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Abstract

I contrast two possible attitudes towards a given branch of physics: as
inferential (i. e. , as concerned with an agent’s ability to make predictions
given finite information), and as dynamical (i. e. , as concerned with the
dynamical equations governing particular degrees of freedom). I contrast
these attitudes in classical statistical mechanics, in quantum mechanics,
and in quantum statistical mechanics; in this last case, I argue that the
quantum-mechanical and statistical-mechanical aspects of the question
become inseparable. Along the way various foundational issues in statis-
tical and quantum physics are (hopefully!) illuminated.

1 Introduction

Sometimes progress, especially in foundational matters, can come not from re-
solving a dispute but by clarifying its structure. This paper attempts to do this
in the cases of foundations of statistical mechanics (SM) and quantum mechan-
ics (QM). Its main theme is that we can identify two attitudes to a given area
of physics — inferentialism, the idea that a given theory is a tool to allow us
to make inferences about present and future facts or experiments, and dynami-
cism, the idea that a theory is an account of the dynamical behaviour of systems
entirely independent of our our own knowledge — and that the divide between
inferentialism and dynamicism illuminates the debate both in statistical and in
quantum foundations.

Partly this hoped-for illumination occurs within each separate subject: I will
try to show that the inferential-vs-dynamical dispute naturally captures much
of the basic disagreement within statistical mechanics, and that discussions of
the quantum measurement problem often presuppose one or other conception
even in stating the problem, so that proposed solutions can be misunderstood.
More interestingly, it illustrates the possibility of close links between strategies
in one case and in the other.

I make the case for this in three parts. In section 2 I explain how the
two rival conceptions play out in classical statistical mechanics, and canvass the
main problems with each. In section 3 I do likewise for quantum mechanics, and
consider by analogy how those “main problems” look in a quantum-mechanical
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context. At this point, I hope to have established strong similarities between
the inferential/dynamical dispute in the two fields.

However, it is possible to go beyond similarities. When we consider not clas-
sical but quantum statistical mechanics, there is an almost complete collapse of
the statistical-mechanical questions onto the quantum questions, to the point
that it becomes essentially impossible to adopt the inferential conception in the
one case and the dynamical conception in the other. In the process of estab-
lishing this in section 4, I will argue that while classical statistical mechanics
can be considered as a probabilistic extension of classical mechanics, the same
is not at all true in quantum statistical mechanics.1

I conclude that a single interpretative question — whether to conceive of
a given field in physics as a form of inference or as a study of dynamics —
plays a central role in the foundations of quantum theory, and the exact same
role in the foundations of statistical mechanics once it is understood quantum-
mechanically. I conclude by drawing some morals for the study of the conceptual
foundations of both fields.

2 Conceptions of Statistical Mechanics

In trying to get clear on what (classical) SM is, we can identify two main themes.
The first starts from the observation that in macroscopically large systems we
are necessarily ignorant of many features of the system:

1. We do not know its present microstate.

2. We do not know its exact Hamiltonian.

3. Even if we did know (1) and (2), we do not know how to solve the exact
equations of motion in order to predict the system’s future microstate.

SM, on this account, is concerned with how we can make correct, or at any rate
reasonable, inferences about macroscopic systems in the face of these epistemic
limitations. SM, that is, is a branch of the general theory of inference under
conditions of imperfect information. To quote a classic account:

The science of SM has the special function of providing reasonable
methods for treating the behaviour of mechanical systems under
circumstances such that our knowledge of the condition of the system
is less than the maximal knowledge which would be theoretically
possible. The principles of ordinary mechanics may be regarded as
allowing us to make precise predictions as to the future state of a
mechanical system from a precise knowledge of its initial state. On
the other hand, the principles of SM are to be regarded as permitting
us to make reasonable predictions as to the future condition of a
system, which may be expected to hold on the average, starting
from an incomplete knowledge of its initial state.2

1I elaborate on this point in Wallace (2013c).
2See footnote 3 for source.
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The other concept begins from the empirical observation (going back at least
to the nineteenth-century development of thermodynamics) that the collective
degrees of freedom of macroscopic systems demonstrate observed, lawlike reg-
ularities: ice cubes melt in water, gases expand to fill boxes, heat flows along
metal bars in accordance with the diffusion equation, and so forth. On this con-
ception of SM, its goal is to derive these collective dynamical results from the
underlying microdynamics. In principle this might be an exceptionless deriva-
tion, much as we can derive exceptionless equations for the movement of the
centre of mass of a general body, or the rotational dynamics of a rigid body, even
when that body is made of a very large number of components. But in practice
there are strong reasons to expect any such statistical-mechanical derivation to
require additional assumptions to be made.

On this account, SM is a branch of the general theory of dynamics: it studies
a sub-problem of the general problem of understanding the behaviour of systems
over time. A classical statement of this position is the following:

[I]n the case of a gas, consisting, say, of a large number of simple
classical particles, even if we were given at some initial time the
positions and velocities of all the particles so that we could foresee
the collisions that were about to take place, it is evident that we
should be quickly lost in the complexities of our computations if we
tried to follow the results of such collisions through any extended
length of time. Nevertheless, a system such as a gas composed of
many molecules is actually found to exhibit perfectly definite regu-
larities in its behaviour, which we feel must be ultimately traceable
to the laws of mechanics even though the detailed application of
these laws defies our powers.For the treatment of such regularities
in the behaviour of complicated systems of many degrees of freedom,
the methods of statistical nechanics are adequate and especially ap-
propriate.

The two conceptions are not always cleanly separated — indeed, my two quotes
come from consecutive pages of the same classic textbook3 — and I don’t nec-
essarily want to claim they are incompatible, but they can have very different
foundational implications, as a few examples should make clear.

The conceptual status of probability

On the inferential conception, we are assumed to have imperfect knowledge of at
least the current microstate. It is therefore natural mathematically to introduce
probability measures to represent this imperfect knowledge: the probability as-
signed to a given microstate represents our level of confidence that the system
is really in that microstate. To borrow a very useful piece of terminology from
the quantum foundations literature: we can distinguish the ontic state of the
system, which represents what properties and features the system actually has,

3Tolman (1938, pp.1-2)
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from the epistemic state, which represents our ignorance of the ontic state. The
ontic state is given by a phase-space point, the epistemic state by a phase-space
probability distribution. (There is then a secondary question about how con-
strained our choice of epistemic state is: on the influential ‘objective’ approach
championed by Edward Jaynes4, it is specified uniquely, for given information,
by a combination of maximum-entropy principles and considerations of sym-
metry; on a more ‘subjective’ approach, two agents with the same information
might rationally disagree. I will be concerned here largely with Jaynes’ version
of the inferential conception, which has been dominant in the physics literature
for some years.)

On the dynamical conception, there is no up-front need for probabilities.
We are interested in the large-scale features of the system, and this may require
statistical considerations — what fraction of molecules in a gas have a given
velocity, for instance — but these can be understood as categorical features
of the system. Boltzmann’s original discussion of the H theorem is generally
thought to have had this form, in particular (see Brown, Myrvold, and Uffink
(2009) and references therein for historical discussion): Boltzmann took himself
to be deriving, under reasonable assumptions, the conclusion that the statistical
distribution of molecular velocities in a dilute gas would reliably approach the
Maxwell-Boltzmann distribution.

However, it is well known that the objections of Zermolo and Loschmidt
established that Boltzmann’s results could not be exceptionless facts about the
dynamics of dilute gases, but could only hold given certain other assumptions —
and Boltzmann’s, and later, attempts to fill in these assumptions have invariably
turned out to be probabilistic, at least in part. That is, the dynamical concep-
tion ends up making claims not about how a system will invariably behave but
about how it will most probably behave. Furthermore, while this requirement for
probability is a requirement for a probabilistic microfoundation for a determin-
istic macroprediction (the approach to equilibrium of dilute gases), plenty of the
applications of SM (notably, fluctuation phenomena) also lead to probabilistic
predictions.5 So while the dynamical approach does not require probability a
priori, it has in fact proven to be an essential component of SM. Indeed, the ma-
chinery of contemporary SM makes very extensive use of probability measures
over phase space: any attempt to make sense of that machinery must make
sense of those probabilities.

But on the dynamical conception, how are these probabilities to be under-
stood? Not as representations of our ignorance of the true microstate (on pain
of collapsing the dynamical conception into the inferential one). For some time
a popular suggestion was that they should be understood as long-time averages,
but this is beset with conceptual and technical problems, notably in the inter-
pretation of non-equilibrium SM. The language of “ensembles” suggests that
they are to be understood as relative frequencies in a fictional, infinite, collec-
tion of copies of the system — but if the collection is fictional, how are we to

4See, e. g. , Jaynes (1957a, 1957b) and the papers in Jaynes (1983).
5For more on this point see Wallace (2013d).
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understand its relation to the single, actual, system? If there is anything physi-
cal in the world corresponding to these probabilities, the only obvious candidate
is relative frequencies in actual systems — but there are well-known problems6

in identifying probability with frequency in this way.
(This is perhaps a good point to note that the division between inferential

and dynamical conceptions of SM is often portrayed in the literature as a di-
vision between Gibbsian and Boltzmannian versions of SM (see, for instance,
Callender (2002) and Frigg (2007).) This confuses the use of certain bits of
mathematical machinery with the interpretation placed on that machinery; and
unhelpfully suggests that a defender of the dynamical conception of SM has to
reject use of probability distributions, and indeed that they have to reject or
reconstruct a large fraction of contemporary results in SM. In Wallace (2013a) I
argue that Gibbsian and Boltzmannian mathematical methods can both be un-
derstood within a dynamical perspective, and indeed that from that perspective
the differences between them are relatively minor.)

Equilibrium

The foundational assumption of thermodynamics, inherited by equilibrium SM,
is that isolated systems can in general, and perhaps after a certain period of time
has elapsed, be assumed to be in equilibrium: to be in a state whose macroscopic
parameters are unchanging with time. SM offers a concrete characterisation of
this equilibrium in terms of a a probability distribution — the microcanoni-
cal ensemble, in the simplest case — and it is a well-confirmed empirical fact
that measurements of the values of macroscopic parameters of equilibrium sys-
tems, and of the fluctuations in those values, are accurately predicted by that
distribution.7 Both inferentialists and dynamicists must account for these facts.

They do so, however, in very different ways. For inferentialists, that a system
is at equilibrium is a largely a priori matter. According to the maximum-
entropy principle defended by Jaynes (and finessing certain measure-theoretic
concerns), the equilibrium probability distribution is the rationally required
distribution that represents my ignorance of the microstate of a system when
all I know of that system is its energy. To say “system X is at equilibrium”, for
the (Jaynesian) inferentialist, is to say just “all I know of system X is its energy”.
As such, the question of how systems approach, or end up at, equilibrium, is thus
not obviously well-posed on the inferentialist conception: whether a system is
at equilibrium or not is a property not of the system alone but of the observer’s
knowledge of the system.

6See, e. g. , Hajek (1996, 2009).
7The Boltzmannian characterization of equilibrium defines a system as at equilibrium not

when its probability distribution is microcanonical but when its microstate is located in a cer-
tain phase-space region. But even Boltzmannians need to recover fluctuation phenomena, and
so must require that an isolated system left to its own devices for the equilibration timescale
has a probability of being in a given phase-space region given by the microcanonical distribu-
tion. At this point it seems to be largely a matter of semantics how we define equilibrium and
whether we characterise fluctuations as occuring at equilibrium or into and out of equilibrium.
(I make this case in more detail in Wallace (2013a).)
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For dynamicists, on the other hand, whether or not a system is at equilib-
rium is a contingent claim about that system alone, and the claim that isolated
systems should in general be treated as being at equilibrium is justified only
if it can be established (on whatever additional assumptions are required) that
isolated systems initially out of equilibrium approach equilibrium in a reason-
able length of time (at least with high objective probability, however that is to
be understood). The microcanonical characterisation of equilibrium is legiti-
mate only if it is the unique probability distribution to which other probability
distributions evolve in isolated systems (perhaps at some coarse-grained level
of approximation rather than exactly). (Simlarly, the Boltzmannian claim that
equilibrium is characterised by the largest macrostate is legitimate only if it
is dynamically the case, on reasonable assumptions, that an isolated system’s
microstate is highly likely to evolve into that macrostate.) The foundations of
equilibrium, on the dynamical conception of SM, thus require (in principle) quite
detailed considerations of a system’s dynamics: the Boltzmann equation can be
seen as an early prototype of these kind of considerations, and the longrunning
explorations of ergodicity and mixing can be seen to be more modern attempts
(however well or badly motivated those particular strategies might be).8

Thermodynamic entropy and the Second Law

On the inferential conception, the Gibbs entropy,

SG(�) = −kB
∫

dx �(x) ln �(x), (1)

is normally identified with the thermodynamic entropy. This entropy, being
a functional of the probability distribution, represents (on the inferential con-
ception) a measure of an agent’s lack of information about the underlying mi-
crostate: the more widespread and uniform the probability distribution, the
higher the entropy. This interpretation of entropy as a measure of negative
information can be formalised: on certain assumptions (notably including a
designation of the Liouville measure as the preferred measure of uniformity on
phase space) and up to a constant factor, it can be shown to be the unique
such measure (Jaynes 1957a). It is maximised, under the constraint that the
energy has a given fixed value, by the microcanonical distribution, and this pro-
vides the justification for the inferentialist of using that distribution to represent
equilibrium.

The Gibbs entropy is well known to be invariant under Hamiltonian time
evolution. It follows that if a system initially at equilibrium at energy E and
external parameters (say, volume) V (that is, a system about which the observer
knows only the energy and the volume) is allowed to evolve under Hamiltonian
flow (perhaps involving external potentials) until it has energy E′ and volume
V ′, then the Gibbs entropy of the resultant distribution is less than or equal
to the Gibbs entropy of the equilibrium distribution defined by E′ and V ′. It

8For detailed consideration of such strategies, see Sklar (1993, chapter 7).
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has been argued (Jaynes 1957a) that this provides a justification for the 2nd
Law of Thermodynamics on the inferential conception. The obvious problem
with this account is that while the new equilibrium distribution has higher
entropy than the original equilibrium distribution, the actual new distribution
— which represents the observer’s information about the current state given
that at an earlier time it had energy E and volume V — has the same entropy
as the original distribution. The increase in entropy seems to occur because
the observer discards some information (that the system came to have energy
E′ and volume V ′ in a specific way), rather than because of any feature of the
system itself. Possible solutions to this problem include appeal to our lack of
knowledge of the exact dynamics (Peres 1993, pp.353-4) or our lack of ability
to perform the actual calculations that generate the time-evolved distribution
or even to store the information about it (Myrvold 2012).

The Gibbs entropy does not seem suitable to represent thermodynamic en-
tropy on the dynamical conception: there the probabilities must be understood
(somehow) as objective features of the system, and so the Gibbs entropy is
a constant of the motion. There are basically two resolutions of this problem.
Firstly, we can define a coarse-graining map (or Zwanzig projection; cf (Zwanzig
1961)) J that smooths out the fine details of a probability distribution �, and
define the coarse-grained Gibbs entropy

SG;J(�) = −kB
∫

dx (J�)(x) ln(J�)(x). (2)

It is important to note that this is still a functional of �: J is to be understood as
a mathematical operation used in the definition of the entropy, not as a literal
transformation of the underlying probabilities. (Note that on the inferential
conception this latter interpretation of J might be acceptable — representing,
say, our finite powers of resolution of the system’s detail — but it is incompatible
with the dynamical conception as long as the underlying dynamics are taken to
be Hamiltonian.)

The second resolution rejects the Gibbs entropy entirely, and instead adopts
Boltzmann’s old definition: phase space is divided into cells (‘macrostates’)
and the Boltzmann entropy SB(M) of a macrostate is kB × the logarithm of
its phase-space volume. The Boltzmann entropy SB(x) of a microstate x is
then just the Boltzmann entropy of the unique macrostate in which x lies: this
definition of entropy is entirely non-probabilistic. (For this reason, it is often
argued (Albert 2000; Callender 2002; Goldstein 2001; Lebowitz 2007) that the
Boltzmann definition is preferable, and indeed that the Gibbsian definition only
makes sense on an inferentialist conception of SM; I criticise this view in Wallace
(2013a).)

In both cases, there is a considerable technical project left to carry out.
Firstly, the correct notion of coarse-graining or macrostate partitioning must be
found. Often the criteria for this notion are stated in epistemic terms (states are
in the same macrostate if they are “macroscopically indistinguishable” or some-
such), but this is an unnecessary concession to inferentialism: on the dynamicist
conception, the criterion for a coarse-graining being correct (as in any case of
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emergence) is simply that we can write down robust dynamical equations for
the collective degrees of freedom which abstract away from irrelevant microlevel
details.

Secondly, we have to show, or at least make plausible, that entropy thus
defined does indeed increase under the transformations typical of thermody-
namics. Neither SG;J nor SB is a constant of the motion, so there is no a priori
barrier to showing that they increase in such circumstances, but to show that
they in fact do increase requires engagement with the dynamical details of the
system (for all that it can be made extremely plausible in many cases).

The significantly larger technical burden of accounting for the Second Law
on the dynamicist conception might be taken to be a strength or a weakness as
compared to inferentialism: a weakness, if you regard it as undesirable to have
to get tangled up in the messy details of the dynamics; a strength, if you believe
that the validity of thermodynamics must ultimately lie in the dynamics and
that attempts to bypass the messy details have “the advantages of theft over
honest toil”(Russell 1919, p.71).

Retrodiction and time asymmetry

The underlying microphysics, under either conception of (classical) SM, make
no particular distinction between past and future; but the actual universe shows,
and SM models, manifestly time-asymmetric processes. The clearest example
here is the approach to equilibrium: systems not currently at equilibrium gener-
ally evolve to equilibrium (and we have seen how each conception of SM attempts
to explain this); why, by parity of reasoning, should we not expect that systems
currently not at equilibrium were at equilibrium in the past? More generally,
insofar as SM underpins non-equilibrium dynamical processes like the expansion
of gases into an empty space, why does that reasoning not likewise work into
the past?

On the inferential conception, the paradox might be put as follows: let’s
stipulate that given our information about the present-day state of a system,
it is reasonable to infer that we should have a high degree of belief that the
system is in such-and-such state in the future. (For instance, suppose that our
current information about a glass of water is that it contains an ice cube and
some warm water (of given volumes and average energies); let us stipulate that
it is reasonable on that information to infer that time +t from now the ice cube
is melted and the water is cooler. Why is it not equally reasonable to infer the
same facts at time −t?

There is, on the face of it, a fairly straightforward answer. In fact, in realistic
situations we have a great deal of information about the glass of water over and
above its present state: we probably know what its state was five minutes ago,
for instance, and even if we do not, we know a great deal of other facts about the
state of the world five minutes ago. It turns out (and this is much of what gives
SM its power) that this additional information about the past is of negligible
importance in making predictions about the glass’s future state — but it is
crucially important in making predictions about its past state. The asymmetry
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in our inferences is caused by an asymmetry in our information.
We can question whether we really have information about the past. After

all, we have no direct access to the past, but only to our memories of it, and
those are presumably coded in the present state of the world (in particular,
in our brains and our external records). And if all information is ultimately
present-day information, the ‘asymmetry of information’ explanation for the
asymmetry of inference seems to be in trouble.

Here’s another way to put the same problem, which makes more stark its
paradoxical aspects. There are good reasons to think that, conditional on the
present-day macroscopic facts about the world and on the uniform (Liouville)
probability measure over microstates consistent with that macrostate, that it
is overwhelmingly more likely for our records of apparent past events to have
spontaneously fluctuated into existence than it is for them to be consequences of
those apparent events. So what justifies our belief that the past really happened?

Put this way, we seem to have a problem in epistemology rather than one
in physics: the position that the past did not happen, after all, seems to be a
form of scepticism, and the question of whether we are justified in treating our
memories as information directly about the past or as information about our
present-day brain state is a question about how to set up our epistemology. But
something strange has happened here. For the facts that ice melts in water,
that stars radiate light rather than absorbing it, that people grow old, and
so forth, certainly appear to be facts about the world rather than about our
means of inferring things about the world. So any explanation of them which
relies for a success on a certain analysis of our epistemology seems problematic.
Furthermore, as a matter of logic no such explanation can explain why we as
agents and as observers are in an asymmetric epistemic position. If observers,
too, are just physical systems, we ought to explain why the system as a whole
(including, inter alia, both the glass of water and the physicist contemplating
it) displays the asymmetry in time that it does.

It’s tempting at this point just to shrug and say that such an ineliminable
role for the observer was always part and parcel of inferentialism. But this
is too quick: the ‘inferential conception’ is here a conception of SM, not of
physics as a whole. Recall the distinction between ontic and epistemic states:
the real, objective, physics concerns the ontic state and its dynamics, and is
represented by classical mechanics. SM is simply an inferential layer applied
to that underlying reality to address our imperfect information about it. The
problem for the inferentialist is not that their program makes use of notions
like ‘observer’ and ‘equilibrium’: it is that various facts about the world — and,
in particular, its apparent time asymmetry, even in situations where no human
intervention is occurring — seem to belong more naturally to the observer-
independent, ontic part of the theory, not to the epistemic part.

What of the dynamical conception? Here the paradox is more direct, be-
cause the question of whether we can derive a given time-asymmetric result
is a question about objective facts about the world. If, for instance, at time
0 we can derive on certain time-symmetric and time-translation-invariant as-
sumptions that entropy S(t) (either Boltzmannian or coarse-grained-Gibbsian)
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satisfies S(+t) > S(0) for time t > 0, the symmetry of the underlying dynamics
tells us that S(−t) > S(0) for t > 0 also. And then by time translation sym-
metry S(0) > S(+t), and we have no paradox, but a straightforward algebraic
contradiction. So our derivation must build in some violation of time-reversal
or time-translation invariance and it is simply a matter of finding it.

This task is, in fact, straightforward. The dynamicist approach to probabil-
ity requires an assumption that the probability distribution at the initial time
has certain features (such as being uniform across a given set of microstates),
and these features are not in general preserved under time evolution. If we
impose this required assumption at a given time, it will deliver the required
dynamical results at later times but not at earlier times. So insofar as the
assumption is to be thought of as a physically contentful boundary condition,
and not simply a statement about our information, it must follow that we have
to impose that boundary condition at the earliest relevant time for the system
under study. And since boundary conditions cannot be set for each system
separately in an interconnected universe, ultimately (as most advocates agree)
the dynamical conception requires a particular condition to be imposed on the
initial state of the Universe. (The most common choice of such a condition
is the dual requirement that (i) the initial macrostate of the Universe was a
particular low-Boltzmann-entropy state (the “Past Hypothesis”), and (ii) the
initial probability distribution is uniform or at least reasonably smooth over
that macrostate; in Wallace (2010b) I argue that (i) is not in fact needed.)9

Compare and contrast?

So: in the cases of probability, of equilibrium, of entropy, and of time asymmetry
— that is, in the main loci of discussion in foundations of SM — the inferential
and dynamical conceptions of SM give very different accounts of what is going
on. Which conception works best? So far as I can see, the most severe problems
with each are as follows:

∙ The most serious problem for the dynamical conception is probability. SM
is suffused with probabilistic claims and couched in probabilistic language.
Yet it is extremely difficult to see just how these probabilities are to be
understood, if not as some quantification of our imperfect information
about the actual state. And what role can a probability distribution over
such states play in an explanation of the actual dynamical behaviour of
the system, given that how it evolves in the future depends entirely on its
actual, unique, state?

(Note that this is not simply the general philosophical problem of how
objective chance can be understood in science. It is one thing to say of a
system whose present state is x that it has a certain objective probability

9It is perhaps worth noting that defences of the Past Hypothesis often seem to equivocate
between dynamical and inferential conceptions of SM: often the probability measure seems
to be argued for a priori and the Past Hypothesis is then justified on epistemic grounds, to
avoid global scepticism.
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of transitioning in the next instant to a state x′. It is quite another to
say of that system that it has a certain objective probability of currently
being in state x′.)

Advocates of a dynamical conception are sensitive to this worry — it drives
the widespread scepticism about Gibbs entropy and the corresponding
preference for Boltzmann entropy — but simply defining entropy that
way will not, by itself, suffice to remove the reliance on probability in SM.

∙ The most serious problem for the inferential conception is objectivity, and
the most dramatic and serious example of the problem is asymmetry in
time. To the inferentialist, virtually none of the claims made in SM are
claims about the world in itself, but just about how I should reason about
the world given imperfect information. This already has a somewhat prob-
lematic feel in the inferentialist characterisation of equilibrium not as a
state which systems generally speaking in fact get into and remain in,
but just as a way of saying that we don’t know anything about the sys-
tem’s state. It comes close to paradox when we ask for an account of
why the non-equilibrium processes in the world display a clear and con-
sistent time asymmetry, and in particular if we ask for an account of that
time asymmetry that does not make essential reference to an external,
already-assumed-asymmetric observer.

This should not be surprising. Classical SM seems to be a hybrid, displaying
some features that suggest an inferential conception and some a dynamical one.
Probability, in the classical deterministic context, is extremely difficult to under-
stand dynamically. The time-asymmetric dynamics of the Boltzmann equation
and its many relatives is extremely difficult to understand inferentially. (Equi-
librium thermodynamics could be called either way: is it the study of which
processes are physically possible, or which transformations are within the power
of an agent?)

If classical mechanics were correct (and if, per impossibile, I could still ex-
ist under that assumption), I would end here with the suggestion that the
inferentialist-vs-dynamicist way of understanding the debates in SM is more
helpful, and less prone to mutual miscommunication, than that Gibbs-vs-Boltzmann
approach currently prevalent. However, the move from classical to quantum SM
radically changes the terms of the debate, as we will see. Firstly, though, it
is necessary to consider quantum theory itself from inferential and dynamical
perspectives.

3 Conceptions of Quantum Mechanics

The basic dynamical axioms of QM are simple enough to state, and can be done
in direct parallel with those of classical mechanics. Instead of a state space of
phase-space points, we have Hilbert-space rays. Instead of evolution under
Hamilton’s equations, we have evolution under the Schrödinger equation. And
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to find the state space of a composite system, instead of taking the Cartesian
product of phase spaces we take the tensor product of Hilbert spaces.

There is, however, a different parallel we could have drawn. Quantum states
could have been considered to be analogs of probability distributions over phase
space, not of phase space points; the Schrödinger equation could have been com-
pared to the Liouville equation, not Hamilton’s equations; the tensor-product
rule for constructing the state spaces of composite systems could have been
regarded as correct in QM just as in classical probabilistic mechanics.

At the root of the difference between the two approaches is this question:
is the quantum state something like a physical state of a system, or something
like a probability distribution? One way10 to state the notorious measurement
problem is that “orthodox” QM — that is, QM as it is in practice used11 —
systematically equivocates between the two ways of understanding the state:

The state as probability distribution: The quantum state of macroscopic
systems, and the quantum state of even microscopic systems in contexts
of measurement, is treated as representing a probability distribution over
possessed values: if a system is an a macroscopic superposition of, say,
‘cat alive’ and ‘cat dead’ states, we treat the cat as either alive or dead,
with the probability each equal to the mod-squared amplitude of the cor-
responding state in the superposition. Similarly, we analyse contexts of
state preparation as something very akin to probabilistic conditionalisa-
tion: if we generate a collimated beam of atoms by putting a narrow slit
in front of a furnace, we conditionalise on the fact that the particles went
through the slit, and discard the part of the quantum state corresponding
to the atoms not going through the slit.12

The state as representing something physical: The quantum state of mi-
croscopic systems, or indeed any systems, in situations where interference
phenomena occur, is (prima facie) treated as representing a physical, al-
beit in general highly non-classical, state of the world. In an interference
experiment, we talk freely about interference between the parts of the
quantum state corresponding to the various terms in the superposition, in
a way that does not straightforwardly lend itself to probabilistic reinter-
pretation.

In this way of looking at things, the “measurement problem” is simply this
incoherence about how we are to understand the quantum state: what are the

10A somewhat heterodox way, to be sure; I develop it more fully in Wallace (2011).
11“Orthodox QM” is often used instead in the foundational literature to refer to the Dirac-

von Neumann concept (Dirac 1930; von Neumann 1955) of two different quantum dynamics:
unitary evolution under the Schrödinger equation most of the time, stochastic collapse during
measurement. On this approach, the state is unequivocally non-probabilistic in nature but
the dynamics are not reliably unitary. The approach is generally described as orthodox in the
sense that it represents “textbook QM”. In reality, it very much depends on the textbook,
but in any case (see again Wallace (2011)) it does not do a good job at representing current
practice in the use of QM.

12I am grateful to Simon Saunders (in conversation) for pressing the role of state preparation
here.
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criteria for when we should treat it as a probability distribution and when as
a physical state, and how can we make sense of the transition between the two
conceptions?

In the space of moves made to resolve/solve/dissolve the measurement prob-
lem, I believe we can identify two broad themes, which roughly track the two
themes discussed in statistical mechanics; I discuss each in turn.

The inferential conception of QM

On this conception, the quantum state does not represent anything physical:
it is to be understood as a probability measure, and that probability measure
represents in some way our degrees of belief in some set of physical facts. On
this conception, macroscopic superpositions like “Schrödinger-cat” states are
utterly unproblematic; I represent a cat with a Schrödinger-cat state just in
case I am unsure as to whether it alive or dead following some measurement
process. Asher Peres expresses this position with great clarity:

[T]he “cat paradox” arises because of the naive assumption that
the time evolution of the state vector  represents a physical pro-
cess which is actually happening in the real world. In fact, there
is no evidence whatsoever that every physical system has at every
instant a well defined state  (or a density matrix �) and that the
time dependence of  (t) (or of �(t)) represent the actual evolution
of a physical process. In a strict interpretation of quantum theory,
these mathematical symbols represent different statistical informa-
tion enabling us to compute the probabilities of occurrence of specific
events.

Peres also makes clear why I call this approach “inferentialist”: it interprets QM
not as a description of physical reality, but as a calculus to make (probabilistic)
predictions in the absence of such a description. Chris Fuchs says it even more
explicitly:

Quantum states are states of information, knowledge, belief, prag-
matic gambling commitments, not states of nature. (Fuchs 2002,
section 6)

If inferentialism dissolves the problem of macroscopic superpositions, prob-
lems arise when we apply it to microscopic superpositions. We can in practice
treat a Schrödinger-cat state as a probabilistic mixture of live and dead cat
without contradicting ourselves; if we try to treat an electron in a superposition
of spin states as a probabilistic mixture of those states, we will get the wrong
answers in our calculations. So if the probabilities are not probabilities for the
electron to have various values of spin, what are they probabilities for?

By analogy with (inferentialist) SM, we can identify one apparently highly
attractive possibility. In SM, we distinguished between the ontic state (repre-
senting the actual world) and the epistemic state (representing our information
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about, or degrees of belief about, the ontic state). It is tempting, then, to read
the quantum state likewise as an epistemic state (indeed, what I call the in-
ferentialist conception is often called the  -epistemic approach, as contrasted
with the  -ontic approach which takes the quantum state  as representing
something physically real).

This suggests a research program: find that theory which is to QM as classi-
cal microdynamics is to (inferentialist) SM. This is the program which Einstein,
for instance, seemed to have in mind when he spoke of ‘hidden variables’.) But
the progress made in that program, though substantial, has been largely13 neg-
ative, notably:

∙ Bell’s theorem requires that the theory involve instantaneous action at a
distance.

∙ The Kochen-Specker theorem requires that the theory have the apparently-
pathological feature of non-contextuality.

∙ The recently-proved Pusey-Barrett-Rudolph theorem ((Pusey, Barrett,
and Rudolph 2011); see (Maroney 2012) for discussion and development)
rules out such theories entirely, given apparently-very-weak assumptions
about our ability to treat systems as independent from one another.

The main alternative proposed is that the probability distribution is over
possible outcomes of measurements, represented either by projection-valued
measures on Hilbert Space (PVM), or (more commonly in recent work) by
positive operator valued measures (POVMs). There is no mathematical ob-
stacle to this move; indeed, it can be proven (in the case of PVMs, with great
labour (Gleason 1957); in the case of POVMs, fairly straightforwardly (Caves et
al 2004) that any such probability measure, provided that it is non-contextual,14

is represented by some pure or mixed quantum state.
The problem with this strategy is that it is hard to understand it as anything

other than straight instrumentalism. Some of its advocates (e. g. Peres (1993))
are happy to accept this; others (notably Fuchs (2002)) reject it and maintain
that their proposal is compatible with some kind of realism, but it is obscure to
me exactly what they hope to be realist about. (See Timpson (2008) for further
discussion.)

The dynamical conception of QM

On this conception, QM — like classical mechanics — is a dynamical theory,
concerned with how the physical features of the world evolve over time with-
out reference to any observer, and the quantum state is taken to be entirely
objective. This more or less commits advocates to accepting (i) that the quan-
tum state is not fundamentally a probabilistic entity, and (ii) that at least in the

13The only significant positive result of which I am aware is Rob Spekkens’ ‘toy model’
(Spekkens 2007).

14Something admittedly difficult to justify on this conception of the state; cf Wallace (2012,
pp.225-6).
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case of microscopic systems, it needs to be understood as physically representing
their properties in the same basic way as does the classical microstate.

The burning question15 for this strategy is then: how come the quantum
state appears to be probabilistic when macroscopic systems are concerned? Here
a large amount of technical progress has been achieved, under the general label
of decoherence theory. Two broad strategies have been applied here:

∙ The decoherent histories (or consistent histories) program16 has asked di-
rectly: under what conditions do the probabilities assigned by QM to
sequences of observables obey the probability calculus? The general con-
clusion is that at least a sufficient condition is that QM delivers probabilis-
tic (or very-nearly-probabilistic) predictions for the evolution of coarse-
grained properties of systems: that is, it is probabilistic on the macro
scale once the microscopic details are averaged over.

∙ The environment-induced decoherence program17 has considered how the
evolution of a macroscopic-scale system is affected by its coupling to an (in-
ternal or external) environment). The main focus of the program has been
the selection by the environment of a preferred basis (usually a wavepacket
basis) for the system with respect to which interference is strongly sup-
pressed. This in turn has the consequence that the system can be con-
sistently treated as probabilistically evolving. (This point is stressed by
Zurek (1998); see also Wallace (2012, ch.3) for discussion.)

As a result, we now have a reasonably good understanding of the dynamical
processes by which the quantum state comes to have the structure of a prob-
ability measure with respect to macroscopic degrees of freedom, even while
being nonprobabilistic at the micro-level. (In the process, we also learn why
the in-principle-incoherent shifting between probabilistic and non-probabilistic
readings of the quantum state does not lead to practical problems.18)

It is at best controversial whether all this provides a conceptually satisfactory
understanding of probability in QM, and of QM more generally. If the quantum
state ultimately is taken to represent something physical, then the terms in
a superposition each seem to represent physical features of the world. In a
Schrödinger-cat state, then, the fact that the amplitudes of the live-cat and
dead-cat terms can be consistently treated as probabilities does not seem to
conceptually justify assuming that only one represents anything physically real.
That is, the dynamical conception of QM — at least as long as QM itself is
unmodified at the formal level — is tantamount to the Everett interpretation.

15Philosophers have been almost as concerned with a separate problem: if the quantum
state is a physical state, how are the physical features of that state to be understood? For
discussion of this point, see, e. g. , Maudlin (2010), Hawthorne (2010) and Wallace (2010a),
and the papers in Ney and Albert (2013). (With rare exceptions, physicists have been fairly
unconcerned.)

16See, e. g. , Griffiths (1984, 1996, 2002), Omnes (1988, 1992, 1994), Halliwell (1998, 2010),
Gell-Mann and Hartle (1993), and Hartle (2010).

17See, e. g. , Zeh (1993),Joos et al (2003), Zurek (1991, 2003), and Schlosshauer (2007).
18See Wallace (2011) for further discussion of this point.
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In this context, the live-cat and dead-cat terms represent physically coexistent
goings-on — ‘branches’ in the usual terminology — and it has been extensively
discussed whether more than decoherence is needed to justify interpreting the
branches’ weights probabilistically, and if so, whether and how the gap can be
filled. (For an introduction, see Greaves (2007); for extensive discussion, see
Saunders et al (2010); I give my own account in Wallace (2012, ch.4-6).)

The main alternative to the Everett interpretation within the dynamical
conception is to modify quantum theory — either by adding a dynamical state-
vector collapse rule to eliminate all but one term in a macroscopic superposi-
tion, or by adding hidden variables to pick out one term as somehow preferred.
(Notice that unlike the (ill-fated) inferentialist hidden-variable strategy, this
version maintains the quantum state as physically real and adds additional hid-
den variables.) In dynamical collapse theories (of which the best-known are
the Ghirardi-Rimini-Weber theory (Ghirardi, Rimini, and Weber 1986) and the
Continuous State Localisation theory (Pearle 1989)), probabilities now become
part of the laws of physics, via an irreducibly stochastic dynamics. In hidden-
variable theories (of which the de Broglie-Bohm theory is much the best known),
the probabilities normally19 enter via a measure over hidden variables whose in-
terpretation recapitulates the puzzles of probability in classical SM. In either
case the theory must be constructed so that the newly-added probabilities are
numerically equal to the branch weights given at the coarse-grained level by the
quantum state.

Philosophers have generally been more concerned than physicists about the
conceptual difficulties of probability in the Everett interpretation, and less con-
cerned about the technical difficulties incurred (especially in the relativistic
case) by modifications of quantum theory. But both Everett and the modifica-
tory strategy are examples of the dynamical conception: on both, the quantum
state is resolutely physical; on both, physics is concerned with the actual dy-
namical behaviour of the world, independent of our knowledge of it.20

Compare and contrast? - the quantum case

In my discussion of SM, I identified the most serious conceptual problems for
the inferential and dynamical strategies as being, respectively, concerns about
the objectivity of statistical mechanics’ deliverances (in particular, the direction
of time) and about the nature of statistical-mechanical probabilities if they are
not to be understood epistemically. How do their quantum analogs fare?

It seems to me hard to deny that objectivity is a worse problem for quantum-
mechanical than for statistical-mechanical inferentialists. In the statistical-
mechanical case it was clear what part of physics was objective (classical me-

19At least, they do so in the case of the de Broglie-Bohm theory; as discussed in Bub (1997),
it is perfectly possible to construct stochastic hidden variable theories where the probabilities
have basically the same status as in dynamical-collapse theories.

20This is perhaps somewhat controversial for deterministic hidden-variable theories, where
there is space for an inferential/dynamical dispute about the nature of the probability measure
over hidden variables.

16



chanics) and what part was a matter of inference about the objective part (SM);
the worry was that certain features of SM seemed to belong more naturally in
the objective part. But it is extremely difficult, in the light of the various no-go
theorems, to see what stands to classical mechanics as QM stands to SM.

Put another way, QM is our current general dynamical framework, replacing
classical mechanics (save in the gravitational regime). If that framework as
a whole is to be understood inferentially, physics as a whole seems to be an
inferential framework, and it is no longer clear what we are inferring about.

As for the dynamical conception, probability is at least a very different
problem for QM than for classical SM. In the latter case, the problem was that
“probabilities” were just an additional layer placed over an actual, determin-
istic, underlying dynamics, and that as such it was very hard to understand
them as actually representing an objective property of the physical system. In
unmodified QM, probabilities are features of the quantum state in certain de-
coherent regimes, and there is no additional “underlying dynamics” beyond the
dynamics of the quantum state. In the case of dynamical collapse theories, or of
hidden-variable theories with stochastic hidden-variable dynamics, probabilities
are instead the result of genuinely stochastic laws. It is, of course, entirely pos-
sible to worry about the conceptual status of either explication of probability
— maybe we just can’t make sense of probabilities in an Everett-type theory?
maybe stochastic laws don’t make sense? — but it is at least clear what the anal-
ysis of probability would have to deliver, and clear that probability (whatever
else it might be) is not an epiphenomenal gloss on underlying physics. (There
is, in other words, no way of separating the theory into probabilistic and non-
probabilistic parts.) Only in the special case of deterministic hidden-variable
theories do we see the problems of classical-statistical-mechanical probability
reproduced in a basically-unchanged form.

4 Quantum SM

So far I have drawn parallels between quantum and statistical mechanics, but
the ‘statistical mechanics’ I have considered is classical SM. Since the world is
quantum rather than classical, however, presumably the correct understanding
of SM should proceed via quantum SM.

It is superficially tempting to suppose that we can map classical to quantum
SM via a straight translation scheme: replace “phase space” by “(projective)
Hilbert space”, “phase-space point” by “Hilbert-space ray”, and “probability
distribution over phase space” with “probability distribution over projective
Hilbert space”, and then just apply the ideas of classical SM mutatis mutandis.
But I will argue that this is indefensible on a number of grounds.

To begin with a purely conceptual objection: classical microstates are in
no way probabilistic, but on either the inferential or the dynamical conception
of quantum physics, there is a probabilistic aspect to the quantum state, so
that a probability distribution over quantum states is in a sense a probability
distribution over probability distributions. This is particularly stark if we take
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an inferentialist approach to QM, and regard the quantum state as in some
sense epistemic. In this case, only an inferentialist approach to statistical me-
chanics seems to make sense, but then the probability distribution of SM is an
epistemically-interpreted probability distribution over epistemically-interpreted
probability distributions, and we might as well cut out the intermediate step.
That is, if we take an inferentialist attitude to both quantum and statistical me-
chanics, the subject matter of the two disciplines is the same: both are concerned
with our epistemic state. (We will shortly see how this plays out technically.)

Matters are somewhat more satisfactory conceptually if we take the dynami-
cal conception of QM, and regard the quantum state as representing the physical
world. We now have a choice of interpreting the probability distribution over
quantum states as either an objective feature of those systems, or as epistemic.
The former is at least inelegant: it requires two separate conceptions of objec-
tive probability — one to be understood via QM, the other via some unknown
process. The latter is simplest to understand conceptually — we treat QM, like
classical mechanics, as the underlying dynamical theory, and regard statistical-
mechanical probabilities as quantifying our ignorance of the dynamical state
in each case. (For what it is worth, I have the impression that most authors
commenting on the foundations of quantum SM think of it in this way.)

However, even if the two notions of probability in play are conceptually
distinct, they inevitably merge in any attempt to extract empirical content
from the theory. Suppose we assign a probability measure Pr( ) over quantum

states  . Then the expectation value of any observable X̂ is given by

⟨X̂⟩ =

∫
d Pr( ) ⟨ ∣X ∣ ⟩ . (3)

As is well known, if we define the mixed state �[Pr] by

�[Pr] =

∫
d Pr( ) ∣ ⟩ ⟨ ∣ , (4)

this expression can be rewritten as

⟨X̂⟩ = Tr(�[Pr]X̂). (5)

So all empirical predictions about the system are determined directly by the
mixed state, and only indirectly by the probability distribution. This matters
because the relation between probability distributions and mixed states is many-
to-one. Even if there are two notions of probability present (one emergent from
the quantum dynamics, one entering through SM) they are mixed together in a
way which defies empirical separation.

Things become more dramatic still when we recall that so far we are working
with a very impoverished notion of quantum state. As is well known, quantum
systems can become entangled with their surroundings, and in doing so there
is no Hilbert-space ray that correctly represents the system. Furthermore, the
systems typically studied by SM are macroscopically large, so that there is
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absolutely no reason to expect that such systems, even if initially prepared in
pure states, will not rapidly become entangled with their environment. That
is, we have excellent dynamical grounds to expect that the probability of the
system initially being in any pure state, even if it is initially taken to be 1, will
rapidly approach zero.

There is a straightforward solution, of course: we can represent entangled
systems by mixed states (by taking the partial trace over the environment of the
state of the combined system). So if we want to hold on to the idea of placing
a probability measure over quantum states, that measure had best be defined
over the space of mixed states (in which pure states are present only as a special
case).

If such a measure Pr(�) is defined over mixed states �, though, the many-
to-one issue recurs in even sharper form. For all empirical predictions of the
system are now given by the mixed state

�[Pr] =

∫
d� Pr(�)�. (6)

Any empirical result achieved by assigning to the system a probability distribu-
tion over mixed states can be reproduced by assigning it a single mixed state.

The introduction of probability measures over quantum states is thus epiphe-
nomenal: any empirical prediction obtained via such a measure can be equally
well obtained by assigning a single mixed state to the system — and on the dy-
namical conception of QM (and given entanglement), mixed states are perfectly
legitimate choices of state for a physical system.

(Couldn’t we hold on to the idea that physical systems only have pure states
by rejecting the idea that entangled systems have states at all? But there is no
reason to think that even the entire observable Universe has a pure state (indeed,
there are rather good reasons to think that it does not, since the Universe as a
whole has a causal horizon and in quantum field theory these horizons generally
give rise to thermal radiation, the state of which is mixed).

So: on the dynamical conception of quantum mechanics, there is simply
no need to introduce additional probabilities via statistical mechanics, whether
those probabilities are to be understood epistemically or in some more objective
sense. The probabilities of quantum theory itself will do just fine.

We have already seen that the same ought to be true, on conceptual grounds,
if we adopt the inferential conception of QM. We can now see technically how
this goes through: on the inferential conception there is even less reason to
deny that a mixed state is a legitimate state of a system (indeed, Gleason’s
theorem might be interpreted as telling us exactly why it is the most general such
state). A probability distribution over mixed states is then just a probability
distribution over probability distributions, and should collapse to a single mixed
state, as indeed it does.

The conclusion seems to go through on either conception. While classically it
might have seemed that classical SM is a probabilistic generalisation of classical
mechanics proper, quantum-mechanically it is just a restriction of quantum
mechanics to the regime in which statistical-mechanical methods (irreversibility,
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equilibrium, and the like) apply. Which regime that is depends on whether the
dynamical or inferential conception is adopted. On the former, it is the regime in
which the methods used to derive irreversible dynamics are applicable, and so is
characterised inter alia by a large number of degrees of freedom and by an initial
boundary condition that breaks the time symmetry.21) On the latter, I have no
idea, unless it is essentially characterised by external human intervention.

As a corollary, the questions of whether to adopt an inferential or a dy-
namical conception of physics cannot be answered independently in quantum
and in statistical mechanics. The answer to the former determines the answer
to the latter. And since classical mechanics is valid in our Universe only in-
sofar as it is a valid approximation to quantum mechanics, these conclusions
continue to hold true even in so-called “classical” statistical mechanics, which
should be understood as quantum statistical mechanics in the classical limit.
In particular, the probability distributions of classical statistical mechanics are
quantum-mechanical states (pure or mixed) in a certain limiting regime. (On
this point, cf Ballentine’s observation (Ballentine 1990) that the classical limit
of quantum mechanics is classical statistical mechanics; cf also Uducec, Wiebe,
and Emerson (2012), and my own observations in Wallace (2013c).)

As a case study of how QM and quantum statistical mechanics have essen-
tially the same subject matter, consider again the direction of time. Both in
non-equilibrium statistical mechanics (in, e. g. , the Boltzmann equation) and in
decoherence theory, physicists are in the business of deriving time-asymmetric
dynamical equations from a time-symmetric starting point. (In both cases it
is less than clear how to understand this from an inferential perspective.) We
might expect, then, that there is no sharp divide between the two sorts of
derivation. Indeed this turns out to be the case, as any perusal of the technical
results in the respective fields illustrates. For instance, the decoherence master
equation (a standard workhorse of environment-induced decoherence; see, e. g. ,
Schlosshauer (2007)) is derived by standard methods used in statistical physics
to study dissipation; indeed, transformed to a phase-space representation the
equation can be identified as simply the Fokker-Planck equation, a standard
equation in kinetic theory (see, e. g. , Liboff (2003, p.301)).

5 Conclusion

I have attempted to show that

(i) we can attempt to understand classical statistical mechanics on either the
inferential or the dynamical conception, where in either case the underly-
ing classical microstate mechanics is understood dynamically;

(ii) we can likewise attempt to solve the measurement problem in quantum

21This holds for most unitary versions of quantum theory, at any rate; in stochastic mod-
ifications of quantum mechanics, the time asymmetry might arise from the time-asymmetric
stochastic dynamics. See Albert (2000) and Wallace (2013b) for further thoughts along these
lines.
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mechanics according to either conception, although the (apparent) ab-
sence of any underlying dynamical theory separate from quantum theory
significantly alters the debate;

(iii) since quantum statistical mechanics can be understood as studying, di-
rectly, the quantum-mechanical states of individual systems (understood
either inferentially or dynamically), the decision as to whether to un-
derstand quantum theory inferentially or dynamically forces the issue as
regards the correct understanding of statistical mechanics.

I conclude by gathering together some general thoughts as to the implications
for foundational and philosophical work in these areas:

∙ The current debate in the foundations of statistical mechanics, often char-
acterised as “Gibbs vs Boltzmann”, would be better characterised as “in-
ferential vs dynamical”, as the criticisms made of the Gibbsian approach
by Boltzmannians are really criticisms of the inferential conception rather
than of the Gibbsian machinery.

∙ The quantum measurement problem is helpfully understood as the prob-
lem of resolving a conceptual incoherence between probabilistic and non-
probabilistic ways of understanding the quantum state, such that inferen-
tial (or  -epistemic) and dynamical (or  -ontic) approaches are different
ways of resolving the incoherence: the former by treating the quantum
state (somehow) as inherently representing an agent’s probability func-
tion, the latter by treating probabilities as (somehow) emergent from
a non-probabilistic underlying reality. Traditional ways of phrasing the
measurement problem beg the question in favour of the dynamical con-
ception and hinder communication. (This can still be the case even if the
dynamical conception is right.)

∙ Although advocates of a  -epistemic view of the quantum state often
advance their view by analogy to the classical probability distributions
of statistical mechanics, this presupposes a controversial interpretation of
classical statistical mechanics which in the quantum case collapses to a
straightforward restatement of the  -epistemic view.

∙ While it may be of historical interest to understand how probabilities
could have been understood in classical statistical mechanics considered
in isolation, there is no point in seeking such understanding if our goal is
to understand statistical mechanics in the actual world. In our world, the
probabilities of statistical mechanics are just special cases of the probabil-
ities of quantum mechanics.

∙ The only exception (I can see) to the above concerns the de Broglie-Bohm
theory. Here it is commonly claimed that probability is to be understood
just as in classical statistical mechanics. Advocates of the theory thus have
a clear need (and thus, a clear motivation) to explore the interpretation
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and justification of probability in this context; they should not, however,
be reassured by the supposed “fact” that ultimately they can piggy-back
on the classical-statistical-mechanical explanation for such probabilities,
as for all we know there may not be one.

∙ Although it is a common strategy (frequently adopted, less frequently
defended) to study the foundations of classical statistical mechanics on the
expectation that essentially the same issues arise in quantum statistical
mechanics, this strategy is largely unfounded.

∙ In particular, the idea that quantum statistical mechanics involves putting
probability distributions over quantum states (just as classical statistical
mechanics involves putting probability distributions over classical states)
has no justification.

∙ I will conclude on a conciliatory note. Although it is probably apparent
that I am much more sympathetic to the dynamical than to the inferential
conception of quantum mechanics, and of statistical mechanics, in general,
this need not mean that some areas of these fields are much better un-
derstood on something more like the inferential conception. In quantum
theory, it is fairly clear that information theory ought to be understood
that way: its subject matter is not the dynamical behaviour of unattended
systems, but the limitations imposed by physics on agents’ activities. And
in statistical mechanics, though the conceptual problems of statistical me-
chanics are often simply taken to be providing a microphysical foundation
for thermodynamics,22 “thermodynamics” is a misnomer: it is again con-
cerned with agents’ ability to control and transform systems, not primarily
with how those systems behave if left to themselves.
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