
                                         

1 

 

A note on Oscar Chisini mean value definition 

Giuseppe Iurato 

Department of Physics, University of Palermo, IT 

E-mail: giuseppe.iurato@unipa.it 

Abstract. Mainly on the basis of some notable physical problems reported in a 1929 Oscar 

Chisini paper, this brief note expose further possible historic-critical remarks on the definition 

of statistical mean value which will lead us towards the realm of Integral Geometry, via the 

Felix Klein Erlanger Programm. Possible educational implications are also briefly discussed. 

 

1. Introduction 

 

If one identifies, from a mathematical viewpoint, the concept of statistical variable (of Statistic) with that of 

random variable (of Probability Theory) according to what established in (Dall’Aglio, 1987, Chapter IV, 

Section IV.2), then the notion of mean value may be included in the most general one of expectation value of 

a random variable
1
, in turn included in the wider class of the moments of a random variable. 

  Following (Piccolo, 1998, Chapter 4), the mean concept is a primitive one for the human being, so that it is 

perceived with immediacy, though its measure is arbitrary since it depends on the synthesis criterion 

adopted. Through such a criterion, then, it will be possible to state a formal definition of mean value. The 

first notion of mean was due to
2
 A.L. Cauchy in 1821 who simply defined it as an intermediate value 

between the maximum and minimum values of a given statistical variable. Such a definition, is nowadays 

considered as a simple range condition, called internality Cauchy condition. Instead, a great attention had a 

formal definition of mean value due to Oscar Chisini in 1929, according to whom the mean   of a given 

statistical variable  , is that value which, with respect to another given synthetic function   defined on the 

frequency distribution of  , leaves invariant the values of the latter, that is to say
3
 

 

                                                                                                
   

Following (Girone & Salvemini, 2000, Chapter 6, Section 6.1) and (Ferrauto, 1996, Chapter 4), such a mean 

value   warrants that a predetermined quantity, assumed to be invariant and formally expressed by the 

function    is left unchanged. This Chisini’s theoretical criterion defining a mean, is made operative by 

specifying the function   in dependence on the formal properties (like additivity, multiplicativity or 

invertibility) of the random variable  , so reaching to various possible types of means on the basis of the 

given   (see (Piccolo, 1998, Chapter 4, Section 4.2)). The choice of   is strictly dependent on the context of 

the involved problem, this being one of the central motifs of this paper. 

  Other possible definitions of mean have also been proposed, like that proposed by O. Wald (1950) and the 

one proposed by M. Nagumo, A.N. Kolmogorov and B. De Finetti (see (Piccolo, 1998, Chapter 4, Section 

4.2)), which substantially make use of methods analogous to the functional one of Chisini whose essential 

idea is the following: through the function  , it is possible to consider the transferability of the initial 

statistical variable   amongst the unities of the statistical population in which it is defined. 

  In this brief note, we want above all to deal with the notion of mean value according to Chisini, on which 

then one of his former students, Bruno De Finetti, has mainly based his subsequent fundamental paper (De 

                                                           
1
 In this regards, see also (De Finetti, 1930) and what will be said in Section 2 of the present paper. 

2
 For some related historic-bibliographical notes, see (Berzolari, 1972, Article LV, Chapter II). 

3
 For instance, to get the usual arithmetic mean, we choose the following weighted invariant function     ,…,    
   

 
      and we impose that be    

 
         

     , whence      
 
         

 
    which is the weighted 

arithmetic mean of the variables    with weights   . Instead, the invariant function which gives rise the simple 

geometrical mean is the following     ,…,       
 
   , from which, applying (1), it follows    

 
        

   

  , whence     =1   . Finally, for the weighted harmonic mean, we have  ( 1,…,  )= =1   /  , hence 

   
 
           

 
      whence        

 
         

 
        which is the weighted harmonic mean with weights 

  . For further related information, see (Girone & Salvemini, 2000, Chapter 6). 
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Finetti, 1930), and from which, amongst other things, it will turn out to be clear the close dependence of the 

notion of mean value by the related involved problematic context. 

 

2. On Chisini’s mean definition  

 

In the general statistical framework of a critical discussion of the mean value notion, De Finetti has centered 

his 1930 paper on a review of the notion of statistical mean according to Oscar Chisini with its possible 

features and applications. He first stated that an extension of the concept of mean to an arbitrary random 

variable is also possible through the Chisini definition. 

  Oscar Chisini (1889-1967) was a pupil of Federigo Enriques, and his main research field was in Algebraic 

Geometry
4
. In 1929, he incidentally had to consider some statistical questions from which derived his brief 

but meaningful note on the general notion of a mean value. In it, he first of all criticizes the old 1821 Cauchy 

definition of mean simply conceived as a certain value comprised between the minimum and maximum 

values of the set of values of a given variable. Indeed, it does not provide neither any synthetic information 

which gives a global vision of the phenomenon described by this variable nor puts into evidence the typical 

relative character that a mean must have. According to Chisini, these last requirements might be 

accomplished by means of the choice of a certain function, say  , depending on the observed quantities of 

this phenomenon. To this purpose he refer to some meaningful kinematical
5
 and geometrical

6
 problems as 

practical examples of this his basic point of view on what a mean should be: for instance, to point out the 

relative character of a mean, that is to say, its dependence on the circumstances of the involved problematic 

situation, he argues, inter alia, on a physical problem concerning the determination of the mean resistance of 

three conductors, whose result clearly depend on the geometry of the this physical problem which is related 

to parallel or sequential disposition of these conductors. At last, he also considers the determination of this 

statistical parameter – a mean value – regarding interesting physical problems concerning the oscillations of 

certain physical systems (like a pendulum), in which are also involved some not negligible geometrical 

considerations, in turn connected to mass distribution problems whose inertial momenta are but that second 

order statistical momenta (see (De Finetti, 1970, Volume I, Chapter II, Sections 8, 9 and 10)). 

  Thereafter, Chisini provides a general definition of mean of an arbitrary distribution of a quantity given in 

certain circumstances and situations
7
, as that unique value of it which may be substituted without to have any 

change in the above contextual problematic framework. To our purposes, we stress on this last peculiarity, 

that is to say, the just mentioned requirement of general invariance about the circumstantial and situational 

setting of the given statistical distribution. In the general case of an arbitrary random variable   with 

distribution given by the partition function     , then we should consider a functional of the type         = 

           instead of           , and request to be valid the condition                 if   is the 

                                                           
4
 He was one of the exponents of the so-called Italian geometric school, but also with wide interests in mathematics 

education (like many other members of this celebrated school of which Federigo Enriques was charismatic leader).   
5
 In this regards, it is classical examples those related to the computation of the mean velocity of certain kinematical 

problems, the same usually reported by the common treatises and textbooks on Statistics and Probability Theory: see, 

for instance, besides (De Finetti, 1930), also (Girone & Salvemini, 2000, Chapter 6, Section 6.12) and (Dall’Aglio, 

1987, Chapter IV, Section 2, Example IV.2.1). 
6
 Above all, the examples reported at points 4. and 6. of the paper (Chisini, 1929), are very meaningful to show the 

dependence of some types of means by the geometrical aspects of the problem in which they are involved. In particular, 

the first example reported at point 6. might be extended considering, in (Chisini, 1929, formula (12)), a path integral 

along the distribution line of the values given by          instead of a scalar integral which, besides, depends too by 

the geometry of the problem, being it the area underlying the line of equation         . It is likewise interesting the 

other following examples of the same point 6., from which it turns out to be always non-negligible the geometrical 

aspects of the considered problem. Finally, the argumentations carried out at the final point 7. of Chisini paper, clearly 

show what significant effects have a change of independent variables of the function   of (1), leading us toward the 

more general group theory considerations which will be given in the next Section 4. However, for a deeper discussion 

of these type of argumentations, see (De Finetti, 1970, Volume I, Chapter II, Sections 8, 9 and 10). 
7
 About the choice of a given mean, De Finetti, in (De Finetti, Volume I, Chapter II, Section 9), speaks of the relative 

and functional meaning that it must be identified for answering to the purpose whose is aimed the given problem. 

According to the author, this problem’s purpose may be summarized by means of the German term zweckmässig, where 

zweck means ‘’purpose’’ whereas mässig means ‘’suitable’’, that is to say, the aim of the problem must be ‘’suitable to 

the purpose’’ (zweckmässig). 
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required mean for such a random variable, with             –     distribution function of the random 

variable   centered at    Therefore, under the hypothesis of invertibility of  , we have
8
       

             

   

3. A particular case related to non-commutativity. 

 

One of the main formal properties of a statistical mean is the commutativity one, or else its invariance under 

the action of permutation group. Indeed, following the seminal Steven’s paper
9
 (Stevens, 1946), the first 

measurement approach to statistical variables both qualitative and quantitative, consists in their classification 

according to one of the four main measure levels stated by S.S. Stevens, namely the nominal, ordinal,  

interval and ratio scales, of which we herein reports what the same Stevens says in (Stevens, 1946, p. 677) 

 

«Paraphrasing N. R. Campbell (Final Report, p. 340), we may say that measurement, in the broadest 

sense, is defined as the assignment of numerals to objects or events according to rules. The fact that 

numerals can be assigned under different rules leads to different kinds of scales and different kinds of 

measurement. The problem then becomes that of making explicit (a) the various rules for the 

assignment of numerals, (b) the mathematical properties (or group structure) of the resulting scales, 

and (c) the statistical operations applicable to measurements made with each type of scale». 

 

Subsequently, at page 678 of (Stevens, 1946), about the description of the third column of the basic Table I 

(see later), Stevens states that 

 

«In the column which records the group structure of each scale are listed the mathematical 

transformations which leave the scale-form invariant. Thus, any numeral, x, on a scale can be 

replaced by another numeral, x’, where x’ is the function of x listed in this column. Each mathematical 

group in the column is contained in the group immediately above it. The last column presents 

examples of the type of statistical operations appropriate to each scale. This column is cumulative in 

that all statistics listed are admissible for data scaled against a ratio scale. The criterion for the 

appropriateness of a statistic is invariance under the transformations in column 3». 

 

We herein report the Table I of (Stevens, 1946) with the additions and corrections given in (Stevens, 1958) 

 

Measurement 

Scale 

Basic Empirical 

Operations 

Mathematical 

Group Structure 

Permissible Statistics 

(Invariantive) 

 Typical examples   

        

NOMINAL Determination of 

equalities 

Permutation group x’ 

=  f(x) with f  bijective 

correspondence 

Number of cases, Mode, 

Contingency correlation, 

Information measure 

 Numerations   

ORDINAL Determination of 

greater or less 

Isotonic group x’ = 

f(x) with f injective 

map 

Median, Percentiles, 

Ordinary correlations  

 Intelligence test 

coarse scorings, 

Mineral hardness 

  

INTERVAL Determination of 

equality of 

intervals or 

differences 

General linear group 

x’ = ax+b 

Mean, Standard 

deviation, Rank-order 

correlation, Product-

moment correlation 

 oF and oC 

temperatures, Line 

position, Intelligence 

test standard scorings 

  

                                                           
8
 All the above considerations have been drew from the papers (Chisini, 1929) and (De Finetti, 1930); in this regards, 

see also (De Finetti, 1970). 
9
 See also (Ferrauto, 1996, Chapter 1) and (Piccolo, 1998, Chapter 2, Section 2.3). 
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RATIO 

 

Determination of 

equality or ratio 

 

Similarity group x’ = 

ax 

 

Coefficient of variation, 

Geometrical and 

Harmonic means 

  

Lengths, Densities, 
oK temperatures, 

sones10, brils11 

  

        

 

 

According to what Stevens himself said in (Lerner, 1977, Chapter 3), the invariance is the central 

characteristic on which is based this classification scale. Therefore, it is possible to get an objective scientific 

information from a given set of data if and only if they are invariant respect to a certain group of 

transformations, which is the invariance group of the given scale. 

  The four measurement levels are cumulative and hence, in particular, the mathematical properties of one 

level are included into those of the higher levels
12

 (see (Ferrauto, 1996, Chapter 1)), so that the 

commutativity, formally given by the invariance respect to the permutation group of the first measurement 

level, is one of the main formal properties owned by the various statistical tools therein mentioned. From this 

last conclusion, it is also possible to argue what follows. 

  Following (Bernardini, 1968, Chapter XV), (Kittel et al., 1970, Chapter 2, Section 2.6) and (Tonzig, 1981, 

3), the finite angular displacements and the velocities are directional quantities which yet are not vectorial 

quantities because they do not verify the commutative law for the sum, so that it is not possible to consider 

an arbitrary their mean value in the above sense
13

. On the other hand, the non-commutativity of finite 

rotations
14

 is due to the non-commutativity of the rotation differential operators (generators) Lx, Ly and Lz of 

the group SO(3), which, amongst other, lead to mathematics of the addition of quantum angular momenta 

and related selection rules. These last quantum observables cannot be summed among them with the ordinary 

rules of a commutative algebra but according to the irreducible representation methods of SO(3) (see (Onofri 

& Destri, 1996, Chapter 8, Section 8.3); in particular, it is not possible to consider, for them, the usual 

statistical means. 

  The observations made so far, above all those related to the primary above mentioned work of Stevens, 

clearly lead us towards a major consideration of the relationships elapsing between Group Theory and 

Statistic, hence between Geometry and Statistic if one takes into account the well-known 1872 Felix Klein 

Erlanger Programm, whose principle of the method sets that, roughly speaking, the main formal properties 

of geometrical entities are those invariant respect to the action of well-determined groups. Hence, following 

this pivotal Klein’s idea, central concepts and tools of Geometry will be group invariance and symmetry 

ones. This program have had notable and fruitful features both in pure and applied mathematics, as well as in 

Physics: one of these, concerns that branch of Mathematics known as Integral Geometry, which is closely 

connected to the notion of geometric probability and related arguments.  

 

4. Towards the Integral Geometry 

 

Following
15

 (Stoka, 1982, Chapter III), if Gm is an m parameter Lie group of transformations of  n
 of the 

type 

 

                                                       =                                                 

 

                                                           
10

 These are units of measurements of loudness (see (Stevens, 1958)). 
11

 These are units of measurements of brightness (see (Stevens, 1958)). 
12

 As it has been already said by Stevens himself, namely when he says that «[…] each mathematical group in the 

column 3 is contained in the group immediately above it». 
13

 In this regards, it is important to take into account the distinction between polar and axial vectors; the angular 

velocity is an axial vector. Analogously, the usual mean values, in general, cannot be applied to theoretical physics 

computations involving the so-called intensive physical quantities, like the temperatures, notwithstanding these last 

commute among them. 
14

 But not of the infinitesimal ones. 
15

 For a more complete reference, see (Stoka, 1968). 
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depending on m parameters     j = 1, …, m, then a function            is said to be an integral invariant of 

the group Gm if 

 

                                                   
 

                       
 

         

 

for every    n
 for which there exist the given integrals. On the other hand, if 

 

        
          

          
  

 

is the Jacobian determinant related to the variable change                     given by (2), then, from 

(3), it follows that 

 

                                                                                            
 

Now, the relation (1), written for   instead of  , is of the type (4) when                      and 

         (or a non-zero constant), so that the (1) is a particular case of the more general relation (4). 

  If                      are the infinitesimal generators of Gm, then a theorem of R. Deltheil (see 

(Stoka, 1982, Chapter III, Section 3.1)) states that for            be an integral invariant of Gm it is 

necessary and sufficient that   be solution of the following system of first order partial differential equations 

 

  
 

   

 

   

                                 

 

whence it follows a close relationship between the group structure of Gm and its integral invariant functions 

 . The group Gm is said to be measurable if it admits an unique integral invariant function Φ, at most, up to 

a multiplicative constant. 

  Let    be a family of p (    dimensional and q parametric manifolds Vp  of  n
 each of which is given by 

the system of (parametric) equations 

 

                                       

 

with any    analytic and         arbitrary parameters, the variability of this family being given only by the 

variability of these parameters    and not by the functions   . Let   be a group acting on  p, that is to say, 

such that T:  p   p for every T   , and let            
   

 be the internal direct product of the isotropy 

groups    
                         , each of which is a normal subgroup of  . Hence, let         

be the related quotient group which has the property of leaving globally invariant the family    without 

containing any transformation (different from the identity) which leaves invariant every manifold    of  p; 

such a group will be said the maximal invariance group of  p.  

  If    is a Lie group of transformations of  n
 of the type (2), said         the parameters of a manifold   , 

then the parameters         of the manifold   
        will be such that 

 

                                                                     

 

where 

 

                                                                                                           

 

for certain functions   . Therefore, if       is the space of the parameters         of the family  p, 

then to the maximal invariance group   , whose elements are of the type (2), it is possible to associate, 

relatively to the space   , the family of transformations     which form a group isomorphic to    and that 
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will be denoted by      . Hence          , the first group being also said that associated to    respect 

to the family  p. Thus, if       is a measurable group with invariant integral function           , then 

we can define a measure on  p as follows. Said   a subset of  p, we put 

 

                                                               
                   

  

         

 

where    is the bounded set of the parameter space   , corresponding to   through the (5). Evidently, 

such a definition depends on the basic isomorphism            Thus, we can now define a geometric 

probability as follows: if      , then the (geometric) probability for a manifold      belongs to   , is 

given by 

 

    
     

     
    

     
   

   

 

Moreover, if   is an arbitrary random variable associated to the set    p, then the h-th geometric moment 

of   is defined by 

 

 

    

     
                            

        

                 
        

 

 
 

which, as it is well-known
16

, generalize the various notions of mean value (like the arithmetic, harmonic and 

geometric ones) of the discrete case. From here, it is possible descry a certain geometric background in 

Statistic, passing through the Integral Geometry and the Klein’s Erlangen program.  

   

6. Conclusions 

 

From what has been said above, the various notions so far introduced are strictly depend on the Lie group of 

transformation    of the type (2), of which we have considered a possible isomorphic image, namely      . 

Furthermore, in these discussions, it has also been possible to verify as the basic Chisini invariant relation (1) 

may be considered as a particular case of the more general invariant relation (4), upon which have been 

centred the various argumentations that followed. In turn, the latter are all closely related to the action of the 

given Lie group of transformations    and its invariants (like (4)), so that, in Statistics and Probability 

Theory, a more properly geometric framework might also make its appearance via the general philosophy of 

the above mentioned Felix Klein Erlanger Programm, if one considers the geometric probability theory as a 

particular chapter of the wider Integral Geometry context
17

. 

  Finally, from an educational viewpoint, the aim of this paper might also be interpreted as oriented to 

develop a more critical sense along the approach and the knowledge analysis of an arbitrary problem or 

question: for instance, we here have treated a possible case study of this kind, namely a critical essay of the 

notion of mean value, from a historic-epistemological perspective. 
 

 

 

 

 

                                                           
16

 See, for instance, the notion of power mean value of index h for the discrete case in (Girone & Salvemini, 2000, 

Chapter 6, Section 6.11) which, inter alia, contain, as particular cases, the notions of arithmetic, harmonic and 

geometric mean. In turn, this power mean value is a particular case (related to the discrete one) of the more general 

notion of h-th moment of an arbitrary random variable (see (Dall’Aglio, 1987, Chapter IV, Section IV.3)). 
17

 For brief historical outlines of this fundamental mathematical branch, with related possible applications, see, for 

instance, (Stoka, 1982) and references therein. 
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