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Abstract
The likelihood principle (LP) is typically understood as a constraint on any measure

of evidence arising from a statistical experiment. It is not sufficiently often noted,
however, that the LP assumes that the probability model giving rise to a particular
concrete data set must be statistically adequate—it must “fit” the data sufficiently.
In practice, though, scientists must make modeling assumptions whose adequacy can
nevertheless then be verified using statistical tests. My present concern is to consider
whether the LP applies to these techniques of model verification. If one does view model
verification as part of the inferential procedures that the LP intends to constrain, then
there are certain crucial tests of model verification that no known method satisfying the
LP can perform. But if one does not, the degree to which these assumptions have been
verified is bracketed from the evidential evaluation under the LP. Although I conclude
from this that the LP cannot be a universal constraint on any measure of evidence,
proponents of the LP may hold out for a restricted version thereof, either as a kind of
“ideal” or as defining one among many different forms of evidence.

1 Introduction

One aspect of the longstanding debate over the nature of statistical evidence and inference
centers on the likelihood principle (LP). Recall (Berger and Wolpert, 1988) that one can
describe a statistical experiment as a triple E = (X, θ0, {P θ}θ∈Θ), where X is a random
variable with probability distribution P θ0(x) depending on a particular parameter θ0 ∈ Θ.
An inferential problem is then to determine which parameter in Θ generated a particular
realization x of E—that is, a concrete data set x arising from the experiment E. Denote
e(E, x) as the evidence, inferential conclusions, report, etc., about θ0 arising from x. The
LP then constrains e as follows:1

∗Thanks to Kent Johnson for patient guidance, and to audiences at UC Irvine and Virginia Tech—
particularly Nicole Jinn at the latter—for their comments. Part of the research leading to this work was
completed with the support of a National Science Foundation Graduate Research Fellowship.

1Not to be confused with the usage of Miller (1987) or Sober (2001), whose “likelihood principle” describes
(versions of) a distinct principle sometimes called the “law of likelihood” (Hacking, 1965, Ch. 5).
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Likelihood Principle Let E1 = (X1, θ0, {P θ
1 }θ∈Θ) and E2 = (X2, θ0, {P θ

2 }θ∈Θ) be two ex-
periments with a common parameter space Θ. If, for realizations x1 and x2 of E1

and E2, respectively, there is a constant C(x1, x2), not depending on θ, such that
P θ

1 (x1) = C(x1, x2)P
θ
2 (x2) for all θ ∈ Θ, then any evidence function e must satisfy

e(E1, x1) = e(E2, x2).

Note that the parameters θ ∈ Θ can denote different concrete models or hypotheses, so the
LP codifies the intuition that (functions of) likelihood ratios measure the relative evidence a
data set provides for one hypothesis over another. For instance, if P θ

1 (x1)/P
θ′
1 (x1) = k(θ, θ′)

and P θ
1 (x1) = C(x1, x2)P

θ
2 (x2) for all θ ∈ Θ, then P θ

2 (x2)/P
θ′
2 (x2) = k(θ, θ′). As such it is

intended as a minimal constraint on any “reasonable” notion of evidence.
The LP has received considerable attention since Allan Birnbaum’s watershed essay, “On

the Foundations of Statistical Inference” (1962), which showed (modulo some mathematical
concerns later resolved) that the LP is equivalent to the conjunction of two intuitive prin-
ciples of (weak) sufficiency and conditionality. The important and controversial connection
between these principles (Berger and Wolpert, 1988) will not be my main focus here, al-
though I will return to it briefly in §4. Rather, I wish primarily to examine the domain of
applicability of the LP. In particular it is not often enough noted that the definition of an
experiment in the LP plays a crucial role: up to a particular choice of θ, the probability
model P θ(x) must determine the probability (distribution) of X with complete accuracy. In
practice, however, many (most?) problems of statistical inference involve substantive mod-
eling assumptions whose adequacy is not known a priori. Here, a modeling assumption for a
data set is statistically adequate when the assumption sufficiently fits the data, i.e., the data
are consistent with what one would expect or predict from the assumption’s truth, where
this consistency can be measured in many ways according to taste and statistical framework
(Mayo, 1996, p. 178–9).

Birnbaum was sensitive to this issue, explicitly limiting attention to experiments for
which any such assumptions are not in question: “We deliberately delimit and idealize the
present discussion by considering only models whose adequacy is postulated and is not in
question” (Birnbaum, 1962, p. 274). Yet despite this restriction, he took accepting the LP
to have “immediate radical consequences for the every-day practice as well as the theory
of informative inference” (Birnbaum, 1962, p. 272), and commentators have emphasized
the resulting far-reaching implications for the role of stopping rules, censoring mechanisms,
and randomization in experimental design (Berger and Wolpert, 1988).2 How can the LP
have such implications for non-trivial statistical modeling if one must postulate that the
substantive modeling assumptions are adequate? In such cases, it is indeed crucial for the
modeler to verify, inasmuch as it is possible, the sufficient adequacy of those assumptions.
Thus there seems to be a tension between the full demands of the LP’s antecedent and the
practical situations in which its proponents and detractors believe its consequent apply.

Some discussants of Birnbaum’s essay recognized this tension explicitly. Because “Ad-
equacy here refers to a correspondence between a theoretical [mathematical] model and

2This practical dimension was acknowledged immediately among some (though not all) of the discussants
of Birnbaum’s paper. For example, John W. Pratt wrote that “anyone who has taught a course in statistics
of almost any kind would feel that full acceptance of the likelihood principle ought to change the course
entirely” (Birnbaum, 1962, p. 316).
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experimental fact,” wrote Irwin Bross, “the adequacy of the model is always in question,
and often the main point for a study is to test the adequacy of a model” (Birnbaum, 1962,
p. 310). Consequently, Bross thought that LP never applies, a sentiment echoed a bit hyper-
bolically by Oscar Kempthorne: “It is a truism, I believe, that there is never an adequate
mathematical statistical model for any actual situation” (Birnbaum, 1962, p. 319). While
it is true that mathematical models of experiments in the world do not in general perfectly
capture every feature of their targets, one only requires mere adequacy for the application
of the LP. In other words, contra a strong reading of Bross’s (and Kempthorne’s) statement,
it is legitimate to make idealizations when the adequacy of the idealized model is verified,
as George Box emphasized in reply (Birnbaum, 1962, p. 311–312).3

But one can read in the second part of Bross’s statement a suggestion regarding a different
kind of worry that can arise when one seeks to apply the LP to the process of model verifica-
tion itself.4 The techniques used to verify the adequacy of statistical modeling assumptions
are themselves statistical, and such verification is often as much a primary statistical goal
as parametric inference. Does the LP constrain these techniques as well? If one takes seri-
ously the purview of the LP to constrain measures of evidence that apply to any statistical
inference, the answer must be affirmative. But I argue in §2 that this view implies that no
techniques for model verification satisfying the LP are known to apply generally. Thus, inso-
far as securing the adequacy of a model is an important and ineliminable goal in statistical
research, this inferential view of model verification is untenable with the LP.

In response, one may retreat to the weaker position holding that while the LP may not
directly constrain techniques of model verification, it nevertheless applies to inferences re-
garding primary parameters of any statistical model whose adequacy has otherwise been
verified. But this non-inferential view of model verification presents other problems for the
general applicability of the LP. As I show in §3, given that establishing model adequacy is
often a primary statistical goal, the difference between it and other inferential techniques
based on the primary/secondary distinction is vague. But even if one can solve this problem
of vagueness, the non-inferential conception of model verification brackets the relative secu-
rity of the model’s adequacy, which can be quantified statistically, from techniques bound
by the LP. Thus there would still be aspects of any evidential evaluation that inferential
techniques bound by the LP do not capture.

Consequently, whether one takes the inferential or non-inferential view of model verifica-
tion, the LP cannot be a constraint on any measure of evidence, for either no such measure
can satisfy it, or (among other problems) measures that do satisfy it cannot capture essen-
tial aspects of evidential bearing, respectively. I want to emphasize that I am not arguing
for either the inferential or non-inferential view of model verification. (Indeed, I suspect
that whether one seems more plausible will depend on the context of a particular statistical
problem or inquiry.) Instead I want to point out that, whatever one’s views about the role
of model verification in inference, the LP cannot, as many commentators have assumed,
constrain all the inferential procedures used in statistical problems with substantive mod-
eling assumptions. Nevertheless, in §4 I contend that there may still be a role for evidence

3Understanding exactly how scientific models represent phenomena, approximately or otherwise, is subtle
and important, but it will not be my focus here. For more, see Frigg and Hartmann (2012).

4Probing the adequacy of a statistical model goes under many names in the literature, including model
critique, criticism, validation, verification, checking, and diagnostic and misspecification testing.
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relations constrained by the LP if one takes it merely as a kind of “ideal” or if one gives up
requiring that only these relations are viable. Then the LP becomes less of a constraint on
measures of evidence as a way to define certain kinds of evidence with properties that are in
many circumstances desirable.

2 The Inferential View of Model Verification

In order for the LP to apply to methods of model verification, those methods must take
the form of a kind of parametric inference, since the LP explicitly constrains evidential
relations between parameterized statistical models, their realizations in concrete data, and
the particular parameter values of the former. Typically model verification is not articulated
in this way, but there is no reason in principle why it cannot, just as the LP can in principle
apply to nonparametric (but fully specified) statistical models (Berger and Wolpert, 1988,
p. 43–44). Parameterize all possible models for some data set x by an index α and write the
most general encompassing model as the sum

P θα(x; α) =
∑

β

Iα(β)P
θβ

β (x), (1)

where Iα(β) = 1 if β = α and 0 otherwise, β ranging over all index values. I have labeled the
parameters θ by this index as well to allow for labeled parameterized family of models, but
this distinction is inessential since one could just as well let the index specify a completely
determined statistical model, one where θα is absorbed into α and the probability models
Pα do not depend on the specification of any further parameters.

Procedures of model verification, then, can been seen as inferential in the sense that they
select or determine the evidence for (or against) α from x in the same way as other procedures
of statistical inference select or determine evidential relations for elements from the parameter
space of θα from x. In doing so, model verification conceived inferentially winnows down the
range of possible models to something more tractable. The inferential view also assimilates
model verification with model selection, taking the relevant class of models from which to
select (at least initially) to be all possible models.5 It may be motivated by the view that the
differences between techniques used to probe model assumptions, to compare the statistical
fit of various models, and to make inferences about scientifically relevant parameters are at
most differences in degree rather than differences in kind.

While well-defined, the sum (1) will in general be uncountable and unwieldy, and the
details of virtually all of its components will be difficult to obtain. This presents a practical
but nonetheless significant obstacle to applying the LP to techniques of model verification
thus construed, since this application requires enough clarity on the form of the probability
model for one to judge its proportionality to another. Further, it is difficult to conceive of a

5This may seem to conflict with Mayo and Spanos (2004), who wish to distinguish model verification
(what they call misspecification testing) from model selection. But the conflict is illusory, since the basis
for their distinction is that the latter “selects from an assumed family of models” (Mayo and Spanos, 2004,
p. 1008)—if the assumed family consists in all possible models, then according to the inferential view the two
dovetail. As discussed in more detail below, however, model verification thus conceived will not in general
admit of severe tests.
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situation where the LP would apply, since it would require another encompassing probability
model that nonetheless shares the same huge parameter space and is proportional to but
distinct from the first. But perhaps the most intractable problem for extending the purview
of the LP to model verification is that in general model verification techniques cannot be
comparative—they cannot assign merely relative measures of evidence to pairs of models.
Essentially comparative methods face what Staley (2008) calls the problem of the uncon-
sidered alternative: that a hypothesis is best supported among the available alternatives is
generally insufficient for evidence for that hypothesis because there may be a much better
supported hypothesis not included in the set under consideration.6 Since comparative meth-
ods must work within a circumscribed class of statistical models, they cannot evaluate the
statistical adequacy of that class itself.

Now, one could use comparative methods for model verification if one could compare
all possible models, but as just remarked the details of nearly all of these, although well-
defined, will be difficult to delineate. This delineation of a tractable proper subclass of
models is fraught in part because it requires justifying why two otherwise statistically sim-
ilar models, one lying within the boundaries of the subclass and one without, should fall
where they do. Often the justification will be of pure convenience on the part of the mod-
eler. In any case, once one has found as statistically adequate a class of models sufficiently
narrow that their probability models are all tractable, one can well apply comparative tech-
niques for further model selection. But, inasmuch as is possible, one must get to that point
using non-comparative methods. The difficulty for the LP arises from the fact that these
non-comparative methods seem to require the Fisherian logic of testing: one makes an as-
sumption about the form or properties of the probability model, from which it follows that
certain statistics follow certain sampling distributions which one constructs theoretically
or estimates through simulation. To the degree that the statistics evaluated at the actual
data are improbable, one then has reason to reject said assumption, the threshold for model
respecification depending, of course, on the details of the scientific goals at hand.7 Such
methods are non-comparative because they do not require the specification of any explicitly
defined alternatives to the assumptions being tested. Since it is well known that inferential
procedures depending on sampling distributions do not in general satisfy the LP, the same
follows for these techniques.

This perspective that model verification must (at least initially) depend on Fisherian
tests with sampling distributions is new neither among error-statisticians (see Mayo (1996,
p. 160–1), Spanos (1999, Ch. 15.2.1), and Mayo and Spanos (2011, §4)) nor, some will
be surprised to note, among Bayesian statisticians (Box, 1980, Gelman and Shalizi, 2013).
Besides using explicit test statistics, techniques of model verification also include informal
graphical tests and simulation, but the underlying Fisherian logic is the same. Both of the
latter are prominent in Bayesian model verification. To illustrate, one very general class
of procedures is based on the posterior predictive distribution P (xnew|x), the probability

6Although Staley does not explicitly draw a connection with the general problem of the unconceived
alternative (Stanford, 2006), his problem in many ways seems to be its natural statistical counterpart.

7Contingent on the statistical adequacy of certain aspects of the model, the same methods can also be
used to test for mistakes in the data, such as improperly recorded surveys in the social sciences or instrument
malfunction in the physical and biological sciences. Throughout, however, I assume that the data has no
such mistakes so that the model is always the object under scrutiny.
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distribution for a new observation given the data already observed (Gelman et al., 2004,
Ch. 6). Specifically, one uses the predictive distribution to generate replications of the
original data—that is, new data sets whose covariates, if there are any, are identical to
the ones that obtained in the actual data set. Graphically one can then visually compare
histograms of replications—whether the raw replications themselves, or summary statistics
or inferences—to the actual data. Large discrepancies, in proportion to their size, then give
reason to reject the underlying model.

More quantitatively, one can define a measure of discrepancy between the observed data x
and the inferred posterior model indexed by θ through a test statistic T (x, θ).8 Then one can
define the posterior predictive p-value (PPP), P (T (xnew, θ) ≥ T (x, θ)|x), which functions in
much the same way as a classical p-value. (Here the probability is taken over the distribution
of xnew, θ|x.) If one has generated the replications through simulation, then this PPP can
be estimated as just the proportion (i.e., relative frequency) of the replications that have a
larger test statistic than that of the observed data.9

Note that techniques of model verification only test the fit between the data and the
model, so passing such a test is not evidence for that particular model, since there may be
many other, substantively different models whose assumptions would have been verified—in
other words, they are not severe tests of modeling assumptions (Mayo and Spanos, 2011,
§2.5). But methodologically they need not be. Model verification is not and cannot be a sub-
stitute for sophisticated statistical design and sensitivity to scientific context. Indeed, when
a procedure of model verification finds that certain modeling assumptions are statistically
inadequate, that procedure does not automatically provide alternative models to consider.
Yet by understanding how different Fisherian tests are sensitive to different departures from
the modeling assumptions they test, one has a better clue as to which classes of alternative
models relaxing those assumptions might prove statistically adequate, regardless if one is
using error statistical (e.g., Spanos (1999, Ch. 15.4), Mayo and Spanos (2004) and Staley
(2012, §5)) or Bayesian (e.g., Box (1980, §4), Gelman et al. (2004, Ch. 6), and Gelman and
Shalizi (2013, §4)) methodology.

On account of this fact—that the inadequacy of certain modeling assumptions found
through the violation of a Fisherian test nearly always leads to model respecification and the
attendant consideration of specific alternatives—some have suggested just skipping the non-
comparative techniques for comparative ones. For example, while Berger and Wolpert (1988,
§4.4.4) admit that Fisherian tests might be legitimate even for Bayesian model verification,
they stress that it is almost always better to consider explicit alternatives, which allows for
the sole use of techniques that satisfy the LP. Indeed, many Bayesian have objected that
statistics for non-comparative model verification like the PPP cannot be assimilated into
the Bayesian fold, thus must be discarded for comparative methods which probe the same
discrepancies—see, for example, the discussions of O’Hagan and Lindley in Box (1980, p. 408,
423) and those of Bernardo, Lindley and O’Hagan in Bayarri and Berger (1999, 72–73, 75,

8Technically, T (x, θ) is not a statistic in the standard sense since it is a function of the probability
distribution of the parameter θ as well as the data.

9There is considerable debate regarding the merits of the PPP over other candidates for Bayesian p-values,
especially regarding the extent to which they make illicit “double use” of the data. See, e.g., Bayarri and
Berger (1999) and references cited therein. What is important here is that all these candidates do make use
of sampling distributions.
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77).
While I think this response is coherent, it gives up completely on assessing the statistical

adequacy of the class of alternatives, hence on answering the problem of the unconsidered
alternative. Given that it seems uncontroversial that the assumptions of deterministic models
can be verified non-comparatively, it is not clear why moving to statistical models should
change this so drastically. After all, deterministic models are just statistical models lying on
the edge of the appropriate probability simplex, so by a continuity argument one would expect
that non-comparative methods would apply to statistical models as well. Further, without
a way to compare the evidence for all possible models, one has no way of securing evidence
from any model beyond intuitions that the delimited class of alternatives considered contains
one that is sufficiently adequate. As Box stated colorfully in his response to O’Hagan,

My difficulty with probability ratios (and likelihood ratios and predictive ratios)
is of course that while I grant that it may be useful to know that it is a million
times more probable that the first man I meet when I walk down the street will
be called John Smith rather than Jeremiah Hezekiah Bramblebottom, this in
itself tells me little about the chance of meeting a man called John Smith.

(Box 1980, p. 427)

He goes on to remark that he finds it astonishing that anyone could consider all the pos-
sible models to be known a priori for any real scientific investigation, and that because
Bayesian inference is conditional on the adequacy of a probability model, one must probe
that assumption to secure inference.

Importantly, one can test an assumption in this way when it fixes a probability distribu-
tion for the relevant test statistic without doing so for the whole probability model for the
data. Such nonparametric methods do not have clear comparative LP-satisfying counter-
parts,10 and are crucial in combination with other omnibus and directed tests for strategic
probing of modeling assumptions (Mayo and Spanos, 2004, p. 1023–1024). Thus, unless
non-comparative inferential methods are developed that satisfy the LP, no general meth-
ods for the full demands of model verification can satisfy the LP if they are conceived of
inferentially. Epistemologically, securing our evidence claims requires making them robust
to uncertainty, and model verification secures evidence through winnowing the uncertainty
regarding modeling assumptions (Staley, 2012). So, while some might be lead to the radical
conclusion that the adequate fit of a class of models cannot be checked, it seems more plau-
sible to accept and continue using non-comparative checks of fit while inferring that the LP
is not a universal constraint on any measure of evidence.

3 The Non-Inferential View of Model Verification

In the face of the above problems with the inferential view of model verification, it seems that
one must give up non-comparative assessments of a model’s fit with a data set or admit that
the LP cannot apply to those assessments, hence cannot apply universally. But an advocate
of the LP as a constraint on evidence may respond that one can and should distinguish these

10So-called Bayesian non-parametric models allow flexibility with the number of latent variables, which
are nevertheless constrained to follow parametric distributions.
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assessment of fit—and perhaps techniques of model verification more generally—from the
techniques of inference to which the LP really applies. This non-inferential view of model
verification seeks to save the LP by restricting its scope—or equivalently, by denying that it
should ever have applied to certain techniques in the first place.

There are several ways one might do this. One is to make a distinction between primary
and secondary inferences, that is, between those of scientific interest in the problem at
hand and those that are merely necessary in order to get at the former, like inferences on
nuisance parameters and the testing of model assumptions. To a first approximation, this
view structures statistical analysis as a two-step process, the first of which involves techniques
of model verification to select a sufficiently statistically adequate model. The second step, in
which the model is then subjected to inferential procedures for the parameters of scientific
interest, would be the only one for which the LP applies.11

On this view, the antecedent of the LP commits one to hold off on its application until
all of the modeling assumptions short of the primary scientific questions of inference are
statistically adequate. It seems that Box took this view, for in response to a comment of
Lindley’s that his advocated model verification techniques violate the LP, he remarked that

there is in my mind no question of abandoning the likelihood principle so far as
estimation is concerned. . . . But if we aim to judge whether samples resembling
in some relevant respect the one we have observed are or are not rare, it seems to
me essential to know (as part of the model) the rule by which the samples were
generated (Box 1980, p. 427)

—that is, the sampling distribution of the statistics used in tests of modeling assumptions.
Despite the plausibility of this distinction, however, it is too vague to do the work needed

to save the LP. Different parameters or features of a model may range in scientific inter-
est hierarchically, in which case one may ask, how is one to decide what the appropriate
cutoff between primary and secondary is supposed to be? Supposing the distinction to be
conventional seems unsatisfactory, as the complexity of scientific modeling will demand that
new conventions be invented endlessly. More importantly, it is not clear that a convention
can really bear the epistemological weight that the distinction it stipulates imposes. Fur-
ther complicating matters, there is no reason to believe that these parameters and features
even form a linear order, that even if there is such an order, that this order is stable for a
researcher over time or is invariant across researchers. Researchers can well disagree about
which parameters are of importance, and the course of scientific investigation often changes
their relative importance in marked ways.

Another option is to restrict the range of applicability of the LP to inferential questions
where there is some known technique that satisfies those questions. Then the LP would only
apply to circumstances where there are some competing measures of evidence, at least one of
which satisfies its strictures. It would then demand that those techniques that satisfy it are
always to be preferred, but would be silent when there are no such techniques. In particular,
if there are no techniques to make a relevant comparative inference, as with checking certain

11In practice, one often performs primary inferences first and then circles back to test the assumptions of
the resulting model. Moreover, these steps may be repeated to sequentially test different assumptions, but
these complication are tangential to my argument here.
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modeling assumptions, then the LP does not apply. This gives a relatively unambiguous
criterion for distinguishing which inferential procedures are constrained by the LP and which
are not, but it ossifies the distinction with respect to a particular epistemic situation. The
state of one’s statistical repertoire is dependent upon what one knows personally and what is
known to the statistical community. Thus if a new technique satisfying the LP is developed
for a particular problem for which one previously had only non-comparative techniques, all
the analyses using the latter would become suspect.

There are firmer distinctions, however, on which the non-inferential view of model ver-
ification can stand. One is that the problematic techniques all use the Fisherian logic of
testing, whereby one can disconfirm an assumption but only confirm the fit of an assump-
tion with the data. That is, techniques of model verification by themselves are not severe
tests of positive hypotheses and therefore do not have the full inferential capacities that
should cohere with “true” measures of evidence. (Indeed, Bayarri and Berger (1999) (and
others) call them measures of “surprise” since they merely indicate how strongly one should
consider developing alternative models.) This is distinguished from the previous option by
making particular techniques, not particular questions of inquiry, the distinct objects over
which one asks if the LP applies. George Barnard, in his discussion of Birnbaums’s essay,
was one of the first to draw this distinction, pointing out that Fisherian tests of significance
require less structure than a statistical experiment as defined in §1:

In particular, [Fisherian] tests of significance arise, it seems to me, in situations
where we do not have a parameter space of hypotheses; we have only a single
hypothesis essentially, and the sample space then is the only space of variables
present in the problem. The fact that the likelihood principle is inconsistent with
significance test procedures in no way, to my mind, implies that significance tests
should be thrown overboard; only that the domain of applicability of these two
ideas should be carefully distinguished. (Birnbaum 1962, p. 308)

But because Bayesian inferential techniques are not typically framed in terms of severity,12 it
is no longer clear on this view how techniques of Bayesian model verification can be separated
from traditional posterior inference. Perhaps the right distinction, then, is not between severe
and non-severe tests as it is between comparative and non-comparative methods.

These problems might be overcome, or particular deficiencies accepted. Any distinction
one wishes to draw to separate methods of model verification from those to which the LP
should apply, however, faces the problem of accounting for how the different degrees to which
assumptions may have been adequately verified must affect the evaluation of the evidence.
For example, consider two data sets for a probability model that yield proportional likelihood
functions but are compatible with (at least one of) the model’s assumptions to a different
degree. For primary inferences—or whichever category one intends to distinguish from model
verification—the two data sets yield the same evidence by the LP, even if only one of them
fits the model well.

One might protest that in this case, as in any, the value of the evidence is entirely
conditional upon the statistical adequacy of the modeling assumptions. But any clear dis-
tinction between “adequate” and “inadequate” will virtually always be conventional, just

12See, however, Bandyopadhyay and Brittan (2006).
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as the the 0.05 p-value threshold for rejecting a null hypothesis is conventional. Different
scientific problems, even if they use formally the same statistical models, may demand dif-
ferent thresholds. Further, different scientists will have different senses for what the cutoff
should be, even in the same problem. In other words, the degree of fit of the data with a
model comes in degrees to which the evidential evaluation of the data should be sensitive.
In particular, a strong lack of fit should preclude strong evidence. If, on the other hand, the
degree of adequacy of the modeling assumptions is bracketed from the evidential evaluation,
as the non-inferential view of model verification proposes, then there is no longer any way
to take the former into account in the latter.

One can of course uphold the LP if one gives up letting the results of model verification
influence assessments of the evidence, but then it is not clear why one would have bothered
to check modeling assumptions in the first place. As with the radical response to the prob-
lems of the inferential view, however, this position admits no way to let the reliability of
modeling assumptions affect assessments of the evidence. I take it to be uncontroversial that
statisticians concerned with non-trivial statistical problems should care about the outcomes
of their model checks because they should be concerned with the reliability of the statisti-
cal, hence scientific, assumptions undergirding any data analysis. In conflict with this, the
non-inferential conception of model verification brackets information about reliability from
LP-satisfying assessments of evidence.

4 Concluding Remarks on Evidence and Sufficiency

4.1 Idealistic and Pluralistic Revisions

An insistent advocate of the non-inferential view who also has affinity for the LP may retreat
even further by conceding that whatever the evidence for various hypotheses might be, it is
always contingent on the sufficient agreement of all parties that the model assumptions have
been sufficiently verified. Then, to the extent to which this is case, one may be able to apply
the LP. As stated, this view is a bit vague, but there is something attractive in it. Here is
one possible explication: For all that I have argued above, an advocate of the LP still has the
option to say that one can “recover” the LP as a constraint on any measure of evidence for a
particular experimental outcome only in the limit as the relevant epistemic community judges
the underlying modeling assumptions to be statistically adequate. In practice, though, the
evidence will always be modulated by the uncertainty in those assumptions. Thus, one might
affirm that the LP is a constraint on any “ideal” measure of evidence in the limit of “perfect
adequacy” while admitting that actual evidential measures must depart from it somewhat.

But this is not the only direction one might explore. (Indeed, many opponents of the LP
would not likely be satisfied with the above suggestion.) Disavowing the universal relevance
of the above idealization, one might instead find a role for the LP not as a constraint on any
measure of evidence, but merely as defining a class of evidential measures among possibly
many others. On this pluralistic view, there are potentially several different types of evidence,
the exploration of whose interrelationships may help resolve the sometimes contradictory
intuitions feeding debates on the nature of scientific evidence. In particular, if the LP is no
longer an all-encompassing restriction on every measure of evidence, there is no longer any
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problem with the fact that in some circumstances of model verification it does not seem to
apply.13

Relatedly, Royall (1997, p. 4) distinguishes between three kinds of questions that one can
ask oneself subsequent to the observation of data:14

1. What should I believe, now that I have this observation?

2. What should I do, now that I have this observation?

3. How should I interpret this observation as evidence for various hypotheses?

Bayesian analysis concerns the first, Neyman-Pearson testing theory the second, and—Royall
argues—pure likelihood methods the third. Importantly, the answer to the evidence ques-
tion should bear on the belief and action questions. In light of the discussion so far, one
might add a further question: what does this observation tell me about the reliability of my
assumptions? Many methods might suggest themselves for answering this question, partic-
ularly error statistics and the kind of Fisherian testing that I have argued is crucial in many
techniques of model verification because it assess the fit between the data and the model.
The answer to the reliability question should in turn inform the answer to the evidence
question, and in fact sufficient reliability should be a necessary condition for substantive
evidence.15 Following my discussion of the vagueness of the distinction between primary and
secondary inferential goals in §3, there will, of course, be some vagueness regarding what
part of inquiry falls under the evidence question and what part falls under the reliability
question. But however one divides it in a particular circumstance, the answers to what one
takes as questions of reliability will inform and ground the answers to what one takes as
questions of evidence.

4.2 Return to Birnbaum and Sufficiency

As alluded in §1, before concluding I would like to return to Birnbaum’s theorem: if consid-
erations from model verification lead one to reject the general applicability of the LP, how
do those considerations bear on the weak sufficiency and conditionality principles (Berger
and Wolpert, 1988, p. 25–28)?

Weak Sufficiency Principle (WSP) For an experiment E = (X, θ0, {P θ}θ∈Θ), consider
any sufficient statistic S(X) for θ ∈ Θ.16 If S(x1) = S(x2), then any measure of

13Cf. the discussion of Dempster in Birnbaum (1962, p. 318).
14I have adapted his questions somewhat to match the present discussion.
15Bandyopadhyay and Brittan (2006, p. 276), in the course of proposing a Bayesian account of severity,

also recommend adding a fourth question to Royall’s list: “when is a test severe?” A comparative analysis of
their position would take me too far afield here, but one important difference is that they take severity to be
a relationship between data and a hypothesis that obtains when the posterior probability of the hypothesis
is high and the likelihood ratio of the hypothesis to its competitors is large. They accept the likelihood
ratio as the right LP-satisfying measure of comparative evidence and take evidence to be prior to severity
(Bandyopadhyay and Brittan, 2006, p. 290, fn. 58), which does not in general satisfy the LP because of
its dependence on the posterior. Although I take techniques of model verification not to satisfy the LP in
general, I am in contrast suggesting to take reliability to be a precondition of some kind for evidence.

16A statistic S(X) is sufficient for a parameter θ, given a probability model P θ(x), when P θ(x|S(x)) does
not depend on θ.
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evidence e must satisfy e(E, x1) = e(E, x2).

Weak Conditionality Principle (WCP) Consider experiments, E1 = (X1, θ0, {P θ
1 }θ∈Θ)

and E2 = (X2, θ0, {P θ
2 }θ∈Θ), where only the parameter space Θ need be common.

Consider further the mixed experiment E∗, wherein J = 1 or 2 is observed, each
having probability 1

2
(independent of θ, X1, X2), and then experiment EJ is performed.

Formally, E∗ = (X∗, θ0, {P θ
∗ }θ∈Θ), where X∗ = (J, XJ) and P θ

∗ ((j, xj)) = 1
2
P θ

j (xj).
Then any measure of evidence e must satisfy e(E∗, (j, xj)) = e(Ej, xj).

One often takes the WSP to state, intuitively, that all the information about θ present in
the data x is contained in a sufficient statistic. The WCP, on the other hand, states that
the information obtained about θ in a mixed experiment depends only on the subexperiment
actually performed. Since Birnbaum’s theorem states that the conjunction of the WSP and
the WCP is equivalent to the LP, changing the scope of the latter must change the scope of
at least one of the former.

While the foregoing arguments present no obvious threat to the WCP, I believe that they
do bear upon the WSP in much the same way that they did the LP. Namely, a sufficient
statistic evaluated on two distinct data sets may yield the same value (cf. proportional
likelihoods) without those data sets being equally statistically adequate. One can read some
precedent for this conclusion when Casella and Berger explain why they apparently take a
non-inferential view of model verification:

Most model checking is, necessarily, based on statistics other than a sufficient
statistic. For example, it is common practice to examine residuals from a model
. . . Such a practice immediately violates the Sufficiency Principle, since the resid-
uals are not based on sufficient statistics. (Of course, such a practice directly
violates the Likelihood Principle also.) Thus, it must be realized that before
considering the Sufficiency Principle (or the Likelihood Principle), we must be
comfortable with the model. (Casella and Berger 2002, p. 295–6)

On the face of it, they seem to be arguing that model verification violates the SP because
statistics used to test model assumptions, like residuals, are not sufficient statistics. This
would be puzzling since the WSP applies but does not restrict inference to sufficient statistics.
A more charitable reading is that the data sets x1 and x2 of two experiments E1 and E2

may satisfy S(x1) = S(x2) for some sufficient statistic S while leading to radically different
conclusions under tests of model assumptions. Thus the WSP is violated since substantive
differences in statistical adequacy will lead to different evidential conclusions. For example,

in a problem to estimate the mean of data assumed to be standard normal, Xi
iid∼ N(µ, 1),

the sample mean X̄ = 1
n

∑n
i=1 Xi is sufficient for µ. The WSP would require the same

evidential conclusions from data sets with x̄1 = x̄2, even if they have sample variances of ≈ 1
and ≈ 100, respectively. The standard normal distribution is clearly inadequate to model
the latter case, undermining the evidential claims about the parameter of interest (further
respecification notwithstanding).

For these reasons, Casella and Berger seem to fall back to the non-inferential view of
model verification, which takes the constraint of the LP to be contingent on the statisti-
cal adequacy of the model. But as discussed in §3, this view brackets information about
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the statistical adequacy of the modeling assumptions from measures of evidence. Given
their practical viewpoint,17 however, I suspect that they would be attracted to many of the
suggestions offered at the beginning of this section, whether idealistic or pluralistic.
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