we conclude that the ergodic motion
of particles cannot be continuous. If the motion of a particle is essentially
discontinuous, then the particle can readily appear throughout all regions
where the wave function is nonzero during an arbitrarily short time interval
near a given instant. Furthermore, if the probability density of the particle
appearing in each position is proportional to the modulus squared of its
wave function there at every instant, the discontinuous motion can also
generate the right mass and charge distributions. This will solve the above
problems plagued by the classical ergodic models. The discontinuous ergodic
motion requires no existence of a finite ergodic time. Moreover, a particle
undergoing discontinuous motion can also “jump” from one region to another
spatially separated region, no matter whether there is an infinite potential
wall between them, and such discontinuous motion is not influenced by the
environment and experimental setup between these regions either.

4.3 An argument for random discontinuous motion

We have argued that the ergodic motion of a particle is discontinuous. How-
ever, the argument doesn’t require that the discontinuous motion must be
random. It is possible that the randomness of the result of a quantum mea-
surement is only apparent. In order to know whether the motion of particles
is random or not, we need to analyze the cause of motion. For example, if
motion has no deterministic cause, then it will be random, only determined
by a probabilistic cause. This may also be the right way to find how particles
move. Since motion involves change in position, if we can find the cause or
instantaneous condition determining the change16, we will be able to find
how particles move.

Let’s consider the simplest states of motion of a free particle, for which
the instantaneous condition determining the change of its position is a con-
stant during the motion. The instantaneous condition can be deterministic
or indeterministic. That the instantaneous condition is deterministic means
that it leads to a deterministic change of the position of the particle at a
given instant. That the instantaneous condition is indeterministic means
that it only determines the probability of the particle appearing in each

16The word “cause” used here only denotes a certain instantaneous condition deter-
mining the change of position, which may appear in the laws of motion. Our analysis is
independent of whether the condition has causal power or not.
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position in space at a given instant. If the instantaneous condition is deter-
ministic, then the simplest states of motion of the free particle will have two
possible forms. The first one is continuous motion with constant velocity,
and the equation of motion of the particle is x(t + dt) = x(t) + vdt, where
the deterministic instantaneous condition v is a constant17. The second one
is discontinuous motion with infinite average velocity; the particle performs
a finite jump along a fixed direction at every instant, where the jump dis-
tance is a constant, determined by the constant instantaneous condition18.
On the other hand, if the instantaneous condition is indeterministic, then
the simplest states of motion of the free particle will be random discontinu-
ous motion with even position probability distribution. At each instant the
probability density of the particle appearing in every position is the same.

In order to know whether the instantaneous condition is deterministic
or not, we need to determine which sort of simplest states of motion are
the solutions of the equation of free motion in quantum mechanics (i.e. the
free Schrödinger equation). According to the analysis in the last subsection,
the momentum eigenstates of a free particle, which are the solutions of
the free Schrödinger equation, describe the ergodic motion of the particle
with even position probability distribution in space. Therefore, the simplest
states of motion with a constant probabilistic instantaneous condition are
the solutions of the equation of free motion, while the simplest states of
motion with a constant deterministic instantaneous condition are not.

When assuming that (1) the simplest states of motion of a free particle
are the solutions of the equation of free motion; and (2) the instantaneous
condition determining the position change of a particle is always determinis-
tic or indeterministic for any state of motion, the above result then implies
that motion, no matter whether it is free or forced, has no deterministic
cause, and thus it is random and discontinuous, only determined by a prob-
abilistic cause. The argument may be improved by further analyzing these
two seemingly reasonable assumptions, but we will leave this for future work.

5 The wave function as a description of random
discontinuous motion of particles

In classical mechanics, we have a clear physical picture of motion. It is well
understood that the trajectory function x(t) in classical mechanics describes
the continuous motion of a particle. In quantum mechanics, the trajectory
function x(t) is replaced by a wave function ψ(x, t). If the particle ontology

17This deterministic instantaneous condition is often called intrinsic velocity (Tooley
1988).

18In discrete space and time, the motion will be a discrete jump across space along a
fixed direction at each time unit, and thus it will become continuous motion with constant
velocity in the continuous limit.
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is still viable in the quantum domain, then it seems natural that the wave
function should describe some sort of more fundamental motion of particles,
of which continuous motion is an approximation in the classical domain,
as quantum mechanics is a more fundamental theory of the physical world,
of which classical mechanics is an approximation. The analysis in the last
section provides a strong support for this conjecture. It suggests that a
quantum system such as an electron is a localized particle that undergoes
random discontinuous motion, and the probability density of the particle
appearing in each position is proportional to the modulus squared of its
wave function there. As a result, the wave function in quantum mechanics
can be regarded as a description of the more fundamental motion of particles,
which is arguably discontinuous and random. In this section, we will give a
more detailed analysis of random discontinuous motion and the meaning of
the wave function (Gao 2011).

5.1 An analysis of random discontinuous motion of particles

Let’s first make clearer what we mean when we say a quantum system such
as an electron is a particle. The picture of particles appears from our analysis
of the mass and charge density of a quantum system. As we have argued
in the last section, the mass and charge density of an electron, which is
measurable by protective measurement and proportional to the modulus
squared of its wave function, is not real but effective; it is formed by the
ergodic motion of a localized particle with the total mass and charge of the
electron. If the mass and charge density is real, i.e., if the mass and charge
distributions at different locations exist at the same time, then there will
exist gravitational and electrostatic interactions between the distributions,
the existence of which not only contradicts experiments but also violates the
superposition principle of quantum mechanics. It is this analysis that leads
us to the basic existent form of a quantum system such as an electron in space
and time; an electron is a particle19. Here the concept of particle is used in
its usual sense. A particle is a small localized object with mass and charge,
and it is only in one position in space at an instant. However, as we have
argued above, the motion of an electron described by its wave function is not
continuous but discontinuous and random in nature. We may say that an
electron is a quantum particle in the sense that its motion is not continuous
motion described by classical mechanics, but random discontinuous motion
described by quantum mechanics.

Next, let’s analyze the random discontinuous motion of particles. From a
logical point of view, for the random discontinuous motion of a particle, the
particle must have an instantaneous property (as a probabilistic instanta-
neous condition) that determines the probability density to appear in every

19However, the analysis cannot tell us the precise size and possible structure of electron.
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position in space; otherwise the particle would not “know” how frequently
it should appear in each position in space. This property is usually called
indeterministic disposition or propensity in the literature20, and it can be
represented by %(x, t), which satisfies the nonnegative condition %(x, t) > 0
and the normalization relation

∫ +∞
−∞ %(x, t)dx = 1. As a result, the position

of the particle at every instant is random, and its trajectory formed by the
random position series is also discontinuous at every instant21.

Unlike the deterministic continuous motion, the trajectory function x(t)
no longer provides a useful description for random discontinuous motion.
In the following, we will give a strict description of random discontinuous
motion of particles based on measure theory. For simplicity but without
losing generality, we will mainly analyze the one-dimensional motion that
corresponds to the point set in two-dimensional space and time. The results
can be readily extended to the three-dimensional situation.

Fig.2 The description of random discontinuous motion of a single particle

We first analyze the random discontinuous motion of a single particle.
Suppose the probability density of the particle appearing in position x at
instant t is determined by a disposition function %(x, t), which is differen-

20Note that the propensity here denotes single case propensity. For long run propensity
theories fail to explain objective single-case probabilities. According to these theories, it
makes no sense to speak of the propensity of a single isolated event in the absence of a
sequence that contains it. For a helpful analysis of the single-case propensity interpreta-
tion of probability in GRW theory see Frigg and Hoefer (2007). In addition, it is worth
stressing that the propensities possessed by particles relate to their objective motion, not
to the measurements on them. By contrast, according to the existing propensity inter-
pretations of quantum mechanics, the propensities a quantum system has relate only to
measurements; a quantum system possesses the propensity to exhibit a particular value
of an observable if the observable is measured on the system (see Suárez 2004 for a com-
prehensive analysis). Like the Copenhagen interpretation of quantum mechanics, it seems
that these interpretations cannot be wholly satisfactory because of resorting to the vague
concept of measurement.

21However, there is an exception. When the probability density function is a special
δ-function such as δ(x− x(t)), where x(t) is a continuous function of t, the motion of the
particle is deterministic and continuous. In addition, even for a general probability density
function it is still possible that the random position series forms a continuous trajectory,
though the happening probability is zero.
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tiable with respect to both x and t. Consider the state of motion of the
particle in finite intervals ∆t and ∆x near a space-time point (ti,xj) as
shown in Fig. 2. The positions of the particle form a random, discontinuous
trajectory in this square region22. We study the projection of this trajec-
tory in the t-axis, which is a dense instant set in the time interval ∆t. Let
W be the discontinuous trajectory of the particle and Q be the square re-
gion [xj , xj + ∆x] × [ti, ti + ∆t]. The dense instant set can be denoted by
πt(W ∩ Q) ∈ <, where πt is the projection on the t-axis. According to the
measure theory, we can define the Lebesgue measure:

M∆x,∆t(xj , ti) =

∫
πt(W∩Q)∈<

dt. (17)

Since the sum of the measures of all such dense instant sets in the time
interval ∆t is equal to the length of the continuous time interval ∆t, we
have: ∑

j

M∆x,∆t(xj , ti) = ∆t. (18)

Then we can define the measure density as follows:

ρ(x, t) = lim
∆x,∆t→0

M∆x,∆t(x, t)/(∆x ·∆t). (19)

This quantity provides a strict description of the position distribution of the
particle or the relative frequency of the particle appearing in an infinitesimal
space interval dx near position x during an infinitesimal interval dt near
instant t, and it satisfies the normalization relation

∫ +∞
−∞ ρ(x, t)dx = 1 by

Eq. (18). Note that the existence of the limit relies on the continuity
of the evolution of %(x, t), the property of the particle that determines the
probability density for it to appear in every position in space. In fact, ρ(x, t)
is determined by %(x, t), and there exists the relation ρ(x, t) = %(x, t). We
call ρ(x, t) position measure density or position density in brief.

Since the position density ρ(x, t) changes with time in general, we may
further define the position flux density j(x, t) through the relation j(x, t) =
ρ(x, t)v(x, t), where v(x, t) is the velocity of the local position density. It
describes the change rate of the position density. Due to the conservation
of probability, ρ(x, t) and j(x, t) satisfy the continuity equation:

∂ρ(x, t)

∂t
+
∂j(x, t)

∂x
= 0. (20)

22Recall that a trajectory function x(t) is essentially discontinuous if it is not continuous
at every instant t. A trajectory function x(t) is continuous if and only if for every t and
every real number ε > 0, there exists a real number δ > 0 such that whenever a point t0
has distance less than δ to t, the point x(t0) has distance less than ε to x(t).
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The position density ρ(x, t) and position flux density j(x, t) provide a com-
plete description of the state of random discontinuous motion of a single
particle23.

The description of the motion of a single particle can be extended to the
motion of many particles. At each instant a quantum system of N particles
can be represented by a point in an 3N -dimensional configuration space.
Then, similar to the single particle case, the state of the system can be
represented by the joint position density ρ(x1, x2, ...xN , t) and joint position
flux density j(x1, x2, ...xN , t) defined in the configuration space. They also
satisfy the continuity equation:

∂ρ(x1, x2, ...xN , t)

∂t
+

N∑
i=1

∂j(x1, x2, ...xN , t)

∂xi
= 0. (21)

The joint position density ρ(x1, x2, ...xN , t) represents the probability den-
sity of particle 1 appearing in position x1 and particle 2 appearing in position
x2, , and particle N appearing in position xN . When these N particles are
independent, the joint position density can be reduced to the direct prod-
uct of the position density for each particle, namely ρ(x1, x2, ...xN , t) =∏N
i=1 ρ(xi, t). Note that the joint position density ρ(x1, x2, ...xN , t) and

joint position flux density j(x1, x2, ...xN , t) are not defined in the real three-
dimensional space, but defined in the 3N-dimensional configuration space.

5.2 Interpreting the wave function

Although the motion of particles is essentially discontinuous and random,
the discontinuity and randomness of motion are absorbed into the state
of motion, which is defined during an infinitesimal time interval and rep-
resented by the position density ρ(x, t) and position flux density j(x, t).
Therefore, the evolution of the state of random discontinuous motion of par-
ticles may obey a deterministic continuous equation. By assuming that the
nonrelativistic equation of random discontinuous motion is the Schrödinger
equation in quantum mechanics, both ρ(x, t) and j(x, t) can be expressed
by the wave function in a unique way24:

ρ(x, t) = |ψ(x, t)|2, (22)

23It is also possible that the position density ρ(x, t) alone provides a complete description
of the state of random discontinuous motion of a particle. Which one is right depends
on the laws of motion. As we will see later, quantum mechanics requires that a complete
description of the state of random discontinuous motion of particles includes both the
position density and the position flux density.

24Note that the relation between j(x, t) and ψ(x, t) depends on the concrete evolution
under an external potential such as electromagnetic vector potential. By contrast, the
relation ρ(x, t) = |ψ(x, t)|2 holds true universally, independently of the concrete evolution.
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j(x, t) =
~

2mi
[ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)

∂x
]. (23)

Correspondingly, the wave function ψ(x, t) can be uniquely expressed by
ρ(x, t) and j(x, t) (except for a constant phase factor):

ψ(x, t) =
√
ρ(x, t)e

im
∫ x
−∞

j(x′,t)
ρ(x′,t)dx

′/~
. (24)

In this way, the wave function ψ(x, t) also provides a complete description
of the state of random discontinuous motion of particles. For the motion
of many particles, the joint position density and joint position flux density
are defined in the 3N-dimensional configuration space, and thus the many-
particle wave function, which is composed of these two quantities, is also
defined in the 3N-dimensional configuration space.

Interestingly, we can reverse the above logic in some sense, namely by as-
suming the wave function is a complete objective description for the motion
of particles, we can also reach the random discontinuous motion of parti-
cles, independently of our previous analysis. If the wave function ψ(x, t) is
a complete description of the state of motion for a single particle, then the
quantity |ψ(x, t)|2dx will not only give the probability of the particle being
found in an infinitesimal space interval dx near position x at instant t (as
required by quantum mechanics), but also give the objective probability of
the particle being there at the instant. This accords with the common-sense
assumption that the probability distribution of the measurement results of
a property is the same as the objective distribution of the values of the
property in the measured state. Then at instant t the particle will be in
a random position where the probability density |ψ(x, t)|2 is nonzero, and
during an infinitesimal time interval near instant t it will move throughout
the whole region where the wave function ψ(x, t) spreads. Moreover, its
position density in each position is equal to the probability density there.
Obviously this kind of motion is random and discontinuous.

One important point needs to be pointed out here. Since the wave func-
tion in quantum mechanics is defined at instants, not during an infinitesimal
time interval, it should be regarded not simply as a description of the state of
random discontinuous motion of particles, but more suitably as a description
of the property of the particles that determines their random discontinuous
motion at a deeper level25. In particular, the modulus squared of the wave
function represents the property that determines the probability density of
the particles appearing in certain positions in space at a given instant (this
means %(x, t) ≡ |ψ(x, t)|2). By contrast, the position density and position
flux density, which are defined during an infinitesimal time interval near a
given instant, are only a description of the state of the resulting random

25For a many-particle system in an entangled state, this property is possessed by the
whole system.
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discontinuous motion of particles, and they are determined by the wave
function. In this sense, we may say that the motion of particles is “guided”
by their wave function in a probabilistic way.

5.3 On momentum, energy and spin

We have been discussing random discontinuous motion of particles in real
space. Does the picture of random discontinuous motion exist for other
dynamical variables such as momentum and energy? Since there are also
wave functions of these variables in quantum mechanics, it seems tempting to
assume that the above interpretation of the wave function in position space
also applies to the wave functions in momentum space etc26. This means
that when a particle is in a superposition of the eigenstates of a variable,
it also undergoes random discontinuous motion among the corresponding
eigenvalues of this variable. For example, a particle in a superposition of
energy eigenstates also undergoes random discontinuous motion among all
energy eigenvalues. At each instant, the energy of the particle is definite,
randomly assuming one of the energy eigenvalues with probability given
by the modulus squared of the wave function at this energy eigenvalue,
and during an infinitesimal time interval, the energy of the particle spreads
throughout all energy eigenvalues. Since the values of two noncommutative
variables (e.g. position and momentum) at every instant may be mutually
independent, the objective value distribution of every variable can be equal
to the modulus squared of its wave function and consistent with quantum
mechanics27.

However, there is also another possibility, namely that the picture of ran-
dom discontinuous motion exists only for position, while momentum, energy
etc do not undergo random discontinuous change among their eigenvalues.
This is a minimum formulation in the sense that the ontology of the theory
only includes the wave function and the particle position. A heuristic argu-
ment for this possibility is as follows. In quantum mechanics, the definitions
of momentum and energy relate to spacetime translation. The momentum
operator and energy operator are defined as the generators of space trans-
lation and time translation, respectively. By these definitions momentum
and energy seem distinct from position. For random discontinuous motion
of particles, the position of a particle is its primary property defined at in-
stants, while momentum and energy are secondary properties relating only
to its state of motion (e.g. momentum and energy eigenstates), which is

26Under this assumption, the ontology of the theory will not only include the wave
function and the particle position, but also include momentum and energy.

27Note that for random discontinuous motion a property (e.g. position) of a quantum
system in a superposed state of the property is indeterminate in the sense of usual hidden
variables, though it does have a definite value at each instant. This makes the theorems
that restrict hidden variables such as the Kochen-Specker theorem (Kochen and Specker
1967) irrelevant.
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formed by the motion of the particle. In other words, position is an in-
stantaneous property of a particle, while momentum and energy are only
manifestations of its state of motion during an infinitesimal time interval.
Note that the particle position here is different from the position property
described by the position operator in quantum mechanics, and the latter is
also a secondary property relating only to the state of motion of the particle
such as position eigenstates. Certainly, we can still talk about momentum
and energy on this view. For example, when a particle is in an eigenstate of
the momentum or energy operator, we can say that the particle has definite
momentum or energy, whose value is the corresponding eigenvalue. More-
over, when the eigenstates of the momentum or energy operator are well
separated in space, we can still say that the particle has definite momentum
or energy in certain local regions.

Lastly, we note that spin is a more distinct property. Since the spin of
a free particle is always definite along one direction, the spin of the particle
does not undergo random discontinuous motion, though a spin eigenstate
along one direction can always be decomposed into two different spin eigen-
states along another direction. But if the spin state of a particle is entangled
with its spatial state due to interaction and the branches of the entangled
state are well separated in space, the particle in different branches will have
different spin, and it will also undergo random discontinuous motion be-
tween these different spin states. This is the situation that usually happens
during a spin measurement.

6 Conclusions

In this paper, we have argued that protective measurement may have im-
portant implications for the physical meaning of the wave function. There
are three key steps in the argument. First of all, the results of protective
measurements as predicted by quantum mechanics show that the mass and
charge of a charged quantum system are distributed throughout space, and
the mass and charge density in each position is proportional to the modulus
squared of the wave function of the system there. Next, the superposition
principle of quantum mechanics requires that the mass and charge distri-
butions are effective, that is, they are formed by the ergodic motion of a
localized particle with the total mass and charge of the system. Lastly, the
consistency of the formed distribution with that predicted by quantum me-
chanics requires that the ergodic motion of the particle is discontinuous, and
the probability density of the particle appearing in every position is equal
to the modulus squared of its wave function there. Based on this analy-
sis, we suggest that the wave function in quantum mechanics describes the
state of random discontinuous motion of particles, and at a deeper level, it
represents the property of the particles that determines their random dis-
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continuous motion. In particular, the modulus squared of the wave function
(in position space) gives the probability density of the particles being in
certain positions in space.
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