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We examine possible causal structures of experiments with entangled
quantum objects. Previously, these structures have been obscured (i)
by assuming a misleading probabilistic analysis of quantum non locality
as ‘Outcome Dependence or Parameter Dependence’ and (ii) by directly
associating these correlations with influences. Here we try to overcome
these shortcomings: (i) we proceed from a recent stronger Bell argument
(Näger, 2012), which provides an appropriate probabilistic description,
and (ii) apply the rigorous methods of causal graph theory. Against the
standard view that there is only an influence between the measurement
outcomes, we show that there must be an influence from one setting (para-
meter) to its distant outcome: EPR correlations can only come about if
one of the outcomes is a common effect of both settings. Our discussion
makes explicit under which assumptions similar conclusions from informa-
tion theoretic considerations (Maudlin 2002, ch. 6; Pawlowski et al. 2010)
can be interpreted causally.
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1 Introduction

Modern EPR experiments measure the polarisation of entangled photons (Ein-
stein et al., 1935; Bohm, 1951; Aspect et al., 1982; Weihs et al., 1998). In a
schematic setup a source is located midway between two measurement devices.
Suitably prepared, the source emits a pair of entangled photons (in the quantum
state ψ), which move in opposite direction towards the measurement devices.
While the photons are on their way, the measurement directions of the devices
(‘settings’, ‘parameters’) are randomly and independently set to one of two pos-
sible values (a = 1, 2 and b = 2, 3). Finally, each apparatus registers whether
the photon is polarised in that direction or not (α = ± and β = ±).1 The
statistics of many repeated measurement runs yields that the outcomes are cor-
related conditional on the settings and the quantum state, ¬ I(α,β|a, b,ψ), the
famous EPR correlations.2

It is a basic assumption in scientific reasoning that correlations have to be
explained. On the one hand, these correlations can be derived from the quantum
mechanical formalism by Born’s rule,3 which provides a perfect covering law
explanation. On the other hand, it is well-known today that covering law
explanations can be dissatisfying in different respects (see, e.g., Salmon, 1990).
It has become an approved position in the philosophy of science that explaining
a phenomenon in a satisfying sense requires to explain it causally, i.e. to tell
a story how it comes about (Salmon, 1984, 1998). How do EPR correlations
come about? An essential part of such causal explanations is to say which
properties of the considered events influence which (‘causal structure’). Since
in our description of EPR experiments we have used the usual convention to
represent properties as values of variables, the question for the causal structure
is: which of the variables of an EPR setup influence which? This is the question
we shall try to answer in this paper.

1We shall use the convention to denote variables in bold fonts, e.g. α, and corresponding
values of variables in normal font, e.g. α; specific values of variables are indicated by an
index, e.g. α+.

2Assuming a maximally entangled state, e.g. ψ = 1√
2
(|+〉|+〉+ |−〉|−〉), the correlations are

given by

P (αβ|abψ) =

{
1
2

cos2 φab if α = β
1
2

sin2 φab if α 6= β.
(1)

3 In the present case, Born’s rule reads: P (αβ|abψ) = |〈φa, φb|ψ〉|2.
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1 Introduction

Tackling this question we shall not engage in metaphysical debates about
the nature of causation or of quantum non-locality. Rather we understand
the question in an epistemic sense: according to normal standards of causal
inference, which influences does one have to assume in order to explain the
EPR correlations? When we speak of ‘causal relations’ and ‘causal structures’
in the following, we shall always mean ‘causal’ in an epistemic sense (if not
otherwise stated). The epistemic causal structures we shall find leave open how
the influences are metaphysically realised—which is a different question and
cannot be treated here.4

In recent decades, the epistemology of causation has made considerable pro-
gress due to causal graph theory, which is summarised in the impressive work
of Spirtes et al. (2000) and Pearl (2000). Causal graph theory represents causal
structures by diagrams which involve variables as nodes and causal relations
as arrows. Causal graphs normally do not involve cycles of arrows; they are
directed acyclic graphs. We shall present possible causal structures of EPR ex-
periments in graphs which have the empirically accessible variables α, β, a, b,
ψ as nodes (plus a possible hidden variable λ). Causal graphs are a clear way
to provide answers to our question. This is one virtue of causal graph theory.

The main distinction when discussing causal structures for a given correl-
ation between variables α and β (here: the measurement outcomes of EPR
experiments) is whether it comes about by direct causation (direct cause struc-
ture), or by a common cause (common cause structure) or by both (mixed
structure). Since in a typical EPR experiment the measurements are space
like related (see fig. 1), only common cause structures can be local; but it is a
common place that due to the violation of the Bell inequalities local common
cause structures cannot explain the correlations (fig. 2). This is still true even
if one accounts for the possibility that there might be hidden variables, a hid-
den common cause λ of the outcomes, which complete the quantum state ψ at
the source. In some sense there must be a non-local causal connection, either
a direct connection between the outcomes (fig. 3) or a causal relation from
one setting to its distant outcome (this setting is a non-local common cause of
both outcomes; fig. 4), or both (fig. 5). Finally, there are two further special
cases of common cause structures. According to indirect structures the settings
influence the outcomes only via a hidden common cause λ of the outcomes
(fig. 6). An interesting subclass of indirect structures are retro-structures: here
the hidden common cause λ lies in the common past of the settings, so that the
influence is backwards in time. Finally, superdeterministic structures assume
that the hidden state is not only a common cause of the outcomes but also of

4However, the two questions are clearly connected: we believe that the metaphysical ques-
tion can best be answered only when we have found a suitable epistemic causal structure.
Epistemic causal structures, we maintain, are our best guide to metaphysical structure (by
inference to the best explanation). Speculating about the metaphysical nature of quantum
non-locality, as it has been common in the philosophical literature, without having de-
termined exactly which variables influence another according to epistemic standards, does
not seem to be a reliable procedure. So the present paper is also meant to create a sound
basis for metaphysical explorations.
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1 Introduction

the settings (fig. 7).5

ba

α β

ψ
x

t

Fig. 1: Schematic space-time diagram of EPR experiments. Each outcome
is time-like separated to a local setting (α and a, β and b) and to
the quantum state at the source, ψ. Any other pair of variables—
particularly the outcomes—is space-like separated. Note that we have
not marked the location of the hidden common cause λ—for in prin-
ciple it can be located anywhere. If it plays the role of hidden variables,
however, it must be situated in the common past of the outcomes (as
ψ).

These six structures are prototypes for causal structures of EPR experiments.
Rather than an exhaustive set of possible structures they are the main variants
which have been proposed. To each prototype it is easy to find similar structures
which fall into the same class, e.g. replace α← β in figure 23 by α→ β. (We
shall call such structures which ‘mirror’ all arrows at the symmetry axis of the
experiment ‘mirror images’. If an asymmetric structure is allowed or forbidden
it is understood that its mirror image, which we shall not explicitly indicate,
is allowed or forbidden as well.) One can also have structures which are a mix
of two or more prototypes. In our argument below we shall be more precise
about these variants. Here, in order to get an overview, we shall constrain our
discussion to these prototypes.

Superdeterministic structures have not received much credit, although they
constitute the only type of structures which can be completely local (if the
hidden variable is in the common past of the settings) and violate Bell inequal-
ities. Claiming that the settings which are determined by the experimenter are
in effect influenced by a hidden variable they have always provoked the charge
of being a conspiratorial theory. We shall not consider these structures as a
serious candidate.

5Suárez (2004, 2007) and Wood and Spekkens (2012) have provided a similar overview of
suggested causal structures for EPR experiments.
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Prototypes of possible causal structures for EPR experiments

ba

α β

ψ λ
lokal

Fig. 2: Local common cause struc-
ture

ba

α β

ψ λ

Fig. 3: Direct cause structure

ba

α β

ψ λ

Fig. 4: Non-local common cause
structure

ba

α β

ψ λ

Fig. 5: Mixed structure

ba

α β

ψ λ

Fig. 6: Indirect structure

ba

α β

ψ λ

Fig. 7: Superdeterministic structure

(NB: Here and in the following printing some arrows bold is just for reasons of
clarity. There is no difference in meaning between bold and normal arrows.)
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Among the four remaining structures indirect structures have played only
the role of a minority view. In the form of retro-structures they have attracted
some attention (Price, 1996). Most philosophers of science interpret the viola-
tion of Bell inequalities to show that EPR experiments involve a non-locality of
some kind. The non-locality following from Bell’s inequality (the failure of the
factorisation condition) is on the probabilistic level. Jarrett (1984) famously
analysed this quantum non-locality as the disjunction of two probabilistic de-
pendencies, ‘Outcome Dependence or Parameter Dependence’, suggesting that
there is a choice to be made. The predominant criterion for preferring one
dependence over the other is the compatibility with relativity: by different ar-
guments (Jarrett, 1984; Shimony, 1984; Arntzenius, 1994) it has been claimed
that Parameter Dependence is in conflict with relativity while Outcome De-
pendence is not. This result, which is still on a probabilistic level, is then
interpreted causally by associating the dependencies with influences: influ-
ences between a setting and its distant outcome are inconsistent with relativity,
whereas such between the outcomes are not. This rules non-local common cause
structures as well as mixed structures out. Rather, according to this standard
view, EPR correlations come about by a non-local influence from one outcome
to the other (direct cause structure).6

In this paper we shall argue that this standard view is deeply flawed. The
argument we shall present will have the opposite conclusion: EPR experiments
cannot have a direct cause structure. For we shall show that direct cause struc-
tures imply Bell inequalities, just as local structures do. Thus, for mathemat-
ical reasons, direct cause structures cannot explain correlations of the outcomes
which are as strong as EPR correlations. Our positive claim will be that Bell
inequalities can only be violated if at least one of the outcomes is a common
effect of both settings. This means that there must be a causal path from at
least one of the settings to its distant outcome. This path can be a direct in-
fluence (non-local common cause structure), and it might additionally involve
an influence between the outcomes (mixed structure), or it is indirect via the
hidden variable (indirect structure). In this paper, we shall leave open which
of these three possible prototypes likely is the true one. The crucial point here
is to show against the standard view that direct structures cannot hold.

The normal way to find causal graphs for a given probability distribution
is via causal discovery algorithms (Spirtes et al., 2000; Pearl, 2000). In EPR
experiments, however, these algorithms cannot be applied because one of their
preconditions, the so called faithfulness assumption, is violated (Glymour, 2006;

6We should note that the standard view has it that, metaphysically, this influence between
the outcomes is grounded in a non-causal relation, either a non-causal influence (‘passion
at-a-distance’, Shimony 1984; Redhead 1987) or a holistic ‘non-separability’ (Howard 1989;
Teller 1986; Jarrett 1989; Healey 1991, 1994). There is an ongoing debate whether Lewis’
counterfactual analysis of causation judges the outcomes to be causally connected (But-
terfield, 1992) or not (Glynn and Kroedel, forthcoming). We stress, however, that in our
epistemic scheme, which is insensitive to metaphysical realisation, we count any alleged in-
fluence as a causal relation. For our question here is which variable influences which—not
whether a given influence is causal or not. Thus, not any arrow in the causal diagrams we
shall consider necessarily is meant to represent a causal relation in a metaphysical sense;
the influence it represents might well be due to a different kind of relation.
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1 Introduction

Wood and Spekkens, 2012). Hence, we have to approach the causal structure
in a rather unusual way: we shall give Bell’s theorem, which is an argument on
the probabilistic level, a causal interpretation.

We shall not use Bell’s theorem in its standard form, which says that any
non-local theory can violate Bell inequalities. For this view has recently been
shown to be wrong (Näger, 2012): a stronger version of Bell’s theorem makes
explicit that certain non-local theories still imply Bell inequalities, among them
outcome dependent theories. Jarrett’s choice (‘Outcome Dependence or Para-
meter Dependence’) is misleading because outcome dependent theories cannot
violate Bell inequalities. Proceeding from this false assumption is the main
failure of the standard view. We shall overcome this drawback by interpreting
the new stronger Bell argument.

Moreover, we shall avoid the standard view’s problematic identification of
certain probabilistic dependencies with influences. Rather we shall use the clear
principles of causal graph theory, which allow to infer statistical properties from
causal structures (and, vice versa, to infer causal structures from statistical
data). Providing clear translation principles is another virtue of causal graph
theory. It is of particular importance because the transition in both directions
is susceptible to many fallacies, ranging from naive identifications of statist-
ical dependence with causal dependence (correlation is not causation) up to
subtleties about non-faithful representations. A causal interpretation of Bell’s
theorem by causal graph theory will reveal that also in this case the association
of statistical dependencies with influences, such as Outcome Dependence with
an influence between the outcomes, is plainly false. This is a second drawback
of the standard view. In this sense, our argument shall make explicit the two
crucial points at which the argument for the standard view fails.

We should not start before noting that our conclusion has a considerable
similarity with certain non-standard views about EPR experiments, which are
based on information theoretic considerations. It has been shown that inform-
ation about the distant outcome does not suffice to explain EPR correlations:

Bell’s inequality can reliably be violated only when the response of one of
the particles depends (at least sometimes) on the question asked its part-
ner. [. . . ] [D]ependence on the distant polarizer setting is crucial. Jarrett’s
division of theories into those that violate outcome independence and those
that violate parameter independence is again seen to be misleading: any
successful theory must postulate some influence of a distant ‘parameter’
(i.e. the polarizer angle) on the response of a local photon. Without such
dependence the quantum statistics cannot be recovered. (Maudlin, 2002,
p. 182f)

. . . it is impossible to model a violation [of the Bell inequalities] without
having information in one laboratory about both the setting and the out-
come at the distant one. While it is possible that outcome information
can be revealed from shared hidden variables, [. . . ] the setting information
must be non-locally transferred. (Pawlowski et al., 2010)
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Both Maudlin and Pawlowski et al. agree that at least one of the outcomes must
depend on the information about the distant setting. Since the information
about the local setting is assumed to be available anyway, this amounts to
saying that one of the outcomes must depend on the information about both
settings.

This result in terms of information seems very similar to the causal claim we
shall establish that at least one of the outcomes must be a common effect of both
settings. Indeed, Maudlin directly attaches a causal reading to his result (‘influ-
ence’). (Pawlowski et al. are more cautious, speaking only of information which
is ‘transferred’.) It is not clear, however, whether Maudlin’s leap from ‘depend-
ing on the information of’ to ‘is influenced by’ is sound. As the transition from
statistical to causal facts, that transition might be liable to different fallacies.
Under what conditions is our result equivalent to Maudlin’s and Pawlowski’s?
We shall give an answer at the end of this paper. It will turn out that very
similar principles which correctly translate probabilistic dependence to causal
dependence also translate informational dependence to causal dependence. The
result will be that the two approaches—the information theoretic approach by
Maudlin and Pawlowski et al. and ours via Bell inequalities—converge: they
yield the same causal structures. This will be another strong argument in favour
of our claim against the standard view.

The paper is organised in two parts. We first apply causal graph theory to
the standard Bell argument. The rough result of this argument is well known
(one must have any non-local theory in order to violate Bell inequalities), but
it will allow to introduce the causal principles and to demonstrate our concept
of causal interpretation at a moderately complicated level. It will also bring
home our first point against the standard view that one should not identify
singular probabilistic dependencies with influences. In a second part, we shall
then apply the same principles to the stronger Bell argument. It will prove
our negative main result in opposition to the standard view that direct cause
structures cannot violate Bell inequalities. We shall also make precise which
positive features causal structures must have in order to be able to account for
a violation. Finally, we shall show in what sense our result is in accordance
with the information theoretic considerations of Maudlin and Pawlowski et al.

2 A causal interpretation of Bell’s theorem

Bell’s theorem is a mathematical theorem. In its most general form, it is an
argument formulated in probabilistic language. It says that a set of certain
probabilistic conditions is in conflict with the empirical results of EPR exper-
iments. Hence, one of the probabilistic conditions must be false. Typically,
however, Bell’s theorem is said to show certain deep causal or metaphysical
facts. How does this work, if the premisses and the conclusion are on a prob-
abilistic level? The answer is that the probabilistic conditions receive a causal
or metaphysical interpretation. In this section we shall show why the standard
way to interpret Bell’s theorem, viz. to identify singular probabilistic facts with
causal or metaphysical meaning, is wrong. We shall present a reliable way to
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2 A causal interpretation of Bell’s theorem

endow Bell’s theorem with meaning: the clear principles of causal graph theory
will provide a sound interpretation. This will also make explicit that Bell’s
theorem allows not only for the standard reading that local causal structures
are ruled out but also for other interpretations.

2.1 What is a causal interpretation?

Let us start by stating Bell’s theorem in an explicit form. The probabilistic
assumptions underlying the theorem are:

Local Factorisation: P (αβ|abψλ) = P (α|aψλ)P (β|bψλ)

Probabilistic Autonomy: P (λ|abψ) = P (λ|ψ)

These two assumptions imply the Bell inequalities (see, e.g., Bell 1975, van
Fraassen 1989 or Shimony 1990), which are violated by EPR correlations. Thus,
at least one of the probabilistic assumptions that imply the inequality must be
false. Here is the argument in an explicit form:

(P1) Autonomy and Local Factorisation imply Bell inequalities:
(A) ∧ (LF)→ (BI)

(P2) Bell inequalities are empirically violated: ¬(BI)

(C1) Autonomy or Local Factorisation fails: ¬(A) ∨ ¬(LF)
(from P1 & P2, MT)

What does a failure of the probabilistic conditions autonomy and Local Fac-
torisation mean? The usual interpretation is to directly attach a meaning to
each probabilistic condition. Local Factorisation, for instance, is said to be a
locality condition required by relativity (e.g. Bell, 1975; Jarrett, 1984): it guar-
antees that there are no influences between space-like separated variables. So
its failure is meant to show that there is a non-local influence of some kind.
Jarrett’s analysis of Local Factorisation seems to paint an even more detailed
picture: the failure of Local Factorisation is equivalent to the disjunction of
the probabilistic conditions Outcome Dependence and Parameter Dependence.
While the former is believed to constitute a (non-causal, in a metaphysical
sense) influence between the outcomes the latter is taken to be an influence
between a setting and its distant outcome.

These interpretations, however, are highly questionable. For what we have
in all these cases is a more or less direct association of singular probabilistic
conditions with causal (or metaphysical) claims. Yet, it is well-known that
correlation is not causation, and that probabilistic independence does not ne-
cessarily mean causal independence. How can we do better?

In the following we shall propose a much more reliable way to assign causal
meaning to Bell’s theorem. The idea is to add an interpretation premise to the
argument:

9



2 A causal interpretation of Bell’s theorem

(P0) The causal assumptions (X) imply autonomy and Local Factorisa-
tion:
(X)→ (A) ∧ (LF)

Here (X) stands for a set of causal assumptions which by the approved prin-
ciples and methods of causal graph theory imply the probabilistic conditions
autonomy and Local Factorisation. Using causal graph theory will put the
problematic transition from causal facts to probabilistic facts on a solid basis.
Since the overall argument has a modus tollens structure, the new premise will
have the effect that not only one of the probabilistic assumptions has to fail,
(C1), but also one of the causal assumptions cannot be true:

(C2) (X) fails: ¬(X) (from P0 & C1)

This will give the argument a clear causal conclusion. The task in the follow-
ing is to find a set of causal assumptions which imply autonomy and Local
Factorisation.

2.2 A set of causal assumptions

We start by considering possible causal structures among the five empirical
variables which describe an EPR experiment. Without further assumptions one
could in principle have a causal relation between any pair of these variables.
This does not seem plausible, but why? If we are not willing to accept any
causal relation, we need principles which restrict causal relations in such EPR
experiments.

A first observation might be that in EPR experiments the settings and the
quantum state are controlled variables: each is set by an intervention to a
certain value. We have furthermore assumed that these interventions occur
independently of one another: while the quantum state is prepared identically
in every run, each setting is randomly chosen. As a consequence, these vari-
ables are statistically independent: P (abψ) = P (a)P (b)P (ψ). My suggestion
is to assume that variables which fulfil these criteria cannot be effects of other
variables in the causal structure. If they were, they would either be overde-
termined or they were actually not controlled (contrary to our assumption).
Hence, such variables cannot be effects in the given set of variables, they can
only be causes—which is the definition of an exogenous variable. These consid-
erations are captured by the following principle:

Exogeneity of Controlled Variables (ECV): Controlled vari-
ables, which are set by independent interventions, are exogenous.

This principle seems so plausible to me that I shall not put it into question
throughout this paper. It restricts possible causal structures for EPR experi-
ments considerably, viz. to involve only those relations shown in figure 8. Note
that, especially, the principle forbids any causal relation between the controlled
variables themselves.

A second constraint comes from relativity theory, the famous locality condi-
tion. In a causal formulation it says:

10



2 A causal interpretation of Bell’s theorem

Causal Einstein Locality (CEL): There are no direct causal
relations between space-like separated events.

The principle has three possible justifications from relativity theory. One says
that according to relativity, causal processes are bound to matter-energy, but
matter energy cannot travel faster than light. A second reason is the fact that
well-known loop-paradoxes can arise if superluminal signalling were possible.
Hence, space-like causal relations which allow for signalling are definitely for-
bidden. A third reason might be that the temporal asymmetry of causation
(causes precede their effects) must be true in all frames of reference. In a
relativistic space-time, however, this feature would fail. For if two space-like
separated events stand in a causal relation, A causes B, there are always frames
of reference in which B is prior to A. So Einstein locality seems to be a well-
founded principle as well. It forbids any direct causal relation between the
two wings of the experiment. The maximal set of causal relations we can still
have, if we assume these two restricting principles, is shown in figure 9: a local
common cause structure.

ba

α β

ψ

Fig. 8: Possible causal relations if
ECV holds. (or α ← β in-
stead of α→ β)

ba

α β

ψ

Fig. 9: Possible causal relations if
ECV and CEL hold.

We should note, however, that one can circumvent the restrictions that the
locality principle imposes, without violating it, if one allowed for backwards
causation, i.e. if one allowed that for a pair of time-like separated events A
and B the cause A occurs later than the effect B. Then we could have an
influence, say, from b to α, mediated by a variable µ in their common past, as
shown in figure 10. Such backwards causation, however, is highly questionable.
Some authors argue that backwards causation is a logical impossibility: the
causal asymmetry is conceptually related to the time asymmetry, i.e. causes are
always temporarily prior to their effects. Second, even if backwards causation
were conceptually possible, it might yield inconsistencies because it enables the
coming about of causal loops. Hence, it is plausible to assume:

No Backwards Causation (NBC): Effects cannot precede their
time-like separated causes.

With this additional assumption, we now can be sure that no variable on one
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2 A causal interpretation of Bell’s theorem

wing of the experiment is an effect of a variable on the other. We must have
the local common cause structure represented in figure 9.

ba

α β

ψ
μ

Fig. 10: Causal structure with back-
wards causation via a latent
intervening variable µ.

ba

α β

ψ

Fig. 11: The structure in fig. 10 omit-
ting the latent intervening
variable µ.

So far for principles which restrict possible causal relations. In order to draw
mathematical conclusions from causal structures, we still need a principle which
translates causal structures to probabilistic facts. The most common principle
for this task is the Causal Markov Condition (Spirtes et al. 2000, p. 29f; Pearl
2000, p. 19). It derives probabilistic independence claims from causal structures
and is used in nearly all methods of causal inference. It says:

Causal Markov Condition (CMC): A variable A in a given
causal structure is probabilistically independent of its non-effects
B conditional on its direct causes C:

I(A,B|C) :↔ ∀A,B,C : P (A|BC) = P (A|C) (2)

Note that in general B and C are sets of variables, B := {B1, . . . ,Bn} and
C := {C1, . . . ,Cm}.

Applying the Causal Markov Condition to the local causal structure would
yield the corresponding probabilistic independencies. For this derivation to
be correct, however, we have to make sure that we have not forgotten any
common cause in our set of variables, because omitting common causes yields
independencies which, in fact, do not hold. Given ECV, a hidden common cause
λ might only be a common cause of the outcomes (fig. 12). Due to the locality
condition it would have to be be located in the common past of the outcomes.
These restrictions fit very well with the idea of hidden variables, which have
been a speculation since the early days of quantum mechanics (Einstein et al.,
1935; Schrödinger, 1935). Hidden variables have been thought to provide a
more detailed description of the quantum state (here: the photon state at the
source), endowing each of the entangled photons with well-defined properties
and removing the indeterminacy in their behaviour.

Thus, we allow for one latent common cause λ, which possibly accounts
for hidden variables of the photons at the source. We stress, however, that
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2 A causal interpretation of Bell’s theorem

by definition λ essentially just is a latent common cause of the outcomes: it
neither does have to describe hidden variables nor does it have to be located in
the common past of the outcomes when we give up on the locality assumption
below. We assume that there are no hidden common causes apart from λ.
Having included all true common causes is usually called ‘Causal Sufficiency’
in the literature on causal graphs (Spirtes et al., 2000, p. 22):

Causal Sufficiency1 (CS1): The variable set V1 = {α,β,a, b,ψ,λ}
contains all common causes of any two (or more) variables in V1.

(Here the index in ‘V1’ indicates the number of hidden common causes in the
set, and is referred to in ‘Causal Sufficiency1’.)

ba

α β

ψ λ
lokal

Fig. 12: Local causal structure with
hidden variable λ

ba

α β

ψ λ

Fig. 13: Non-local causal structure
with the hidden variable as
common effect of the set-
tings.

Note that λ is neither known nor controlled. Hence, ECV does not secure
that the hidden variable is exogenous. It would be perfectly consistent with
ECV that they are acted upon by other variables. In the present set of assump-
tions, however, it is the locality assumption which excludes that, possibly, the
settings act non-locally on the hidden variables (figure 13), while No Backwards
Causation forbids that there is a directed path from one outcome to the other
via the hidden variable in their common past. (Later, when we shall give up
on these assumptions, we will come back to this fact, that the hidden variable
can be acted upon.)

We are now ready to derive probabilistic consequences from the five causal
assumptions we have just introduced. Applying the Causal Markov Condition
to the local common cause structure in figure 9 yields the following probabilistic
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2 A causal interpretation of Bell’s theorem

independencies:

I(a, {ψ,λ, b,β}) (3)

I(b, {ψ,λ,a,α}) (4)

I(ψ, {λ,a, b}) (5)

I(λ, {ψ,a, b}) (6)

I(α, {b,β}|{a,ψ,λ}) (7)

I(β, {a,α}|{b,ψ,λ}) (8)

From (6)–(8) we can now very easily derive autonomy and Local Factorisation,
the two probabilistic assumptions which are needed for Bell’s theorem.7

So we have found a set (X) of causal assumptions which imply the prob-
abilistic conditions entailing Bell inequalities. This makes the interpretation
premise (P0), that we have added to Bell’s argument, explicit. The five causal
assumptions are the causal interpretation of Bell’s theorem we have been look-
ing for. The complete argument, including the causal interpretation, reads:

(P0) Exogeneity of Controlled Variables, the Causal Markov Condition,
Causal Sufficiency1, Causal Einstein Locality and No Backwards
Causation imply Probabilistic Autonomy and Local Factorisation:
(ECV) ∧ (CMC) ∧ (CS1) ∧ (CEL) ∧ (NBC)→ (A) ∧ (LF)

(P1) Probabilistic Autonomy and Local Factorisation imply Bell inequal-
ities:
(A) ∧ (LF)→ (BI)

(P2) Bell inequalities are empirically violated: ¬(BI)

(C1) Probabilistic Autonomy or Local Factorisation fails: ¬(A)∨¬(LF)
(from P1 & P2, MT)

(C2) At least one of the following principles fails: Exogeneity of Con-
trolled Variables or the Causal Markov Condition or Causal Sufficiency1

or Causal Einstein Locality or No Backwards Causation:
¬(ECV) ∨ ¬(CMC) ∨ ¬(CS1) ∨ ¬(CEL) ∨ ¬(NBC)

(from P0 & C1, MT)

7The derivation uses two of the semi-graphoid axioms for conditional independence relations
(see Pearl, 2000, p. 11):

(8) ∧ ‘decomposition axiom’⇒ I(β,a|{b,ψ,λ}) (9)

(6) ∧ ‘weak union axiom’⇒ I(λ, {a, b}|ψ) (10)

(10) just is autonomy, and (7) and (9) imply Local Factorisation:

P (αβ|abψλ)
product

rule= P (α|βabψλ)P (β|abψλ) (11)

(7),(9)
= P (α|aψλ)P (β|bψλ) (12)
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2 A causal interpretation of Bell’s theorem

In this formulation, Bell’s theorem involves two levels: a probabilistic and a
causal one. The sub-argument from (P1) and (P2) to (C1) is the usual Bell
argument on the probabilistic level. Here we have complemented it by a causal
interpretation (P0) which yields a causal conclusion (C2).

2.3 Disentangling causal structure from spatio-temporal realisation

The causal result (C2) shows that the standard conclusion from Bell’s theorem
that there is a non-local influence, ¬(CEL), is not without alternative. In fact,
it is just one in five different possible conclusions. The Bell argument might
have different conclusions and our arguments explicitly presents the possible
options.

There are two problems. First, which of the five causal assumptions is the
one that fails? As the Bell argument in itself does not tell, one would have to
invoke further arguments (or criteria). For instance, if one opts for the non-
locality horn, one has to have good reasons why the other assumptions hold.
However, we shall not discuss at this point which of the assumptions fails. The
reason is that this will be easier to treat given the conclusion of the stronger
Bell argument that we shall present in the following section. For in the stronger
form some of the assumptions, that have been necessary here, turn out to be
dispensable (so there will be fewer options).

The second problem is that even if knew that it is locality which fails this
would leave us with several options for our question concerning the causal struc-
ture: either there could be a non-local influence between the outcomes, or
between a setting and its distant outcome, or between a setting and the hidden
variable. Thus, a failure of this assumption is not really precise in terms of
which variable influences which. The same is true for failures of No Backwards
Causation: it would leave us with possible influences between the same pairs of
variables—just that they are not direct and non-local but indirect and zig zag
in time.

So a failure of these two assumptions allows influences between the same
pairs of variables but just differs in how these are spatio-temporal realised. The
spatio-temporal features, however, are neither crucial for the derivation nor for
our present question (we have said that we are interested in the causal structure
not in its metaphysical realisation). In our derivation Causal Einstein Locality
and No Backwards Causation have served as physical (or metaphysical) justi-
fications for excluding influences between space-like separated variables. But
the argument does not essentially rely on this spatio-temporal justification: the
argument is formal and the formal function of the spatio-temporal principles
is just to exclude directed causal paths from one wing of the experiment to
the other. Crucuial for the derivation (and for our question) is just that some
variables are not causes of some others, so that certain probabilistic independ-
encies (Local Factorisation and Probabilistic Autonomy) hold. So it is clear
that we can as well derive the Bell inequalities from principles which directly
state which variables cannot influence another:

Causal Outcome Independence (COI): None of the outcomes
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2 A causal interpretation of Bell’s theorem

is a direct effect of the respectively other outcome relative to V 1.

Causal Parameter Independence (CPI): None of the outcomes
is a direct effect of its distant setting relative to V 1.

Causal Autonomy (CA): None of the settings directly influences
the hidden variable λ relative to V 1.

(V 1 is our usual set of variables, V1 = {α,β,a, b,ψ,λ}.) In the context of
EPR experiments, these three principles are extensionally equivalent to Causal
Einstein Locality and No Backwards Causation, since they impose the same
restrictions to causal structures: given these three principles plus ECV, only
local structures are possible. Hence, Bell inequalities follow if we add the CMC
and Causal Sufficiency1. This allows to replace Causal Einstein Locality and
No Backwards Causation in premise (P0) of the causal Bell argument by the
new principles:

(P0′) Exogeneity of Controlled Variables, the Causal Markov Condition,
Causal Sufficiency1, Causal Outcome Independence, Causal Para-
meter Independence and Causal Autonomy imply autonomy and
Local Factorisation:
(ECV) ∧ (CMC) ∧ (CS1) ∧ (COI) ∧ (CPI) ∧ (CA)→ (A) ∧ (LF)

While the other premisses (P1) and (P2) remain unaltered, the new premise
(P0′) entails a new conclusion:

(C2′) At least one of the following principles fails: the Exogeneity of
Controlled Variables or the Causal Markov Condition or Causal
Sufficiency1 or Causal Outcome Independence or Causal Parameter
Independence or Causal Autonomy:
¬(ECV) ∨ ¬(CMC) ∨ ¬(CS1) ∨ ¬(COI) ∨ ¬(CPI) ∨ ¬(CA)

The difference to the former conclusion is that in (C2) the metaphysical
principles Causal Einstein Locality and No Backwards Causation were at stake,
while here it is influences between certain variables (irrespective of their spatio-
temporal realisation). Thus, we have separated the spatio-temporal question
from the question of the causal structure: in the new form we can discuss
which variable influences which without considering how these paths are spatio-
temporally realised. It is important not to mix these two questions. In the
following we shall only consider the former: we shall make explicit possible
causal structures but we shall not care about how causal relations are embedded
in space-time. Especially, we explicitly allow for causal relations between space-
like separated variables. If we find that there is an influence between space-like
separated variables, e.g. between a setting and its distant outcome, we do not
discuss whether it is due to a non-local influence or an influence backwards and
forwards in time. This is an important but separate question, which we can
and do leave open here. Note that neglecting the spatio-temporal question also
means omitting intervening variables backwards in time, such as µ in figure 10.
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2 A causal interpretation of Bell’s theorem

This structure will now be depicted as shown in figure 11: the causal path
b→ µ→ β is replaced by a direct influence b→ β.

Having separated the question of spatio-temporal realisation from that of
the causal structure we nevertheless continue to speak of local and non-local
causal relations and structures. A local (non-local) causal relation is just one
between time-like (space-like) separated variables, e.g. a → α (a → β). A
local (non-local) structure is one which contains only local (some non-local)
causal relations. But by qualifying a relation as, for instance, non-local we do
not mean to say anything about how the causal relation is in fact embedded in
space and time. The non-local relation might be embedded non-locally or by
backwards and forwards causation.

2.4 Suggested causal structures

So if ECV, the CMC and Causal Sufficiency1 hold, we either have an influ-
ence between the outcomes, or between a setting and its distant parameter,
or between s setting and the hidden variable (fig. 14–16). These are inform-
ation about single causal relations—but how do the complete structures look
like in these cases? Bell’s argument does not tell. It just requires that there
must be one of these relations, but does not describe the rest of the structure.
Since violating Bell inequalities requires to have enough causal dependencies, a
maximal structure consistent with ECV and CS1 (fig. 17) will certainly suffice.
But what about weaker structures? Which arrows can we delete such that the
structure still allows a violation of Bell inequalities?

Actually, the most interesting cases are minimal structures, which may not
lose any arrow without losing their ability to violate Bell inequalities. We con-
jecture that they look like the prototypes in figures 3, 4 and 6. But how do we
know? Are there alternatives? Which further argument besides Bell’s determ-
ines how these structures look like? The answer to the latter question is that
structures with too few arrows, like those in fig. 14–16, by the CMC yield inde-
pendencies which are in conflict with the empirical probability distribution. For
instance, all three structures would yield I(α,ψ), which is empirically wrong.8

This conflict is direct because it only requires comparing independencies fol-
lowing from the structures with the empirical distribution; no Bell inequality
or other sophisticated moves are involved.

Therefore, we need further conditions, which guarantee consistency with the
empirical distribution (in the just described sense that the CMC does not yield
independencies which are empirically wrong). These conditions are:

(a) There is a directed causal path from the quantum state to each
outcome (ψ → . . .→ α and ψ → . . .→ β).

8 It might seem unfamiliar that empirically the dependence ¬ I(α,ψ) holds, because in ex-
periments with maximally entangled quantum objects, I(α,ψ) is the case. However, the
slightest deviation from maximal entanglement yields the dependence; certain independ-
encies of maximally entangled objects are just due to special degeneracies / symmetries
of maximal entanglement. Hence, here we presume a statistics of non-maximal entangled
objects.
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2 A causal interpretation of Bell’s theorem

ba

α β

ψ λ

Fig. 14: Violation of Causal Outcome
Independence

ba

α β

ψ λ

Fig. 15: Violation of Causal Para-
meter Independence

ba

α β

ψ λ

Fig. 16: Violation of Causal
Autonomy

ba

α β

ψ λ

Fig. 17: Maximal structure
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2 A causal interpretation of Bell’s theorem

(b) There is a directed causal path from each setting to its local outcome
(a→ . . .→ α and b→ . . .→ α).

These principles can be justified by the Causal Markov Condition. However,
in this case as well as in others, there is a more appropriate principle which
is equivalent to the CMC, but simplifies the reasoning considerably. We shall
now introduce this principle, before we come back to the conditions (a) and (b).
The principle says (Pearl 2000, p. 16ff; Spirtes et al. 2000, p. 43–46):

d-Separation Criterion: Two variables A and B in a causal
graph are probabilistically independent conditional on a set of vari-
ables C, if A and B are d-separated relative to C.

The central concept ‘d-separation’ is a causal property which indicates how A
and B are related in a given causal structure. It is defined as follows:

d-separation: Two variables A and B in a causal graph are d-
separated relative to a set of variables C, if there is no active causal
path between A and B relative to C.

Active path: A causal path between two variables A and B is
active relative to C if all nodes on it are active. A node is active if
and only if

– it is a non-collider and not in C

or

– it is a collider and it (or one of its causes) is in C.

Collider: A node is a collider on a causal path, if there are two
incoming arrows from that path.

The d-separation criterion implies the same independencies as the CMC, but
the derivation procedure is much more elegant. For one can directly read off
from a given graph whether a pair of variables is implied to be independent given
any set of conditional variables. In contrast, by the CMC one can only read off
independencies conditional on all direct causes of one of the variables. All other
independencies have to be derived from these former independencies by logical
relations.9 For instance, applied to the local structure, the CMC directly only
tells that the outcome α is independent of the setting b conditional on its direct
causes a, ψ and λ, i.e. I(α, b|{a,ψ,λ}). Without further inferences the CMC
does not tell, whether, e.g., the unconditional independence I(α, b) holds. The
d-separation criterion, however, does: the independence is not implied because
both causal paths between α and b, one via ψ and one via λ, are active due to
the fact that ψ and λ are non-colliders which do not appear in the conditional.

Since the d-separation criterion is equivalent to the CMC (both yield the
same independencies) but is much easier to apply, we shall now use it to justify
the conditions (a) and (b). More appropriately, we shall use the following
equivalent principle:10

9 See the semi-graphoid axioms in (Pearl, 2000, p. 11).
10 Logically, the causal connection principle is just the contraposition of the d-separation

criterion. The name was recently introduced by (Schurz and Gebharter, preprint).
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2 A causal interpretation of Bell’s theorem

Causal Connection Principle (CCP): Two variables A and B
are d-connected relative to a set of variables C, if they are probab-
ilistically dependent relative to C, ¬ I(A,B|C).

d-connection: Two variables A and B in a causal graph are d-
connected relative to a set of variablesC, if they are not d-separated
relative to C.

Condition (a) can be derived from the empirical fact that in EPR exper-
iments with different non-maximally entangled states ψ the probabilistic de-
pendencies ¬ I(α,ψ) and ¬ I(β,ψ) hold. By the causal connection principle,
the former dependence requires that there is an active causal path between ψ
and α (otherwise the d-separation criterion or the CMC, respectively, would
imply the independence I(α,ψ)). Since the dependence is unconditional, the
path may not contain colliders. It is either a directed causal path, ψ → α or
ψ ← α, or a path with a common cause of ψ and α. Since the latter two
paths are forbidden by ECV, the former must hold. This path from ψ to α,
could either be direct, i.e. ψ → α, or indirect via the hidden variable, i.e.
ψ → λ → α, or indirect via the other outcome, i.e. ψ → β → α. Analogous
causal paths from ψ to β prevent inconsistency with to the other dependence
¬ I(β,ψ).

The justification for condition (b) is similar to that of (a): in experiments
with non-maximally entangled quantum objects, the outcomes depend on their
local settings, ¬ I(α,a) and ¬ I(β, b). So, by the CCP, there must be an active
causal path between each setting and its local outcome. Due to ECV one can
only have a directed causal path from the setting to the outcome, i.e. a → α
and b → β. This path can be a direct influence, or it can be indirect via the
respective other outcome, i.e. a → β → α or b → α → β, or indirect via the
latent common cause λ, i.e. a→ λ→ α or b→ λ→ β.

So far for the justification and explication of the conditions (a) and (b).
Finally, we should note another condition which does not derive from empirical
facts: the hidden variable λ was introduced as a hidden common cause of the
outcomes. According to causal graph theory, there is no reason to account for
latent variables unless they are common causes. Hence, we also require:

(c) The hidden variable λ is a common cause of the outcomes.

So the minimal structures can be found by starting with one of the causal
relations necessary for violating Bell inequalities (fig. 14–16) and then adding
causal paths which fulfil conditions (a)–(c). We have seen that (a) and (b)
can be realised in different ways.11 Accordingly, there are several minimal
structures, which we do not list here all. We focus on the most plausible cases
which fulfil (a) by direct influences and (b) either by direct or by indirect
influences via the hidden variable. This subset of minimal structures is shown
in figures 18 to 21. The first three are the prototypes from figures 3, 4 and

11 Note that not all possibilities are consistent with another, e.g. a→ β → α is inconsistent
with ψ → α→ β, because it requires to both have α→ β and α← β. Furthermore, not
all structures which are composed in this way are minimal.
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2 A causal interpretation of Bell’s theorem

6 (figure 21 is a new structure which we have not considered so far). So we
have provided a clear argument that these prototypes are minimal structures
fulfilling both the indirect empirical requirements from the violation of Bell
inequalities (if ECV, the CMC and CS1 hold) as well as the direct empirical
constraints (a) and (b) we have considered in this section.

Minimal structures which can violate Bell inequalities
(according to the standard Bell argument)

ba

α β

ψ λ

Fig. 18: Minimal structure 1

ba

α β

ψ λ

Fig. 19: Minimal structure 2

ba

α β

ψ λ

Fig. 20: Minimal structure 3

ba

α β

ψ λ

Fig. 21: Minimal structure 4

2.5 Against the standard view 1: a holistic interpretation scheme

We have provided a causal interpretation of the standard Bell argument and
have spelled out some of its consequences in terms of causal structures. What is
the difference to usual causal interpretations? First, we have consistently used
causal graph theory, which is by now not very common in the EPR literature.
At every step, the argument is explicit about precisely which principles are at
stake. Most of the principles concern features of causal structures which are
clearly illustrated by associated graphs. Causal graph theory also points out
that besides structural features the translation of structures to probabilistic
facts needs special attention: by the CMC (or the d-seperation criterion or the
causal connection principle, respectively) it provides a clear connection between
causal structures and probabilistic facts.

Second, in the light of our argument the standard interpretation which asso-
ciates singular probabilistic conditions with a specific causal meaning becomes
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2 A causal interpretation of Bell’s theorem

highly questionable. Consider, for instance, the usual claim that Local Factor-
isation is a locality condition. It can easily be seen by causal graph theory that
this is not true, because Local Factorisation is neither a necessary nor a sufficient
condition for Einstein locality. It is not sufficient because there can be non-local
causal relations, for instance the relation a Õ λ in an otherwise local structure
(see fig. 22), and the CMC would still imply Local Factorisation. Neither is
Local Factorisation necessary for Einstein locality: from a single causal claim
like Einstein locality nothing follows on a probabilistic level, simply because
the translation principle, the CMC, is missing. But even assuming the CMC,
Local Factorisation does not follow; the other assumptions are needed as well.
Suppose, for instance, Causal Sufficiency1 failed, because, besides λ, there were
another latent common cause of the outcomes. Then, instead of Local Factor-
isation we had the product form P (αβ|abψλ) = P (α|βabψλ)P (β|bψλ), i.e. the
outcome in the first factor, α, would in general still depend on β and b due to the
forgotten latent common cause.12 So there really is no correspondence between
a single causal claim and one of the probabilistic assumptions. Premise (P0)
shows that only Einstein locality and the CMC and No Backwards Causation
and Causal Sufficiency1 and the CMC jointly imply that Local Factorisation
holds. So the only thing we can say is that, if Local Factorisation fails, one of
these causal assumptions cannot be true. But without further assumptions one
does not know which.

ba

α β

ψ λ

Fig. 22: Non-local structure implying
Local Factorisation

This ambiguity remains if one uses Jarrett’s analysis (1984) that a failure
of Local Factorisation is equivalent to ‘Outcome Dependence or Parameter
Dependence’. Without further assumptions it is not justified—as it has be-
come usual—to claim that the probabilistic condition Outcome Dependence,
¬ I(α,β|a, b,ψ,λ), signifies an influence between the outcomes (Causal Out-
come Dependence) and the other probabilistic condition Parameter Depend-

12 Since one does not condition on the additional latent common cause, there is an active
causal path between α and β via λ (λ is a non-collider and does not appear in the
conditional), i.e. the two variables are d-connected. There is also an active path between
α and b via β and λ (β is a collider which appears in the conditional). Hence, the CMC
does not imply that they are independent. So, except for certain special cases (non-faithful
independencies) they are dependent.
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2 A causal interpretation of Bell’s theorem

ence, ¬ I(α, b|a,ψ,λ)∨¬ I(β,a|b,ψ,λ), an influence between at least one set-
ting and its distant outcome (Causal Parameter Dependence). Infering Causal
Outcome Dependence from probabilistic Outcome Dependence is not valid. It
is true, the latter might be due to the former, but it might as well be due to
other facts, e.g., another latent common cause which has not been accounted
for (i.e. Causal Sufficiency1 fails).

Similarly, probabilistic Parameter Dependence does not imply Causal Para-
meter Dependence (as in fig. 4). Here, the ambiguity is even more problematic
for the standard view. For one of the alternative structures which account for
probabilistic Parameter Dependence without being causally parameter depend-
ent, is the direct cause structure in figure 3: there is no direct influence from the
setting b to its distant outcome α (i.e. Causal Parameter Independence holds),
but due to the indirect path b→ β → α it is nevertheless in general probabil-
istically parameter dependent.13 This counterexample is delicate because direct
cause structures are commonly regarded as the prototype for structures which
are probabilistically outcome dependent but parameter independent! (Accord-
ing to the standard view, Parameter Independence is important because its vi-
olation is said to be incompatible with relativity.) However, the example shows
that in general one cannot have Outcome Dependence realised by an influence
between the outcomes without Parameter Dependence holding.14 The standard
view’s model of quantum non-locality does not seem to be well founded.

The upshot of all this is that the standard way to interpret Bell’s theorem,
viz. to directly associate probabilistic facts with a specific causal meaning, is
flawed. Correlation is not causation. A given probabilistic dependence allows
for various different causal interpretations. Especially one should not directly
attach a causal meaning to Outcome Dependence or Parameter Dependence.
This is a first failure in the argument of the standard view. Rather, we have
found a kind of holistic interpretation scheme: only a set of causal assumptions
fixes the meaning of a certain probabilistic condition. So the best one could
say about the standard view is that it implicitly assumes the other causal as-
sumptions which are required for a sound interpretation. We stress, however,
that these assumptions are non-trivial. In this first part of the present paper
we have made these assumptions explicit. We have used causal graph theory
to introduce an appropriate set, which provides a clear causal interpretation of
Bell’s theorem.

Our discussion of causally outcome dependent structures which are prob-
abilistically parameter dependent points to still another problem: even if one
assumes an appropriate set of causal assumptions, it is problematic to causally
interpret a singular probabilistic dependence (here: Outcome Dependence). For
it might be that the causal assumptions imply other probabilistic facts which are

13 Parameter independence I(α, b|{a,ψ,λ}) ∧ I(β,a|{b,ψ,λ}) is not implied by the d-
separation criterion because the causal path from b to α via β is active.

14 Jones and Clifton (1993) have made explicit the extra probabilistic conditions under which
Outcome Dependence implies Parameter Dependence. They mention that this probabilistic
scenario is quite plausibly regarded as a direct cause structure, but they do not make the
transition from probabilistic to causal claims as clear as our causal graph theoretic approach
does.
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not desired or empirically inadequate (here: Parameter Dependence). Causal
graph theory tells us that one has to consider all dependencies and independ-
encies of given probability distribution. (It is our conditions (a) and (b) which
prevent such inconsistencies with the empirical distribution.) Only interpret-
ations of total probability distributions are sound, which is another holistic
feature of causal interpretations.

3 Interpreting a stronger Bell argument

Having provided a causal interpretation of the standard Bell argument, we
shall now turn to a recent stronger version of Bell’s argument (Näger, 2012).
The method of interpretation will be very much the same, but the results will
differ from those of the standard argument: we shall show that not only local
structures but also direct cause structures imply Bell inequalities. This will
make the conclusion of the argument considerably stronger.

3.1 A recent stronger version of Bell’s theorem

Näger (2012) proves that Bell inequalities can be derived from weaker probabil-
istic assumptions than autonomy and Local Factorisation. Upholding autonomy
he shows that the Bell inequalities do not only follow from local product forms
of the hidden joint probability P (αβ|abψλ) (esp. Local Factorisation), but
also from certain non-local ones, which he calls ‘weakly non-local’. In contrast
to ‘strongly non-local’ product forms they are characterised by the following
principle:

No Probabilistic Bell Contextuality (NPBC): None of the
outcomes in the hidden joint probability depends probabilistically
on both settings.

So, surprisingly, we can have a dependence on the distant parameters (in the
following three equations we underline variables which indicate an interesting
dependence),

P (αβ|abψλ) = P (α|bψλ)P (β|aψλ), (13)

or even a dependence between the outcomes,

P (αβ|abψλ) = P (α|βaψλ)P (β|bψλ), (14)

or both,
P (αβ|abψλ) = P (α|βbψλ)P (β|aψλ), (15)

and the conclusion still follows.15 Such weakly non-local distributions imply
Bell inequalities as do local ones.

Based on this new derivation Näger has formulated a stronger Bell argument
on the probabilistic level. It says:

15 There are further forms, see table 1 in (Näger, 2012). But (14) and (15) are the strongest
ones, which yield the most far reaching results.
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(P1′) Probabilistic Autonomy and No Probabilistic Bell Contextuality
imply Bell inequalities:
(A) ∧ (NPBC)→ (BI)

(P2) Bell inequalities are empirically violated: ¬(BI)

(C1′) Probabilistic Autonomy or No Probabilistic Bell Contextuality fails:
¬(A) ∨ ¬(NPBC) (from P2 & P3, MT)

The conclusion of this argument is stronger than that of the standard Bell
argument because the failure of No Probabilistic Bell Contextuality excludes
not only local product forms but also weakly non-local ones. In the following
we shall give this new argument a causal interpretation. Our hope is that the
interpretation of the stronger argument will narrow the range of possible causal
structures (and also weakens some of the other causal conditions). We shall
follow the same interpretation scheme as above. We formulate an interpretation
premise which is an implication from a set of causal assumptions (X′) to those
probabilistic conditions which by premise (P2′) imply Bell inequalities:

(P0′′) The causal assumptions (X′) imply autonomy and No Probabilistic
Bell Contextuality:
(X′)→ (A) ∧ (NPBC)

(X′) stands for a conjunction of causal assumptions. Since it only has to imply
No Probabilistic Bell Contextuality instead of the stronger Local Factorisation,
it is to be expected that it can be made weaker than the set of causal assump-
tions in its predecessor (P1′). If this were true, the new conclusion of the causal
interpretation,

(C2′′) (X′) must fail: ¬(X′) (from P0′′ & C1′)

would be stronger. We now have to discuss, what the weakest form of (X)
exactly is.

3.2 A new causal interpretation

To begin with, let us assume that (X′) includes ECV, the CMC and Causal
Sufficiency1. What we are looking for are further principles that restrict causal
structures such that the assumptions jointly yield Probabilistic Autonomy and
No Probabilistic Bell Contextuality.

Let us first consider autonomy: since autonomy is an unconditional inde-
pendence of λ and both settings, it is clear that it is implied by the d-separation
criterion (or, equivalently, by the CMC) if there is no active path from λ to any
of the settings. What do we have to require that there are no such paths? First,
we can ignore paths with colliders because they cannot be unconditionally act-
ive. Furthermore, ECV, which says that the outcomes are exogenous variables,
excludes a common cause of λ and one of the settings as well as a directed
causal path from λ to one of the settings. So the only remaining possibility
which might violate autonomy are directed causal paths from the settings to
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the hidden variable λ. Since λ is a common cause of the outcomes, the directed
paths cannot lead via the outcomes. Neither can they lead via ψ, for ψ is exo-
genous as well (ECV). Only a direct causal connection from the settings to the
outcomes can violate autonomy, a→ λ or λ← b. We exclude such influences
by a principle that we have already introduced: Causal Autonomy.

We now turn to the product forms of the hidden joint probability: which
causal assumptions do have to hold so that the implied product forms obey No
Probabilistic Bell Contextuality? In order to find an appropriate principle, we
need a link between causal structures and these product forms. Fortunately,
given ECV, the CMC and Causal Sufficiency1, there is a clear correspondence
between a causal structure and the product form of the hidden joint probability;
given a certain causal structure for the variables in {α,β,a, b,ψ,λ}, the hidden
joint probability has the following form:

P (αβ|abψλ) = P (α|{direct causes of α})P (β|{direct causes of β}) (16)

The non-local common cause structure in figure 4, for instance, implies the
hidden joint probability P (αβ|abψλ) = P (α|abψλ)P (β|bψλ).

The rule (16) follows straightforwardly from the assumptions we have made:
by the product rule (a theorem of probability theory), the hidden joint prob-
ability can in general be written as

P (αβ|abψλ) = P (α|βabψλ)P (β|abψλ) (17)

The CMC and Causal Sufficiency jointly guarantee that a variable becomes
independent of all variables which are not effects given its direct causes. So if
we can show that none of the variables in each of the conditionals on the right
hand side in (17) is an effect of the outcome in question, then the rule follows.
This, however, is easy to show: ECV guarantees that a, b and ψ are not effects
of the outcomes. Neither is λ, for we have introduced it as a hidden common
cause of the outcomes. Finally, concerning β, which appears in the conditional
of α, we have to discern two cases: if β causes α or if there is no causal
relation between the outcomes at all, β is not an effect of α and everything
is fine. If, however, α causes β, one has to choose the equivalent product
form P (αβ|abψλ) = P (α|abψλ)P (β|αabψλ): in this form every variable in
each conditional is not an effect of the respective outcome, so the rule follows.
So in any case (16) holds (given ECV, the CMC and Causal Sufficiency1).

According to (16), a certain causal structure determines the form of the
hidden joint probability. In turn, by this rule, it is easy to find a generating
causal structure for any given form of the hidden joint probability: just assume
that every variable in each conditional is a direct cause of the respective out-
come. Using the example from above the other way round we can say that
the product form P (α|abψλ)P (β|bψλ) is generated by the non-local common
cause structure in figure 4. With this observation it is easy to formulate the
corresponding causal principle to No Probabilistic Bell Contextuality (which
is the characteristic of product forms implying Bell inequalities). Suppose we
have a product form which obeys No Probabilistic Bell Contextuality, i.e. each
of the outcomes depends probabilistically at most on one setting. Then, by the
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rule we have just derived, a generating causal structure must be such that each
outcome has at most one setting as its direct cause:

No Causal Bell Contextuality1 (NCBC1): None of the out-
comes is a direct common effect of both settings relative to the set
of variables {α,β,a, b,ψ,λ}.

If this principle and ECV, the CMC and Causal Sufficiency1 hold, then,
by (16), No Probabilistic Bell Contextuality follows. If also the structure in
question obeys Causal Autonomy, Probabilistic Autonomy is implied as well.
Then, Näger’s stronger Bell argument entails Bell inequalities. So the causal as-
sumptions Causal Autonomy and No Causal Bell Contextuality1 are the causal
interpretation (X′) of Näger’s Bell argument. The new first premise of the
stronger Bell argument explicitly reads:

(P1′′) The Exogeneity of Controlled Variables, the Causal Markov Con-
dition, Causal Sufficiency1, Causal Autonomy and No Causal Bell
Contextuality1 imply Probabilistic Autonomy and No Probabilistic
Bell Contextuality:
(ECV) ∧ (CMC) ∧ (CS1) ∧ (CA) ∧ (NCBC1)→ (A) ∧ (NPBC)

The set of five causal assumptions in the antecedent, which provides the causal
interpretation of the stronger Bell argument, differs from that of the standard
argument, (P1′), in that we have replaced Causal Outcome Independence and
Causal Parameter Independence by No Causal Bell Contextuality1.

3.3 Which structures imply Bell inequalities?

What difference does this replacement make for the causal structures implying
Bell inequalities? Up to this point we only have a very abstract understanding of
this new causal Bell argument, because we have not shown yet what No Causal
Bell Contextuality1 specifically amounts to in terms of causal structures. Which
causal structures fall under No Causal Bell Contextuality1, and, hence, imply
Bell inequalities?

The most interesting cases are, of course, maximal structures implying Bell
inequalities. Structures are ‘maximal’ if one cannot add any arrow to the struc-
ture without violating any of the causal assumptions which restrict them (i.e.
ECV, Causal Autonomy and No Causal Bell Contextuality1). We can find such
maximal structures if we look for those structures which by rule (16) imply
the maximal product forms (14) and (15) falling under No Probabilistic Bell
Contextuality. According to the rule an appropriate structure for the first form
is the one depicted in figure 23 (or its mirror image structure which has α→ β
instead of α ← β; the generating structures are in general not unique). Al-
though there is a non-local causal relation between the outcomes, the structure
is allowed by No Causal Bell Contextuality1, because none of the outcomes is
a direct common effect of the settings. It is true, α is a common effect of the
settings, but only indirectly of b (via β); this is not ruled out by No Causal
Bell Contextuality1. The other maximal product form, (15), is generated by
the structure in figure 24 (or again its mirror image). It is consistent with No
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3 Interpreting a stronger Bell argument

Causal Bell Contextuality1 because each outcome is only a direct effect of its
distant setting but not of its local one (α is only an indirect effect of a via β).

Maximal causal structures implying Bell inequalities

ba

α β

ψ λ

Fig. 23: Direct cause structure 1

ba

α β

ψ λ
gekreuzt mixed

Fig. 24: Direct cause structure 2

Obeying all causal principles of the new Bell argument, each of the two struc-
tures in figures 23 and 24 implies Bell inequalities. Hence, we have shown that
there are non-local causal structures which imply Bell inequalities! This means
that some of the causal principles of the standard Bell argument have been
too strong: both structures violate Causal Outcome Independence (because
of the causal relation from one outcome to the other) and that in figure 24
also violates Causal Parameter Independence (due to the causal relations from
each setting to its distant outcome). According to the standard Bell argument
these structures wrongly count as being able to violate Bell inequalities. The
causal interpretation of the stronger Bell argument, however, shows that this
is not the case: these structures do imply Bell inequalities. This makes explicit
that the new principle No Causal Bell Contextuality1 is weaker than its pre-
decessors Causal Outcome Independence and Causal Parameter Independence.
According to the new argument there are more structures which imply Bell
inequalities: not only local structures but also certain non-local ones do.

So far we have only considered maximal structures in figures 23 and 24. What
other structures are there that imply Bell inequalities according to the new
argument? Maximality meant that one may not add arrows without producing
an inconsistency with the assumptions. However, removing any arrows from
the maximal ones cannot yield a conflict with the principles (for these only
constrain possible arrows). By rule (16) it is also clear that structures which
derive from the maximal ones in this way have weaker product forms and,
hence, also imply Bell inequalities. Let us call the set of all structures which
one can gain by removing arrows from the maximal ones (including the latter)
‘Bell structures’. For instance, erasing the connection α ← β in figure 23,
yields the usual local structure (figure 12). This makes explicit that the local
structures are a proper subset of the Bell structures. Since up to now only local
structures were thought to imply Bell inequalities, structures which derive from
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the ones in figures 23 and 24 and leave one of the non-local arrows in place are
the news: these non-local Bell structures do imply Bell inequalities as well. So
the present set of causal assumptions extends the set of structures which imply
Bell inequalities by these non-local ones.

3.4 Minimal structures violating Bell inequalities

Since Bell inequalities are violated, (P3), this means that the new Bell argument
from (P0′′), (P1′) and (P3) possibly excludes more causal structures than the
standard one. It has the new stronger conclusion:

(C2′′) At least one of the following principles fails: Exogeneity of Con-
trolled Variables or the Causal Markov Condition or Causal Sufficiency1

or Causal Autonomy or No Causal Bell Contextuality1:
¬(ECV) ∨ ¬(CMC) ∨ ¬(CS1) ∨ ¬(CA) ∨ ¬(NCBC1)

(from P0′′ & C1′)

I have said ‘possibly’ because in this form of the argument the violation might
be explained by the failure of any of the causal assumptions. If, however, ECV,
the CMC and Causal Sufficiency1 hold, either Causal Autonomy or No Causal
Bell Contextuality1 must fail. Then, the true causal structure cannot be any
of the Bell structures, and, as we have just seen, this rules considerably more
causal structures out than the comparable result of the standard argument that
the causal structure cannot be local. In this sense the new causal Bell argument
is stronger than the standard one.

So if ECV, the CMC and Causal Sufficiency1 hold, Bell structures are ex-
cluded. But what does this result mean positively? Which structures exactly
are allowed because they can violate Bell inequalities? By what we have said
up to now, it is clear that only those structures can violate Bell inequalities
which fulfil one of the following conditions:

(i) At least one of the settings directly influences the hidden common
cause λ (violation of Causal Autonomy, fig. 25).

or

(ii) At least one of the outcomes is a direct common effect of both
settings (violation of No Causal Bell Contextuality1, fig. 26).

These are the requirements from the stronger Bell argument. In section 2.4,
we have argued that appropriate structures for EPR experiments have to meet
the further conditions (a)–(c). Conditions (a) (there must be a directed path
from the quantum state to each outcome) and (b) (there must be a directed
path from each setting to its local outcome) guaranteed that the structures do
not imply independencies which directly contradict the empirical distribution,
while (c) stated that the hidden variable λ was defined as a common cause.

Minimal structures complying with these conditions can be found by choos-
ing either (i) or (ii) and then adding causal paths such that also (a)–(c) hold.
We have said above that (a) and (b) can be realised in different ways. Again,
we do not list all of the possible minimal structures, but we focus on the most
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Requirements for violating Bell inequalities
(according to the stronger Bell argument)

ba

α β

ψ λ

Fig. 25: Violation of Causal
Autonomy

ba

α β

ψ λ

Fig. 26: Violation of No Causal Bell
Contextuality1

plausible cases which fulfil (a) by direct influences and (b) either by direct or by
indirect influences via the hidden variable. This fraction of minimal structures
is shown in figures 27 to 29. Any structure which derives from these by adding
one or several arrows also implies Bell inequalities. The maximal structure
which one can arrive at in this way is shown in figure 30.

By this construction rule it is clear that there are many variants of causal
structures which can violate Bell inequalities. It is not informative to list them
all. Rather, it is instructive to come back to the prototypes of causal structures
in figures 2 to 7, and ask which of these can violate Bell inequalities according
to the new argument. The answer is that the non-local common cause structure
(fig. 4 = minimal structure in fig. 29), the mixed structure (fig. 5, non-minimal)
and the indirect structure (fig. 6 = minimal structure in fig. 28) are still allowed.
(The superdeterministic structure was already excluded by ECV, and the local
structure by the standard Bell argument.) Thus, compared to the standard
Bell argument, we have excluded one further prototype, viz. the direct cause
structure (fig. 3). If ECV, the CMC and Causal Sufficiency1 hold, direct cause
structures cannot violate Bell inequalities because they imply them. This is the
bold and simple message of the stronger causal Bell argument.

4 Discussion

4.1 Against the standard view 2: unmasking a false choice

Excluding direct cause structures the stronger Bell argument refutes the stand-
ard view that EPR correlations come about by an influence between the out-
comes. It shows that structures whose only non-local influence goes from one
outcome to the other still imply Bell inequalities (fig. 3). Such influences are
too weak to produce a violation of Bell inequalities.

Against the conclusion of the standard Bell argument, (C2′), the new result
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Minimal causal structures which can violate Bell inequalities
(according to the stronger Bell argument)
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α β
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Fig. 27: Minimal structure 1
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Fig. 28: Minimal structure 2
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Fig. 29: Minimal structure 3
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Fig. 30: Maximal structure
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(C2′′) demonstrates that there is no choice to be made between Causal Outcome
Dependence and Causal Parameter Dependence (if the other assumptions—
ECV, CMC, CS1 and CA—hold): there must be a failure of No Causal Bell
Contextuality1, and since this means that at least one outcome is a direct com-
mon effect of both settings, Causal Parameter Dependence must hold. Causal
Outcome Dependence, by contrast, does not play any crucial role: it might or
might not hold.16

This result against the standard view is a causal analogue to Näger’s (2012)
claim that Jarrett’s analysis ‘Outcome Dependence or Parameter Dependence’
is misleading on the probabilistic level. Näger shows that EPR correlations
imply some kind of probabilistic dependence between a setting and its distant
parameter (while they might be outcome dependent or not). Here we have
derived a similar fact on the causal level: at least one of the settings must influ-
ence its distant parameter. The option of the standard causal Bell argument,
‘Causal Outcome Dependence or Causal Parameter Dependence’, presents us
with a false choice. One cannot avoid Causal Parameter Dependence (if ECV,
the CMC, CS1 and CA hold).

Suggesting and supporting options which are not available is a second failure
of the standard view. A first failure, we have said above (see section 2.5), was
to naively associate Jarrett’s probabilistic conditions Outcome Dependence and
Parameter Dependence with causal meaning. Here we see that even a sound
causal interpretation of the standard argument provides a false choice between
Causal Outcome Dependence and Causal Parameter Dependence. The standard
Bell argument is just inappropriate to yield correct details about the causal
structure of EPR experiments.

4.2 Which assumption should be given up?

In the strongest conclusion of the Bell argument that we have reached, (C2′′),
there are five variants of how to explain the violation of Bell inequalities: either
Exogeneity of Controlled Variables or the Causal Markov Condition or Causal
Sufficiency1 or Causal Autonomy or No Causal Bell Contextuality1 fails. But
which one is it? Which of the assumptions has to be considered the culprit for
the fact that Bell inequalities are violated?

We have already expressed our loyalty to ECV throughout this paper. For
failures of ECV would allow that variables which are otherwise controlled can
still be influenced. The settings, for instance, are determined by an experi-
menter (or by a mechanism which has been setup by an experimenter) to take
on the values that they do. To claim that nevertheless they are influenced by,
say, a hidden variable λ, would amount to saying that λ influences the experi-
menter or the mechanism in question or what else determines the settings. This
is very implausible. Moreover, it would be a mystery how the hidden variables
could influence every kind of system which happens to determine the setting
to the right value. Reducing one mystery, quantum entanglement, to another

16Note, however, that Causal Parameter Dependence alone does not suffice. The non-local
influence from one setting to its distant outcome must be combined with a local influence
from the other setting to the same outcome. A non-local influence per se would not do.
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is not a convincing explanation. We do not allow for such superdeterministic
models of EPR experiments, according to which, for instance, a hidden variable
is a common cause of both the outcomes and the settings (fig. 7).

Concerning Causal Sufficiency1 we cannot be sure that it actually holds.
It might be violated because besides λ there might be further hidden common
causes, which we have not considered in our set of variables V1 = {α,β,a, b,ψ,λ}.
Due to ECV such additional latent variables might only be common causes of
any two (or more) variables in {α,β,λ}. The important fact, however, is that
such a failure of Causal Sufficiency1 alone cannot explain EPR correlations.
For if only Causal Sufficiency1 fails one can easily reformulate the argument
to imply Bell inequalities again: just take into account all forgotten hidden
common causes such that Causal Sufficiency with respect to the extended set
of variables holds, and the derivation runs analogously as before.

For instance, suppose we have one further hidden common cause λ2 of the
outcomes in a direct cause structure (fig. 31). The new product form reads
P (αβ|abψλλ2) = P (α|βaψλλ2)P (β|bψλλ2) and an appropriate autonomy con-
dition holds, P (ψλλ2|ab) = P (ψλλ2).

17 By these two probabilistic assumptions,
Bell inequalities follow analogously as before. The causal interpretation of this
argument assumes Causal Sufficiency2, i.e. sufficiency with respect to the set
of variables V2 = {α,β,a, b,ψ,λ,λ2}. (Accordingly, some of the other as-
sumptions have to be adapted slightly to the new set of variables.) So if one
starts with one of the Bell structures but forgets a hidden common cause, one
can always extend the argument such that Causal Sufficiency holds and Bell
inequalities are implied. Since a reformulation works for any number n of ig-
nored latent common causes, we conclude that a failure of Causal Sufficiency1

cannot explain the violation of Bell inequalities.18

A similar judgement should be made concerning the Causal Markov Condi-
tion. On the one hand, it might fail and indeed it is not unlikely that it fails
in the quantum world: the well-known counterexamples (van Fraassen, 1982;
Cartwright, 1988) to Reichenbach’s principle of the common cause (Reichen-
bach, 1956) also violate the CMC, because the former is an essential part of the
latter. The examples show that in indeterministic worlds there can be common
causes which do not screen-off, i.e. which do not make their effects probabilist-
ically independent of another. Such non-screening-off common causes are the
only serious threat to the CMC. On the other hand, we claim that a failure of
the CMC in this way cannot explain the EPR correlations. This can be seen as
follows. Suppose there were a common cause which does not screen-off in any
of the Bell structures, say, the quantum state ψ in a local structure without

17The idea of Probabilistic Autonomy is that the complete state of the photons at the source,
which includes the quantum state and all latent common causes, must be unconditionally
independent of the settings. Note that the quantum state and the latent common causes
do not have to be independent from another: it is consistent with Autonomy that there
are influences from ψ to the latent common causes or between the latent common causes,
e.g. λ2 → λ.

18 Our result that even with several hidden common causes Bell inequalities follow is supported
by a recent series of papers (Graßhoff et al., 2005; Portmann and Wüthrich, 2007; Hofer-
Szabó, 2008), who claim that Bell inequalities can be derived from ‘separate common
causes’ (which is a special case of the situation we have considered).
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ba

α β

ψ λ λ2

Fig. 31: Direct structure with a
second hidden common
cause λ2 of the outcomes

latent common cause (fig. 32). This would not suffice to explain EPR correla-
tions because a common cause which does not screen-off can only produce the
same kind and strengths of correlations as two common causes which jointly
screen-off.19 The latter equivalent situation, however, is just the local struc-
ture with hidden common cause λ, which we know to imply Bell inequalities.20

19 Formally, one can always redescribe a non-screening-off common cause C1 as C1 plus a
latent common cause C2, which coordinates the correlated effects and makes the pair
C1C2 a screener-off. In order to justify this claim, consider Cartwright’s example (1988)
of a molecule in state S which decays into two parts moving in opposite direction. With
equal probability the states of the two parts are given by their momenta p,−p or by p′,−p′,
i.e. P (p,−p|S) = 1

2
= P (p′,−p′|S). So the states of the parts after the decay are perfectly

anti-correlated, but the state of the molecule S does not screen off the correlation:

P (p,−p|S) =
1

2
6= P (p|S)P (−p|S) =

1

2
· 1

2
=

1

4
(18)

However, this situation can be redescribed as there being a two-valued latent common
cause (λ = λ0, λ1), which determines whether the parts will move along the axis p (if λ0

holds) or along the axis p′ (if λ1 is present), i.e. P (p,−p|Sλ0) = 1 and P (p′,−p′|Sλ0) = 1.
Thus, jointly with the latent common cause λ the state of the molecule S does screen off:

P (p,−p|Sλ0) = 1 = P (p|Sλ0)P (−p|Sλ0) = 1 · 1 = 1 (19)

P (p,−p|Sλ1) = 0 = P (p|Sλ0)P (−p|Sλ0) = 0 · 0 = 0 (20)

P (p′,−p′|Sλ0) = 0 = P (p′|Sλ0)P (−p′|Sλ0) = 0 · 0 = 1 (21)

P (p′,−p′|Sλ1) = 1 = P (p′|Sλ1)P (−p′|Sλ1) = 1 · 1 = 1 (22)

This shows that common causes which do not screen off can be redescribed as screening
off jointly with a latent common cause. Note, however, that we do not claim that all
cases of non-screening-off common causes in fact invoke a latent common cause. Rather,
we believe that true non-screening-off common causes are possible. Here we just want to
make the point that a common cause which does not screen off can explain correlations
only to the same degree as a normal common cause plus a latent common cause.

20 The result does not change if one claimed that even given both common causes ψ and λ
the outcomes would not screen off from another. For this situation can be redescribed
as there being another hidden common cause λ2 such that ψ, λ and λ2 screen off—and
these scenarios, according to which Causal Sufficiency1 fails, we have just argued, can be
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Therefore, non-screening-off common causes in Bell structures cannot per se
explain the violation of Bell inequalities. A failure of the CMC does not suffice
to explain EPR correlations.

ba

α β

ψ

Fig. 32: Local structure with a com-
mon cause which does not
screen-off

It might be criticised that quantum mechanics is a counterexample to this
claim, because it has the described structure (ψ is a common cause which does
not screen-off in a local graph) but violates Bell inequalities. This, however,
is not correct: besides a common cause which does not screen-off, quantum
mechanics involves an influence from one of the settings to its distant outcome.
We shall justify this claim in section 4.3 below.

The only remaining assumptions whose failure might reasonably account for
EPR correlations are Causal Autonomy and No Causal Bell Contextuality1.
We have already made explicit in section 3.4 which structures are required if
one of these conditions fails: either there is an influence from one setting to the
hidden variable λ or one outcome is directly influenced by both settings. This
seems to offer a choice between two basic types of violating Bell inequalities.
However, we emphasise here that this is only apparently so because there is a
common idea behind both alternatives:

Causal Bell Contextuality2: One of the outcomes is a common
effect of both settings, either directly (violation of No Causal Bell
Contextuality1) or (partly) indirectly via the hidden variable λ (vi-
olation of Causal Autonomy).

One outcome being the common effect of both settings is the main idea of what
EPR correlations require in causal terms.21

reformulated as to imply Bell inequalities as well.
21Note that it does not suffice that one outcome is a common effect of both settings indirectly

via the other outcome (i.e. a direct cause structure 3). There are crucial differences
between an influence mediated by λ and one mediated by one of the outcomes: first, the
outcomes are two valued (λ can in principle have infinitely many values) and, second, it is
an empirical fact that there are perfect (anti-)correlations of the outcomes if the settings
agree (disagree by 90◦). (Since λ is hidden, we do not know whether similar facts hold
there.) Due to these two key facts direct cause structures imply Bell inequalities (see
Näger, 2012).
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One might object that a violation of Causal Autonomy does not by itself
imply that one of the outcomes is a common effect of the settings. This is
true. But an influence from one setting to the hidden variable, say, b → λ,
does imply the alleged fact if we involve the conditions (b) and (c) from above
(see section 2.4). The latter says that λ is a common cause of the outcomes,
so b influences both outcomes via λ. The former condition says that there
is a directed causal path from each setting to its local outcome, thus a must
influence α. Hence, α is a common effect of both settings, if Causal Autonomy
is violated by b → λ (and mutatis mutandis for violations a → λ). This
can be seen in the minimal structures which violate Causal Autonomy (fig. 27
and 28).22

4.3 The causal structure according to quantum mechanics

Having discussed general principles and structures we shall now turn to the
question which specific causal structure quantum mechanics has. Quantum
mechanics is widely assumed to have a direct structure. In fact, one of the
main motivations for the standard view (Probabilistic and Causal Outcome
Dependence) seems to have been the believe that this is the choice that quantum
mechanics suggests. By what our argument in this paper, however, it has
become clear that quantum mechanics cannot have a direct structure—because
otherwise it could not violate Bell inequalities.

Which structure then? Against the standard view, Cartwright has argued
that EPR correlations according to quantum mechanics come about by a com-
mon cause which does not screen off:

. . . the quantum state consequent on the interaction operates, in
conjunction with the separated apparatuses, as a joint cause of the
results in each wing, with no direct causal connection between one
wing and the other. (Cartwright, 1989, p. 243)

We interpret this claim as suggesting a structure like the one in figure 32—
but this cannot be true either. For we have argued above that correlations
brought about merely by common causes which do not screen-off, i.e. without
any connection between the wings, are too weak as well.

So again: what is the causal structure of quantum mechanics? We agree with
Cartwright that quantum mechanics involves a common cause which does not
screen off, but we shall show that additionally it involves an influence from one
setting to its distant outcome. We shall now give an argument for this claim.
The idea is to endow the formalism of (non-relativistic) quantum mechanics
with a causal interpretation. Since here we have a full-fledged formalism, we
can use a more direct interpretation method than above: we write down the
quantum mechanical description of processes in an EPR experiment and directly

22 Indeed, if b violates Causal Autonomy by b → λ and a would not influence its local or
distant outcome, i.e. it would not be a cause at all, Bell inequalities would follow trivially.
But if a influences any of the other variables (consistent with ECV), one of the outcomes
is a common effect of a and b, i.e. Bell inequalities are not implied any more and can be
violated.
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interpret them in a causal way. The criterion of a variable X causing another
Y in this procedure is that X is among the variables which determine Y (or
determine the probability of Y ) according to the most detailed description of
the formalism. This amounts to reading the quantum mechanical formalism as
a kind of structural equation model and associating the usual causal meaning,
i.e. to interpret the free variables as causes and the dependent variables as
effects.

We describe the experiment in the laboratory frame and assume that one of
the measurements is (at least slightly) earlier than the other (here: measure-
ment at B before measurement at A). A detailed quantum mechanical descrip-
tion of one run of an EPR experiment comes in seven steps, which are as follows
(one can find the causal sub-structure for each step (1)–(7) in figure 33):

(1) At the source, quantum mechanics ascribes a joint entangled polarisation
state to the photons A and B, e.g.

ψAB =
1√
2

(|+z〉A|+z〉B + |−z〉A|−z〉B). (23)

|+z〉A means that photon A is polarised in the z-direction, while |z−〉A means
that it is polarised perpendicular to that direction (and analogously for states
of photon B). An entangled state ψAB cannot be written as a product of one
state for A and one for B, so the single photons have no defined states, only the
compound system has. While the photons move to the measurement devices
the polarisation state does not change.

We assume a setup with two-channel measurement devices, i.e. a polarising
beam splitter (or a similar analyser) divides the beam into one with polarisation
parallel and another perpendicular to the measurement direction. Photons in
each beam are registered by a detector, so there are two detectors per device.
(Compared to one-channel setups with a polarisation filter and one detector the
former has the advantage to clearly separate between analysis and measurement
process; for filters already absorb the perpendicular beam.)

(2) When the first photon, say B, passes the analyser, its state is split up
according to the basis defined by the orientation of the device, b. So the state
ψAB, which is given in arbitrary basis (in our example the z-Basis), is now
expanded relative to the b-basis. If ψAB is rotationally invariant in the plane
of the measurement settings (as in our example), the new state ψ′AB is form-
invariant:

ψ′
AB =

1√
2

(|+b〉A|+b〉B + |−b〉A|−b〉B). (24)

We interpret the new state ψ′
AB as an effect of the former state ψAB and the

measurement setting b.
(3) The presence of detectors at B triggers that the entangled state ψ′

AB

collapses indeterministically, in our example either onto |+b〉A|+b〉B or onto
|−b〉A|−b〉B (with probability 1

2 , respectively). This is the central step in
the coming about of EPR correlations. It seems natural to interpret it such
that ψ′

AB and the presence of a detector, DB, cause the new polarisation
state. However, as this new state is a product state, each photon now possesses
its own separate state, ψA or ψB, respectively. So we should not say that ψ′

AB
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and DB cause one joint state but rather that ψ′
AB decays into two separate

states, and the decay is triggered by DB. The most plausible reading of this
process is that DB brings ψ′

AB into a new state ψ′′
AB which is perfectly similar

to ψ′
AB but is disposed to collapse instantly. Finally, the indeterministic decay

of ψ′′
AB into the two states ψA and ψB should be understood as the former

being a common cause of the latter two states.
So far for the causal structure of this crucial step. The associated probabil-

ities are:

P
(
|+b〉A|+b〉B

∣∣∣ψ′′AB

)
=

1

2
(25)

P
(
|−b〉A︸ ︷︷ ︸
ψA

|−b〉B︸ ︷︷ ︸
ψB

∣∣∣ψ′′AB

)
=

1

2
(26)

One can see that the common cause ψ′′
AB makes the separate states ψA and ψB

perfectly correlated (according to our example). However, and this is another
important feature of this central process in EPR experiments, the probabilities
imply that the common cause ψ′′

AB does not screen-off the correlation between
the new photon states:23

P
(
ψAψB

∣∣∣ψ′′AB

)
︸ ︷︷ ︸

1
2

6= P
(
ψA

∣∣∣ψ′′AB

)
︸ ︷︷ ︸

1
2

P
(
ψB

∣∣∣ψ′′AB

)
︸ ︷︷ ︸

1
2

(27)

We represent the non-screening-off of ψ′′
AB by a bow between its outgoing

arrows in the causal graph.
This was the crucial part of the quantum mechanical story for entangled

states. The rest is unsurprising and can be told quickly:
(4) When photon B is in state ψB = |+b〉B it gives a count at detector β+,

otherwise (when it is in state ψB = |−b〉B) at β−. So it seems obvious that ψB

influences β.
(5) When photon A in state ψA = |+b〉A (or ψA = |−b〉A) reaches the

analyser, the measurement direction a determines the basis relative to which ψA

is expanded. This gives a new state:

ψ′
A = cos(a− b)|+a〉A + sin(a− b)|−a〉A (28)(

or ψ′
A = − sin(a− b)|+a〉A + cos(a− b)|−a〉A

)
(29)

We interpret this procedure as a and ψA causing ψ′
A.

(6) The presence of detectors at A, DA, triggers that the state ψ′A collapses,
either onto ψ′′′A = |+a〉A or onto ψ′′′A = |−a〉A.24 As in step (3) we understand

23This case is perfectly similar to the examples by van Fraassen (1982) and Cartwright (1988).
24The probabilities for the different alternatives are:

P
(
ψ′′′

A = |±a〉A
∣∣∣ψ′

A = |±b〉A, DA

)
= cos2(a− b) (30)

P
(
ψ′′′

A = |∓a〉A
∣∣∣ψ′

A = |±b〉A, DA

)
= sin2(a− b) (31)

38



4 Discussion

the triggering as DA and ψ′
A bringing about a state ψ′′

A, identical to ψ′
A save

that it collapses instantly into one of the possible states ψ′′′
A . Thus we say

that DA and ψ′
A are causes of ψ′′

A, and the latter causes ψ′′′
A .

(7) Finally, when photon A is in state ψ′′′
A = |+a〉A it is registered at de-

tector α+, otherwise (when it is in state ψ′′′
A = |−a〉A) at α−. As on the

other wing, it seems obvious that the measurement outcome at A, α, is solely
determined by ψ′′′

A .
The detailed causal graph for these seven steps according to quantum mech-

anics is shown in figure 33. Besides the five empirically accessible variables that
we have used so far, it contains nine more variables. So how can we relate this
detailed result to our prototypes? The answer is that we have to eliminate all
extra variables. Eliminating a variable x from the set of considered variables
means to replace all incoming and outgoing arrows of x by arrows from each
direct cause of x to each direct effect of x. A simple example for this proced-
ure is demonstrated in figures 34 and 35. If we apply the same method to
the detailed causal structure of quantum mechanics (fig. 33) and eliminate all
variables which do not belong to the set we have used so far (except the true
common cause ψAB), we arrive at the structure in figure 36.

b

a

α

β

ψAB

ψAB

DBψAB’’

’

ψA

ψA

ψA

ψB

’’

’

DA

(1)

(2)

(3a)

(3b)
(4)

(5)

(6a)

(7) ψA
(6b)

Fig. 33: Detailed causal structure according to quantum mechanics

This structure involves a common cause which does not screen off. However,
it is not the quantum state at the source which is the true common cause, but it
is the entangled quantum state which has passed the first analyser, and, hence,
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wv

y z

x

Fig. 34: Example of a causal struc-
ture

wv

y z

Fig. 35: Eliminating variable x
from structure 34

ba

α β

ψAB

ψAB’’

Fig. 36: Reduced causal structure
according to quantum
mechanics

ba

α β

ψ λ

Fig. 37: Structure 36 in the usual
variable scheme
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has been affected by one of the settings (here: b). Therefore, its subsequent
decay transfers the influence of this setting to the distant outcome, so there is
a directed path from the setting b to the distant outcome α. This, however,
does not mean that quantum mechanics is a non-local common cause structure
(fig. 4). For the influence is not direct but mediated via a latent common
cause ψ′′AB. In our considerations so far the role of a latent common cause
was played by a variable which we have called λ. Here it is crucial to recall
that λ was not necessarily identical to hidden variables but could be any latent
common cause located anywhere. In this situation, λ is the quantum state ψ′′AB

which has passed the first analyser, which gives us the structure in figure 37.
That structure is similar but not identical to the minimal indirect structure in
figure 27. There are two differences: first, according to the former the latent
common cause does not screen off, and, second, the directed paths from ψ to
each outcome (which must hold according to condition (a)) is not direct but
indirect via λ.

Thus, in our scheme of causal strcutures, quantum mechanics has an indir-
ect structure! Neither it is a direct structure, as the standard view says, nor
is it a local common cause structure with a non-screening-off common cause,
as Cartwright has proposed. Even more surprisingly, the quantum mechan-
ical structure we have found does not conform to any of the prototypes which
are commonly discussed! But it is in accordance with the argument we have
developed in this paper: it violates Causal Autonomy as well as the Causal
Markov Condition.

4.4 The meaning of Bell inequalities

Another lesson of our argument concerns the meaning of Bell inequalities: what
do we know about a system if we learn that it fulfils or violates Bell inequalities?
Do we learn anything about its causal structure or about its spatio-temporal
realisation?

It might sound surprising but the logic of the Bell argument has it that
a system obeying Bell inequalities does not give you any information about it.
Normally Bell inequalities are so closely linked to the notion of locality that one
might have got the impression that obeying them is a necessary and sufficient
condition thereof. However, our argument only shows that local structures
(plus some extra conditions) imply Bell inequalities—but not the other way
round. No matter which causal structure a system has, whether the influences
are local or non-local, whether it is causally Bell contextual2 or not, in all these
cases Bell inequalities can hold. Fulfilling Bell inequalities does not have any
causal or spatio-temporal meaning, especially not that the causal structure must
be local. It is true, we have derived that certain structures, for instance local
ones, necessarily obey Bell inequalities. But even those which do not, because
they are causally Bell contextual2, still can obey Bell inequalities. Causal Bell
Contextuality2 is only a necessary condition for violating Bell inequalities.

In turn, however, this means that we do learn something about a system if
it violates Bell inequalities. We then know that the system’s causal structure
must be Bell contextual2 (if ECV holds). Violating Bell inequalities does have
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a causal meaning. We should stress, however, that its meaning does not refer
to singular causal connections. It does not mean that there must be a causal
connection of this or that sort. Rather it indicates that there must be the right
combination of influences, viz. that one of the outcomes is a common effect of
the settings. Thus, violating Bell inequalities indicates properties of a causal
structure, not the existence of singular causal connections like Causal Outcome
Dependence or Causal Parameter Dependence.

Besides information about its causal structure (which variable influences
which), can we also infer anything about a system’s spatio-temporal realisation,
if we learn that it violates Bell inequalities? Against a common view that the
violation of Bell inequalities implies that there is a non-locality of some kind,
here we have shown that a violation of Bell inequalities does not per se imply
anything about the spatio-temporal realisation of its influences. For we could
separate the problem which variable influences which from the spatio-temporal
realisation (section 2.3). Our argument, which relied upon the violation of
Bell inequalities, told us something about the former question but not about
the latter. The violation of Bell inequalities provides information about which
variable influences which but not about the fact whether there is a non-local
influence or not. In the typical setup it only says that there are influences
between space-like separated variables, e.g. one setting and its distant outcome;
but these can be realised either directly non-local (fig. 4), or indirectly non-
local via a hidden variable at the source (fig. 6), or indirectly backwards and
forwards in time (zig-zag causation, fig. 10). Our result leaves this question
open. (Especially, we have not touched the question whether and how such
structures are compatible with relativity.)

To sum this point up: intrinsically, the violation of Bell inequalities is not
about spatio-temporal features (non-locality) but about certain combinations of
influences. It implies a minimal structural property which variables have to
influence which, viz. that at least one of the outcomes is a common effect
of both settings (Causal Bell Contextuality2). Only by further arguments a
non-locality can be inferred.

4.5 Agreement with information theoretic results

Finally, we come back to the information theoretic results of Maudlin (2002)
and Pawlowski et al. (2010) that we mentioned at the start. How does our
conclusion, that at least one of the outcomes must be a common effect of both
settings, relate to their result, that at least one of the outcomes must depend on
the information about both settings? (Let us call the latter kind of dependence
‘informational dependence’.) The two results sound very similar. Indeed, if
‘depending on the information of’ were identical to ‘being influenced by’, the
two results would be the same. However, this is not the case. Informational
dependence is more like a correlation (probabilistic dependence): a variable X
might depend on the information of another variable Y without there being
any influence from Y to X. Just as for correlations, the influence might be the
other way round or there might be a common cause of the two variables. In
both cases the value of X can depend on information about the value of Y .
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Hence, the relation of informational dependence to causal facts seems similar
to that of probabilistic dependence to causal facts. There is no one-to-one
correspondence, and the translation is subject to multiple possible fallacies.
Only with additional assumptions and clear principles the translation can be
reliable.

Therefore, Maudlin’s unmediated leap from ‘[informational ] dependence on
the distant polarizer setting is crucial’ to ‘any successful theory must postu-
late some influence of a distant “parameter” (i.e. the polarizer angle) on the
response of a local photon’ (my emphasis) is not warranted without further
justification. In this paper, we have made explicit the assumptions that one
needs in order to do a similar inference from probabilistic facts to causal ones.
It is likely that very analogous principles would do the same job for Maudlin’s
case. In fact, we should use the principle ECV and modify the Causal Markov
Condition from relating causal and probabilistic facts to relating causal and
informational facts:

Causal-informational Markov condition (CIMC): A variable
A in a given causal structure is informationally independent of its
non-effects B given information about its direct causes C.

Then, with these principles, we could justify Maudlin’s leap from his result
that one of the outcomes must depend informationally on both settings to
Causal Bell Contextuality2 as follows. Since the direction of inference is against
the direction of the (CIMC) we have to proceed indirectly: suppose Causal Bell
Contextuality2 does not hold, e.g. because both outcomes are only effects of
their local settings (but not of their distant ones). Moreover, by ECV, which
says that the settings cannot be effects, there is no other causal connection
between the outcomes and their distant parameters: there cannot be a common
cause of an outcome and one of the settings, and neither can there be a causal
relation from an outcome to the setting. But then, by the CIMC25 each outcome
would be informationally independent of its distant setting—which contradicts
Maudlin’s result. Hence, one of the assumptions in the short argument we have
made must be false. If ECV and the CIMC hold, it can only be the failure of
Causal Bell Contextuality2 which—contrary to our premisses—must be wrong.

This is a causal interpretation of Maudlin’s result. It has the same causal
conclusion, namely that Causal Bell Contextuality2 holds, as our causal inter-
pretation of the stronger Bell argument. It also has the same assumptions:
both arguments proceed from EPR correlations (which violate Bell inequalit-
ies), ECV and the Causal Markov Condition, either in its original form CMC or
in the form of the CIMC. In this sense, our causal Bell argument is in agreement
with a causal interpretation of the information theoretic results.26

25Note that here we need not assume Causal Sufficiency1 because ECV already forbids com-
mon causes of an outcome and its distant setting.

26We should note that there is also a sense in which the information theoretic approach outdoes
our causal argument: the former explicitly determines the amount of information about the
settings which is needed for reproducing the EPR correlations. Maudlin calculates that on
average 1.174 bits of information must be transmitted about the distant parameter. This
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4 Discussion

Being the stable result of two independent approaches—an information the-
oretic approach via EPR correlations and a probabilistic approach via the vi-
olation of Bell inequalities—Causal Bell Contextuality2 is a good candidate for
becoming the new standard view: EPR correlations require that one of the
outcomes is a common effect of both outcomes.
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provides another explanation, why a direct structure cannot reproduce the correlations:
in a direct structure one of the parameters influences the distant outcome via the local
outcome. Since the outcome is a two-valued variable, it can maximally code one bit of
information about its local setting—which is not enough to violate Bell inequalities. By
the same reasoning it follows that in indirect models where the information of the distant
setting is transferred via the hidden variable, the hidden variable cannot be two-valued.
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