
 1 

Response to Pashby: Time operators and POVM observables in   
                                         quantum mechanics. 
 
                                           Gordon N. Fleming 
 
Presented at the Workshop on Cosmology and Time, April 16-17, 2013, 
Pennsylvania State University, Univ. Park, PA  
 
Abstract: I argue against a general time observable in quantum mechanics 
except for quantum gravity theory. Then I argue in support of case specific 
arrival time and dwell time observables with a cautionary note concerning 
the broad approach to POVM observables because of the wild proliferation 
available. 
 
First, a terminological idosyncracy of mine: I follow the admonitions (which 
will not be defended here) of Jean Marc Levy-Leblond [10] and Hans 
Christian von Bayer [22], to drop the term particle and call the bosons and 
fermions of the world, quantons. 
 
1. Between Pashby and Hilgevoord 
 
Back in 1998 professor Hilgevoord [9b], extensively referred to by Pashby 
[15], criticised a long paper I co-authored with Jeremy Butterfield [7], in 
which we discussed (among other things) Lorentz covariant 4-vector 
position operators, assigned to space-like hyperplanes, and with operator 
valued time components. Hilgevoord objected not only to the operator time 
components, but to the requirement of Lorentz covariance for the position 
operators as well! I did not then and do not now agree with these objections, 
for the time components were in no sense independent or general time 
operators, but supervened on the space components by being linear functions 
of them and this enabled the covariant transformation property. However, 
notwithstanding this episode, I think I am more sympathetic to Hilgevoord’s 
objections [9c] to a general time operator in quantum mechanics (QM) than 
Pashby is. I will elaborate on this below.  
 
On the other hand, I agree with Pashby’s support of what I will call case 
specific time operators in QM, tentatively interpreted, when non self adjoint, 
as POVM observables. There are, however, delicate issues regarding the 
POVM interpretation of observables which I want to discuss in the context 
of  such time operators. But first, my sympathies with Hilgevoord.  
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2. Time, observables and measurement 
 
There are two brief arguments, other than Pauli’s [16], that I would mount 
against a general, canonical, time operator in QM. They are first, and most 
importantly: In QM, space and time or space-time, are not, themselves, 
dynamical systems. QM is a theory of temporally persistent dynamical 
systems, indeed of eternal systems, which live in a fixed classical space-
time. Unlike Quantum Gravity research or Quantum Cosmology, which seek 
a QM of space-time and must have general, operator valued, space - time 
observables per se, standard QM has no such need. The basic observables of 
standard QM, represented by self adjoint operators, are designed to answer 
questions about the possible values, or probabilities for values, of possible 
properties of persistent physical systems, at specified times (or, more 
relativistically, on specified space-like hypersurfaces). Even so-called 
unstable systems, which we normally think of as temporally transient, are 
included in this construal. We need only view the final decay products, the 
unstable parent quanton and the earlier formation progenitors as the final, 
middle and initial configurations, respectively, of a spontaneous internal 
transformation of the persistent system.  
 
Second: I follow Ghirardi [8], Pearle [17], Penrose [18] and others in 
regarding primordial, stochastic state reduction (which we merely exploit in 
our measurements) as the really serious absentee in current QM. If and when 
this theoretical gap is filled, via improved versions of one or another of the 
already proposed schemes, or otherwise, I see it as only enhancing the 
special status of time in QM. For while state reductions (the exploited ones) 
can be tailored to specific observables and can have very varied relationships 
to spatial locations (think of reductions to near momentum eigenstates), they 
all occur at essentially definite times, either (the exploited ones) at times of 
our choosing or (the primordial ones) at wholly random times or, again, on 
space-like hypersurfaces. So there would be no question of measuring when 
the primordial reductions occur and trying to measure just when a 
measurement exploited reduction occurs (within the exploiting 
measurement) would be an instance of measuring a case specific time 
observable.  
 
This conception of the reality of apparent state reductions may be wrong. If 
so, and genuine state reduction is replaced by an illusion induced by 
something like environmental decoherence [20]; well, that also is an ongoing 
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temporal process which would not, I think, alter the special status of time in 
QM. 
  
The upshot is that I think Dirac, whether he miscalculated (as Pashby 
suggests) or not, was either lucky or wise in not sticking to his original guns 
[6a] of trying to formulate QM in the extended phase space with the 
extended Hamiltonian satisfying a constraint equation and with time 
emerging as an operator. For even without gravity to deal with, and 
notwithstanding the invaluable contribution of Dirac’s later study of 
constrained dynamical systems [6b], I suspect that such an approach to QM 
in general would have encountered analogues to the kind of conceptual 
problems which plague quantum gravity research today. In quantum gravity 
research these conceptual problems must be faced; in the formulation of QM 
they would have been and were artificial. 
 
3. Time-energy indeterminacy 
  
While we do not have a general time observable in quantum mechanics, we 
do have a universal time-energy indeterminacy relation (TEIR) and it is 
striking how exactly opposite is our traditional interpretation of that relation 
from Heisenberg’s early interpretation, as described by Pashby. While 
Heisenberg saw!T as an indeterminacy in a time of occurrence and !E  was 
an interval between precise energy values, we now have !E  as the standard 
deviation indeterminacy in the system energy while !T is the lower bound 
on the intervals defined by 

 
!T

X
= ! X / |< !X >|  for arbitrary observables, X. 

Derived by Mandelstam and Tamm [12] from the Robertson [19] general 
indeterminacy relations, 
 
                                              

 
! X!E " (! / 2) |< "X >|  ,                                     (1) 

 
the !T of their TEIR, 

 
!T!E " (! / 2) , is the time one must wait for 

expectation values to change by amounts comparable to the corresponding 
standard deviations. This immediately yields the stationarity of energy 
eigenstates and, as Aharonov and Bohm [1] pointed out, it places no 
restriction at all on how quickly one can, in principle, perform an arbitrarily 
precise measurement of the energy of a physical system! However, for many 
states of interest, the standard deviation,!E , can be infinite and then (1) and 
the TEIR tell us nothing.  
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Accordingly, stronger indeterminacy relations have been derived with new 
time-energy relations among them [5]. Uffink and Hilgevoord [21a] have 
obtained one of the most interesting versions which I just mention here 
without further comment.  
 
Let 

 

!
!(E)  be the projection valued spectral resolution of the Hamiltonian, 

 

!
H = E! d

!
"(E) . For unit norm states let W! (" ) , where 0 <! < 1 , be the size of 

the smallest energy interval, I, such that,                 
 
                                            

 

<! | d
!
"(E) |! > = #

I

$ .                                       (2) 

 
Let, !" (# ) , where 0 < ! < 1, be the smallest time displacement such that, 
           

                                       
 

<! | exp "
i

!

"
H#$ (! )

%
&'

(
)*
|! > = $ .                              (3) 

Then it can be shown that, 

                                
 

!" (# )W$ (# ) % 2!arccos
" +1&$

$
'
()

*
+,

.                               (4) 

 
In particular, for α = 0.9 and ! = 1 / 2 , one obtains, 

 
!

1/2
W
0.9

" 0.9! [9a]. 
 
4. Case specific time observables 
 
Now I turn to case specific time observables where I agree with Pashby 
concerning both the possibility and the desirability of identifying and 
examining such observables in QM for various times of occurrence or 
durations. 
 
Concepts of quantum observable times, either times of occurrence (arrival 
times) of specified events or of intervals of time (dwell times) spent in 
specified regions or conditions are of a different nature from the ‘property’ 
observables for persistent systems. They acquire their objective 
indeterminacy from supervening on the property observables. They can be 
easily motivated within standard QM, beginning with the definition of case 
specific time operators. Until comparatively recent times such concepts have 
not received much attention, but are under intense examination now [13], 
and, as Pashby suggested, usually lead to non-self adjoint operators.  
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Perhaps the very simplest (not to say simplistic) example, introduced by 
Aharonov and Bohm [1], and one of three examples considered by Brunetti 
et al [3a, c], among Pashby’s sources, is the operator, 
 

                                         
 

!
T
0
= !

1

2

m
!
p

!
x +
!
x
m
!
p

"
#$

%
&'

 .                                            (5) 

 
With this operator one can, supposedly, calculate the average time of arrival, 
at the spatial origin of coordinates, of a free, non-relativistic quanton moving 
in one dimension. The position of the quanton at parameter time, t = 0 is 
represented by the operator,  !x , and the momentum, by the operator, 

 

!
p . 

Because 0 belongs to the spectrum of 
 

!
p  and the ‘inverse’ of 

 

!
p  appears in 

(5), 
 

!
T
0
 , while symmetric, is not self adjoint. That ‘inverse’ restricts the 

domain of definition of 
 

!
T
0
. I think it is worth examining this toy model in 

some detail. 
 
The motivation for the time operator construction, (5), is just the time 
dependence of the  Heisenberg picture position operator for the free quanton, 
 
                                            

 

!
x(t) =

!
x +

!
p

m
t .                                                     (6) 

 
The expectation value of position is zero at the precise time, 
t
0
= !m < x > / < p > , but this expectation value allows for contributing 

position eigenvalues that lie far afield from zero. There is no single, precise 
time for the quanton to arrive (be detected) exactly at x  =  0, so the time 
operator,  

!
T , that, hopefully, ‘describes’ the distribution of possible times is, 

perhaps naively, taken to satisfy the equation, 
 
                                      

 

0 =
!
x +

!
p

2m

!
T +
!
T

!
p

2m
 ,                                               (7) 

 
where the symmetrized product allows for momentum–time incompatibility.  
 
 

!
T
0
 of (5) is the solution to (7) and, indeed, it fails to commute with the 

quanton momentum and its position at t = 0.  
 
                    

 
[
!
p,
!
T
0
] = i"m

!
p
!1
, [

!
x,
!
T
0
] = (i"m / 2)(

!
p
!2 !
x +
!
x
!
p
!2
)                      (8) 
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The right hand commutator gives rise to the curious indeterminacy relation, 
in which the indeterminacy of the time of arrival at the spatial origin of 
coordinates, x = 0, competes with the indeterminacy of the quanton position 
at the parameter time, t = 0. Furthermore, the lower bound on the product of 
the standard deviations is governed by the expectation value of a function of 
position and momentum that could well diverge for many states!  
 
From the left hand entry in (8), the momentum-time commutator, we do 
obtain the expected time-energy commutator, 
 
                                                   

 
[
!
p
2
/ 2m,

!
T
0
] = i" ,                                        (9) 

 
but this does not conflict with Pauli’s argument since the time operator is not 
self adjoint. 
 
5. The POVM perspective 
 
But just how shall we work with 

 

!
T
0
in detail, given that it’s not self adjoint? 

Brunetti et al tell us it is maximally symmetric with deficiency indices of 2 
and 0. A more familiar account of the non-self adjoint character of 

 

!
T
0
 is 

provided by examining its continuous spectrum, generalized eigenstates. In 
the momentum representation they are given by, 
 

                                      
 

!t (p) =
p

mh
exp

i

!

p
2

2m
t

"

#
$

%

&
'  ,                                     (10) 

 
for the eigenvalue, t (that square root has to be handled carefully!). 
Notwithstanding the symmetry of 

 

!
T
0
, they are non-orthogonal, with the inner 

products, 
                                        < !

t
| !

t '
> = " (t # t ') +

i

$

%v

t # t '
 ,                                (11)  

 
where !v  denotes principal value. So 

 

!
T
0
 is not subject to a projection valued 

spectral analysis employing a projection valued measure (PVM). In its place 
a positive operator valued spectral analysis employing a positive operator 
valued measure (POVM) is available. Why is this fact useful in physics and 
how much difference does it make? 
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There have been three main sources of the idea that POVMs comprise a 
valuable generalization of the standard concept of quantum observable. The 
earliest lies in the work of the physicist-philosopher, Gunther Ludwig [11], 
who anticipated the utility of POVMs in accounting for the probability 
distributions that could arise from innovative experimental procedures. Next 
came the recognition of POVMs as more adequately describing actual 
laboratory  probability distributions due to technological limitations in 
attempts to implement ideal measurements of standard observables. The 
book, “Quantum Measurement” by Braginsky and Kahlili [2] is a good 
introduction to this source. Finally, there is a community of theorists who 
see in POVMs a vast source of valuable generalized observables that greatly 
extend our capacity for examining quantum systems. Paul Busch is a leader 
in this field and the books, “Operational Quantum Physics” [4a], which he 
co-edited, and “Time in Quantum Mechanics”, to which he contributed [4b], 
are representative. The subject of POVM observables met with severe 
criticism in early days [21b] and calls for caution still occur [7b] (I will add 
to them shortly), but the field has weathered the criticism and is very active. 
The original mathematical work on POVMs is primarily due to Naimark 
[14]. 
 
A POVM for a single observable, X, is defined by a family of bounded, non-
decreasing, positive operators, 

 

!
P(x) , where, !" # x # " , satisfying the 

following conditions: for any, x
1
! x

2
, 

  
                             

 
0 =
!
P(! ") #

!
P(x

1
) #
!
P(x

2
) #
!
P(") =

!
I .                               (12) 

 
From these operators one can build the positive operator associated with any 
given member of a sigma field of Borel sets of the real line. 
 
A PVM is the special case in which the 

 

!
P(x)  are projection operators, 

 

!
!(x) , 

satisfying the further condition that,  
 
                                   

 

!
!(x

1
)
!
!(x

2
) =
!
!(x

2
)
!
!(x

1
) =
!
!(x

1
) .                                 (13) 

 
If such a PVM comprises the spectral resolution for a standard observable, 
X, then the self adjoint operator,  

!
X , for that observable, is just the first 

moment of the spectral resolution, i.e.,  
 
                                                 

 

!
X := x d

!
!(x)" .                                             (14) 
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It follows from (13) that for any function, f (x) ,  
 
                                              

 
f (
!
X)= f (x) d

!
!(x)" .                                        (15) 

 
In particular, for a unit step function, 
 
                                                

 
!(x "

!
X) =

!
#(x) ,                                            (16) 

 
and the PVM spectral resolution is recoverable from the first moment 
operator. Also any PVM provides the spectral resolution for some self 
adjoint operator. 
 
Nothing of the kind holds for POVMs that are not PVMs! For such POVMs 
there is no condition analogous to (13). The positive operators in such a 
POVM need not even commute among themselves! Consequently, the 
POVM spectral resolution is usually not recoverable from the first moment 
operator!  
 
Suppose we have a POVM, 

 

!
P
0
(t) , which provides a generalized spectral 

resolution for our time operator, 
 

!
T
0
 . This entails that two conditions must 

be satisfied. The first is that 
 

!
T
0

  and the first moment operator, 
 
t d
!
P
0
(t)!  , 

have the same ‘matrix elements’, i.e., 
 
                                       

 
<!,
!
T
0
" > = t d <!,

!
P
0
(t)" ># ,                                (17) 

                                                                
for all ϑ and any ψ in the domain of definition for 

 

!
T
0
 . The second condition 

for the POVM is that the squared norm of the action of 
 

!
T
0
 equals the 

expectation value of the second moment operator of the POVM, i.e., 
 
                                            

 

!
T
0
!

2

= t
2
d <! ,

!
P
0
(t)! >" .                                 (18) 

 
In the QM application of POVMs , the probability for a measurement of 

 

!
T
0
 

to yield a time lying between t1 and t2 would be given by, 
 

                         
 

!(t
1
" t " t

2
) = < d

!
P
0
(t) > = < (

!
P
0
(t
2
) #
!
P
0
(t
1
)) >

t1

t2

$ .                       (19) 
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The broadest use of POVMs in QM is not to provide generalized spectral 
resolutions for observables identified with non-self adjoint operators, as we 
are now considering, but to define generalized observables in terms of a 
POVM directly via (19) alone. 
 
But now consider the following three parameter family of POVMs, built 
upon some hypothetical 

 

!
P(t) , where 0 ! a < 1 , ! > a  and ! , a time, is 

arbitrary, 

                        
 

!
P
a,! ," (t) := a

!
P(! t + " ) + (1# a)

!
P

!(1# a)t # a"
! # a

$
%&

'
()

                       (20) 

 
If the 

 

!
P
a,! ,"

(t)  are all arrival time candidate POVMs, they must be time 
translationally covariant, i.e., 
 
                       

 
exp[(i / !)

"
H! ]

"
P
a," ,! (t) exp[#(i / !)

"
H! ] =

"
P
a," ,! (t + ! )                  (21) 

 
This can hold only if λ = 1. But dwell time observables would not be subject 
to the covariance requirement, although, for them, we might require τ = 0. 
 
The first moment operators for all these POVMs are equal, 
 
                                           

 
t d
!
P
a,! ," (t) = t d

!
P(t)## .                                        (22) 

 
Consequently, if 

 

!
P
0
(t)  belongs to the family (20), they all have first moment 

operators with the same matrix elements as our 
 

!
T
0
! For any given quantum 

state, they all give the same answer to the question, ‘When is the average 
time of arrival at the origin?’.  
 
The second moment operators of the various POVMs in (20) are not the 
same and their expectation values vary from the smallest, provided by 

 

!
P(t) , 

to larger values that increase without bound as a  1. So under our 
assumption about 

 

!
P
0
(t) , that it belongs to the family in (20), at most a few 

members of the family  will satisfy (18) while all members satisfy (17). In 
fact, since our time operator is maximally symmetric, it is known that only 
the one member of (20), 

 

!
P
0
(t) , will satisfy (18). While this is good news for 

our time operator, because of uniqueness, it also means that all the other 
POVMs in the family can not provide generalized spectral resolutions for 
any symmetric operator, whatsoever!  
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To see that, let the state vectors, !

k
be an orthonormal basis in the state 

space. Then satisfying both (17) and (18) requires, 
 
                          

 
!
k
<"

k
, t d

!
P
0
(t)# >$

2

= <# , t
2
d
!
P
0
(t)# >$ .                         (23) 

 
All the members of (20) yield the same left hand side. Only 

 

!
P
0
(t) , among 

them, yields the correct right hand side. So only 
 

!
P
0
(t) provides a spectral 

resolution of the time operator, 
 

!
T
0
, or of any symmetric operator. Note that if 

 

!
P
0
(t)  was a PVM instead of just a POVM, (23) would not be a requirement 

at all, it would be an identity!  
 
Notwithstanding the fact that within the family, (20), only 

 

!
P
0
(t) can, satisfy  

(23), we can still, tentatively, regard the POVMs as defining time  
observables, Ta,λ,τ , in the broad sense. The squared standard deviation for 
these observables would be defined by, 
 
                        

 
(!T

a," ,# )
2
:=< t

2
d
!
P
a," ,# (t) > $ < t d

!
P
a," ,# (t) >

2

%%                        (24)  
 
Setting λ = 1 for an arrival time observable, detailed examination of (20) 
results in, 
                                     (!T

a,1,"
)
2
# (!T

a,1,0
)
2
+ a"

2
/ (1$ a) .                            (25) 

 
The POVM, 

 

!
P
a,1,!
(t) , yields no eigenstates at all for the observable, Ta,1,τ 

unless a = 0 or τ = 0 ! Since 
 

!
T
0
 does have continuous spectrum eigenstates 

(see (10)) it follows that 
 

!
P
0
(t) , belonging to (20), must equal  

 
                                              

 

!
P
a,1,0
(t) =

!
P
0,1,!
(t) =

!
P(t) .                                   (26) 

 
Regarding the others, 

 

!
P
a,1,!
(t) ; is it physically reasonable to admit 

observables that have no (generalized) eigenstates throughout the state 
space? 
 
The dwell time case, in which λ may vary but τ = 0, leads to a similar result 
in which Ta,λ,0 can only have an eigenstate for the eigenvalue, 0, unless a = 0 
or λ = 1.  
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Before dismissing these examples as merely bizarre curiosities, bear in mind 
that I just cobbled (20) together for this workshop and, very probably, it just 
scratches the surface of ways in which one can build POVMs, all of which 
share the same first moment operator. If there are much more varied ways of 
doing that, it seems likely to lead to instances of the query, “Which one?”. 
The definition of 

 

!
T
0
 via (7) was tentative, after all.  

 
From PVM observables one can extract everything from the first moment  
operator, even the eigenstates. From a POVM observable, interpreted  
broadly, one can not even know, from the first moment operator, if there are  
eigenstates! This makes me wary of the broad approach to POVM 
observables. 
 
Now Brunetti et al, as indicated by Pashby, explicitly construct the POVM 
that corresponds to 

 

!
T
0
, according to (17,18)[3a], and their construction, 

while  natural and physically plausible, would not be uniquely compelling, if 
they hadn’t known what operator,

 

!
T
0
, they were after (see Pashby’s footnote 

11 for differing interpretations of the POVM construction). Elsewhere they 
show [3b] that time translationally covariant POVMs lead to an 
indeterminacy relation for arrival time observables alone! Not a time-energy 
indeterminacy relation, but a time indeterminacy relation. The standard 
deviations of their time observables are never less than a universal constant 
divided by the expectation value of the system energy! Accordingly, the 

 

!
T
0
 

generalized eigenstates, mentioned above, (10), are the limits of finite norm 
states with energy expectation values that grow without bound in the limit. 
 
If case specific time observables are to obtain any deep significance at all in 
the POVM approach to time in QM, issues of the sort considered here will 
have to be resolved. An approach to these issues may have recourse to 
Naimark’s theorem [14] , which Brunetti et al exploit in their constructions, 
and Pashby mentioned. Naimark showed that every POVM is the projection 
from a larger Hilbert space of a PVM. This PVM would be the spectral 
resolution of a self adjoint operator in the larger Hilbert space which is then 
projected down to our first moment operator. Usually the larger Hilbert 
space is regarded as having mathematical significance only, but it can take 
the form of an Hilbert space for a supersystem containing the system of 
interest as a subsystem. I suspect that it would be advantageous to be able 
to interpret the supersystem and the larger Hilbert space, physically. Still, 
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each of my 
 

!
P
a,! ,"

(t)  POVMs would lead to different PVMs in (different?) 
larger Hilbert spaces and different, self adjoint, ‘time’ operators, all of 
which would project down to a first moment operator with the same matrix 
elements as our Ta,λ,τ . So again the question looms: “Which one?”.  
 
Many theorists are enamored of POVMs because of the panoramic garden 
of delights they seem to offer. While delights there may be, the garden is 
not without weeds! 
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