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ABSTRACT

In an incendiary 201Blaturearticle, M. A. Nowak, C. E. Tarnita and E. O. Witspresent a savage critique of
the best known and most widely used frameworkHerdtudy of social evolution, W. D. Hamilton’s tihgof
kin selection. Over a hundred biologists have siatleed to the theory’s defence, but Nowak enadintain that
their arguments ‘stand unrefuted’. Here | consttiermost contentious claim Nowak et al. defenct tha
Hamilton’s rule, the core explanatory principlekai selection theory, ‘almost never holds’. | fidistinguish
two versions of Hamilton's rule in contemporarydhge a special version (HRS) that requires resueéct
assumptions, and a general version (HRG) that doed then show that Nowak et al. are most chialgta
construed as arguing that HRS almost never holdde WIRG buys its generality at the expense of axatory
power. While their arguments against HRS areyfairicontroversial, their arguments against HRGnaoee
contentious, yet these have been largely overlookéuke ensuing furore. | consider the argumentsfal
against the explanatory value of HRG, with a vievassessing what exactly is at stake in the debsitggest
that the debate hinges on issues concerning ttsakiterpretability of regression coefficientsgdaroncerning

the explanatory function Hamilton’s rule is intedde serve.
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1 Nature Red in Tooth and Claw

In August 2010, in an incendiaNaturearticle entitled ‘The Evolution of Eusociality’
([2010]), the Harvard sociobiologists Martin A. Naky Corina E. Tarnita and Edward O.
Wilson unleashed a savage critique of the best kremwd most widely used framework for
the study of social evolution, W. D. Hamilton’s 9@4], [1970]) theory of kin selection. The
article sparked a ferocious controversy. In Mar8hi22Naturepublished five rebuttalsone

of which remarked in no uncertain terms that Nowa# colleagues’ arguments ‘are based
on a misunderstanding of evolutionary theory, antissepresentation of the empirical
literature’ (Abbot et al. [2011], p. E1). The latteas signed by 137 social evolution theorists.
Further rebuttals have follow&dut Nowak, Tarnita and Wilson remain unmovedarin

online statement dated June 2011, they write:

Some of the criticism distorts our arguments, wisbbuld
remain clear. We therefore provide a brief sumnadirgur main

points, all of which stand unrefuted... (Nowak le{2011b])

In this paper, | want to deconstruct this rathemagcnious debate. | want to suggest why it
has reached the present state of deadlock, andi®geadlock might nevertheless be

broken.

! (Abbot et al. [2011]; Boomsma et al. [2011]; Ssraann et al. [2011]; Ferriere and Michod [2011]rideand
Wecislo [2011]); see (Nowak et al. [2011a]) for tnethors’ uncompromising reply.

% See, e.g., (Rousset and Lion [2011]; Gardner.§2@11]; Bourke [2011a]). Not all responses, hoarehave
been negative: see, e.g., (Doebeli [2010]; van &feet al. [2010]).
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| will focus on what | take to be the core disagneat between Nowak, Tarnita and
Wilson and their opponents. The disagreement casétamilton’s rule® The rule states,
broadly speaking, that a social behaviour will &#eolured by natural selection if and only if
rb—c >0, whereb represents the ‘benefit’ the behaviour confersherecipient¢
represents the ‘cost’ it imposes on the actor,ramgresents the ‘relatednesgtween actors
and recipients. Note that, although talk of ‘costisd ‘benefits’ intuitively connotes that costs
will detract from an agent’s fithess while beneiiisrease it, this need not be the case: the
rule is intended to apply regardless of the sigh of c. Hence, while the rule is most often
associated with the evolution of cooperation (ftwich b is positive) and the evolution of
altruism (for whichb andc areboth positive), selfish, spiteful and mutualistic beilvavs are
also intended to fall within the scope of Hamilt®nule (see Hamilton [1964]; Trivers
[1985]; Bourke and Franks [1995]; West et al. [20@Bburke [2011b]). Note also thatneed
not measurgenealogicatelatedness. Though Hamilton’s rule is often gldsaérmally in
terms of genealogical kinship, it has long beengezed that the rule can still apply when
genotypic or phenotypic correlations arise by otheans (see, e.g., Hamilton [1975]; Grafen

[1985]).

Nowak, Tarnita and Wilson provocatively assert thamilton’s rule ‘almost never
holds’ (Nowak, Tarnita and Wilson [2010], p. 1058)the sense that it almost never
constitutes a true statement of the conditions uwtiéch a social behaviour will be favoured

by natural selectiorMore than any other in the paper, this claim hastetl vigorous

% The debate has other facets that | do not didwerss For instance, | do not discuss the notioimolusive
fitness’, its relationship to Hamilton’s rule, dret‘organism as inclusive-fitness-maximizing agemalogy it is

often thought to underwrite (Grafen [2006]). Thase important issues, but | leave them for anablcension.
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rebuttals from their opponents—most notably from @xford theorists Andy Gardner, Stuart
A. West and Geoff Wild, who retort that ‘it is sitgpncorrect to claim that Hamilton’s rule
requires restrictive assumptions or that it alnrmester holds’ (Gardner et al. [2011], p. 1038).
There is, at present, no sign of an end to thrsdetfh. Harvard’s most eminent social
evolution theorists say that Hamilton’s rule ‘alrhosver holds’; Oxford’s most eminent
social evolution theorists dismiss this claim asifdy incorrect'. It is hard to see how they
can both be right, yet neither seems likely to leudg there any way to bring the two

opposing camps together?

Here is a conciliatory suggestion. | think that wias debate has brought to the
surface is that there are at least two versiortamhilton’s rule in contemporary social
evolution theory. Though similar on the surfacesthtwo versions differ significantly in their
underlying features; and which version of the e has in mind will affect one’s views
regarding how generally the rule holds. Failurattend to the different versions of
Hamilton’s rule has resulted in the Harvard andd@aicamps talking past one another. To

make any progress in this debate, we must takeegreare to distinguish them.

.The outline of the paper is as follows.Section 2, | characterize the two versions of
Hamilton’s rule at issue in the current debate. filst is a ‘special’ version in which the
‘cost’ and ‘benefit’ terms represent fecundity peigan an evolutionary game; the second is
a ‘general’ version, derived from the Price equatia which the ‘cost’ and ‘benefit’ terms
are partial regression coefficients. In Sectiohekplain why one’s views as to how
generally Hamilton’s rule holds will depend on whiiersion one has in mind. This leads

naturally to the suggestion that Nowak et al. @i@cking a straw man—that they show



Hamilton’s rule ‘almost never holds’ only by unctably construing it in a particularly
narrow sense. In Section 4, however, | argue thatcharacterization of their argument is
misleading: Nowak and colleagues also offer argusagainst the general version of
Hamilton’s rule—arguments which have been largelgrimoked by their opponents. |
suggest that, in light of this, their overall séigy is best interpreted as that of posing a
dilemma for the defender of Hamilton’s rule: theguse that the special version of
Hamilton’s rule lacks wide applicability, while tlgeeneral version lacks explanatory power.
If their arguments work, neither version of Hamif®rule constitutes the widely applicable
explanatory principle its advocates take it tolheSections 5 and 6, | consider how defenders
of Hamilton’s rule can respond to this challenflee debate, | argue, ultimately turns on
philosophical issues concerning the causal intéapiigy of regression coefficients, and

concerning the explanatory function Hamilton’s risiéentended to serve.

2 Two Versions of Hamilton’s Rule

Disagreement about the uses and limits of Hamitonfe has been a mainstay of theoretical
biology since the 1960s. The reason, in a nutsisethat Hamilton ([1964]) first derived a
result of the form tb—c >0’ in a one-locus population-genetic model that madeimber of
substantive modelling assumptions, including wes&ction and the additivity of fitness
effects. In the following decades, theorists (idahg Hamilton himself) explored the extent

to which Hamilton’s original assumptions could ktaxed. The upshot was a variety of



routes to rb—c >0’-type results, often with incompatibimplications about the conditions

under which the result obtaifis.

Perhaps these disagreements are substantive: peheap is only one biologically
significant result of the formrb—c >0’, and only one true statement of the conditiondaun
which this inequality predicts the evolution of eddehaviour. But there is another
possibility: it may be that there is more than br@ogically significant result of the form *
rb—c>0’, and that the similarity in the surface form bése results masks underlying
differences in their biological meaning. If thiscsrrect, the appearance of disagreement over
the uses and limits of ‘Hamilton’s rule’ may arsenply from a failure to disambiguate

different versions of the rule.

| want to explore this second possibility. For htend that the method one uses to
derive ‘Hamilton’s rule’ will often have a signifant impact on the meaning one attaches to
its terms; the result is that talk of ‘Hamiltonide’ ambiguously refers to any of a number of
superficially similar principles. In this sectidn|lustrate this phenomenon by considering
two routes to Hamilton’s rule in contemporary exmnoary theory: a route that proceeds via
evolutionary game theory, and a route that proceed&eorge R. Price’s ([1970], [1972])
covariance selection mathematics. | show that,enbdth methods may be used to derive a
result with the surface form of Hamilton’s ruleetmeaning attached to the terms is very
different in the two cases. The rationale for pickout these two derivations, rather than any

others in the literature, is that understandingdiffference between the versions of

* See, e.g, (Hamilton [1970], [1972], [1975]; Orldi®75]; Charnov [1977]; Charlesworth [1980]; Uygama
and Feldman [1980], [1981], [1982]; Uyenoyama ef¥E381]; Michod [1982]; Toro et al. [1982]; Grafen
[1985]).



Hamilton’s rule they yield is crucial if we want tmderstand the present Harvard/Oxford

standoff.

The key conceptual difference between the two gassimay be simply expressed.
One construes th, C andR termsas parameters of an evolutionary game, and regeeaen
condition for the evolution of a social behaviouthin a very restricted class of populations.
The other construds c andr as linear regression coefficients, and represehighly
general condition under which a social behaviodr lvé favoured by natural selection.
Hence, although the two rules have the same sufbace their terms are defined in very
different ways; and it is vital that we understadhnese differences if we want to make sense
of the current debate. At bottom, the dispute corewhat we have to sacrifice in return for
the generality afforded by the second, more widglglicable version of Hamilton’s rule—

and whether the price is worth paying.

2.1 The special version (HRS)

The game-theoretic routéo a version of Hamilton’s rule begins with a slmpvolutionary
game: the one-shot, two-player Prisoner’s Dilenitiée can represent the dilemma with the
following payoff matrix, in whichB is a benefit conferred on the recipient by theaoc

behaviour under study, amds a cost incurred by the actor:

® The order in which | present the two routes isteaty: it is not intended to imply that either s&m has
historical or explanatory priority.
®See, e.g., (Queller [1984]; Nowak [2006]; TayladdNowak [2007]; Okasha [2008]; van Veelen [2008j

Veelen et al. [2012]) for variants of this route-Htamilton’s rule.
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COOPERATE (Coz) | DEFECT (Dez)

COOPERATE (Co1) | B-C -C

DEFECT (Des) B 0

In the Prisoner’s Dilemma, the Pareto optimal ooteas mutual cooperation. Unfortunately,
in the absence of correlated interactions, DEFE@ITalways secure a higher expected
payoff whenever COOPERATE is costly to perform.sge this, note that the expected
payoff for cooperationif/, ) and defectionl/, ) may be written as functions Bf C and the

conditional probability that one’s opponent willagerate:

W,, = P (Co,|Co,)B-C
= P (Co,|De,)B

<
|

Uncorrelated interactions implies ttPa(Co2 |C01) =P (Co2 |De1) = f., wheref_is the

overall frequency of cooperators in the populatierom this assumption it follows that:

W,, >W,, iff C<0



Since, by definition, an altruistic behaviour impes non-negative cost on the actor, the
implication is that altruism cannot evolve in a et two-player Prisoner’'s Dilemma with
uncorrelated interactions. This is one way of cptwealizing the ‘problem of cooperation’
within the framework of evolutionary game thegsge, e.g., Nowak [2006]; Nowak and

Highfield [2011]).

The picture changes when we introduce correlatexidantions: that is, when we raise
the probability that cooperators will interact wither cooperators, and that defectors will
interact with other defectofeWe can express this formally by addingRaterm to our
expressions for the relevant conditional probabsgitwhereRr is a parameter that specifies

the differential probability that one’s opponentlyiay the same strategy as oneself:

P (Co,|Co,) = (1 -R)f,, +R
P (Co,|De,) = (1 -R)f,

By plugging these new expressions into the payoftfions that determine the value$tof

andiW,,, we obtain a new, rather more promising conditrthe evolution of cooperation:

(HRS) W, >W,_iff RB-C >0

’ See (Skyrms [1996]) for broader discussion of healtionary games are transformed by the introductif

correlated interactions.



In essence, the condition states that altriaamevolve in a one-shot, two-player Prisoner’s
Dilemma, provided the differential probability theat altruist has of interacting with another
altruist exceeds the cost-benefit ratio. For reagbat will soon become clear, | will refer to

this as thespecial version of Hamilton’s rul@RS)

2.2 The general version (HRG)

The second route to a principle with the form ohtléon’s rule begins with th€rice

equation a fully general but highly abstract descriptidrewolutionary changé:

Ag = %[Cov(w,g) + E(WAg)]

The equation states that the overall change imddétive genetic valdeof a trait,g, from
one generation to the next is equal to the surwofquantities: the normalized covariance

betweery and fithessw), and the fitness-weightexkpectation of the changegrbetween a

8 Hamilton ([1970]) was the first to see the relesaof the Price equation to kin selection theotye T
derivation of Hamilton’s rule | present here, hoegus owed originally to Queller ([1992a]). Fomslar
derivations that proceed via the Price equatioa(&safen [1985]; Frank [1998]; Gardner et al. [2ZD@ardner
[2008]; Gardner and Foster [2008]; Wenseleers.d2@lL0]; Gardner et al. [2011]; Marshall [2011@eller
[2011]; Damore and Gore [2012]).

° An individual’s ‘additive genetic value’ (or ‘brding value’) for a particular character is its vafor that
character as predicted by a linear combinatiomsadlieles, weighted by their average effects enctaracter
(see Queller [1992a], [1992b]; Falconer and Madi&®@6]; Gardner et al. [2007]; Gardner et al. [2Dfbt
further detail). If a behaviour is fully determinbg the presence or absence of a single soci& aflee additive
genetic value with respect to this behaviour isrlbiearers of the allele and 0 otherwise. In thecsl case,

Ag is simply the overall change in the frequencyhis allele.
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parent and its offspring (I will not derive the egjon here; see Price [1970], [1972]; Frank

[1995], [1998], [2012]; Rice [2004]; Okasha [200&ardner [2008]).

The terms in the Price equation are often givemfmmmal causal glossﬂov(w,g) is
usually interpreted as the partial change attritdetto natural selection, WhiIE(wAg) is
interpreted as the partial change attributabladeda transmission (see Frank [1995], [1998],
[2012]; Gardner [2008]; for criticism of this glgssee Okasha [2006]). The route from the
Price equation to a version of Hamilton’s rule Imsgby leaving aside the second term, so as

to focus purely on the partial change attributableatural selection[(sg):lO

[Cov(w,g)]

S|~

To derive a version of Hamilton’s rule, we partitithis covariance term into two
components: one corresponding b the other to-c.** The first step is to write a linear
regression model for the fitness of an arbitradividual. This expresses its fithess as a linear

function of its own genetic valugy() and the average genetic value of its social psst(y’

¥ 5ee, e.g., (Queller [1992a]; Gardner et al. [2D1RAdank ([1998]) derives a variant of Hamiltonige that
takes into account the effect of biased transmssiat this rule lacks the famousb —c >0’ form.

" The general strategy of partitioning the overaltariance between genotype and fitness is alsoateat
multi-level selection theory (Okasha [2006]). Thieya particularly strong affinity between the reggion route
to Hamilton’s rule and the ‘contextual analysispapach to multi-level selection (Heisler and Dam|it®87];
Damuth and Heisler [1988]). Both partition the Bregjuation through regression analysis; the maji@reince
is that, while kin selection includes the genotgpan individual's social partner among the predlistin the
regression model, contextual analysis considergasties of the whole group of which the individisah

member.
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), in which each quantity is weighted by a panteégression coefficient (for examplg, , .

represents the partial regressiomobng, correcting forg’):*?

w=qa+ ﬂw‘glg,g + ﬁW’g,lgg' +&

The a -term is a constant, and denotes the intercepteofd@gression line. The residual,
guantifies the extent to which the focal individeditness deviates from the regression line.
It is important to see that, because the regressijoation includes a residual term, it is
compatible withany set of population datd.Naturally, the regression line will fit some
populations better than others (i.e., with smaksiduals), but there can be no individual,

real or modelled, of which the equatiorfatse

We then substitute the linear regression equatitnthe Price equation, obtaining the

following rather unwieldy partition:

Ag=

N

[Cov(g,a) + lBW,g.g' Var(g) + lBW,g'.g Cov(g,g’) + Cov(g,s)]

Sl =

2This can be visualized intuitively as the slopehef line of best fit when one plots againstg while ‘holding
fixed’ g'. Note, however, that we are not literally ‘holdifixed’ anything: we are correcting for a corretate
variable by statistical means, in order to minintlze sum-of-squares of residuals in the regressiodel as a
whole (for further detail, see Lande and Arnoldg3p.

Y A proviso: the partial regression coefficients dedined only if (i) there is non-zero variance ith predictor
variables and (ii) the two predictor variables ape perfectly collinear. These are fairly minimahditions, and

it is reasonable to assume that they will be metwery wide range of cases.

12



We can simplify this partition by noting firstlydahg cannot co-vary with the intercept of the
regression line (i.eCov(g,a) = 0), and secondly that it cannot (given standardeas

squares theory) co-vary with the residuals in #igression model (i.eCov(g,£) = 0):**

Asy = ﬁw.g-g’ Var(g) + 'Bw.g’-g COV(g,g')

We then rearrange, and exploit the facttﬂmat(g,g')/Var(g) :,6’9._9, to obtain the

following expression:

Finally, we exploit the fact that neithé@r nor Var(g) can be negative to obtain the

following rule:

A g >0iff ,BWM, + ,BW,g,,g EBM >0

This result already has the form of Hamilton’s riBg re-labelling the regression coefficients
as —, bandr respectively, and by swapping the order in whiehterms appear, we obtain

the rule in a more familiar guige:

4 Note that the covariance betwaeand itself is simply the variance gn(i.e., Cov(g,g) = Var(g) ).

15 This is the ‘direct fitness’ route to Hamilton'sle; a very similar result may be obtained by coesig the
effects of a behaviour on the actor’s ‘inclusivadiss’ (see Frank [1998]; Gardner et al. [2011]ekgu [2011]).
| use the ‘direct fitness’ derivation because ihelusive fitness’ derivation adds some complicagievhich are

unnecessary for the purposes of this paper.
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(HRG) A g>0iffrb—c>0

| will refer to this as thgeneral version of Hamilton’s rul@iRG) As in the case of HRS,

the reasons for this label will soon become clear.

2.3 The rules compared

Let us review. The special version of Hamilton'&rHRS, is a game-theoretic result

derived in the context of a two-player, one-shagdtrer’'s Dilemma with correlated
interactions. Th& andB terms are fecundity payoffs, whikeis a further parameter that
determines the differential probability that so@altners play the same strategy. By contrast,
HRG has no essential ties to evolutionary gamerthéo HRG, theb andc terms are partial
regression coefficients that quantify the overttistical dependence of one’s fitness on,
respectively, one’s own genotype and that of oeetsal partners; while is the simple
regression of one’s social partners’ average geratile on one’s own genetic vaftfdn
deriving HRG, we made no substantial assumptionstaie population or model under

study. All we needed were two equations—the Pripgagon and a linear regression

181 each agent’s strategy is fully determined Isyaitlditive genetic value, then, in the one-shat;prayer
Prisoner’s Dilemma, the regression of one’s patsrgenetic value on one’s own genetic value is etputhe
R-parameter, i.er, = R. Importantly, however, the two notions aenceptuallydistinct despite their numerical
equality in this particular casB.is a model parameter that determines an asp@amflation structure,

whereag is a population statistic that measures the olvasabciation between the genotypes of social pestn
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equation—which are true of virtually any evolvinggulation, whether real or modelled, and

from which HRG follows a priori.

3 How They Come Apart: A Simple lllustration

The differences between HRS and HRG are not metgdgrficial: they have significant
implications regarding the conditions under whieé two rules hold. This makes the
distinction crucial for understanding the curreabdte. For when Nowak, Tarnita and Wilson
assert that Hamilton’s rule ‘almost never hold20(0], p. 1059), it is clear from the way in
which they formalize their arguments that HRS, HB(G, is the version of Hamilton’s rule
they have in mind. Meanwhile, when Gardner, Wedt\aild reply that ‘it is simply

incorrect to claim that Hamilton’s rule requirestrective assumptions or that it almost never
holds’ ([2011], p. 1038), it is equally clear frahre way in whichtheyformalize their
arguments that HRG, not HRS, is the version of Htamis ruletheyhave in mind. Once we
disambiguate the two superficially similar versiafiddamilton’s rule, we are free to
acknowledge both points: it is correct that HRSIsainly in a very limited range of cases,
but it isalsocorrect that HRG holds extremely generally. Thigvhy it is fitting to describe

the two versions as, respectively, the ‘speciatl @eneral’ versions of Hamilton’s rule.

3.1 Why HRS often fails

For a simple example of the limitations of HRS, ea® return to the two-player, one-shot

Prisoner’s Dilemma and add a new payoff to thel&fippbox in the payoff matrix, denoted by
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the letterD (see Queller [1984], [1985]; van Veelen [2009]; Weelen et al. [2012])D

represents aynergisticpayoff, a payoff that obtains only if both playemoperate:

COOPERATE (Coz) | DEFECT (De)

COOPERATE (Coz) | B-C+D -C

DEFECT (Dez) B 0

D may be positive (perhaps representing a bonusfipl@yaooperators that work together to
achieve feats they could not achieve alone) orteggerhaps representing diminishing
returns caused by cooperators getting in each’stivary). Either way, the size and
magnitude of thé-payoff will plainly matter to the direction of eluion: for instance, iD

is large and negative, cooperation could be muctiehdo evolve than it would be otherwise
be; while, ifD is large and positive, cooperation could evolvemonore easily than it
otherwise would. The upshot is that the conditmni#, > W, is no longer given by

RB-C >0 (i.e., HRS) for this version of Hamilton’s rule takes no accoahthe D-payoff.

As Queller ([1984], [1985]) shows, the true coratitfor the evolution of cooperation in this
game (henceforth: the ‘synergy game’) depends moéelyonR, B, andC, but also oD and

f..» the frequency of cooperatars:

" See (Queller [1984], [1985], [1992b], [2011]). Timedified condition is sometimes known as ‘Que#etile’
(see, e.g., Marshall [2011b]).
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W,, >W,, iff RB-C +((1 -R)f,, +R)D>0

Nowak, Tarnita and Wilson ([2010]) discuss a varigtmore complicated cases in
which HRS fails. It is hardly surprising, howevtrat HRS should fail in more complex
cases, given that it fails even in very simple sgggames. In recent work, Matthijs van
Veelen and colleagues (van Veelen [2009]; van \feetel. [2012]) show that the failure of
HRS in the synergy game is merely one instancevefrageneral problem for HRS: HRS
holds only if the difference between one’s paywfsidependent of the strategy one’s

opponent plays, a condition sometimes caligdal Gains from SwitchingEGS)*®

(EGS) (top left — bottom left) = (top right — bottom righ

When EGS holds, thé, and f,, terms cancel when one subtratfs, fromWw,_,
leaving behind a simple inequality in termsRpB andC. Crucially, however, EGS is likely
to fail whenever there are non-additive fitnesg@#: that is, whenever an interaction
between organisms produces a fitness effect thmbre than a mere sum of the effects that
each organism’s individual behaviour, taken inasoh, would have had. There is no reason
to suppose that non-additive effects of this natmesuncommon in nature. On the contrary,

they are known to be widespread in insect sociéfiegerson and McShea [2001]; Anderson

18 For further discussion of Equal Gains from Switghisee (Nowak and Sigmund [1990]; Traulsen andi Wil

[2007]; van Veelen [2009]; van Veelen et al. [2012]
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and Franks [2001]; Anderson et al. [2001]) andadlogies of social microbes (Damore and
Gore [2012]; Cornforth et al. [2012])). As a restifiere is no reason to suppose that EGS

applies generally or even particularly widely talrmstances of social interaction.

3.2 Why HRG always holds

The same isottrue of HRG. In recent work, Andy Gardner and cadiees (Gardner et al.
[2007]; Gardner et al. [2011]) have shown that, wbee construes Hamilton’s rule as HRG,
the rule still holds in games with fitness effetttat depend non-additively on individual
behaviours. In the case of the simple synergy gatneduced above, all that happens is that
theb andc coefficients in HRG come apart from tBeandC payoffs in the payoff matrix,

and now also depend én R, and f :

b=B+ 1
1+

R(R+(1—R)fCO)D

c=C—1iR(R+(1—R)fCO)D

HRG holds where HRS fails because, unlike HR&kie$ theD-payoff into
consideration. It does so by means of a ‘corrediator’ in the cost and benefit coefficients:
we account for synergy not as a third, separatgigiog of the direction of evolution, distinct
from ¢ andb, but rather as a phenomenon that (if positivegdas the average cost of

cooperation and boosts its average benefit. Tleeddithe correction factor depends on the
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differential probability a cooperator has of recegvthe synergistic payoff, and this
probability is a function oR, the parameter that sets the differential prolistwf social
partners playing identical strategies, ang.of the overall frequency of cooperation in the

population.

Although we should undoubtedly applaud Gardnerctiéagues for showing
exactlyhowHRG applies in the synergy game, it is importandde that HR@annotfail to
hold in any (real or modelled) system to which Biriee equation applies, because it is
simply an a priori implication of the Price equatiand a linear regression model. Since the
Price equation will still hold even when individaahteract in very complex ways, and since
a linear regression model can be fitted to anpBpopulation dats, HRG will still hold in
these cases. No matter how far we get from addipaewise interactions, we know that

HRG cannot possibly fail unless the Price equatiso fails.

4 A Dilemma for Hamilton’s Defenders

It would be all too easy, at this point, to drawtbe HRS/HRG distinction to accuse Nowak
and colleagues of attacking a straw man. On the d&d, it seems that they are able to argue
that Hamilton’s rule ‘almost never holds’ only basa they are construing Hamilton’s rule in
a particularly narrow sense (viz., as HRS). If theyre to construe Hamilton’s rule as many

of their opponents do (viz., as HRG), then thesamsi their criticisms would vanish.

19 Subject to the proviso in footnote 13.
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This, roughly speaking, is the response pressdddrginer et al. ([2011]) (there is
also a hint of this response in Abbot et al. [201Mpwak and his allies, however,
maintain—not without some justification—that thesponse misunderstands the structure of
their argument (see Nowak et al. [2011a]). For ttepy that a retreat to HRG amounts to no
more than a hollow victory for the kin selectioedhist, on the basis that HRG is incapable

of bearing the explanatory weight kin selectiorotits expect it to carry:

Hamilton’s rule states that cooperation can evdlvelatedness
exceeds the cost to benefit ratio. If cost and fieae
parameters of individual actions [HRS] then thie mimost
never holds. There are attempts to make Hamiltadéswork
by choosing generalized cost and benefit parampi&t&], but
these parameters are no longer properties of ithaiabi
phenotypes. They depend on the entire system imgud
population structure. These extended versions afilfan’s

rule have no explanatory power for theory or expent.

(Nowak et al. [2011a])

A related (though subtly different) complaint seda in Nowak, Tarnita and Wilson’s online

statement of June 2011:

There exist generalized versions of Hamilton's thié are
designed to be ‘always true’ [HRG], but they arepty
statements, which provide no insight for theorgxperiment.

(Nowak et al. [2011b])
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Though one might be tempted to dismiss these eplearad hocresponse to an unexpected
barrage of criticism, this would not be fair: Nowakd his allies have been making arguments
along these lines for some time. Indeed, Nowaknitaand Wilson make a very similar

argument against HRG in the supplementary matefiddeir original articlé®

[W]hen realizing that the usuaRB —C >0] rule [HRS] does
not hold for a given model, Gardner et al (200 9pose that a
modified rule frb—c >0] in fact holds, wherer] is [equal to]
the usual relatedness bt pnd[c] are the ‘effective’ costs and
benefits calculated using statistical methods [HRGhese
effective costs and benefits unfortunately are wemyfusing and
are typically functions of not onlyB] and [C] but also of the
relatednes®. Hence Hamilton’s rule becomes |
Rb(R)~-c(R)>0 1, which makes it very complicated to
separate any effects and it generally providesihation
whatsoever. (Nowak et al. [2010], p. 18 (supplerment

information))

It seems a little uncharitable, in light of thesmtations, to accuse Nowak et al. of attacking
a straw man. Rather, | suggest that Nowak, TaamthWilson’s case against Hamilton’s rule
is most charitably interpreted as presenting ariba for the kin selection theorist. The

thought is that, however one prefers to intergret'tost’, ‘benefit’ and ‘relatedness’ terms in

| have made several alterations to the quotatidiing Nowak and colleagues’ notation into lin¢hiny

own. These do not affect the meaning of the quptesage.
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Hamilton’s rule, the resultant principle is suppb$e be both widely applicable and

explanatorily powerful. Nowak and colleagues’ argumtnis that:

(1) HRS is not widely applicable.

(i) HRG has no explanatory power.

If they are right, then neither formulation sagsfiboth desiderata. Hamilton’s rule—
whichever formulation one prefers—is not the widaphplicable explanatory principle that

kin selection theorists take it to be.

Do they have a case? For the reasons given indBegtithe suggestion that HRS is
not widely applicable seems entirely reasonablée tBeiclaim that HRG buys its generality at
the expense of explanatory power is more contestieand Nowak and colleagues’ argument
for this claim is stated rather too briefly to erguasive as it stands. They assert that HRG
‘provides no intuition whatsoever’, because bhendc coefficients ‘are no longer properties
of individual phenotypes’ but instead ‘depend oa ¢intire system including population
structure’; but the reasoning behind this assergonmains frustratingly opaque. In what sense
areb andc ‘no longer properties of individual phenotypes’@dAin what sense does this
result in them providing ‘no intuition whatsoeveti?the remainder of the paper, | want to

examine Nowak and colleagues’ case against HR@eater detail. To this end, it will be

L One possible response to Nowak and colleagudsiuina’ would be to argue thatlaird version of
Hamilton’s rule, distinct from both HRS and HRGnczatisfy both desiderata. Though | leave open the
possibility of a ‘third way’ between HRS and HRGJd not think any extant variants of Hamilton’serglan do
this job. For instance, Hamilton’s original ([19%4dute to Hamilton’s rule—not discussed here—ira®mk
similar assumptions to HRS, including the assunmgtiof weak selection and additive fithess effediany

other derivations require similar assumptions.
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helpful to disentangle two separate strands ot that have surfaced in the recent debate,

and which Nowak et al. run together in the abovetafions:

a) HRG has no explanatory power because it is ‘alviiaes.
b) HRG has no explanatory power because the costemefibterms do

not represent ‘properties of individual phenotypes’

These criticisms are quite distinct. Both, howeage, somewhat obscure at first glance; and
both must be explicated with care before we carheeethe defender of HRG might

respond. In the next two sections, | consider éadtrn.

5 HRG and Explanatory Power I: The ‘Tautology Prodem’ Redux

On several occasions, Nowak and his allies haveesgpd the concern that the derivation of
HRG is a kind of black magic—that the rule appdgrsn nowhere, pulled out of the Price
equation like a rabbit from a h&t. This concern is not unreasonable. The Price &quis,
after all, a highly abstract mathematical theorenictv makes very few assumptions about
the population it describes, and which tells ushimgf at all about the conditions under which

a social behaviour will be favoured by natural stta other than that it will be favoured

2 gee, e.g., (Nowak and Highfield [2011]): ‘answdmsindeed seem to pop out of the equation, likditab
from a magician’s hat’ (p. 101); ‘I found that theathematical methods of kin selection were oftemkmywu...
Equations seemed to arise out of nowhere in kiecten’ (p. 104). As Nowak and Highfield note, the
suggestion that results emerge from Price’s fosnalilike rabbits from a hat’ was first made by Héom

himself, though not in any disparaging sense (seEmiltbn [1996], p. 172).
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when its breeding value co-varies positively withdss® For this reason, the equation is
often described as a ‘mathematical tautology’, dwerts foremost proponents (see, e.g.,
Frank [1995], [2012]; Okasha [2006]). To get frdme Price equation to HRG, we need only
substitute in a regression model which, owing ®résidual term, is compatible with any
possible set of population data. In effect, themfave start withwo mathematical

tautologies; and yet, by substituting one intodtieer, we arrive at a principle that is afforded
huge explanatory significance by both theorists exjerimentalists. Nowak and colleagues’
concern can thus be expressed as follows: if theedients from which it is derived are
merely mathematical tautologies, how can Hamiltoale nevertheless carry the explanatory
weight it is expected to carry? How can it tellamythingempirically informativeabout the

ecological conditions for social evolution, if tguations from which it is derived do not?

This complaint against HRG has echoes of somethinch older. In the early days
of the field, philosophers of biology were vexedtbg so-called ‘tautology problem’: the
charge that evolutionary theory is explanatorilypgyrbecause the phrase ‘survival of the
fittest’ is a tautology. The phrase claims that‘theest’ organisms survive, but the fittest’
are (supposedly) defined as the organisms thaiveymhe phrase therefore tells us nothing
about the evolutionary process that we could neélggasped simply by understanding the
concepts it contains. While the alleged problemgtated important work on the nature of
fitness (e.g., Mills and Beatty [1979], Rosenbet@d3]; Sober [1984])), it is, in hindsight,
rather hard to take seriously, firstly becauseeBmis not normally defined in terms of

survival alone, and secondly because the phrasavalof the fittest’ carries no serious

% van Veelen et al. ([2012]) compare this to JohanyfE's famous tactical advice: to win a game odtioall,

you need to score more goals than your opponent.
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explanatory weight in evolutionary theory (Dawk|[t982]). The nature of Nowak and
colleagues’ first complaint against HRG is, in sowsg/s, strikingly similar. The difference,
of course, is that the stakes are much higherHaamilton’s rule, unlike ‘survival of the

fittest’, is undoubtedly expected to carry seriedplanatory weight.

How, then, can the defender of HRG respond tortews ‘tautology’ complaint? It
will be instructive to consider one natural resgowhich does not succeed. This is to argue
that, although HRG is indeed an a priori implicataf the Price equation and a linear
regression model, all modelling results are in see1Ese a priori—so the explanatory power
of the rule cannot be undermined by its a prianityess all modelling results are similarly
undermined. This response, reasonable as it maydsmufirst hearing, fails to grasp an
important difference between HRG and most otheomamt modelling results in theoretical
biology. For while it is true that modelling workten generates results that are arguably a
priori, these are usuallyonditionalresults of the formif some substantive modelling
assumptions obtain, then this outcome follolivis never a priori that a model will succeed in
describing anyactual evolutionary process, because it is never a pitiati any actual
evolutionary process will satisfy the antecederthefconditionaf* HRG is unusual not in
that it is a priori, but in that it is a priori ®wf any possible evolutionary change, whether real
or modelled, by virtue of the definitions of thentes involved. This is the sense in which it is
‘tautologous’, or ‘always true’; and it is this cbmation of a priority andinconditional
descriptive content that sets HRG apart from caoontid results obtained within concrete

models of particular scenarios. The question akisthen, is this: how can a claim that is a

24 van Veelen et al. ([2012]) make a similar poirge%lso (Sober [2011], Lange and Rosenberg [20d1])

discussion of this issue.
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priori true of any possible evolutionary change—areliess of the nature of the entities in
guestion, and regardless of how they interact with another—tell us anything empirically
informative about the evolution of social behavidlihe concern is that, because HRG fits

everything, it explains nothing.

For a more promising line of response, we can blegimaking explicit a point that
is, | suspect, often simply taken for granted scdssions of HRG. This is that, in at least
some circumstances, the partial regressioniafi X may be interpretable as a measure of the
causal effecof X onY.?® Figure 1 shows how a causal interpretation ofsbi$ might apply

to the regression model we used to derive HRG.

w=a-~ 'Bw,g-g'g T 'Bw,g'-gg, Té

T T T T

Fitness of an Causal effect Causal effect Residual
arbitrary individual ~ of g onw of g’ onw fitness

Figure 1. The causal interpretation of a linear regressiondalo

If a particular regression model admits of a caudalpretation, then substituting that

eqguation into the Price equation allows us to dgumse the overalb-g covariance into

% Why talk of ‘causal effects’ rather than simplyfézts'? The reason is that Fisher ([1930], [194fHkes
heavy use of the notion of the ‘average effecta@ene substitution on a phenotypic character, whécdefines
stipulatively as the partial regression of phenatyalue on allelic dosage, correcting for othédelak. Strictly
speaking, this is a statistical notion rather tharausal one, so Fisher’s choice of terminologynfertunate. In

talking of ‘causal effects’, | am referring speciily to partial regression coefficientgerpreted causally
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separate causal components, each attributabldistiact influence on fitness (see Frank
[1998]; Okasha [2006]). In this way, partitionifgetPrice equatioadds causal contenthe
partition entails claims about the causes of elmhatry change that the Price equation alone
does not entail. Figure 2 shows the particulanfamtwe used to derive HRG, together with

its causal interpretation.

_ 1 ,
Asg _ E[ﬁw,g.g' Var(g) + Igw,g'.g COV(g,g ):|
Changelirectly  Causal effect Causal effect
attributable to  of g onw of g’ onw

natural selection

Figure 2. The causal interpretation of the kin selectiontjbzm
of the Price equation, derived in Section 2.2.

By rearranging this expression following the pragaedoutlined in Section 2.2, while holding
the causal interpretations of the relevant coeffits in place, we can derive a causal
interpretation of HRG (Figure 3). Verbally, the salinterpretation of HRG states that
selection will act to increase the population megaiff the causal effect o onw, plus the
relatedness-weighted causal effecobnw, exceeds zero. Thus interpreted, HRG embodies
a substantive claim about thausalconditions for the evolution of social behaviouat the

Price equation alone does not entail.
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Ag>0ittrb—c>0
/ /NN

Changdlirectly Coefficient of  Causal effect Causal effect
attributable to relatedness of g’ onw of g onw
natural selection

Figure 3. The causal interpretation of HRG.

To see how this bears on our ‘tautology probletris trucial to note that regression
coefficients are onlgometimesausally interpretable. They are abivaysso interpretable:

to think otherwise is to suppose that we can simgédyg off causation from measures of
statistical association (Okasha [2008]Roughly speaking, the coefficients in a regression
analysis of fithess will only admit of a causalergretation if the predictors in the regression
eguation exhaustively account for the causal pagewlarough which fitness is influenced by
genotype: if multiple pathways are conflated wittlie same term, or if some pathways are
omitted altogether, regression coefficients wilttjyareflect spurious correlations rather than

genuine causal influence (cf. Spirtes et al. [2DAQkvisit this point in Section 6.4, when |

% Note, for example, that coefficients of relatednes not normally admit of a causal interpretatlegause
correlations between the genotypes of social pextae not normally due to the causal influencersf
genotype over the other. Such correlation usuaigea from a common cause that affects both gemstfire.,

descent from a common ancestor).
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consider in greater detail some of the conditiam$eu which regression coefficients do and
do not support a causal interpretation. For nowetely want to draw attention to the fact
that, since they are not always causally interpieta causal interpretation of a partition of
the Price equation is not always true. The partitiself may hold for all possible

populations, but the causal interpretation of geatition will not.

This allows us to see why the ‘tautology’ complamisses its target. For | submit
that, when theorists invoke HRG to do explanatooykithey are most charitably construed
as invoking not merely HRG as a bare mathematiesdrem, but rather theterpretationof
that theorenin terms of causal effects. In Sections 2 and 3sawe the importance of
distinguishing between HRS and HRG in discussidriseexplanatory scope of Hamilton’s
rule. It is no less important, | submit, to distimgh HRGqua-mathematical-theorefrom
HRG-qua-explanatory-principleWhen HRG is invoked qua explanatory principles it
implicitly assumed that the andc coefficients admit of a causal interpretationamis of
causal effects. The consequence is that HRG-quiaregory-principle is no tautology. For
theb andc coefficients do not always admit of a causal imtetation, and we cannot know a
priori whether, in any given context, the condisdor causal interpretability are satisfied (cf.

Section 6.4).

6 HRG and Explanatory Power II: Prediction versus Unification

The tautology complaint misfires, then, becaus®és not distinguish HRG’s mathematical

representation from its causal interpretation. Gduesal interpretation carries the explanatory
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weight, and it is not tautologous. As the quotaiare considered in Section 3 make plain,
however, this is not the only reservation Nowak eolleagues have about HRG. There is a
further worry: the worry that HRG is explanatordgnpty because the cost and benefit terms
do not denote ‘properties of individual phenotyp@tdwak et al. [2011a]). In this section, |

reconstruct and evaluate this second strand a¢isrt.

6.1 The predictive limitations of HRG

To understand Nowak and colleagues’ second contplaecan return to the synergy game
introduced in Section 3. Recall that, when we addpayoff to the payoff matrix, HRG still
holds, but thé andc regression coefficients are not simply functionshefB andC payoffs

in the payoff matrix, but also functions bf R and the frequency of cooperatigf,. This is

a clear illustration of what Nowak et al. have imchwhen they talk of thé andc

coefficients turning out to depend, in many caeesthe entire system including population
structure’.R, which sets the differential probability that sdgartners will play identical
strategies, is an aspect of population structure; /@ is similarly a property of the

population as a whole.

There can therefore be no doubt that, by defitieg andc terms in Hamilton’s rule
as partial regression coefficients—and therebynalig them to float free of the andC
payoffs in the payoff matrix—we achieve a high leviegenerality in return for some
potentially rather complicated and counterintuitieationships between the coefficients in

Hamilton’s rule and the parameters of the model+eat population—to which we are
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applying it. Gardner et al. ([2007]) openly concéllat this is the price we have to pay for
generality; but they evidently believe it to berece worth paying. Here, they are plainly at
odds with Nowak et al. ([2010]), for whom the coenmtuitive relationships between the

terms in HRG and the underlying parameters strigisHiRall explanatory value.

Who is correct here? One can certainly make aoredde argument that, wherandc
depend on population structure, HRG fails to lieetige sort of predictions one might
intuitively expect Hamilton’s rule to license. Fexample, one might expect Hamilton’s rule
to license the prediction that, in any given modggrvening on the parameters in such a
way as to increase the relatednesbetween actors and recipients would make theugoaol
of cooperation more likel§/. In fact, HRG underwrites no such prediction. Tikibecause,
when ther, b andc coefficients in HRG are all functions of the sapaeamete?, it is quite
possible that intervening to increaseill make the evolution of cooperatidesslikely, , as
our intervention may also have the effect of inshegc and decreasiniy It is even possible
that rb —c will be greater than zero prior to the interventio increase, yet less than zero

afterwards, as a direct result of our intervenfion.

" Note that, becauseis a statistical property of the entire populatiibiis not a variable on which one can
typically intervendlirectly in the context of formal modelling. Instead, oneuldointervene on the parameters
of the model (such as ttReparameter in the synergy game) that determingdhes ofr. Nevertheless, one
might intuitively expect it to be the case thativening on the parameters that determirsuch that
increases, would promote the evolution of cooperatit is important to see that this intuition fem incorrect.
% For example: in the synergy game, they are alitions ofR, the parameter that sets the differential
probability that social partners play identicabsgies.

2 This will occur in cases in which thiepayoff is negative and larger in magnitude thanBipayoff. For
example, suppose=4, C =-2, D=-8, andf, =0.1. AtR=0.25, rb-c =0.4 and HRG is satisfied. But at
R=0.5,rb-c=-0.4 and HRG is not satisfied. We can picture this aase ofeverelydiminishing returns:

when cooperators interact with other cooperatbiesgdiminishing returnmore than cancel ouhe original
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One might also expect it to be the case thatREGHs satisfied, cooperation will tend
to be selected in the long run. Again, however, HR@ces no such prediction. This is
because, when thieandc coefficients are functions ¢f , they are likely to change from one
generation to the next as the frequency of coopexahanges. The implication is that the
fact that HRG is satisfied in one generation camgne us any confidence that it will still be
satisfied in later generations, and therefore chgive us any confidence that cooperation

will be stable in the long ru.

It may be tempting, at this point, to reply that @@ use HRG to predict the effects of
interventions (and to predict long-run outcomesdjpag as we understand the precise nature
of the relationship between the coefficients in H&®@l the parameters governing the
evolutionary dynamics of the system under invesibga For instance, if we know the
precisewayin which intervening to increagewill impact onb andc, we will be able to
predict whether this intervention will make the kxmn of cooperation more or less likely.
Yet this reply, it seems to me, does little to agguour concerns about the predictive power
of HRG. For the relationship between the terms RGHand the dynamical parameters is
highly system-specifithe results Gardner et al. ([2011]) derive in¢batext of two-player
synergy games do not generalize to (say) threesplggmes, asymmetric gamesplayer

public goods games, and so on. If we accept thas lispredictively inert in the absence of

benefit. Naturally, it is an empirical question hoften scenarios of this sort arise in nature theite is no
reason to assume that they represent a merelyetiesdpossibility.

% The sign ofb - ¢ may be affected by changes in frequency wheneyszatedD-payoff makes a significant
difference to the direction of evolution, since theected-payoff is sensitive tngO . For example, suppose
againthatB=4, C=-2, D=-8,andR=0.25.At f, =0.1, rb-c =0.4 and HRG is satisfied. But at

f,, =0.5, rb-c=-2 and HRG is not satisfied.
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system-specific functions relating its coefficietdghe underlying dynamical parameters, we
are, in effect, conceding that the predictive galitgrHRG appears to afford is illusory: to do
serious predictive work with HRG, we must firstdia way of expressing the relevant
regression coefficients in terms of the dynami@abmeters of the particular evolving system

under study—and then the generality vanishes.

In summary, the problem for HRG can be put like:twhile HRG holds for every
evolving system to which the Price equation appltedoes not by itself entail any
substantive predictions about the effects of irgations on these systems, or about how they
will evolve in the long run. We can derive suchdicéons byaugmentingHRG with
expressions relating its terms to the dynamicaupaters of the system under investigation,
but these expressions are highly system-specifectigrefore face a trade-off. By construing
Hamilton’s rule as HRG rather than HRS, we buy galitg at the expense of predictive
power. We can buy back some of that predictive pdweaugmenting HRG with system-
specific functions relating its coefficients to ttnederlying dynamics, but we do so at the

expense of the predictive generality we originalhped to gain.

6.2 The unification response

It therefore seems clear that HRG has serious gtreglilimitations. Yet whether that strips
HRG of any explanatory power is another matter licitpn Nowak and colleagues’ move
from the predictive limitations of HRG to an attawk its ‘explanatory power’ is the

assumption that, at least in the context of evohary theory,explanatory work’ consists in
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laying bare the dynamics of an evolutionary progessway that enables long-run predictive
success. The argument is that HRG, couched amitesms of overall statistical properties
of the population, is no good for this kind of werbarticularly in cases of non-additive

interaction or frequency-dependent selection.

This is a conception of ‘explanatory power’ to whigvolutionary game theory seems
particularly well-suited. Yet it is not thanly conception of explanatory power one might
have. According to one long-running tradition ie fphilosophy of sciencenificationalso
counts for something: the thought, roughly speakimthat, by bringing together disparate
processes within a unifying framework, we increageunderstanding of the causal structure
of the world (see Kitcher [1989]; Strevens [20020)08]). | will not attempt to defend this
conception of explanation here. | merely want tterthat such a conception affords
considerable value to unifying principles whichtafst away from the details of particular
models in order to capture, at a coarse-grainesl,lsalient similarities between otherwise
disparate processes. A unificationist conceptioexpilanation allows that such generality has
intrinsic explanatory value, whether or not it facilitatesd-run predictive success or enables
us to answer ‘what-if-things-had-been-differentegtions regarding the effects of

interventions.

The defender of HRG can therefore allow that it $&xsous predictive limitations and
yet maintain that it still has explanatory valuer HRG identifies @aommon featuréhat all
processes of social evolution by natural seleatimst share: they are all processes that

satisfy the conditionb —c >0, where the coefficients b andc are understood in statistical
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terms. In this way, HRG constitutes a unifying pipple: a means of bringing together results

from disparate models under a single concepturidreork>"

6.3 A worry about this response

HRG constitutes a very general condition that mlcpsses of social evolution by natural
selection must satisfy, regardless of their undieglgausal differences; in this sense, it
constitutes a unifying principle for social evotutitheory. This seems like a promising
response to Nowak and colleagues’ criticisms of HR@ it is not without its difficulties.
One concern is that, if all we want is a conditibat all processes of social evolution by
natural selection must satisfy, we could achievattier more straightforwardly through
‘Robertson’s rule’, which states that a social vetwar will be favoured by selection if and
only if the simple regression of fithess on theajenvalue for that behaviour is positive (see

Robertson [1966]):

(Robertson'srule) A g>0iff B, >0

31 Some remarks of Gardner et al. ([2007]) point taisa unificationist conception of the value of Higon's
rule: ‘The most powerful and simple approach toletimnary problems is to start with a method sush a
population genetics, ... game theory or directefisimaximization techniques. The results of theal/ses can
then be interpreted within the frameworks that @si¢heorem and Hamilton’s rule provide. The cartese of
these powerful theorems is to translate the restiksich disparate analyses, conducted with atyasie
methodologies and looking at very different proldemto the common language of social evolutiomtie
(Gardner et al. [2007], p. 224).
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The derivation of Robertson’s rule exactly paraliglat of HRG (see Section 2.2).
The only difference is that, instead of using twedactor variables in the linear regression
model, we use a single predictor variable: the tieralue of the focal individual. This
simple regression runs together the effects ofdbal individual's genes and the effects of
any correlated genes into a single measure ofwbeth association between genetic value
and fitness. It is no lesgcuratefor doing so: just like HRG, Robertson’s rule rsapriori
implication of the Price equation, and will holdany population to which the Price equation
applies. Consequently, it too identifies a commeatdre that all processes of social

evolution by natural selection must share: theyadlrprocesses for which,  >0.

It is tempting to object that, while Robertson’termay be fully general, it is just too
simple to be predictively useful when organismsriatt socially, for it compresses all the
causal influences on the direction of evolutiomiatsingle regression coefficient. Yet, while
this is true enough, we have already seen that BHIBR&ompresses the causal influences on
the direction of evolution into a small number o&fficients in a way that impaiits
predictive utility whenever social interactions amn-additive. The only difference is that
HRG useswo coefficients rather than one: it partitions th@le regression of fithess on

genetic value into a-¢’ component and anb’ component.

The worry is that, ill we care about is generality, then nothing is ghine
partitioning the simple regression of fitness onagpe into two components: we may as
well use Robertson’s rule as our unifying princiet if we want a rule that represents each
of the distinct causal influences on fitness ipasate term, and that is therefore useful for

prediction, intervention and causal explanationwileoften need to split the regression of
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fitness on genotype intmorethan two components (cf. Queller [1985], [1992B011];

Frank [1998]). Either way, the theoretical role KRG appears to be somewhat limited.

6.4 Causal interpretation revisited

In Section 5, we encountered the suggestion thiast under some circumstances,
regression coefficients may be interpreted as nreasf causal effects, and we saw how
distinguishing the mathematical representation aiton’s rule from its causal
interpretation exposes a flaw in the ‘tautologyfmg@aint against HRG. Now, | want to
suggest that the causal interpretability of regoessoefficients also shows how HRG can
perform a theoretical function that Robertson’& rcsinnot. For, crucialll\JRG admits of a
causal interpretation under a broader range of citinds than Robertson’s rulés a result,
HRG, in contrast to Robertson’s rule, identifiesraportantcausalfeature that unites the

processes by which social behaviour evolves.

To see why HRG admits of a causal interpretatiattenia broader range of conditions
than Robertson’s rule, we can return to the syngegge. Since Robertson’s rule, like HRG,
holds foranyevolutionary process (by virtue of being an a pimplication of the Price
equation), it holds in the synergy game. Its sireglefficient, S,  , compresses all the effects
relevant to the direction of evolution—namely, theC, andD payoffs—into a single, overall

measure of the statistical association betweead#rand genetic value:

B, =—C+RB+(R+(1—R)fCO)D
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In compressing all the influences on the direcbbevolution into a single
coefficient,3,  conflates distinct causal pathways; the resuhas it cannot plausibly be
regarded as measuring the causal effect of one'sgamotype on one’s fitness. One way to
see this is to imagine what we would have to daygiinsisted on interpreting it in this way:
we would have to say that the focal individualasigally responsible not merely Gra
payoff that results directly from its own behavigbut also forB, a payoff that results
directly from the behaviour of its social partnd?ainly, this interpretation could only be
correct if the focal individual were causally respible for the behaviour of its social
partners; and, while this might be true in somesai is not true in the synergy gafi&his
is just one instance of a quite general problenmiercausal interpretability of Robertson’s
rule: if B, , is to sustain a causal interpretation, one’s oamogype must be causally
responsible for all the fitness effects with whitcborrelates. Provided each social partner
retains control of its own behaviour, this assumptwill fail in any case in which genetic

relatives interact socially.

The situation for the regression coefficients inGIR not so bleak. Recall that, in a
synergy game, thee andc regression coefficients in HRG take account ndy ohthe B and
C payoffs in the payoff matrix, but also of thgayoff. They do so in a way that splits the

expected synergistic effect evenly betweenithadc terms:

%1t Ris positive, the behaviour of the focal individwll correlate with the behaviour of its socialrfrgers,
and this will lead to aon-causatorrelation between its own behaviour and the podibathat it receives thé
payoff. There is no suggestion, however, that gfealiour of its social partners causally dependissoown

behaviour, and this is what would have to be tise dar 8, , o sustain a causal interpretation.
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1

b=B+1+R(R+(1—R)fCO)D
c=C—1iR(R+(1—R)fCO)D

Canb andc be interpreted as measures of causal effecteisythergy game? They can,
conditional on the assumption that, when a fitre#Bect depends symmetrically on the
behaviour of two agents, it is reasonable to attelan equal portion of the resultant effect to
the behaviour of each agent. If this assumpti@oigect, therb andc do indeed measure,
respectively, the causal effect of one’s own gepetyn one’s fitness and of one’s social
partner’'s genotype on one’s fitness, since thegectlly apportion causal responsibility for
both the linear effectB andC and the synergistic effebt Moreover, | submit that the
assumption is at leaptima facieplausible. Critics of HRG may wish to dispute this
assumption, and this may present a productive avé@rdfurther discussion. For now, |
merely want to note that, conditional on a plawesagdsumption about how causal
responsibility ought to be apportioned in casesyokrgistic interaction, the coefficients in
HRG admit of a causal interpretation in such casesn though they cannot be equated with

any of the parameters in the payoff matrix.

This suggests that our concern about the unifinagsponse was misplaced. It is true
enough that HRG is not the simplest rule one camditate regarding the conditions under
which a social behaviour is favoured by naturagéstbn. But it is the simplest such rule that

also plausibly admits of @ausal interpretatioracross a wide range of cases, including cases
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of synergistic interaction. The upshot is that HR@-explanatory-principle captures a
substantial causal insight about the evolutionoofa behaviour that Robertson’s rule does
not capture. This is the insight that many, pertedh®fthe processes through which social
behaviour evolves are united by the following chtesature: they are processes in which the
causal effect of an individual’'s genotype on itsnxdwness, plus the relatedness-scaled causal

effect of its social partner’s genotype on itsd#s, is greater than zero.

This point brings together the discussions in $estb and 6. The causal
interpretability of regression coefficients undppeopriate conditions shows how HRG can
be more than a mere tautology. But it does somgthiise too: it also shows how HRG can
serve an important explanatory function irrespectwhether it enables long-run predictive
success. Because its coefficients are causallgpi@iable in a wide range of cases, HRG-
gua-explanatory-principle identifies a substantalisalunity to the processes by which
social behaviour evolves. Because its coefficiangsnot causally interpretable in a wide

range of cases, Robertson’s rule does not.

7 The Heart of the Matter

The current controversy regarding Hamilton’s rudes brought to the fore subtle but divisive
issues in the foundations of social evolution tlge@vhile the bones of contention are also
partly empirical—and while Nowak et al. are surglylty of underplaying kin selection’s
empirical track record—there are also significaomiaeptual issues at stake. | have argued

that, to understand the nature of the debate, wd toedistinguish two versions of
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Hamilton’s rule: a special version (HRS) in whitie tb’ and ‘c’ terms represent fecundity
payoffs; and a generakrsion (HRG), derived from the Price equationyhich the b’ and

‘C’ terms represent partial regression coefficieAtsd | have argued that, on a charitable
reconstruction, Nowak and colleagues’ argumertias HRS almost never holds, while HRG
buys its generality at the expense of explanatowygs. While their criticisms of HRS are
difficult to argue with, their criticisms of HRG@more contentious. Yet they have gone

largely unanswered in the subsequent debate.

Close examination of these criticisms reveals thygartance of a further distinction:
that between HRG-qua-mathematical-theorem and H&&sexplanatory-principle, where
the latter takes for granted the causal interpiétabf the ‘b’ and ¢’ coefficients. This
distinction, and the attention it draws to questiohcausal interpretability, is valuable for
two reasons. First, it shows how HRG can come tbhagty substantial causal content about
social-evolutionary processes—content that is eoglly grounded in a wide range of cases,
but that is by no means ‘always true’—even thougtiarmal derivation makes no
substantive assumptions about the population grdess. This helps assuage Nowak and
colleagues’ concern that HRG is no more than a emadttical tautology. Second, the
distinction shows how HRG can serve a valuableanaibry function in spite of its serious
predictive limitations. For the primary theoretiealue of HRG lies not in its ability to
underwrite predictions about long-run evolutionaagcomes, but rather in its identification

of a common causal feature that unites the prosdssehich social behaviour evolves.

The considerations | have brought to bear arememnded to settle the debate once

and for all. Live issues remain—in particular, isswwoncerning the relative importance of
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unification and prediction in evolutionary explaoat, and concerning the correct procedure
for apportioning causal responsibility in casesyfergistic interaction—that may yet divide
Hamilton’s defenders from their opponents, and #natunlikely to be settled definitively by
empirical or theoretical considerations alone. @abate is therefore unlikely to go away. My
primary aim has been to clarify precisely whattistake, and to give Hamilton’s defenders
and opponents a common vocabulary in which to comicate with one another. Throughout
much of the debate following Nowak and colleag{gx10]) article, theorists have been
talking at cross-purposes. Even the notion at érg kieart of the debate—‘Hamilton’s
rule’—is ambiguous. Only by distinguishing spe@at general versions of the rule, and by
distinguishing the rule’s mathematical represeatatiom its causal interpretation, can we

hope to move towards a more productive discusdiais ases and limits.
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