BAYESIAN ORGULITY

GORDON BELOT

ABSTRACT. A piece of folklore enjoys some currency among philo-
sophical Bayesians, according to which Bayesian agents that, in-
tuitively speaking, spread their credence over the entire space of
available hypotheses are certain to converge to the truth. The goals
of the present discussion are to show that kernel of truth in this
folklore is in some ways fairly small and to argue that Bayesian
convergence-to-the-truth results are a liability for Bayesianism as
an account of rationality, since they render a certain sort of arro-
gance rationally mandatory.

1. INTRODUCTION

Convergence to the truth is sometimes easy for Bayesians, sometimes
difficult, sometimes rare, and sometimes virtually impossible. Speaking
somewhat loosely (more careful formulations are given below), we have
the following examples.

(a)

(b)

Suppose that the problem is to determine the bias of a coin from
knowledge of the outcomes of an infinite sequence of tosses. Typical
Bayesian agents are essentially guaranteed to converge to the truth,
no matter which hypothesis is true.

Suppose that the problem is to determine the propensities under-
lying a chance process that has a countable infinity of possible
outcomes. Then, for typical hypotheses about the propensities, if
any of those hypotheses are true, then typical Bayesian agents are
(essentially) guaranteed not to converge to the truth.

Suppose that the problem is to determine whether a given binary
sequence, revealed bit by bit, encodes a binary expansion of a ra-
tional number. For any Bayesian agent, there is a rich infinite
family of sequences the agent could be shown that would prevent
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convergence to the truth. Bayesian agents that are open-minded
in a certain appealing sense fail to converge to the truth for typical
sequences.

(d) Suppose that the problem is to determine, from knowledge of the
outcomes of an infinite sequence of tosses, whether a given coin has
a bias of two-thirds in favour of heads or in favour of tails—and also
whether it is a nickel, a dime, or a quarter. Because the evidence
does not distinguish between each pair of fine-grained hypotheses
under consideration, convergence to the truth is possible only in
special cases.

Bayesian agents tend towards supreme self-confidence: facing a prob-
lem of type (a), (b), or (c), they will assign probability zero the possi-
bility of failing to converge to the truth.

While from the outside it is clear that problems of type (b), (c), and
(d) are far more intractable for Bayesians than are problems of type
(a), this fact is not reflected in the judgements of Bayesian agents:
they rate their chances of success for problems of type (b) or (c) just
as highly as for problems of type (a), even while being willing to admit
that success is not inevitable for problems of type (d).

In Section 5 below, I will argue that there is a real problem here
for Bayesians—their account of rationality renders a certain sort of
arrogance rationally mandatory, requiring agents to be certain that
they will be successful at certain tasks, even in cases where the task is
so-contrived as to make failure the typical outcome.’

The first order of business, in Section 2, is to get on the table the
notion of typicality that will be in play in the following sections. In
Section 3, by way of stage-setting and because I suspect that the results
in question are not as widely known among philosophical Bayesians as
they might be, I survey some classic results concerning problems of
type (a) and (b). In Section 4, I establish the picture sketched above
for problems of type (c).

2. TypricAL!

One often says that a property is typical of a given class of objects
if the set of objects exemplifying that property is overwhelmingly large
in some appropriate sense—or if the set of objects lacking the property
is so small as to be negligible in some appropriate sense.

!This can be thought of as a sharpened relative of an objection advanced, some-
what ambivalently, by Dawid—cf. his (1982, §6) and (1985, Note 7.3).
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Example: The Unit Interval. Let us begin with a concrete example:
the unit interval I = [0, 1] of the real line. We can think of this in a
number of ways—notably, as a set, as a topological space (a set together
with a notion of convergence of sequences), or as a metric space (a
set together with a notion of distance—and hence also a notion of
convergence).? Each of these brings with it a corresponding notion of
smallness and largeness.

If we consider I as a set, then it is natural to think of its countable
subsets as being small, and to think of the complements of such subsets
as being large.

If we consider I as a equipped with its usual notion of distance, then
it is natural to consider a subset X to be small if and only if it is a
(Lebesgue) nullset—if and only if, that is, for every e > 0 we can a find
a collection of subintervals of I such each point in X is in one of these
subintervals while the total length of these subintervals is less than ¢.
Correlatively, one thinks of complements of nullsets as being large.

In the intermediate case, in which we consider I as a topological
space, the relevant notion of smallness is perhaps less familiar. We call
a subset X C I meagre in I if X = U2, X}, where each X}, is a nowhere
dense subset of I (in the present case this means: even if we add to
Xy those points that arise as limits of sequences of points in X, the
resulting set still does not contain any subintervals of I as subsets).

To motivate this notion, note that the families of countable subsets
of I and the nullsets of I are closed under the operation of taking
countable unions. So one way to arrive at a topological notion of small
subset of I is to isolate a family of undeniably small sets, then look
at the family of sets that arise as countable unions of these. Now, it
is natural to consider any open dense Y C [ large: no subinterval is
so small that it avoids such a Y’; every point in such a Y lies in some
subinterval wholly contained in that Y. The complement of such a Y
is a nowhere dense set—so it is natural to regard such sets as small.
The meagre sets are those that result from beginning with the nowhere
dense sets and closing under the operation taking countable unions.
No subinterval of I is meagre—and the complement of a meagre set is
uncountable and dense in .3

The relations between these three notions of smallness are complex.
Every countable set is both a nullset and a meagre set. But there
exist uncountable subsets of I that are both meagre and null. The

2Al spaces considered here and below are metrizable—so their topologies can
be characterized in terms of the convergence of sequences (Dudley, 1964, §2).
3See, e.g., Oxtoby (1980, Theorem 1.3).
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Cantor set, which will play a role in Section 4 below, is the standard
example. Let C be the result of deleting the (open) subinterval that
is the middle third of Cy = I. Let Cy be the result of deleting (open)
middle thirds of each of the components of C';. And so on. Then the
Cantor set is C' := NCy. Equivalently, we can think of C' as the set of
those numbers in [ that can be written in base-three without using the
numeral one. (' is uncountable.® But it is a nullset.” And C is itself
nowhere dense—and hence is meagre as a subset of 1.

Since there are meagre nullsets, there are also sets whose comple-
ments are meagre and null. Further, there are nullsets with meagre
complements—and hence also meagre sets with complements that are
nullsets.” In practice, the two notions live side by side, providing com-
plementary, sometimes clashing, notions of smallness.®

One of the strengths of the notion of a meagre set is that it is purely
topological—and so is invariant under homeomorphisms from the in-
terval to itself (i.e., continuous deformations of the scale on the interval
that leave the endpoints fixed). The notion of a nullset, though, de-
pends on the metric structure of the interval (or on some other structure
that goes beyond its topology): there are homeomorphisms of I that

4 We define a surjective map f : C' — I as follows: if .z1@o25. .. is the ternary
expansion of x € C in which each xj, is 0 or 2, then we define y1, yo, ... by yx = %xk
and let f(z) be the real number in I whose binary expansion is .y1y2ys . ... This
map is non-decreasing and continuous. But it is not one-to-one: % can be written in
binary either as as .0111... or as .100...—so f maps %, which admits the ternary
expansion .0222..., to the same point that it maps %, which admits the ternary
expansion .200. ... For a characterization of the countable set of pairs of points at
which this problem arises, see, e.g., Gelbaum and Olmsted (2003, §8.14).

°The lengths of the (disjoint) intervals deleted in constructing C' sum to one.

6Each interval deleted from Cj in constructing Cly1 is open. So each Cf is
closed—so C itself is closed. So in order to see that C' is nowhere dense, it suffices
to note that, since each such subinterval contains numbers that require ones in their
ternary expansions, C' has empty interior.

"See fn. 11 below

8There is, however, a sense in which these two notions provide equally good
extensions of the notion of a small subset of the real line into the realm of uncount-
able sets. Sierpiriski-Erdds duality: given the continuum hypothesis (or something
somewhat weaker) it can be shown that there exists a bijection g : R — R that
interchanges the nullsets and the meagre sets and which is its own inverse. So
from a suitably lofty perspective, the nullsets and the meagre sets are functionally
equivalent: any sentence that involves just set-theoretic terminology together with
‘meagre’ or ‘nullset’ is equivalent to the sentence that arises by swapping the roles
of these two terms. See Oxtoby (1980, §19).
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map the Cantor set to non-nullsets.” Non-nullsets that arise in this way
are known as fat Cantor sets.'® Each fat Cantor set is meagre, being
the image of a meagre set under a homeomorphism—and by taking
a countable union of well-chosen fat Cantor sets we can construct a
meagre set whose complement is a nullset.™

Meagre and Residual. We have been focussing on the interval and
its subsets. But in any topological space we can define the meagre
subsets to be those that can be decomposed as countable unions of
nowhere dense sets.'> The complement of a meagre set is called residual
or comeagre. Meagre subsets are also known as sets of first category;
non-meagre subsets are also known as sets of second category.

Intuitively, in well-behaved spaces meagre subsets are negligibly small
while residual subsets are overwhelmingly large.'® Indeed, in the spaces
to be considered below, countable sets are always meagre—and meagre
sets are always small in a reasonably intuitive sense (namely, meagre
subsets of such spaces have dense complements—so in particular, no
nonempty open sets are meagre).'*

9Recall from fn. 4 above that there is a non-decreasing surjective map f : C' — I.
Let g be function from I to itself that maps € I to m(f([0,z] N C)), where m
is the Lebesgue measure on I. For € I let h(z) = £(x + g(z)). This is a strictly
increasing continuous map from I onto itself—and hence a homeomorphism (see,
e.g., Dieudonné, 1960, §4.2.2). And since g is constant on the complement of C,
the derivative of h on this set is %—so this set of measure one gets mapped to a
set of measure one-half, which means that C' must get mapped onto a set with the
same measure. This is a special case of a more general result; see Oxtoby (1980,
Theorem 13.2).

OHere is a recipe for constructing fat Cantor sets. Instead of deleting the middle
third of each interval remaining at each stage in our construction of the Cantor set,
we choose some 0 < a < 1, and construct Cf* by deleting the middle open interval
of length & from Cy = I; construct C§ by deleting the two middle intervals of
length § from Cj; and so on, deleting at each stage intervals of total length 7.
The intersection C* of the C}’ has Lebesgue measure 1 — « and is a fat Cantor set.
See Gelbaum and Olmsted (2003, §§8.4 and 8.23).

' Let C* be a countable union of fat Cantor sets C** with oy — 1. See, e.g.,
Gelbaum and Olmsted (2003, §§8.4 and 8.19).

12Recall that a subset A of a topological space X is called nowhere dense if the
closure of A has empty interior.

13But consider the rational numbers and the natural numbers, each equipped
with the topology that they inherit from the real numbers. In the case of the
rational numbers, each singleton set is a nowhere dense set—so that the space as a
whole is meagre. In the case of the natural numbers, singleton sets, being both open
and closed, fail to be nowhere dense—so that even finite subsets are not meagre.

“Countable sets are meagre in any perfect space (i.e., in any space in which
any open neighbourhood of any point includes at least two points); in any space
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The so-called Banach—Mazur game provides an alternative charac-
terization of meagre subsets that bolsters the intuitive force of their
claim to be negligibly small. Let X be a topological space and let G
be a basis for the topology of X: i.e., G is a collection of open sets
of X such that every open set can be written as a union of sets in G.
A subset A of X is identified and a two-player game is to be played.
Player 1 and Player 2, take turns choosing elements G, Gs, Gj, ...of
G with Player 1 choosing first and with each G;.; constrained to be
contained in G; (for ¢ > 1). Player 1 wins if NG} contains a point in
A, otherwise Player 2 wins. Intuitively, the smaller A is, the harder it
is for Player 1 to win—certainly, if A is all of X, then Player 1 cannot
lose, while if A is countable (and X uncountable and well-behaved), it
is easy for Player 2 to win, no matter what Player 1 does. It turns out
that Player 2 has a winning strategy (a rule for selecting an interval at
each stage, given what has gone on before, that is guaranteed to result
in victory no matter what Player 1 does) if and only if A is meagre.'
For applications, see fnn. 44, 48, and 49 below.

Below, our concern will be with the Bayesian framework, in which
each agent has in view a space of live hypotheses over which prior and
posterior probability measures are defined. In the usual case, spaces
of hypotheses and the spaces of probability measures over them have
a topological structure (one knows which sequences of points in these
spaces converge and which do not), but they are not equipped with
natural notions of distance or of measure.!® So we will count meagre
subsets of spaces of hypotheses or of priors as small and residual subsets
as large. A property of hypotheses or of priors will count as typical
just in case the set of objects exemplifying that property is residual in
the relevant space.

For the sort of cases we will be concerned with, the various notions
of largeness and smallness mesh in a interesting ways.

with the topology of a complete metric space, no nonempty open sets are meagre
and every residual set is dense; see, e.g., Kechris (1995, §§8.A f). All of the spaces
considered below are perfect and homeomorphic to complete metric spaces.

15See Oxtoby (1957, Theorem 1) or Kechris (1995, §8.H). Ulam bought Banach
a bottle of wine for proving this for the unit interval—whether it were red or not,
the Scottish Book maketh no mention.

6For a given space of hypotheses ©, the corresponding space of priors will be
the space of (countably additive) Borel probability measures over O, equipped with
the topology of weak convergence: to say that the sequence of measures (Py, P, .. .)
converges to the measure P is to say that lim,, . [ fdP, = [ fdP for each bounded
continuous function f on ©.
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Remark 1. On the one hand: if X is a reasonable topological space
with uncountably many points, then every Borel probability measure
on X assigns measure zero to some residual subset of X.!7 So there is a
sense in which each Bayesian prior embodies some very strong a prior:
bias that is immune to empirical refutation.

Remark 2. On the other hand: If R is a (measurable) meagre subset
of a reasonable space of hypotheses, then the probability measures
according to which R has measure zero form a residual subset of the
space of probability measures over that space of hypotheses.®

3. Goob NEwS, BAD NEwWS

Turn we now to a family of problems from the heartland of Bayesian
statistics, by way of getting more clear concerning what it means for a
Bayesian agent to be guaranteed to converge to the truth—and to have
a quick look at some representative facts about when this is possible.

Suppose that we are interested in a repeatable chance process with
a countable number of possible outcomes—tossing a coin, spinning a
roulette wheel, drawing a ball from an urn, etc. We assume that each
outcome has a stable chance of occurring from repetition to repetition,
with the outcomes of various repetitions being independent of one an-
other. The propensities of the various outcomes are unknown. So there
is a space © of chance hypotheses whose points correspond to the var-
ious ways these propensities might be: in the case of a coin, © will be
the set of ordered pairs, (z1,z3), of nonnegative numbers that sum to
one; in the case of a die, © will be the set of sextuples, (z1, s, ..., )
of nonnegative numbers that sum to one; in the case of a process with
a countably infinite number of possible outcomes, © will be be the set
of sequences, (1, s, ...), of nonnegative numbers that sum to one. In
each case, z; gives the chance of getting outcome ¢ on any given trial.

A Bayesian agent facing this sort of setup will begin with a prior
probability measure F, over ©—assigning various degrees of credence
to various (sets of) chance hypotheses. After the first trial, Py will be
updated by conditionalization to yield a posterior probability measure

17See Oxtoby (1980, §16). Note, however, that it is possible, e.g., to equip the
unit interval with an unorthodox topology relative to which the meagre sets are
precisely the sets of Lebesgue measure zero; see Oxtoby (1980, §22).

18This follows from Theorem 2.1 of Koumoullis (1996). Illustration: recall that
according to the Lebesgue measure on the unit interval, the Cantor set is a set of
measure zero whereas the set C* of fn. 11 above has measure one; our result tells
us that typical Borel probability measures consider both to be sets of measure zero.
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P, on ©; after the second trial, P; will be updated by conditionalization
to yield a new posterior P, on ©, and so on.

We are interested in the conditions under which the sequence of
posteriors (Pp, Py, ...) generated by Py and an infinite sequence of out-
comes converges to the truth. The idea is as follows. Suppose that
0y € O is the true chance hypothesis. Look at a sequence of outcomes
generated by the process (given that 8, encodes the true propensities),
and consider the corresponding sequence of posteriors (P, P, ...) de-
termined by these outcomes and by the given prior F,. We say that
this sequence of probability measures converges to the truth if as time
goes on its terms becomes more and more tightly peaked around the
true hypothesis 6y. Here and below, to say that a sequence of probabil-
ity measures (P;, P,,...) become more and more tightly peaked about
a given hypothesis 6, is to say that the P, converges (in the weak
topology—see fn. 16 above) to the probability measure &y, that puts
unit weight on 6,.*°

Clearly, there can be no general guarantee of success, even for Bayesian
agents with eminently reasonable priors. Faced with an infinite se-
quence of tosses in which the limiting frequency of heads is one-third,
any such agent will, as time goes on, become more and more certain
that the bias of the coin is very close to one-third. But of course such
a sequence of outcomes is possible even if the coin is in truth fair. So
there can be no prior that is absolutely guaranteed to lead us to the
right answer for this sort of problem.

But we can have something almost as good (although we have to put
up with the unfortunate name that statisticians have given this good
thing).

We call a prior Fy on © consistent at 6§ € © if according
to the chance hypothesis @, the chance of a sequence of
outcomes arising that, together with F,, would generate
a sequence (Py, Py, . ..) of posteriors that did not become
more and more tightly peaked around 6 is zero. And
we call a prior Py consistent if it is consistent at every

0 eco.

191 the present context, this boils down to the following (Diaconis and Freed-
man, 1986, §1). Let N € NU co be the number of possible outcomes. For £ > 0
and m a natural number less than or equal to N, let M,,,. be the set of ¢ € © that
such that |z; — y;| < e, for i = 1,...,m, where x; and y; are the weights assigned
to the ith possible outcome by 6y and by ¢, respectively. P, — dg, weakly if and
only if for all m and e, P, (M,,.) — 1.
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In the chance setting, a consistent prior is the best one can ask for:
such a prior is essentially guaranteed to lead to the truth, in the sense
that no matter which chance hypothesis is true, any non-pathological
stream of data generated by that hypothesis would lead an agent with
that prior to pile up more and more credence on smaller and smaller
neighbourhoods of the true hypothesis.

For problems of the kind under consideration we have the following
sort of result about subjective certainty:

For any prior P, the set of hypotheses at which P is not
consistent is a set of P-measure zero (Freedman, 1963,

§1).

Now, the fact that a given prior assigns measure zero to the set of
hypotheses at which it is inconsistent is compatible with that set being
very large indeed. If I start out life certain that the coin has a one-third
chance of coming up heads on any toss, then my prior is consistent for
just one point in ©.

A natural hope is that this sort of blatant a priori bias is the only
obstruction to consistency—that any prior that was in some suitable
sense spread over the entire space of hypotheses would turn out to be
consistent.

We say that a hypothesis 6 is in the support of prior P if P assigns
positive measure to every open set containing . We say that a prior
has full support if it assigns positive measure to every nonempty open
subset of ©.

When the number of possible outcomes of our chance
process is finite, a prior P is consistent at a hypothesis
6 if and only if # is in the support of P.?® (Freedman,
1963, §3)

A prior is consistent at a hypothesis if it assigns that hypothesis a pos-
itive probability. But a prior can also be consistent at a hypothesis
that it assigns zero probability, so long as it puts a finite amount of
probability on each open set containing that hypothesis. The consis-
tent priors are those that are nondogmatic in an intuitive sense: in this
setting the consistent priors are just the priors of full support—those

20For & > 0 and 0 = (1, ...,2,), let B() be the set of (y1,...,yn) € © such
that > (2, — yx)? < e. In the present context, a prior has # in its support if and
only if it assigns positive measure to each B.(6).
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that put positive measure on every open neighbourhood of every hy-
pothesis. And the priors of full support form a residual family in the
space of priors on 0.2

The situation changes markedly when we consider chance processes
with a countable infinity of possible outcomes.

When the number of possible outcomes is infinite, for a
prior P to be consistent at a hypothesis 6 it is neces-
sary (but not sufficient) that 6 be in the support of P.*?
(Freedman, 1963, §5)

In this setting, for any two hypotheses 0,0, € O, it is possible to
find a prior Py with 6, in its support, such that conditionalizing F, on
any data sequence that is nonpathological according to 6, leads to a
sequence of posteriors (Py, Py, . ..) that become become more and more
tightly peaked around 6; as more and more data is revealed (Freedman,
1963, Theorem 5). So an agent with prior F, can be expected to be
misled into thinking that the true chance propensities are given by 6,
when they are in fact given by 6.

Further, there are priors with full support that are consistent only
at a meagre subset of © (Freedman, 1963, §5, Remark 6). Indeed,
the priors of full support that are consistent only at a meagre set of
hypotheses form a residual set in the space of priors defined on ©.23 So
there is a sense in which the typical prior is of full support—but fails
to converge to the truth in typical situations. But this is not because

21Since we will need it repeatedly, let us wheel out some heavy artillery. If a space
is compact and metrizable, so is the space of Borel probability measures on that
space when equipped with the weak topology (Kechris, 1995, Theorem 17.22). And
in any compact metrizable space, any set that is dense and arises as the intersection
of a countable number of open sets is residual (Oxtoby, 1980, Theorems 9.1 and
9.2). And within the set of probability measures on a compact metrizable space,
the set of measures of full support is dense and arises as a countable intersection of
open sets (Dubins and Freedman, 1964, §3.13). And, finally, the © presently under
consideration are compact and metrizable (Freedman, 1963, 1387).

22 this context, each # € © corresponds to an infinite sequence (z1,zs, ...) of
weights assigned to each possible outcome (relative to some fixed enumeration of
the outcomes). For each § € © and € > 0, let B.(#) be the set of ¢ = {y;} in O
such that Y, 2% "1 (zy — yp)(1 + 2 — yx) "' < e. A prior on © includes § € © in
its support if and only if it assigns positive measure to B (#) for each € > 0.

233ee Freedman (1965), the Corollary of which tells us that priors consistent only
at a meagre set of hypotheses form a residual subset of the space of priors, while
Remark 2 tells us that the set of priors of full support is residual in the space of
priors. The intersection of two residual sets is residual.
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the problem is so-contrived as to put convergence to the truth beyond
the pale of possibility: there exist consistent priors for this problem.?*

Where does this leave us? In ideally well-behaved settings the pos-
teriors of Bayesian agents whose priors have full support are essentially
guaranteed to converge to the truth—and such priors are typical. But
in the last case considered typical priors fail to converge to the truth
in typical situations—although there still exist special priors guaran-
teed to converge to the truth in every situation under consideration.
For some problems, convergence to the truth is all but automatic for
Bayesians, for others, it is very difficult (but not impossible) to come
by.

Remark 3. We have been concerned with the most straightforward
sort of statistical inference problem, in which the hypotheses under
consideration are very closely connected with the chance distributions
of observations. In many problems, this connection is more subtle. In
some problems, convergence to the truth is in general impossible—and
is not expected by typical Bayesian agents—because multiple hypothe-
ses induce the same chance distribution on the space of sequences of
measurement outcomes, so that observation of outcomes provides no
way to discriminate between hypotheses. Statisticians call this phe-
nomenon nonidentifiability. It is easy to construct silly examples of
nonidentifiability. Example: suppose that one is told the outcomes of
a sequence of tosses of a coin and asked to determine whether the coin
is biased two-thirds in favour of heads or of tails and also whether it is
a nickel, a dime, or a quarter. One expects that this evidence will allow
one to correctly identify the bias of the coin but not its denomination.?

Remark 4. Nonidentifiable models aside, statisticians have a rule of
thumb that being of full support should suffice for a prior to be con-
sistent when the space of hypotheses is finite-dimensional (parametric
models) but not when the space of hypotheses is infinite-dimensional
(nonparametric models).?® Even in the nonparametric setting, suffi-
cient conditions are known for a prior to be consistent—often they
involve requiring that the problem be identifiable, that the prior avoid

24Gee the discussion of tail-free priors in Freedman (1963, §6) Close relatives
of these priors are natural generalizations of the priors associated with Carnap’s
continuum of inductive methods; see Skyrms (1993).

25For more interesting examples, see, e.g., Schervish (1995, 430), Skyrms (1991,
§4), Sober and Steel (2002), or Steel et al. (1994).

260n the importance of this divide, and for parametric exceptions to the general
rule of thumb, see Ghosh and Ramamoorthi (2003, Chapter 1).
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certain sorts of jaggedness, and that it spread credence over the space of
hypotheses in some sense more demanding than having full support.”

4. Goob NEws, ROTTEN NEWS

Let us now take as our space of hypotheses the space C of infinite
binary sequences. We will need a few facts about this space, known as
the Cantor space. C is the result of taking the product of {0, 1} with
itself infinitely many times and as such carries the natural product
space topology—the topology of pointwise convergence of sequences.?®
We can characterize the open sets in C as follows: let w = z125 ... 1, be
a string of bits; then the set B,, consisting of those sequences whose first
n bits are given by w is an open set and every open set arises as a union
of sets of this form. It is straightforward to set up a correspondence
between the points in the Cantor space and the points of the standard
Cantor set: the mapping * = (z1,22,...) € C +— Zzgc—k’“ € Cis a
homeomorphism.

Think of each sequence in C as corresponding to a possible sequence
of records of outcomes of some family of observations. We might be
looking at the outcomes of sequence of coin tosses (perhaps with each
toss involving the same coin, perhaps with different tosses involving
coins of different biases). Or we might be looking at successive bits
in a binary expansion of a constant of nature, or determining whether
there is more gold in China or in India, minute by minute.

We will be interested in Bayesian agents who begin life with priors
over C, then update by conditionalization as the bits of data making
up some particular sequence are revealed one by one.

In the present context, conditionalization works as follows. Consider
the first bit learned. Using the notation introduced above, By and B;
(the set of sequences that begin with 0 and the set of sequences that
begin with 1) are open sets. When you learn the first bit of data, you
set your prior to zero on one of these sets and, up to normalization,
leave it as it is on the other (i.e., from now on, you assign measure
zero to any set contained in one of By and Bj, but leave unchanged
the ratio between the measures of sets contained in the other). And
similarly, for each new bit you learn—if the first bit was 1, then after
seeing that bit your posterior is concentrated on B;. After seeing the

27See Ghosh and Ramamoorthi (2003, Chapter 4) and Wasserman (1998).

2Blet & = (r1,22,...) be a point in C. And for each j = 1,2,... let ' =
(2, xé, ...) be a point in C. Then @/ — x in this topology if and only if: for each
k, there is a Jj such that xff = xy, for all j > J.
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second bit, you have a new posterior that vanishes either on Bjy or on
Bi; (depending on what the second bit was). And so on.?

It is easy to construct priors of full support in this setting. For
example, the fair coin measure, that assigns measure 2% to any open
set of the form B,, ., is a measure of full support. So is any measure
that assigns non-zero weight to each point in a countable dense subset
of C (since then any open set includes points assigned positive measure).

Consistency in the sense of §3 is easy to come by for this problem:
every prior of full support is consistent. Given the way that condition-
alization works for this problem, whichever the true sequence x is,
the result of conditionalizing a prior Py of full support on longer and
longer initial segments of xg is to deliver a sequence of posterior prob-
ability measures (P;, P, ...) whose support is limited to a sequence of
smaller and smaller open sets that shrink towards z(.%° So as time goes
on, these posteriors become as tightly peaked as you like around the
true hypothesis.®! So convergence to the truth is guaranteed for priors
of full support—and priors of full support are typical in the space of
priors.*?

Nonetheless, there is a sense in which convergence to the truth can
be formidably difficult in this setting: as we will see, there are questions
we could ask our Bayesian agents about the sequences they are seeing
such that then any prior will fail to converge to the truth for infinitely
many sequences in C—and such that priors that display a certain sort
of attractive open-mindedness fail to converge to the truth for typical
hypotheses in C.

29As always, it will not be obvious how to define the posterior if the the prior
is concentrated on a region ruled out by the data. Of course, this problem cannot
arise for priors of full support.

30Full support is required in order to assure the the posteriors are well-defined.
See fn. 29 above.

31That is, the P, converge weakly to d,. This follows from Billingsley (1999,
Theorem 1.2.2): suppose that the class of subsets A of some topological space X is
closed under finite intersections and that every open subset of X is a countable union
of sets in A; then if @, Q1, Q2, ...are measures on X such that if Qx(A4) — Q(A4)
for every A € A, then the Q) converge weakly to Q. Now, in our case the class of
B,, satisfy these hypotheses. So we need only show that for any binary string w,
limg 00 Pi(Bw) = 0z, (Bw)- To see this, note that if @ is in B,, then dz,(By) =
1—and for for sufficiently large k, the support of Py is contained in B,, so that
limg— 00 Py(Bw) = 1; while if @y ¢ B, then d4,(B,) = 0—and for sufficiently
large k, B,, is outside the support of Py so we have limy_, o Px(B,) = 0.

32C has the topology of the Cantor set—which as a closed subset of a compact
metrizable space is compact and metrizable. So the results quoted in fn. 21 above
apply to probability measures on C.
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Let R be any countable dense subset of C.3* Now, to say that R is a
dense subset C is to say that every point in C is a limit of a sequence
of points in R—or, equivalently, that every for any finite binary string,
w, the set B, contains an element of R. Further, each B, C C is an
uncountable set—and so must also have non-empty intersection with
the complement of R. So the complement of our countable dense R
is also dense in C. Examples of countable dense subsets of C: the set
of binary sequences that correspond to binary expansions of rational
numbers; the set of binary sequences that are eventually constant; the
set of binary sequences that are periodic.®*

For the remainder of this section we will set our Bayesian agents the
following problem: determine whether or not the true sequence x lies
in R.* Since the prior Py and the sequence (P, P,,...) of posteriors
sum up the Bayesian’s opinion at each stage, the natural method for
a Bayesian facing this problem will be to be guided at each stage by
P.(R).

What would count as getting at the truth here? Well, a rather
undemanding criterion would be that either x € R and for sufficiently
large n, P,(R) is always greater than or equal to one-half; or x ¢ R and
for sufficiently large n, P,(R) is always less than one-half. So let’s say
that for the problem currently under consideration, the failure set for
a prior is the set of hypotheses for which this condition does not hold.
As one would expect, there is the usual sort of guarantee of subjective
certainty of convergence to the truth:

Let Py be any prior on C. Then the corresponding failure
set has Py-measure zero.?%

The question, of course, is what the failure sets of various priors
look like. Some priors correspond to agents who begin life certain

33R is of course (Borel) measurable, being a countable union of singleton sets
(each of which is closed).

34p sequence of either of the latter two kinds is specified by specifying a finite
binary string—so these sets are countable. To see that they are dense, note that an
arbitrary binary sequence x arises as a limit of a sequence &', 22, ...drawn from
either set—for each k, let 2 be an eventually constant or periodic binary sequence
that begins with the same first k bits as @.

35More generally, we might set our Bayesians the problem of determining whether
the true sequence belongs to a dense, measurable set S with dense complement.
Everything below would still go through, except for the argument of fn. 40.

36This is a consequence of some very general results of Schervish and Seidenfeld
(1990). Applied to our special case, their Theorem 2 guarantees that the set of
hypotheses x such that neither x € R and P,(R) — 1 nor ¢ R and P,(R) — 0
is a set of measure zero. Their Corollary 5 justifies us in treating every subset of
this set as a set of measure zero—and the failure set is itself such a subset.
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that the true sequence lies in R, and who remain thus no matter what
data they see—for these priors, the failure set is the uncountable dense
complement of R in C.>” Other priors correspond to agents who begin
life certain that the true sequence x lies outside of R, and who maintain
this certainty no matter what data they see—for such priors, the failure
set is the countable dense set R.3®

Either sort of prior can have full support.* So in the present context,
being of full support does not suffice to guarantee convergence to the
truth-—indeed it is compatible with being entirely closed-minded about
whether or not the true sequence belongs to R.

What would it take to truly leave the door open concerning the
question whether the true sequence belongs to R? Since this problem
has the feature that any finite amount of data is consistent both with
the true sequence being in R and with it not being in R, it is natural
to consider a condition along the following lines.

Let Py be a measure on C and R be a (measurable) sub-
set of C. Py is open-minded for R if, for any data set an
agent with P as prior sees, there are extensions of this
data set that would lead the agent to assign a credence
of at least one-half to the proposition that the true se-
quence lies in R, and other extensions of the data that
would lead the agent to assign this proposition credence
less than one-half.

Agents with open-minded priors never make up their minds irredeemably
on the basis of a finite amount of data. It is not hard to see that
open-minded priors exist for countable and dense R of the sort we are
concerned with.*°

37To construct such a prior, enumerate the hypotheses in R, then put % unit of
credence on the first, % on the second, etc.

38The fair coin measure is an example—it assigns measure zero to each singleton,
and so assigns measure zero to R as a whole.

39The fair coin measure and the measures of fn. 37 have full support.

40" Any prior Py that is a non-trivial mixture of the fair coin measure with a
measure of the sort discussed in fn. 37 is open-minded. As usual, we write P, for
the posterior generated from Py and n bits of data. Let us also write a,, for P,(R)
and b,, for 1 — a,,. In order to show that our Py is open-minded, it suffices to show
that after seeing k bits: (i) if ag > by, then there is a way of continuing that data
set to include m bits such that a,, < b,,; and (ii) if ax < by, then there is a way
of continuing that data set to include m bits such that a,, > b,,. Since all that
matters is the ratio of a,, to b,,, let us ignore normalization—update P, by just
killing off the part of it that lives on the region inconsistent with the bit revealed
at stage (n + 1). In order to see (i), note that at each stage, no matter what bit
turns up next, the measure of the complement of R will go down by a factor of
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We need one more definition before getting down to business.

We say that hypothesis @ flummozes prior F if there are
infinitely many m for which P, (R) > % and infinitely

2
many m for which P,(R) < 3.

Agents faced with flummoxers flip-flop ad infinitum on the question
whether it is at least as likely as not that the true sequence lies in R.

(1) Any prior whose failure set was empty would have to be open-
minded. No matter what data an agent has been shown, that data
is consistent with both @ € R and x ¢ R. If the prior has an empty
failure set, it has to prepared for either eventuality—so there must
be ways of continuing that would lead to credence above one-half
and others that would lead to credence below one-half.

(2) Any open-minded prior is flummozed by some hypothesis. Given an
open-minded prior, we can construct a flummoxing hypothesis as
follows.*! Start off by showing some data that leads to a credence
greater than one-half that the true sequence is in R. There are
sequences that begin this way but which are not in R (since the
complement of R is dense in C). Pick one of them, and continue
the data stream by showing a block of bits from this sequence long
enough to force the agent’s credence that the true sequence is in R
below one-half—there must be such a continuation, since the agent
is open-minded. Now—whatever string of bits has been shown to
the agent, there is some sequence in R that begins this way (since R
is dense in C). So, since the agent is open-minded, we can choose
a continuation of the data stream that will eventually force the
agent’s credence that the sequence being revealed lies in R above
one-half. Continue this bait and switch ad infinitum. In this way
we construct a binary sequence that flummoxes our open-minded
agent.

two. Meanwhile, the measure of R decreases by a factor of nine whenever a new
bit is shown that rules out the member of R of maximum probability among those
consistent with the data thus far. So by choosing at each stage to show a bit of
this kind, we can ensure that after a finite number of new bits, a,, < b,,. In order
to see (ii), let & be a point in R consistent with the data through stage k. Then for
some 7, Py(z) = 9 x 1077, So if we extend the data set by showing bits from x, we
can ensure that a,, > 9 x 1077, even while b,, gets halved every time a new bit is
revealed. So after a finite number of bits are revealed on this scheme, a,; > b,,, as
desired.

4 The argument of this paragraph is essentially the proof of Proposition 12 in
Kelly and Glymour (1989).
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(3) No prior has an empty failure set. This follows immediately from
the preceding two points and the fact that every flummoxer of a
prior is in its failure set.

(4) Each prior has an infinite failure set that is dense in the space
of hypotheses. Let P be any prior and let & = (z1,z9,...) be
any binary sequence in our space of hypotheses. We need to show

that there is a sequence @' = (x],2},...), > = (23, 23,...), > =
(x3,23,...), ...of hypotheses in the failure set of P that converges

to @ (this will establish that the failure set of P is dense in C—and
hence infinite). It suffices to show that that for each £ =1,2,3,. ..
there is an " in the failure set of P that has the same first & bits as
x.*? So for k arbitrary, let wy be the initial k-bit string of 2. There
are two cases: there is some flummoxer of P that begins with wy,
or there is not. If there is, then we can take this flummoxer as x*.
If not, then for every y € B, , there is some point in the binary
sequence y after which P has made up its mind irredeemably, and
can no longer be caused to flip-flop on the question whether the
sequence being revealed lies in R. In particular, this is the case
for « itself. Suppose that P makes up its mind irredeemably after
being shown the first m bits of . So no matter how we continue
the data sequence after w,, (the first m bits of ), we always find
that P gives us the same answer about whether it is more likely
than not that the binary sequence being revealed lies in R. But
this means that for some binary sequences in B, , P settles on the
wrong answer—since some sequences in B, lie in R and others do
not. So in this case we can let ¥ be one of these binary sequences
that P is wrong about.

(5) The set of flummozers of an open-minded prior is residual in C. We
can think of a prior as a machine that, when fed a binary sequence
bit by bit, outputs a sequence of Y’s and N’s (telling us, at each
stage, whether or not P,(R) > 1). For a given prior P and a
given data sequence x, we say that the prior never switches for
that data sequence if the prior outputs a sequence that is all Y’s
or all N’s. We say that it switches at least once if in the output
sequence begins with one or more Y’s followed by one or more N’s
(or vice versa). We say that it switches at least twice if the output
begins with some Y’s followed by some N’s followed by some Y’s
(or vice versa). And so on. Consider an open-minded prior P. It is
not hard to see that for each k = 0,1,2, ..., the set S, of x € C

42For in this case, we know that for each j, zj = wz; for n > j—so we have

z¥ — & pointwise.
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for which the prior switches at least k& times is open and dense in
C." Now, the set of lummoxers of P is just the set of points in C
that get P to switch at least k times for each k = 1,2,...—i.e., the
set of lummoxers of P is just the intersection of all the Si. But a
countable intersection of open dense sets is residual. So the set of
flummoxers of P is residual in C.*

(6) Open-minded priors fail to converge to the truth for typical hy-
potheses when faced with the problem of deciding whether or not
the sequence they are being shown lies in R. The set of lummoxers
of a given prior is a subset of its failure set. So the failure set of
an open-minded prior is residual in the space of hypotheses. So, in
particular, the failure set is an uncountable set, dense in the space
of hypotheses.*®

5. ORGULITY

As we have just seen, if a Bayesian agent is shown a binary sequence
bit by bit, and asked after each bit is revealed for the probability that
the sequence as a whole has a property of a certain type—such as being
a binary expansion of a rational number, or being periodic, or being
eventually constant—then there will be a rich family of sequences that
the agent could be shown that would frustrate convergence to the truth
on this question. Agents that are open-minded, in the sense that they

For suppose xg causes P to switch at least k times. Then there must be some
n such that the first n bits of &g already suffice to make P switch k times. So P
must switch at least k times for every @ € B,, (where w is the n-bit initial segment
of xg). So Sy is open. And if y is any point in C, then we can construct a sequence
(y*,y?,...) of points in Sy that converge to y: each y™ starts with the first m bits
of y, then continues in some way that makes P change its mind k times (possible
since P is open-minded). The y™ converge pointwise to y—for each j, we know
that y' = y; for n > j. So Sy, is dense in C.

44 Here is an alternative argument via the Banach-Mazur game. Take G to be
class of (non-empty) sets of form B,,, so that we can think of Player 1 and Player
2 as taking turns specifying finite binary strings which are then concatenated to
yield a binary sequence, with Player 1 winning if and only if the resulting sequence
lies in the target set A. Let A be the set of non-flummoxers of prior P. Player 2
has a winning strategy: no matter what Player 1 does, Player 2 plays a string of
bits that causes P to output Y followed by a string that causes it to output N.
This always results in an infinite sequence that lummoxes P. Since Player 2 has a
winning strategy, the set of non-flummoxers must be meagre in C.

45Further, the failure set of an open-minded prior is a set of measure one ac-
cording to typical probability measures (Remark 2 above)—and not because typical
measures hide their mass in some corner of the space of hypotheses (fn. 32 above).
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never make up their minds irredeemably based on a finite amount of
evidence, are frustrated in this way by typical binary sequences.

This in itself does not represent a shortcoming of Bayesianism: de-
fine a method to be a function from finite binary strings to guesses
about whether the sequence being revealed has the target property;
and define an open-minded method to be one that never makes up its
mind irredeemably based on a finite amount of evidence, and so on;
then analogues of (1)—(6) of Section 4 carry over to this more general
setting.

What sets Bayesian agents apart is that, despite the patent in-
tractability of the problem at hand, they assign probability zero to
the set of sequences that they cannot handle successfully.1®

Suppose that I face a problem of type under discussion. I am inclined
to be a Bayesian and have extraordinary powers of voluntary belief. So
I sit down to look at some priors to decide which to adopt. One factor
among many that I will weigh up in evaluating a prior is the nature
of its failure set—the set of binary sequences with the feature that if
[ am shown them, I will fail to latch on to the truth about whether
the sequence has the property of interest. The failure set of each prior
I consider is nontrivial—always infinite and dense, in some cases even
residual. And each prior considers its own failure set to be negligible,
assigning it measure zero. [ may find a prior that I like on other
grounds, but worry that its failure set is rather large—but tinkering
with it will never get me very far. For example, if a prior P has a
countable failure set, I can construct a new prior P* arbitrarily similar
to P that converges to the truth for every sequence in the failure set
of P—but now P* will fail to converge to the truth for infinitely many
sequences that P was able to handle.*”

Reflecting on this I may well, even while endorsing my favourite
method as well-suited to this problem, also think that there is some
chance that nature will be unkind and frustrate my desire to reach
the truth. According to Bayesianism, this combination of thoughts is
incoherent: to commit to a method is to commit to a prior; and (for

467y light of the Remark 1 above, it was a foregone conclusion that each Bayesian
agent has to assign probability zero to some residual set—but one might have hoped
that the sets in question would be recondite and of no obvious epistemological
interest.

47You can construct P* by rescaling P to make available an arbitrarily small
amount of credence, then parcelling it out among the sequences in the failure set of
P. P* will have an infinite failure set, disjoint from that of P. The failure set of P*
may even be residual whereas the failure set of P was meagre—e.g., P may be the
fair coin measure and P* may be a measure of the type considered in fn. 40 above.
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this problem) no prior licenses the belief that there is some chance that
it will fail to lead to the truth in the long run.

Bayesian convergence to the truth theorems tell us that Bayesian
agents are forbidden to think that there is any chance that they will
be fooled in the long run—even when they know that their credence
function is defined on a space that includes many hypotheses that would
frustrate their desire to reach the truth. This is a bizarre limitation—
and one that ought to be unwelcome to those who are attracted to
Bayesianism because of its apparent flexibility.

Let me wind up by heading off two lines of response that may seem
appealing.

(i) Some Bayesians may be attracted to a view on which an agent
with a given prior is entitled to consider all hypotheses in its
failure set to be mere skeptical hypotheses. Collectively, the set
of skeptical scenarios ought to be assigned measure zero. So there
is no embarrassment here, no matter how large the failure set
should turn out to be.

But that would be a strange way to think of the present prob-
lematic. We are interested in the behaviour of a Bayesian agent’s
posteriors in the infinite long run, in a setting in which every false
hypothesis is eventually ruled out definitively by observation and
in which these posteriors converge to the delta function measure
concentrated on the true hypothesis. By ordinary standards, the
hypotheses in the failure set of a prior are not skeptical scenarios.

(ii) Bayesians who countenance substantive restrictions on rational
priors my be be tempted to forbid open-minded priors for prob-
lems of the type under consideration.

This is in itself a strange idea. Suppose, for instance, that I am
interested in some physical system whose dynamics may well be
chaotic and that the binary sequence I am to be shown encodes
some information about the history of the system (imperfect ex-
ample: it encodes which of two points on the surface of Hyperion
is closer to the centre of Saturn, second by second). Suppose,
further, that by examining this sequence bit by bit, I aim to de-
termine whether or not the sequence as a whole is periodic. I
begin by thinking that the system’s dynamics is likely chaotic—
but that there is some chance that it is instead periodic. If it
is chaotic, then I expect that the sequence I am shown will not
be periodic—but that it will mimic periodic sequences for long
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stretches of time.*® If the system is periodic, the sequence will be
periodic—but whatever reasons I have to think that the system
is likely chaotic are also reasons to think that if the sequence is
periodic, it will be very complicated. Is it really plausible that
rationality requires me to think that there is some possible finite
evidence set that would decide the question one way or the other,
no matter what evidence should later cOme in?

In any case, there are close relatives of our problem that afflict
all priors, open-minded or not. Suppose that a Bayesian agent
is shown a binary sequence (aj,as,...) encoding, for each of a
sequence of days, whether or not it snows at a given location. On
day k, our agent is required to announce the probability py.i of
snow on the next day, given the pattern of snowy and snowless
days to date. The discrepancy on day k is pr — ax. A Bayesian
agent is high-low calibrated relative to a given binary sequence if
the mean discrepancy goes to zero when we specialize to days on
which p; > .5 and also to days on which p; < .5. If a forecaster
fails to be high-low calibrated, then a rival can complain that
there is a mismatch, for days on which the forecaster predicted
(or did not predict) snow, between the actual relative frequency
of snowy days and the forecast probabilities of snow. All Bayesian
forecasters assign probability zero to the set of sequences for which
they are not high-low calibrated (Dawid, 1982). And all Bayesian
forecasters fail to be calibrated for typical data sequences.’

Some have seen in the tendency of Bayesian agents to converge to the
truth—and in related results concerning the eventual merger of opin-
ion between Bayesian agents whose initial credences share a certain
amount of common ground—the materials for acquitting personalist

48Let A C C consist of those sequences that do not start with some string wy,
repeated k times, for each k£ = 1,2,3,.... Consider a Banach-Mazur game of the
type described in fn. 48 above with A as the designated set. Player 2 has a winning
strategy: on the nth turn, play n repetitions of whatever has been played so far. So
A is meagre. This means that even though typical sequences in C are not periodic
(the set of periodic sequences is countable—and so meagre), typical sequences begin
by repeating some string twice, some string three times, some string four times, etc.

49Consider a Banach-Mazur game of the type described in fn. 48 above, with
the designated set A consisting of sequences for which a given forecaster is high-low
calibrated. Player 2 has a winning strategy: each bit played is designed to make
the forecaster look bad (so a 1 is played as the kth bit if and only of p, < .5);
and enough bits are played on each turn to make the mean discrepancy on days for
which snow is forecast go above .25 of the mean discrepancy for days on which no
snow is forecast go below —.25. For further discussion, see Belot (unpublished).
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Bayesianism of the charge of excessive subjectivity.”® But recent philo-
sophical commentators (some Bayesians among them) have tended to
downplay the significance of these results, pointing out that they what
they guarantee is that Bayesian agents think that there is no chance
that their own future opinions will fail to converge to the truth, which
is not the same thing as saying that the opinions of each Bayesian agent
are in fact certain to converge to the truth.’’ Thehe truth concerning
Bayesian convergence to the truth results is significantly worse than has
been generally allowed—they constitute a real liability for Bayesianism
by forbidding a reasonable epistemological modesty.

REFERENCES

Belot, Gordon (unpublished) “Failure of Calibration is Typical.”

Billingsley, Patrick (1999) Convergence of Probability Measures. New
York: Wiley, second edition.

Dawid, Philip (1982) “The Well-Calibrated Bayesian.” Journal of the
American Statistical Association 77: 605-610.

Dawid, Philip (1985) “Calibration-Based Empirical Probability.” The
Annals of Statistics 13: 1251-1273.

Diaconis, Persi and David Freedman (1986) “On the Consistency of
Bayes Estimates.” The Annals of Statistics 14: 1-67.

Dieudonné, Jean (1960) Foundations of Modern Analysis. New York:
Academic Press.

Dubins, Lester and David Freedman (1964) “Measurable Sets of Mea-
sures.” Pacific Journal of Mathematics 14: 1211-1222.

Dudley, R.M. (1964) “On Sequential Convergence.” Transations of the
American Mathematical Society 112: 483-507.

Earman, John (1992) Bayses or Bust? A Critical Examination of
Bayesian Confirmation Theory. Cambridge, MA: MIT Press.

Edwards, Ward, Harold Lindman, and Leonard J. Savage (1963)
“Bayesian Statistical Inference for Psychological Research.” Psycho-
logical Review 70: 193-242.

Freedman, David (1963) “On the Asymptotic Behavior of Bayes’ Esti-
mates in the Discrete Case.” Annals of Mathematical Statistics 34:
1386-1403.

50For examples, see: Edwards et al. (1963); Howson and Urbach (1989, §§10.a
and 11.j) (but cf. their 2006, §§2.d and 8.a); Savage (1954, §§3.6 and 4.6); and
Schervish and Seidenfeld (1990). For further references and discussion, see Earman
(1992, §6.3).

5For discussions emphasizing this point, see: Earman (1992, §6.6), Glymour
(1980, 73), Howson (2000, 210), and Kelly et al. (1997, §2).



BAYESIAN ORGULITY 23

Freedman, David (1965) “On the Asymptotic Behavior of Bayes’ Es-
timates in the Discrete Case. I1.” Annals of Mathematical Statistics
36: 454-456.

Gelbaum, Bernard and John Olmsted (2003) Counterexamples in Anal-
ysis. New York: Dover.

Ghosh, J.K. and R.V. Ramamoorthi (2003) Bayesian Nonparametrics.
New York: Springer—Verlag.

Glymour, Clark (1980) Theory and Evidence. Princeton, NJ: Princeton
University Press.

Howson, Colin (2000) Hume’s Problem: Induction and the Justification
of Belief. Oxford: Oxford University Press.

Howson, Colin and Peter Urbach (1989) Scientific Reasoning: The
Bayesian Approach. La Salle, I1: Open Court, first edition.

Howson, Colin and Peter Urbach (2006) Scientific Reasoning: The
Bayesian Approach. La Salle, I1: Open Court, third edition.

Kechris, Alexander (1995) Classical Descriptive Set Theory. New York:
Springer—Verlag.

Kelly, Kevin (1996) The Logic of Reliable Inquiry. New York: Oxford
University Press.

Kelly, Kevin and Clark Glymour (1989) “Convergence to the Truth
and Nothing but the Truth.” Philosophy of Science 56: 185-220.
Kelly, Kevin, Oliver Schulte, and Cory Juhl (1997) “Learning Theory

and the Philosophy of Science.” Philosophy of Science 64: 245-267.

Koumoullis, George (1996) “Baire Category in Spaces of Measures.”
Advances in Mathematics 124: 1-24.

Oxtoby, John C. (1957) “The Banach-Mazur Game and the Banach
Category Theorem.” In Melvin Dresher, Albert Tucker, and Philip
Wolfe (eds.), Contributions to the Theory of Games, Princeton, NJ:
Princeton University Press, volume III, 159-163.

Oxtoby, John C. (1980) Measure and Category: A Survey of the Analo-
gies between Topological and Measure Spaces. Springer—Verlag, sec-
ond edition.

Savage, Leonard J. (1954) The Foundations of Statistics. New York:
Wiley.

Schervish, Mark J. (1995) Theory of Statistics. New York: Springer—
Verlag.

Schervish, Mark J. and Teddy Seidenfeld (1990) “An Approach to Con-
sensus and Certainty with Increasing Evidence.” Journal of Statisti-
cal Planning and Inference 25: 401 —414.

Skyrms, Brian (1991) “Carnapian Inductive Logic for Markov Chains.”
Erkenntnis 35: 469-460.



24 GORDON BELOT

Skyrms, Brian (1993) “Carnapian Inductive Logic for a Value Contin-
uum.” Midwest Studies in Philosophy 18: T78-89.

Sober, Elliott and Michael Steel (2002) “Testing the Hypothesis of
Common Ancestry.” Journal of Theoretical Biology 218: 395-408.
Steel, Michael, Laszl6 Székely, and Michael Hendy (1994) “Recon-
structing Trees When Sequence Sites Evolve at Variable Rates.”

Journal of Computational Biology 1: 153-163.

Wasserman, Larry (1998) “Asymptotic Properties of Nonparametric
Bayesian Procedures.” In Dipak Dey, Peter Miiller, and Debajyoti
Sinha (eds.), Practical Nonparametric and Semiparametric Bayesian
Statistics, New York: Springer—Verlag, 293-304.

DEPARTMENT OF PHILOSOPHY, UNIVERSITY OF MICHIGAN
E-mail address: belot@umich.edu



