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Abstract.  Philosophers of physics are split on whether foundational issues in relativistic quantum field theory 
(RQFT) should be framed within pragmatist approaches, which trade mathematical rigor for the ability to formulate 
non-trivial interacting models, or purist approaches, which trade the ability to formulate non-trivial interacting 
models for mathematical rigor.  This essay addresses this debate by viewing it through the lens of the CPT theorem.  
I first consider two formulations of the CPT theorem, one purist and the other pragmatist, and extract from them a 
set of problems that clarifies the distinction between pragmatism and purity.  I then apply this distinction to 
Greenberg's ([2002]) influential claim that the violation of CPT invariance in an interacting RQFT entails the 
violation of (restricted) Lorentz invariance.  I show how this claim rests on an unsuccessful attempt to mediate 
between pragmatism and purity.  I then evaluate another attempt at such mediation in the form of causal perturbation 
theory.  This approach suggests that a focus on renormalized perturbation theory as a way of distinguishing 
pragmatists from purists may be misleading. 
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1.  Introduction 
Pragmatist approaches to relativistic quantum field theories (RQFTs) trade mathematical rigor 
for the ability to formulate non-trivial interacting models.  Examples include the Lagrangian 
approach found in most textbooks (e.g., Kaku [1993]), and Weinberg's approach (e.g., Weinberg 
[1995]).  Purist approaches to RQFTs trade the ability to formulate non-trivial interacting models 
for mathematical rigor.  Examples include the axiomatic and algebraic formalisms (e.g., Streater 
and Wightman [2000]; Halvorson and Müger [2006]).  Philosophers of physics are split on 
whether foundational issues related to RQFTs should be framed within pragmatist or purist 
approaches.  Wallace ([2011]), for instance, has argued that "cutoff" quantum field theory 
(CQFT), a particular pragmatist approach, has been successful at resolving the mathematical and 
conceptual problems associated with renormalized perturbation theory, while axiomatic and 
algebraic quantum field theory (AQFT), which epitomize purist approaches, have failed; and this 
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indicates that CQFT is the correct framework for philosophy of QFT.  Fraser ([2011]), on the 
other hand, arguing in support of AQFT, has claimed that renormalization techniques illuminate 
the empirical structure of QFT, as opposed to its theoretical structure, and the success of these 
techniques is not the exclusive property of pragmatist approaches. 
 
This essay addresses this debate by viewing it through the lens of a result that is generally 
considered to be unique to RQFTs; namely, the CPT theorem.  This theorem entails that any state 
of a physical system described by an RQFT must possess CPT invariance; i.e., invariance under 
the combined transformations of charge conjugation C, space inversion P, and time reflection T.  
In other words, the CPT theorem entails that CPT invariance is an essential property of RQFT 
states.  Versions of this theorem appear in both pragmatist and purist approaches (see, e.g., Bain 
[2012]).  While pragmatist versions of the theorem purport to include both free and interacting 
states, purist versions are restricted to free states at worst; or trivial, unrealistic interacting states 
at best.  Greenberg ([2002]), however, has claimed that, within the purist axiomatic approach, a 
violation of CPT invariance in an interacting RQFT entails a violation of restricted Lorentz 
invariance.  This claim makes no explicit provisos about whether the interacting states are trivial 
or not.  It has been influential in both the physics and philosophy of physics literature, since it 
suggests a test for violations of Lorentz invariance via experiments that measure CPT violation 
(Kostelecky [2011]; Hagar [2009], p. 261).  Moreover, in apparently linking Lorentz invariance 
with CPT invariance, it suggests the latter is somehow mysterious; in particular, some 
philosophers have wondered how the charge conjugation transformation C can arise from a 
purely spatiotemporal symmetry (Arntzenius [2011]; Greaves [2010]; Arntzenius and Greaves 
[2009]). 
 
While questions like these may be well-motivated for other reasons, they cannot be underwritten 
by Greenberg's demonstration.  Dütsch and Gracia-Bondía ([2012]) have argued that Greenberg's 
claim fails as an attempt to mediate between pragmatist and purist approaches.  Their argument 
is framed within the context of 'causal perturbation theory', which seeks to establish a 
mathematically rigorous foundation for the perturbative techniques that underwrite pragmatist 
approaches (e.g., Gracia-Bondía [2006]).  In fact, some authors have implicitly claimed that in 
causal perturbation theory one finds a reconciliation of pragmatism and purity (e.g., Helling 
[unpublished]).  For instance, Brunetti and Fredenhagen ([2000], p. 624) observe that all analytic 
or algebraic approaches to RQFT '...by now seem to have missed the challenge for the 
concreteness needed by, say, particle physicists.'  They go on to declare that '[a] notable 
exception is the rigorous formulation of perturbation theory [i.e., causal perturbation theory] 
which may be considered as interpolating between the world of phenomenological physics and 
the mathematical schemes mentioned above.' 
 
The first part of this essay will frame Greenberg's claim, and Dütsch and Gracia-Bondía's 
critique of it, within the context of the debate between pragmatists and purists.  The second part 
of the essay will consider the extent to which causal perturbation theory constitutes mediation 
between pragmatism and purity.  On the one hand, causal perturbation theory is an axiomatic 
approach to RQFT, and faces the same problem that purist approaches face; namely, there are no 
non-trivial interacting models of its axioms.  On the other hand, Dütsch and Gracia-Bondía 
([2012]) provide a formulation of the CPT theorem within causal perturbation theory that, 
arguably, overcomes problems typically associated with purist formulations.  Moreover, in its 
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explicit adoption of perturbative techniques, causal perturbation theory also suggests that a focus 
on renormalized perturbation theory as a way of distinguishing pragmatists from purists may be 
misleading. 
 
Section 2 sets the stage by framing the debate between Wallace ([2011]) and Fraser ([2011]) as 
one between pragmatism and purity.  Section 3 then reviews and critiques two formulations of 
the CPT theorem, one purist and the other pragmatist.  The problems extracted from these 
formulations are then summarized in Section 4, and applied in Section 5 to a critique of 
Greenberg's ([2002]) attempt to mediate between purity and pragmatism via CPT invariance.  
Finally, Section 6 evaluates causal perturbation theory with the intent of positioning it within the 
debate between pragmatists and purists. 
 
 
2.  Framing the Debate 
The debate between pragmatists and purists centers on the question, 'What version of QFT 
should inform philosophical investigations of foundational issues?'  A key aspect of this debate is 
what Wallace ([2011], p. 118) refers as the 'problem of renormalization': 
 

As is widely known, the original attempts -- by Dirac, Jordan, Heisenberg and others -- to 
develop quantum field theory foundered on the problem of infinities:  attempts to calculate 
physical quantities just led to divergent integrals.  (Wallace [2011], p. 117.) 

 
Wallace claims that the version of QFT he refers to as 'cutoff' or 'conventional' QFT (CQFT) 
solves this problem, whereas an alternative version, axiomatic or algebraic QFT (AQFT) does 
not.  In CQFT, one inserts a finite energy cutoff Λ into the theory and then uses it both as a 
means to demarcate the energy scale at which the theory is supposed to be valid, and as a means 
to regularize divergent integrals in perturbative expansions of the relevant quantities of interest.  
The cutoff serves to freeze out the short distance, high energy degrees of freedom of the theory, 
and one then adopts an agnostic attitude about what happens at energy scales above the cutoff.  
According to Wallace, 
 

This, in essence, is how modern particle physics deals with the renormalization problem:  it is 
taken to presage an ultimate failure of quantum field theory at some short lengthscale, and once 
the bare existence of that failure is appreciated, the whole of renormalization theory becomes 
unproblematic, and indeed predictively powerful in its own right.  (Wallace [2011], p. 119.) 

 
AQFT, on the other hand, addresses the problem of renormalization by attempting to identify a 
set of axioms that both free and interacting QFTs satisfy.  But, '...no such theory has ever been 
found:  the only known physically realistic algebraic quantum field theories in four dimensions 
are free-field theories' (Wallace [2011], p. 119).  Wallace ([2011], p. 118) also suggests that 
CQFT and AQFT are 'rival research programs, trying in different ways to resolve the problem of 
renormalization'.  CQFT assumes QFTs break down at short distances/high energies, while 
AQFT assumes QFTs can be defined on arbitrarily small spacetime regions (AQFTs define fields 
as operator-valued, or algebra element-valued, distributions).  As rivals, Wallace believes there is 
a clear winner: 
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CQFT makes a very large number of novel empirical predictions.  Chief amongst these are the 
hundreds of cross-sections, decay rates, mass ratios, resonances, magnetic moments, and the 
like, calculable within the Standard Model and empirically confirmed:  the only way we know 
to make mathematical and physical sense of the Standard Model is via CQFT, so it does not 
seem unreasonable to count the quantitative predictions of the Standard Model as predictions 
of CQFT.  (If AQFT could also reproduce those predictions, they would equally count as novel 
predictions of AQFT; it can't.)  (Wallace [2011], p. 119.) 

 
Fraser ([2011]) seeks to defend AQFT against this critique.  She first identifies the approach to 
QFT found in most textbooks as "Lagrangian" QFT (LQFT).  This approach comes in two 
flavors:  LQFT without cutoffs, and LQFT with cutoffs (Fraser [2011], p. 126).  Wallace's CQFT 
is identified with 'LQFT with cutoffs in which renormalization is effected by the application of 
RG [viz., renormalization group] methods' (Fraser [2011], p. 132).  The basis of Fraser's defense 
is a distinction between the theoretical content of QFT and its empirical content: 
 

There is room for parallel research programs in QFT due to the fact that, in the context of QFT, 
there is a particularly distinct gap between the theoretical and empirical levels.  The empirical 
evidence in support of QFT takes the form of the results of scattering experiments; these are 
encoded in the scattering matrix elements (S-matrix elements).  The theoretical content is, 
roughly speaking, the background apparatus that is used in the derivation of the S-matrix 
elements.  (Fraser [2011], p. 127.) 

 
Moreover, Fraser seeks to divorce the theoretical content of QFT from its empirical content: 
 

The core theoretical content can also be explicated in the form of a set of theoretical principles.  
The theoretical principles of QFT are remote from the derived S-matrix elements; in LQFT the 
fact that renormalization is necessary is one manifestation of this.  (Fraser [2011], p. 127.) 

 
This applies in particular to Wallace's CQFT: 
 

...RG methods illuminate the empirical structure of QFT.  As such, a priori, the lessons drawn 
about the empirical structure of QFT are not the exclusive property of CQFT; it remains to be 
seen whether it is possible for constructive field theorists to come up with rigorous versions of 
the same techniques.  (Fraser [2011], p. 132) 

 
Fraser then argues that, while CQFT offers insight into the empirical structure of QFT, it does 
not offer a rigorous foundation for the theoretical content: 
 

In my view, LQFT with cutoffs yields valuable insight into the empirical structure of QFT, but 
not the theoretical content"  ([2011], p. 127). 

 
In particular, by inserting a finite cutoff, CQFT sacrifices Lorentz invariance.  Fraser also 
implies that, by adopting renormalization techniques (either naive or sophisticated), CQFT fails 
to provide a rigorously well-defined theoretical framework, whereas '...AQFT and its models are 
mathematically well-defined by design' (p. 130).  And '[f]urthermore, the proofs of the CPT and 
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spin-statistics theorems hinge on assumptions about the mathematical well-definedness of QFT' 
(p. 131). 
 
 
The debate between Wallace and Fraser suggests that the role that renormalization plays in 
various versions of QFT is a fundamental issue, as is a separation between the theoretical content 
of an RQFT and its empirical content.  In particular, both Wallace and Fraser suggest that 
renormalization is where QFTs make contact with empirical results, and Fraser in particular 
indicates that this aspect of a QFT can be separated from its theoretical content.  Moreover, the 
procedure by means of which Wallace's CQFT makes novel empirical predictions involves not 
just renormalization, but in addition perturbation theory:  It is the insertion of a cut-off into the 
integral terms that appear in perturbative power series expansions of relevant quantities that 
characterizes CQFT's freezing out of high-energy degrees of freedom.  Thus one might identify 
'renormalized perturbation theory' as what distinguishes the empirical content of Wallace's 
CQFT from the theoretical content of Fraser's AQFT. 
 
This suggests the following general characteristics of the positions in the debate:  Pragmatist 
approaches to QFT, like CQFT, directly engage with renormalized perturbation theory, and thus 
the empirical content of QFT.  On the other hand, they face problems with mathematical rigor 
with respect to the theoretical content of the theory.  Purist approaches to QFT, like AQFT, do 
not engage with renormalized perturbation theory, and so do not engage directly with the 
empirical content of the theory.  On the other hand, they seek to place the theoretical content of 
QFT on rigorous mathematical foundations. 
 
There seem to be two initial problems with this formulation of the debate.  The first involves the 
distinction between the empirical content of an RQFT and its theoretical content.  As noted 
above, Fraser suggests that the theoretical principles associated with a QFT are "remote" from 
derived quantities like the S-matrix; but there are formulations of QFT in which this is arguably 
not the case.  For instance, Weinberg's ([1995]) approach makes an expression for the S-matrix, 
and various properties it is required to posses, central theoretical principles of the theory.  In 
Weinberg's approach, it is arguably difficult to separate the empirical content of the theory from 
its theoretical content.  More will be said of this approach in Section 3.2 below.  Moreover, the 
problem of renormalization that Wallace identifies is, arguably, a bit more nuanced than either 
Wallace or Fraser indicate.  There are two conceptually distinct types of infinities that beleaguer 
various formulations of QFTs.  One involves divergences in the parameters used to define 
interacting states in terms of free states, and the other involves divergences in integrals that 
appear in perturbative power series expansions of relevant quantities.  The first type may be 
associated with renormalized parameters, and thus a "problem of renormalization".  The second 
type is typically associated with perturbation theory, and for some theories, the first type can be 
employed to effectively address the second type (such theories are "renormalizable").  However, 
this is generally not the case without further ado, and one can argue that the second type of 
infinity, ultimately, involves the definition of products of fields, whether free or interacting.  
These issues will be discussed in Sections 3 and 4 below. 
 
Thus to fully appreciate the distinction between pragmatist and purist approaches to QFT, one 
should be aware that renormalization can be separated from perturbation theory, and that a lack 
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of rigor with respect to one of these concepts need not entail a lack of rigor with respect to the 
other.  To make this point a bit more concrete, in the following I will focus specifically on how 
two particular versions of pragmatism and purity formulate a result that is typically taken to be 
unique to RQFTs; namely, the CPT theorem. 
 
 
3.  Pragmatism versus Purity on CPT Invariance 
This section critiques two formulations of the CPT theorem, one purist and the other pragmatist.  
The immediate goal is to identify explicit problems associated with each formulation that will 
make the distinction between pragmatism and purity more concrete. 
 
 
3.1.  The Axiomatic CPT Theorem 
The first example of a formulation of the CPT theorem I'd like to consider is the purist axiomatic 
approach.  In this approach, the basic objects are Wightman functions.  These are first and 
foremost vacuum expectation values of unordered products of fields:  W (n)(x1, ..., xn) ≡ 
〈0|φ(x1)...φ(xn) |0〉 for vacuum state |0〉 and field φ(x).  Here φ(x) is intended to represent a 
generic quantum field of arbitrary spin, and |0〉 is the corresponding unique vacuum state.  In 
early formulations of QFT, the fields were taken to be operator-valued functions; i.e., maps from 
spacetime to the space of linear operators acting on a Hilbert space of states.  However, Bohr and 
Rosenfeld argued that a field at a point cannot define a linear operator (informally, the 
uncertainty relations entail a measurement at a point would yield infinite energy).1  The 
axiomatic approach addresses this issue by "smearing" the field in spacetime; i.e., defining it as a 
spacetime average, weighted by an arbitrary "test" function.  More precisely, one defines a field 
as an operator-valued distribution, 
 

 φ(f ) = ∫
−∞

∞
φ(x) f (x) d4x (1) 

 
where f is an arbitrary test function.  This defines a field as a map from the space D(R4) of test 
functions to the space of linear operators on a Hilbert space.2  This map is required to be 
continuous; thus a distribution is an element of the dual space D'(R4) consisting of continuous 
linear functionals on D(R4).  An n-point Wightman function then defines a distribution 
W (n)(f1, ..., fn) = 〈0|φ(f 1)...φ(f n) |0〉, which is an element of the space D'(R4n). 
 
In addition to being vacuum expectation values of unordered products of fields, Wightman 
functions are required to satisfy a number of axioms, and it is the hope of advocates of this 

                                                
1 Halvorson and Müger ([2007], pp. 768-78) consider the extent to which such informal arguments can be made 
rigorous.   
2 D(R4) is the space of continuous functions on R4 with compact support (i.e., continuous functions that vanish at 
infinity).  For some applications, one uses the smaller Schwarz space S(R4) of continuous functions on R4 that 
decrease rapidly at infinity (such functions more readily admit Fourier transforms). 
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approach that models of these axioms for interacting RQFTs can be constructed.3  For the 
purposes of deriving CPT invariance, the following three assumptions suffice.   
 
(i) Restricted Lorentz invariance (RLI).  The fields are required to be invariant under the 

restricted Lorentz group L↑
+, which is the subgroup of the Lorentz group connected to the 

identity that consists of Lorentz boosts but not parity or time reversal transformations. 
 
(ii) Spectrum Condition (SC).  The fields are required to possess positive energy, in the sense 

that the spectrum of the momentum operator associated with L↑
+ is required to be confined 

to the forward lightcone. 
 
Assumptions (i) and (ii) entail that Wightman functions can be analytically extended to complex-
analytic functions that are invariant under the (proper) complex Lorentz group L+(C) with unit 
determinant, which, importantly does contain parity and time reversal transformations.  
Moreover, the extended domain contains real points of analyticity referred to as "Jost points".4  
The third assumption is imposed with respect to these latter: 
 
(iii) Weak Local Commutativity (WLC).  At (or in the neighborhood of) a Jost point the fields 

are required to satisfy 〈0|φ(f1)...φ(fn) |0〉 = iK〈0|φ(fn)...φ(f1) |0〉, where K is the number of 
fermionic fields. 

 
WLC requires the fields to satisfy local commutativity (i.e., the condition that they commute 
(bosonic) or anti-commute (fermionic) at spacelike separated distances) only when they appear 
in unordered products in vacuum expectation values.  Jost ([1957]) showed that the conjunction 
of (i), (ii) and (iii) entails the existence an anti-unitary operator that combines the actions of C, P, 
and T transformations on fields, leaving them invariant.5  Schematically, the axiomatic CPT 
theorem then takes the following form (Streater and Wightman [2000], p. 150): 
 
 [(RLI of fields) & SC & WLC] ⇒ (CPT invariance of fields) 
 
There are two general problems with this axiomatic understanding of CPT invariance.  First, it 
faces what might be called the Problem of Empirical Import:  No non-trivial interacting models 
of the Wightman axioms exist, thus there are no such things as non-trivial interacting Wightman 
functions.  This suggests that, under the axiomatic understanding of CPT invariance, the latter is 
restricted to free or trivially interacting RQFT states.  This is unfortunate, since the evidence for 
CPT invariance in particular, and for the reliability of RQFTs in general, invariably comes from 
(non-trivial) interacting RQFTs. 

                                                
3 Expositions of the Wightman axioms can be found in (Streater and Wightman [2000]; Araki [1999]; Haag [1996]).  
In the following (in particular, Section 5), it will be important to distinguish a vacuum expectation value of 
unordered products of fields from a Wightman function.  The latter are vacuum expectation values of unordered 
products of fields that, in addition, satisfy the Wightman axioms. 
4 A Jost point (x1, ..., xn) is a convex set of points that are spacelike separated from each other.  In other words, the 

difference variables ξi ≡ xi −1 − xi satisfy ⎛⎝∑
n

j=1 λ jξ j
⎞⎠

2
< 0, for all λ j ≥ 0, with ∑λ j > 0 (see, e.g., Streater and 

Wightman [2000], p. 71; Greenberg [2006], p. 1545). 
5 Hermiticity of Wightman functions (one of the Wightman axioms) is also required for this existence proof. 
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A second problem with the axiomatic understanding of CPT invariance is the fact that the 
product of two distributions at the same point is not in general well-defined.  This might be 
called the UV Problem (Steinmann [2000], p. 73) since it is a problem with defining a quantity at 
short distances, or large energies.  This makes the definition of a Wightman function as a product 
of operator-valued distributions problematic.  A solution to this problem exists for free fields.  
Such fields can be decomposed into a linear sum of creation and annihilation operators a(p), 
a†(p) that act on multi-particle states in a Fock space.  Products of such fields will thus consist of 
linear sums with terms involving combinations of a(p) and a†(p), and one can show that only 
combinations of the form a†(p)na(p)m correspond to well-defined Fock space operators (Reed 
and Simon [1975], pp. 219-20).  Thus if one restricts one's attention to Wick polynomials; i.e., 
linear sums of products of fields in which all creation operators occur to the right of all 
annihilation operators, then such products are well-defined (Haag [1996], p. 45; Steinmann 
[2000], p. 51; Reed and Simon [1975], p. 225).  However, this solution only works for fields that 
can be decomposed into linear sums of Fock space creation and annihilation operators, and for 
most non-trivial interacting fields, such a decomposition does not exist. 
 
 
3.2.  Weinberg's CPT Theorem 
I'd now like to consider Weinberg's derivation of the CPT theorem as an example of a pragmatist 
approach.  This approach takes the basic object of an RQFT to be the S-matrix, which encodes 
the probability amplitudes for particle scattering events (see, e.g., Weinberg [1964], [1995]).  
Weinberg ([1995]) bases this approach on three assumptions: 
 
(i) Perturbation Theory.  The S-matrix takes the form of a perturbative power series expansion 

in time-ordered products of an interaction Hamiltonian density H int(x): 
 

 Sβα =∑
n=

∞

0
⎯−n

i
n

! ∫ 〈β |T{H int(x1)... H int(xn)}|α 〉d4x1... d4xn (2) 

 
 where |β 〉, |α 〉 are asymptotic multi-particle states, and the time-ordered product 

T{H int(x1)... H int(xn)} orders the H int(xi) according to t1 > ... > tn. 
 
(ii) Lorentz Invariance of the S-Matrix.  The S-matrix is invariant under restricted-Lorentz 

transformations. 
 
 (iii) Cluster Decomposition of the S-matrix (CD).  Let Sβ1+...+βN, α1+...+αN

 represent the S-matrix for 
N multi-particle processes |α1〉 → |β1〉, ..., |αN〉 → |βN〉.  If all particles in states |α i〉, |β i〉 are 
spacelike separated from all particles in states |α j〉, |β j〉, for i ≠ j, then the S-matrix 
factorizes:  Sβ1+...+βN, α1+...+αN

 = Sβ1α1
...SβNαN

. 
 
CD is a locality constraint that imposes a factorizability condition on the S-matrix (Weinberg 
[1995], p. 177).  It entails that scattering events in spacelike separated regions of spacetime do 
not interfere.  Weinberg demonstrates that a sufficient condition ('the only known way', 
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Weinberg [1964], p. 1318) for (iii) to be compatible with (ii) is that H int(x) be a functional of 
fields that satisfy RLI and local commutativity (i.e., the fields commute (bosonic) or anti-
commute (fermionic) at spacelike separated distances), and that are linear combinations of Fock 
space creation and annihilation operators for free particles.  Weinberg ([1995], pp. 198-9) then 
argues that if these fields carry a non-zero value of a conserved charge, then anti-particle states 
must be posited.  CPT invariance of the full Hamiltonian density then follows from a 
consideration of how the relevant creation and annihilation operators transform under C, P, and T 
separately (see, e.g., Weinberg [1995], pp. 244-6).  Thus in Weinberg's approach, the CPT 
theorem takes the following schematic form: 
 
 [(RLI of S-matrix) & CD & (existence of conserved charges)] ⇒ (CPT invariance of H (x)) 
 
where H (x) is the full Hamiltonian density. 
 
In Weinberg's approach, one may claim that CPT invariance is a property of both interacting and 
non-interacting states, in so far as the demonstration of CPT invariance of the full Hamiltonian 
density ultimately rests on CPT invariance of the creation and annihilation operators of free 
multi-particle states, that transform, under the S-matrix into interacting multi-particle states.  
However, the rigor of this claim is made problematic by the following considerations: 
 
(a) First, the formula (2) for the S-matrix implicitly assumes that multi-particle states at 

asymptotic times are free, and can be unitarily related to interacting multi-particle states at 
finite times.  This is made problematic by the consequences of Haag's theorem, which 
indicates that, under reasonable assumptions, the Hilbert spaces for interacting and free 
states belong to unitarily inequivalent representations of the canonical (anti-) commutation 
relations, thus a unitary S-matrix operator that transforms free states into interacting states 
does not exist (see, e.g., Earman and Fraser [2006]; Duncan [2012], pp. 359-70). 

 
(b) Second, for the types of interacting QFTs of interest, many of the individual terms in the 

power series (2) diverge.  This is a manifestation of the UV Problem in the axiomatic 
approach, to the extent that it involves defining the products of interacting fields at the same 
point that appear in (2). 

 
(c) Finally, for the types of interacting QFTs of interest, it is not known if (2), considered as a 

formal power series, exists (i.e., is convergent).6  Call this the Existence Problem. 
 
Problem (a) is implicitly addressed in pragmatist approaches by employing renormalization.  
Since philosophers have latched onto renormalization methods as a means to distinguish 
pragmatists from purists, it will help to see where in typical pragmatist approaches these methods 
are applied.  This is the goal of the following section. 
 
 

                                                
6 This is certainly true for QED; however, there's some room for debate on whether theories that are asymptotically 
free, or asymptotically safe, face this problem (see, e.g., Boulatta and Butterfield [unpublished]). 
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3.3.  Pragmatism and Renormalization 
In the following by a pragmatist approach, I will mean an approach that employs renormalized 
perturbation theory, as presented in typical textbooks on QFT.  It will first be helpful to indicate 
how the formula (2) for the S-matrix is applied in such approaches.  Formula (2) involves matrix 
elements of multi-particle states and time-ordered products of an interaction Hamiltonian 
density.  Typical pragmatist approaches simplify (2) by reducing it to an expression that only 
involves vacuum expectation values of time-ordered products of fields, referred to hereafter as 'τ-
functions'.  For instance, an n-point τ-function is given by 〈0|T{φ(x1), ..., φ(xn)}|0〉, where |0〉 is 
the vacuum state and φ(x) a generic quantum field.  One can distinguish between interacting τ-
functions and free τ-functions, depending on whether the fields that appear in them are 
interacting or free (i.e., satisfy homogeneous or inhomogeneous field equations, respectively).  
The initial goal of pragmatist approaches is to reduce formula (2) to an expression that only 
involves free τ-functions.7  In practice, this goal is achieved by appealing to the following two 
results:8 
 
(i) One first makes use of a non-perturbative result due to (Lehmann, Symanzik and 

Zimmermann [1955]) that allows S-matrix elements to be calculated from interacting τ-
functions.  This is known as the LSZ reduction formula and comes in many flavors, one per 
type of field.9  For instance, the LSZ reduction formula for a massive scalar field solution 
to the Klein-Gordon equation is given by: 

 

 
   

out 〈p1,...,pn | k1,...,k m 〉in = (i / Z )n+m d 4x1...d 4 yme− ipixi+ik j y j (∂xi

2 + m2 )
i∏ (∂ y j

2 + m2 )
j∏∫

                                   × 〈0 |T{ϕ(x1)...ϕ(xn )ϕ( y1)...ϕ( ym )}| 0〉.
 (3) 

  
 The left-hand side of (3) represents an S-matrix element for n incoming asymptotic 

particles with momenta ki and m outgoing asymptotic particles with momenta pi.  The right-
hand side of (3) indicates how this S-matrix element can be calculated in terms of an 
interacting τ-function, where ϕ(x) is an interacting field (in this example, a solution to the 
inhomogeneous Klein-Gordon equation).  The appearance of the constant Z will be 
discussed immediately below. 

 
 (ii) One then assumes a perturbative split of the Hamiltonian H = H0 + Hint , into a non-

perturbed piece H0 (typically identified as the free Hamiltonian) and an interacting piece 
Hint encoding (small) perturbations away from H0.10  The following formula due to (Gell-

                                                
7 Once this goal has been achieved, standard pragmatist approaches then make use of Wick's theorem to reduce a 
free n-point τ-function to a sum of products of free 2-point τ-functions.  The latter define Feynman propagators, and 
one can then employ the machinery of Feynman diagrams to calculate (2). 
8 These are discussed in (Bain [2000]).  Textbooks vary on the order in which they present these results.  Moreover, 
some textbooks forsake the second result by employing the path integral formalism to derive interacting τ-functions 
as functional derivatives of a generating functional (see, e.g., Ryder [1996]).  The order presented below follows 
(Maggiore [2005]) and (Kaku [1993]). 
9 A sample of textbook presentations of the LSZ formula includes (Duncan [2012], p. 286; Srednicki [2007], p. 51; 
Maggiore [2005], p. 115; Haag [1996], p. 83; Weinberg [1995], p. 437; Kaku [1993], p. 145). 
10 The Hamiltonian H(t) is related to the Hamiltonian density H (x) by H(t) = ∫ d 3x H (x, t). 
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Mann and Low [1951]) then allows interacting τ-functions to be calculated from free τ-
functions: 

 

 
  
〈0 |T{ϕ(x1)...ϕ(xn )}| 0〉 = 〈0 |T{φI (x1)...φI (xn )e− i ∫ HI dt}| 0〉

〈0 |T{e− i ∫ HI dt}| 0〉
. (4) 

  
 In this formula, the ϕ(xi) are interacting fields, the φ I(xi) are free fields in the interaction 

picture, and HI  = e iH0Hint e − iH0  is the interaction picture representation of Hint.11  The left-
hand side of (4) represents an interacting τ-function that enters into the LSZ formula, and 
the right-hand side indicates how it can be calculated in terms of free τ-functions. 

 
In the LSZ formula (3), the constant Z is a renormalization constant.  The purpose of this 
constant is to relate the interacting field ϕ(x) to free fields φ in(x), φout(x) at asymptotic times.  In 
particular, one assumes, 
 
 〈β |ϕ(x) |α〉  

t

→
→
−∞

  √Z 〈β |φ in(x) |α〉,     〈β |ϕ(x) |α〉  
t

→
→

+∞
  √Z 〈β |φout(x) |α〉 (5) 

 
where |β 〉, |α 〉 are free multi-particle states.  Under this weak notion of convergence, matrix 
elements of interacting fields are required to converge to matrix elements of free, asymptotic 
fields at asymptotic times (as opposed to requiring that interacting fields converge directly to free 
fields).  One way to motivate this assumption is by considering the action of a free asymptotic 
field on the vacuum with respect to a single-particle state (see, e.g., Duncan [2012], p. 282; 
Srednicki [2007], p. 38).  An asymptotic single-particle 'in' state |k〉 satisfies 〈k |φ in(x) |0〉 = 
〈k |φ in(0)|0〉 = 1.  Since an interacting field does not have a simple decomposition in terms of 
creation and annihilation operators, one would not expect 〈k |ϕ(0)|0〉 to equal 1; in particular, one 
may set it equal to √Z , for some constant Z.  The assumption (5) may be considered a 
generalization of this.12  Formally, the renormalization constant Z can be explicitly removed 
from the LSZ formula by replacing the "bare" interacting field with a renormalized interacting 
field defined by ϕ r(x) ≡ Z−1/2ϕ(x).  This assignment then guarantees that the renormalized 
interacting field behaves like the free field with respect to single-particle states; namely, 
〈k |ϕ r(0)|0〉 = 1. 
 
Renormalization also explicitly enters into the derivation of the Gell-Man/Low formula (4).  In 
particular, (4) assumes that the vacuum state is the ground state of the non-perturbed 
Hamiltonian H0, and that the full Hamiltonian H does not polarize the vacuum; in other words, 
one assumes H0 |0〉 = 0 and H |0〉 = 0.  Since the full Hamiltonian is a functional of interacting 
                                                
11 A free field in the interaction picture is defined by φ I (x, t) = e iH0(t − t0)φ (x, t0)e −iH0(t − t0), where φ (x, t0) is a free field 
at time t0.  A sample of textbook presentations of the Gell-Mann/Low formula includes (Duncan [2012], p. 246; 
Maggiore [2005], p. 119; Haag [1996], p. 65; Weinberg [1993], p. 288; Kaku [1993], p. 151). 
12 To derive the LSZ formula (3), one first obtains an expression for an asymptotic single-particle state, say |k〉in, in 

terms of an asymptotic free field acting on the vacuum:  |k〉in = a†
in(k)|0〉 = −i(Ek)1/2∫ d 3x e−ikx

↔
∂ 0φ in(x)|0〉 (where the 

last equality follows by inverting the expression for φ in(x) as a linear sum of creation and annihilation operators).  
The LSZ formula is obtained by applying this expression and (5) to an S-matrix element to systematically replace 
single-particle asymptotic states with expressions involving interacting fields. 



 12 

fields which do not, in general, admit a decomposition into creation and annihilation operators, 
the latter condition is typically not guaranteed.  To enforce it, one defines a renormalized 
Hamiltonian Hr = H − Δ.  This corresponds to renormalizing the mass that appears in the 
interacting theory.  If the latter is given by mB (the "bare" mass), and the shift corresponding to Δ 
is given by δm, then the renormalized mass mr (the "physical" mass) is given by mr

2 ≡ mB
2 + 

δm2. 
 
Thus, from a conceptual standpoint, renormalization is imposed to force the behavior of the 
interacting theory to conform to the behavior of the free theory, as far as the ground state and 
single-particle states are concerned.13  At this point, two things should be made clear:  The first is 
how renormalization addresses problem (a) in Section 3.2 above; and the second is the extent to 
which renormalization is independent of perturbation theory; i.e., the extent to which problem (a) 
is independent of the UV and Existence Problems (problems (b) and (c)).  Renormalization 
solves problem (a) in the following sense:  The renormalized field and the renormalized 
Hamiltonian are not self-adjoint operators (formally, for typical interacting theories, the 
renormalization constant Z and the mass shift δm are infinite).  This entails, for instance, that Hr 
does not implement unitary time translations, contrary to one of the assumptions of Haag's 
theorem (Fraser [2009], p. 547).  Whether this constitutes an adequate solution to problem (a) 
will depend on your mathematical proclivities.  The fact that renormalized parameters are 
formally infinite will upset mathematical purists.  For such purists, the renormalization procedure 
simply replaces problem (a) with another problem, call it the Renormalization problem for 
pragmatists. 
 
That renormalization is independent of perturbation theory is already indicated above, insofar as 
renormalization appears already in the non-perturbative derivation of the LSZ formula (as well 
as in the non-perturbative Källen-Lehman representation of the interacting Feynman propagator 
mentioned in footnote 12).  Perturbation theory enters explicitly into the derivation of the Gell-
Mann/Low formula, which in practice is calculated by expanding the exponentials on the right-
hand side of (4) as power series in the coupling constants that appear in HI.  Problems (b) and (c) 
then re-emerge as problems associated with these power series. 
 
Thus in principle, renormalization is independent of perturbation theory, and hence problem (a) 
is, in principle, independent of problems (b) and (c) in Section 3.2 above.  As Weinberg states: 
 

...the renormalization of masses and fields has nothing directly to do with the presence of 
infinities, and would be necessary even in a theory in which all momentum space integrals 
were convergent (Weinberg [1995], p. 441). 

 
Similar remarks are also made by Steinmann: 
 

Concerning the relation between renormalization and the removal of UV divergences it must 
be stressed that these are at first hand quite different problems.  Renormalization... is necessary 

                                                
13 Another way to see this is by an analysis of the non-perturbative Källen-Lehman representation of the interacting 
2-point τ-function (Weinberg [1995], pp. 439-49). 
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independent of the occurrence of UV divergences, if we want to describe the theory in terms of 
directly measureable parameters... (Steinmann [2000], p. 83). 

 
However, there is a formal sense in which renormalization solves the UV Problem (problem (b)).  
The types of divergences associated with perturbative expansions of interacting τ-functions can 
in principle be regularized by either renormalizing the parameters that are present in the 
Lagrangian density, or by introducing new renormalized parameters.  For example, in 'ϕ4' theory 
(i.e., massive scalar field theory with a quartic interaction term λϕ4), the divergences that appear 
in the perturbative expansion of the 2-point τ-function can be regulated by renormalizing the 
mass and the field, whereas the divergences that appear in the perturbative expansion of the 4-
point τ-function can be regulated by renormalizing the coupling constant λ.14  In principle, all 
divergences in higher-order τ-functions can also be regularized by introducing new terms into 
the Lagrangian density and renormalizing the parameters associated with them.  The 6-point τ-
function, for instance, can be regularized by introducing a new term λ (6)ϕ6 into the Lagrangian 
density and renormalizing the parameter λ (6).  In general, if this process never ends; i.e., if for 
each higher-order τ-function one needs to introduce new terms in the Lagrangian density in order 
to regularize it, then the theory is referred to as non-renormalizable.  On the other hand, if only a 
finite number of renormalized parameters are needed to regularize all possible divergent terms in 
the perturbative expansions of τ-functions, then the theory is referred to as renormalizable.  
Thus, formally, renormalization solves Problem (b), for both non-renormalizable and 
renormalizable theories.  However, since the solution to the problem for non-renormalizable 
theories requires an infinite number of renormalized parameters, and since the values of these 
parameters are fixed by experiments, a non-renormalizable theory has no predictive power, all 
things being equal.  Thus, without further ado, renormalization only solves Problem (b) for 
renormalizable theories.15 
 
 
4.  Problems for Pragmatism and Purity 
The problems identified Section 3 are not unique to the Wightman axiomatic approach and 
Weinberg's approach, nor are they restricted to the particular context of the CPT theorem.  
Rather, I'd like to suggest that they characterize purity and pragmatism, in general.  This section 
briefly summarizes these problems. 
 
 
4.1.  Three Problems for Pragmatism 
Pragmatists may be characterized as endeavoring to bring RQFTs into contact with experiment 
by employing renormalized perturbation theory.  As indicated in Sections 3.2 and 3.3 above, this 
endeavor generates the following problems: 
 

                                                
14 For this description of renormalization in ϕ 4 theory, see (Maggiorie [2005], p. 135). 
15 One can make further ado by inserting a cut-off, as in Wallace's CQFT, and then demonstrating that, within the 
energy range specified by the cut-off, only a finite number of 'relevant' terms need to be renormalized in order to 
derive predictions from the theory.  This further ado forms the basis of the effective field theory approach to QFTs. 



 14 

(1) The Renormalization Problem.  This is the problem of employing infinitely renormalized 
parameters to relate interacting fields and free asymptotic fields in order to guarantee a 
non-trivial S-matrix. 

 
(2) The UV Problem.  This is the problem of the existence of divergent terms at high 

energies/short distances in the perturbative power series expansion of relevant quantities 
(i.e., the S-matrix, and/or τ-functions).16 

 
(3) The Existence Problem.  This is the problem of whether or not the perturbative power 

series expansions of relevant quantities exist as convergent series. 
 
These problems are not necessarily independent of each other, but they are, arguably, distinct.   
As noted in Section 3.3, while renormalization solves the UV Problem (in principle for both 
renormalizable and non-renormalizable theories), it is a conceptually distinct issue, and the 
problem it generates (i.e., the formal appearance of infinities in renormalized parameters) is 
conceptually distinct from the infinities associated with the UV Problem.  Moreover, the UV 
Problem is also conceptually distinct from perturbation theory.  The divergent terms in 
perturbative expansions of relevant quantities in interacting QFTs ultimately involve products of 
quantum fields at the same point; and just as it was early on determined that a quantum field at a 
point does not correspond to a well-defined operator on a Hilbert space, neither do products of 
quantum fields at the same point.  As we'll see below, this problem carries over into purist 
approaches to QFT.17 
 
 
4.2.  Two Problems for Purity 
Purity was originally motivated by the desire to rigorously address the pragmatist problems 
above.  In particular, the Renormalization and Existence problems are addressed in (standard) 
axiomatic and algebraic approaches by rejecting renormalized perturbation theory and attempting 
to construct interacting models from a fundamental set of axioms applicable to both free and 
interacting theories.  The considerations in Section 3.1 suggest that purists face the following two 
problems: 
 
(1') The Problem of Empirical Import.  This is the problem of making contact with experiment; 

i.e., the problem of constructing non-trivial interacting models of purist axioms. 
 
                                                
16 There is also an IR (infrared) version of this problem, which concerns the presence of divergent terms at low 
energies/long distances in perturbative expansions of relevant quantities.  This IR Problem is primarily of concern 
for theories with massless interactions, like quantum electrodynamics. 
17 In addition to the three problems above, Steinman ([2000], p. 73) identifies the problem of how to determine the 
subset of solutions to the field equations of a QFT that should be deemed physically relevant.  Call this the Physical 
Relevancy Problem.  The standard way of addressing this problem requires that physically relevant solutions satisfy 
equal-time canonical (anti-) commutation relations (CCR).  This is motivated by the similar requirement in quantum 
mechanics for systems with finite degrees of freedom.  In the field-theoretic case, however, the systems have infinite 
degrees of freedom, and Stone's theorem then entails that unitarily inequivalent representations of the CCR will 
exist.  This then generates a Representation Problem; namely, a problem of selecting which representation of the 
CCR to adopt.  This Representation Problem is a key motivation for some advocates of the algebraic approach who 
seek physical relevancy at the level of the structure of the algebra of the CCR, as opposed to any concrete Hilbert 
space representation of it. 
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(2') The UV Problem.  This is the same problem that afflicts pragmatist approaches, and 
manifests itself for purists as the general problem of defining the product of distributions at 
the same point. 

 
The basic criticism of purity is that, in its rejection of renormalized perturbative techniques, it 
rejects that aspect of pragmatist approaches that makes contact with experiment.  The UV 
Problem, as indicated above, is not a consequence of adopting perturbative techniques; rather, it 
is a problem associated with defining products of fields, and thus in principle can make trouble 
for purist approaches.  Recall that a field at a point does not define a linear operator.  The purist 
solution is to define a field as a distribution (operator-valued in the case of the Wightman 
axiomatic approach, algebra-element-valued in the case of the algebraic approach).  A product of 
fields at the same point also does not define a linear operator, but simply replacing this product 
with a product of distributions does not necessarily produce an operator, essentially because a 
product of distributions at the same point is not always well-defined. 
 
 
4.3.  Products of Distributions 
At this point, it may be worthwhile to consider the sense in which the product of distributions at 
the same point is problematic.  While point-wise multiplication of functions is well-defined, this 
is not always the case for distributions.  A distribution, as a continuous linear functional on a 
space of test functions, is supposed to be a 'generalized function'; thus how one defines the 
product of distributions will depend, in part, on the space of test functions one adopts, as well as 
the type of functions one desires to generalize.  Consider the case of locally integrable functions 
(see, e.g., Kanwal [2004], p. 18, 22).  A function f(x) on Rn is locally integrable just when 

∫A | f(x) |dnx exists for every bounded region A in Rn.  Every locally integrable function f(x) 
defines a regular distribution via f (g) = ∫ f(x) g(x) dnx, for any test function g ∈ D.  Now 
consider the functions f(x) = g(x) = 1/x1/2 (after Kanwal [2004], p. 32).  Both f(x) and g(x) are 
locally integrable and thus each defines a regular distribution.  However their product f(x)g(x) = 
1/x is not locally integrable (since it fails to be integrable on any neighborhood of the origin), and 
thus does not define a regular distribution.  Note that the integral ∫ g(x)x−1 dnx is well-defined on 
test functions g restricted to the complement of the origin Rn \{0}. 
 
Of more interest in QFT are products of Heaviside functions θ(t − t') and vacuum expectation 
values of unordered products of fields 〈0|φ(x1)...φ(xn) |0〉.18  The Heaviside function θ(t − t') is 1 if 
t − t'  > 0, and vanishes otherwise; thus an expression like  
 
 θ(t1 − t2)...θ(tn−1 − tn)〈0|φ(x1)...φ(xn) |0〉 (6) 
 
is non-zero just when the product φ(x1)...φ(xn) is time-ordered according to t1 > ... > tn.  The τ-
functions of Section 3.3 that play essential roles in pragmatist's formulations of interacting 
RQFTs are linear sums of products of the form (6).  Recall the basic strategy of pragmatist 
approaches:  The LSZ formula (3) reduces S-matrix elements to expressions involving 
                                                
18 Recall from Section 3.1 that if these latter satisfy the Wightman axioms, they are referred to as Wightman 
functions. 
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interacting τ-functions, the Gell-Mann/Low formula (4) then expresses interacting τ-functions in 
terms of free τ-functions, and Wick's theorem then expresses any free n-point τ-function as a 
sum of products of free 2-point τ-functions.  It is products of these latter, which define Feynman 
propagators ΔF , which are ultimately of interest in pragmatist descriptions of interacting RQFTs.  
A generic Feynman propagator is given by ΔF(x, x') = θ(t − t')〈0|φ(x)φ(x') |0〉 + 
θ(t' − t)〈0|φ(x')φ(x) |0〉.  As in the example in the previous paragraph, both θ(t − t') and 
〈0|φ(x)φ(x') |0〉 define regular distributions.19  The questions then are, does their product define a 
distribution, too; and, in general, do products of Feynman propagators define distributions? 
 
Reed and Simon ([1975], p. 90) address these questions with the following considerations (see, 
also, Gracia-Bondía [2006], p. 29).  First, one notes that, when it exists, the Fourier transform 
F[f g] of the product f g of functions f , g is given by the convolution of the Fourier transforms of 
f and g; in other words, F[f g] = (2π)−n/2 F[f ] ∗F[g], where the convolution operator ∗ is given 
by f1 ∗ f2(p) ≡ ∫ f1(k) f2(p − k)dnk .  This motivates the following definition: 
 
 Def. 1.  Let t, u ∈ D'(Rn).  Then w ∈ D'  is the product of t and u if and only if for each x ∈ 

Rn, there exists some function ϕ  ∈ D, with ϕ  = 1 near x so that for all p ∈ Rn: 

   F[ϕ2w](p) = (2π)−n/2 ∫ F[ϕt](k) F[ϕu](p − k)dnk  
  
The definition says that the product of two distributions is the inverse Fourier transform of the 
convolution of their Fourier transforms.20  One can now show that the Feynman propagator ΔF 
satisfies Def. 1 (Gracia-Bondía [2006], p. 31; Reed and Simon [1975], p. 108).  However (ΔF)2 
and higher powers of the Feynman propagator do not (Gracia-Bondía 2006, p. 31; Brunetti and 
Fredenhagen [2000], p. 632).  In particular, one can show that for n ≥ 2, (ΔF)n does not satisfy 
Def. 1 on the diagonal set Dn of points in R4n defined by Dn = {(x1 , . . , xn)∈R4n | x1 = x2 = ... xn}.21  
In other words, such products are not defined at the same point.  Translational invariance entails 
that Dn is equivalent to the origin; thus one concludes that, for n ≥ 2, (ΔF)n only satisfies Def. 1 on 
the complement of the origin R4n \{0}. 
 
The upshot of this brief excursion into distribution theory is the following:  The distributions of 
interest in interacting RQFTs contain products of interacting fields at the same point, and (under 
the above definition of the product of distributions), such products do not exist; rather, products 
of interacting fields are only defined on the complement of the origin in configuration space.  In 
the next section, we'll see how this impacts an influential claim about the relation between CPT 
invariance and Lorentz invariance in interacting RQFTs. 
 
 
                                                
19 The Heaviside function defines a regular distribution by θ (f ) = ∫x0 ≥ 0

f (x)d 4x.  The form of the 2-point function 

〈0 |φ (x)φ (x' ) |0〉 depends on the nature of φ (x).  For a neutral scalar field, 〈0 |φ (x)φ (x' ) |0〉 = (2π)−3∫ (2Ek)−1e−k (x − x' )d 3k. 
20 In this definition, the function ϕ  serves to localize the distributions t, u; this guarantees that their Fourier 
transforms exist.  Such localization is required for test functions in D, but not S (see footnote 2). 
21 The details involve formulating a sufficient condition for Def. 1 by means of wave front analysis, and then 
demonstrating that a product of Feynman propagators fails to satisfy this criterion on Dn. 
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5.  Greenberg on Relativity and CPT Invariance 
Greenberg ([2002]) claims that if CPT invariance is violated in an interacting QFT, then so is 
Lorentz invariance.  His argument should be of interest to philosophers of physics, not only for 
its link between Lorentz invariance and CPT invariance, but also because it is presented in the 
axiomatic approach to QFT.  As noted in Section 2, the axiomatic CPT theorem should be 
viewed as restricting CPT invariance to free (or trivially interacting) states, whereas pragmatist 
approaches to the CPT theorem (like Weinberg's) may be taken to predicate CPT invariance on 
both free and (non-trivially) interacting states (on pain of confronting the Renormalization 
Problem).  This suggests that Greenberg's approach to CPT invariance is an attempt to reconcile 
purity with pragmatism.  As we'll see below, this attempt fails. 
 
Greenberg's argument begins by considering the following expression for an n-point τ-function: 
 
 τ (n) (x1, ..., xn) ≡ ∑ p θ(tp1 − tp2)...θ(tpn-1 − tpn)W

(n)(xp1, ..., xpn) (7) 
 
where the product of Heaviside functions θ(tp1 − tp2)...θ(tpn-1 − tpn) enforces the time ordering 
tp1 > ⋅⋅⋅> tpn on the Wightman function W (n), and the sum is over all permutations of the indices.  
As Section 3.3 indicated, the significance of τ-functions is that S-matrix elements in pragmatist 
approaches can be reduced to expressions involving interacting τ-functions (via the LSZ 
formula), and these latter can be expressed in terms of free τ-functions (via the Gell-Mann/Low 
formula).  However, in Section 4.3, τ-functions were characterized as linear sums of products of 
Heaviside functions and vacuum expectation values of unordered products of fields 
〈0|φ(x1)...φ(xn) |0〉.  Greenberg's starting point in (7) is the assumption that these latter satisfy the 
Wightman axioms, and thus can be replaced with Wightman functions W (n)(x1, ..., xn).  It is this 
assumption that characterizes Greenberg's attempt to bridge the gap between pragmatism and 
purity. 
 
Given (7), Greenberg demonstrates that, at a Jost point, restricted Lorentz invariance of τ ( n) 
entails that W (n) satisfies weak local commutativity (WLC).22  Thus if we require Wightman 
functions to satisfy RLI and SC, then a violation of CPT invariance of Wightman functions 
entails a violation of RLI of τ-functions, as defined by (7).  Schematically, 
 
 {(RLI of τ (n) at Jost points) & (7)} ⇒   (WLC of W (n) at Jost points) 
  ⇒   (CPT invariance of W (n) that satisfy RLI and SC) 
 
where the second entailment follows from Jost's proof of CPT invariance for Wightman 
functions (see Section 3.1).  Greenberg concludes that if Lorentz invariance of an interacting 
RQFT requires restricted Lorentz invariance of τ-functions, then '...if CPT invariance is violated 
in an interacting quantum field theory, then that theory also violates Lorentz invariance' ([2002], 
p. 1).23 

                                                
22 See Section 3.1 for the definition of WLC, and footnote 4 for the definition of a Jost point.  An attempt to 
formalize Greenberg's informal argument is given in the Appendix. 
23 Greenberg ([2002], p. 1) defines a quantum field theory to be 'Lorentz covariant in cone' just when 'vacuum 
matrix elements of unordered products of fields (Wightman functions) are covariant'.  This amounts to the 
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This demonstration has been very influential in the physics literature, since it suggests a test for 
violations of Lorentz invariance via experiments that measure CPT violation (Gracia-Bondía, 
[private communication]; Kostelecky [2011]).  Moreover, it appears to have influenced some 
recent accounts of CPT invariance in the philosophical literature.  In a discussion of deviations 
from Lorentz invariance in approaches to quantum gravity, Hagar ([2009], p. 261) observes that 
'[i]t was also admitted that the predicted deviation was mediated through the breaking of CPT 
symmetry', and that '...the CPT theorem... says that violations of CPT symmetry imply violations 
of Lorentz invariance, but not vice versa.'  Moreover, in an article on a geometrical 
understanding of the CPT theorem, Greaves ([2010], p. 28) poses the question 'How can it come 
about that one symmetry (e.g., Lorentz invariance) entails another (e.g., CPT) at all?'  Greaves 
([2010], p. 28) also poses the question 'How can there be such an intimate relationship between 
spatiotemporal symmetries (Lorentz invariance, parity reversal, time reversal) on the one hand, 
and charge conjugation, not obviously a spatiotemporal notion at all, on the other?'  This is 
echoed in (Arntzenius [2011], p. 634), and (Arntzensius and Greaves [2009], p. 584).24 
 
As a proof within the framework of the axiomatic approach, however, Greenberg's 
demonstration faces two difficulties. 
 
(a) Since non-trivial interacting Wightman functions do not exist, neither do non-trivial 

interacting τ-functions on Greenberg's definition (7) of the latter.  More specifically, Jost's 
([1957]) proof of CPT invariance assumes that Wightman functions satisfy RLI, SC, and 
WLC.  The Spectrum Condition, SC, is important in order to establish that the complex 
extensions of the Wightman functions are analytic, and '...for non-trivial realistic models one 
cannot ascertain analyticity of Wightman-like functions' (Dütsch and Gracia-Bondía [2012], 
p. 429). 

 
(b) The product of Heaviside functions and Wightman functions in (7) is not well-defined.  As 

noted in Section 4.3 above, for n ≥ 2, an n-point τ-function, as a linear sum of products of 
Heaviside functions and vacuum expectation values of unordered products of fields, only 
exists as a distribution on the complement of the origin; i.e., τ (n) ∈ D'(R4n \{0}).  Since 
Greenberg's τ-functions (7) are just τ-functions in the sense of Section 4.3 that, in addition, 
have the property that the vacuum expectation values of unordered products of fields satisfy 
the Wightman axioms, they, too, are only defined on the complement of the origin. 

 
                                                                                                                                                       
assumptions of RLI and SC for Wightman functions, with the condition of being covariant in cone corresponding to 
SC (Greenberg [2002], p. 4, footnote 1).  He defines a quantum field theory to be '[Lorentz] covariant out of cone' 
just when 'vacuum matrix elements of time-ordered products (τ functions) are covariant'.  This amounts to upholding 
RLI for τ-functions, but denying SC.  He then considers a QFT to be Lorentz invariant if it is Lorentz covariant both 
in and out of cone. 
24 The answer to this last question doesn't appear particularly mysterious, if one notes that restricted Lorentz 
invariance is not the only assumption needed to derive CPT invariance.  For instance, in the axiomatic approach, the 
Spectrum Condition (SC) arguably explains why PT must be accompanied by C (Araki [1999], p. 158; Greenberg 
[2006], pp. 1547-8).  Briefly, consider the generator of finite time translations, exp itP 0.  If one desires to reverse the 
direction of time translations and simultaneously keep the energy P 0 positive (i.e., uphold SC), one needs to effect 
the transformation i → −i, and charge conjugation secures this.  In other words, the PT transformation must be 
antiunitary in order to uphold SC.  (This is acknowledged by Greaves and Thomas [preprint], pg. 8.) 
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Claim (a) is the purist's Problem of Empirical Import from Section 4, while claim (b) is the 
purist's UV Problem.  Thus Greenberg's claim cannot be considered a purist claim about CPT 
invariance in a (non-trivial) interacting RQFT.  Moreover, it's not entirely clear what 
significance his claim has as a purist claim about CPT invariance in a free (or trivially 
interacting) purist RQFT.  What Greenberg shows is that a violation of CPT invariance in free 
(or trivially interacting) Wightman functions entails a violation of RLI in free (or trivially 
interacting) τ-functions as defined by (7).  But without further ado, and in the absence of the 
pragmatist's LSZ and Gell-Mann/Low formulas, the significance of free (or trivially interacting) 
τ-functions in a purist RQFT is unclear. 
 
Does Greenberg's claim fair any better under a pragmatist's understanding of CPT invariance?  
Pragmatists can accept the existence of interacting τ-functions (on pain of confronting the 
Renormalization Problem), either via the Gell-Mann/Low formula (4), or its path integral 
equivalent.  They should thus be willing to accept the first entailment in Greenberg's derivation 
and allow that RLI of an interacting τ−function, appropriately defined, entails that the 
corresponding vacuum expectation value of an unordered product of fields satisfies WLC.25  
However, a pragmatist is not in the position of accepting the second entailment in Greenberg's 
derivation, based as it is on Jost's purist proof.  (Again, the technical difficulty is still the 
problem that interacting τ-functions and their corresponding vacuum expectation values of 
unordered products of fields do not necessarily satisfy SC.)  This does not preclude the 
possibility of a pragmatist version of this second entailment, however.  It would require 
demonstrating that WLC of a vacuum expectation value of an unordered product of interacting 
fields (defined, perhaps, in terms of the Gell-Mann/Low formula) entails the existence of a CPT 
operator.  Such a demonstration, however, has not appeared in the literature. 
 
The upshot of this discussion is that Greenberg's demonstration fails to bridge the gap between 
pragmatists and purists.  In the next section, I will consider what can be interpreted as another 
attempt at mediation, namely, causal perturbation theory. 
 
 
6.  Causal Perturbation Theory 
The locus classicus of causal perturbation theory is (Epstein and Glaser [1973]).26  This approach 
consists of both a regularization scheme that explicitly addresses the purist's UV Problem, and an 
axiomatic scheme that can be interpreted as a purist attempt to address the pragmatist's 
Renormalization and Existence problems.  These schemes, like the problems they address, can be 
separated.  Indeed, the regularization scheme associated with causal perturbation theory can be 
adopted by pragmatist approaches to QFT, independently of the axiomatic scheme (Helling 
[unpublished]; Falk, Häußling, and Scheck [2010]).  Conversely, the framework of causal 
perturbation theory has been incorporated into algebraic quantum field theory (AQFT) to 
produce a perturbative approach ('pAQFT') to this version of purism (see, e.g., Summers [2012], 
pp. 45-8, for a brief review).  Finally, as part of their critique of Greenberg ([2002]), Dütsch and 
Gracia-Bondía ([2012]) prove a version of the CPT theorem within causal perturbation theory.  
                                                
25 More precisely, the proof of WLC still goes through if one replaces the Wightman functions W (n) in Greenberg's 
expression (7) with generic vacuum expectation values of unordered products of fields 〈0 |φ (x1)...φ (xn) |0〉. 
26 The formalism is thus sometimes referred to as the "Epstein-Glaser approach".  Reviews can be found in (Gracia-
Bondía [2006]; Pinter [2001]; Brunetti and Fredenhagen [2000]; Prange [1999]). 
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These considerations suggest that causal perturbation theory offers a form of mediation in the 
debate between pragmatists and purists.  The purpose of this section is to assess the status of this 
mediation. 
 
In causal perturbation theory, the basic object is the S-matrix (à la Weinberg), but it is conceived 
as a formal power series in operator-valued distributions (à la Wightman).  Epstein and Glaser 
([1973]) base this approach on the following axioms: 
 
(i) Formal S-matrix.  The S-matrix is given by a formal power series in operator-valued 

distributions Sn(g), where g ∈S(R4): 
 

  S(g) =∑
n=

∞

0
⎯−n

i
n

! ∫ Sn(x1,.., xn)g(x1)...g(xn)d4x1... d4xn (8) 

 
 Each term Sn(g) = −in/n! ∫Sn(x1, ...,xn)g(x1)...g(xn)d4x1...d4xn in this sum is assumed to be an 

operator-valued distribution that corresponds to a linear operator on a dense subspace of a 
separable Hilbert space H. 

 
(ii)-(iv)   The S-matrix satisfies Translation Invariance, Lorentz Invariance, and Unitarity. 
 
(v) Causality.  The S-matrix satisfies S(g1 + g2) = S(g2) S(g1), if the supports of g1 and g2 are 

spacelike separated. 
 
Causality is essentially a distribution-theoretic version of Weinberg's Cluster Decomposition of 
Section 3.2.  Esptein and Glaser were able to show that, given these axioms, the distributions Sn 
in (8) can be generated inductively as time-ordered products of fields, provided that one sets S0 = 
1 (the identify on H), and S1(x1) = L int, where L int is the interaction Lagrangian density of a given 
RQFT.  Moreover, the distributions so-generated are only defined in the complement of the 
origin; i.e., Sn ∈ D'(R4n \{0}).27  One should recall that Greenberg's purist UV Problem was that 
n-point τ-functions (necessary for calculating the S-matrix) are also only defined in the 
complement of the origin.  This suggests that, from a distribution-theoretic point of view, the 
purist UV Problem is the problem of extending a distribution, defined in the complement of the 
origin, to one defined everywhere.  A solution to this problem is briefly reviewed in the next 
section. 
 
 
6.1.  A Purist Solution to the UV Problem 
The UV Problem for purists was how to define the product of the types of distributions that are 
of interest in interacting QFTs.  The specific problem has now become that of extending a 

                                                
27 One can show that the Causality axiom entails the Sn can be constructed as elements in D'(R4n \ Dn), where Dn is 
the diagonal set of points in R4n (see Section 4.3).  Translation invariance then allows this set to be identified with 
the origin.  See, e.g., (Gracia-Bondía [2006], pp. 27-8; Prange [1999], p. 2232; Brunetti and Fredenhagen [2000], pp. 
641-3). 
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distribution defined on the complement of the origin to one defined everywhere.  More precisely, 
given a distribution t0 ∈ D'(Rn \{0}), the task is to construct an extension t ∈ D'(Rn), such that 
t( f ) = t0( f ), ∀f  ∈ D(Rn \{0}) (Prange [1999], p. 2226).  One solution to this problem consists of 
the following two key ingredients.28 
 
First, in order to have a sense of how a distribution behaves as the origin is approached, 
Steinmann ([1971]) defined the scaling degree of a distribution t  with respect to the origin as the 
greatest lower bound ω  of the set {ω ' ∈R : l

λ
i
→
m

0
λω' t(λx) = 0}.29  One can now define the singular 

order ρ of t as the difference ρ ≡ ω − n between its scaling degree and the dimension of the 
configuration space.  The singular order is a rigorous formulation, in the context of distributions, 
of the superficial degree of divergence associated with a Feynman diagram in pragmatist 
approaches to QFT (Gracia-Bondía [2006], p. 33).30 
 
The second key ingredient consists of the following two results (Brunetti and Fredenhagen 
[2000], p. 645, 647): 
 
Let t0 ∈ D'(Rn \{0}) have scaling degree ω  with respect to the origin.  Then 
(i) If ω  < n, there exists a unique extension t ∈ D'(Rn) of t0 with scaling degree ω . 
(ii) If ω  ≥ n, there exist extensions t ∈ D'(Rn) of t0 with scaling degree ω , and which are 

uniquely determined by their values on a finite set of test functions. 
 
The second result is based on the fact that any function f  ∈ D(Rn) can be decomposed as f  = f1 + 
f2, where (Brunetti and Fredenhagen [2000], p. 647): 
 
 f1(x) = 

|α
∑

|≤ρ

(∂ αf )(0)wα (x) for wα ∈ D(Rn ) such that ∂ αwβ(0) = δ α
β , 

 
 f2(x) =

|α|=
∑

|ρ|+1
xαψα(x) for ψα ∈ D(Rn ). (9) 

 
The first term f1 is a weighted version of the order ρ Taylor polynomial of f at x = 0,31 and the 
second term f2 is the remaining part of f  that vanishes up to order ρ at the origin.  If ρ is 
identified as the singular order of t0, then t0 is well-defined on f2, but not on f1 (in particular, 
t0(wα) diverges).  An extension t of t0 can be constructed by first setting t(f2) = t'(f2), where t' is 
                                                
28 The account below of the method of extending distributions is based on expositions found in (Keller 
[unpublished]; Brunetti and Fredenhagen [2000]; Prange [1999]).  An alternative method involves 'splitting' 
distributions into advanced and retarded parts, and was developed by Epstein and Glaser ([1973]).  For a recent 
exposition of this method, see (Aste et al. [2010]). 
29 See, e.g., (Brunetti and Fredenhagen [2000], p. 644; Prange [1999], p. 2226).  The limit is meant in the sense of 
distributions. 
30 The superficial degree of divergence of a Feynman diagram is obtained by counting powers of momenta in the 
momentum space integral corresponding to the diagram. 
31 This can be made a bit more perspicuous by considering the example wα(x) = (xα/α!)w(x), with the weight 
function w(x) = 1 on some neighborhood of the origin (Dütsch and Fredenhagen [2004], p. 1334). 
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the unique extension of the distribution xα t0 guaranteed by the first result (i) above,32 and then 
specifying the action of t on f1.  The latter amounts to specifying the values t(wα) = Cα ∈ C.  
Thus the general form of an extension for result (ii) is given by (Dütsch and Fredenhagen [2004], 
p. 1310): 
 

 
t  = t' + 

|α
∑

|≤ρ

Cα (∂ αδ ) (10) 

 
where the Dirac δ-distribution is defined on test functions f  by (∂ αδ)(f ) ≡ (∂ αf )(0).  In words, 
(10) says that an extension t of t0 is obtained by adding a finite number of multiples of 
derivatives of the Dirac δ-distribution to t'.  As Helling ([unpublished], p. 18) points out, the 
values of Cα '...are exactly those where [t0(wα)] was undefined, and selecting a certain value 
corresponds [in pragmatist approaches] to picking a counter term..., as formally infinite values 
are replaced by finite ones...'.  One can now use this method of extending distributions to obtain 
all the terms in (8) as uniquely defined distributions with corresponding Hilbert space operators.  
This amounts to a purist solution to the UV Problem. 
 
 
6.2.  CPT Invariance 
Dütsch and Gracia-Bondía ([2012], pp. 430-1) have shown that if CPT invariance holds prior to 
regularization via the method of distribution extension, then it holds after regularization, too.  In 
particular, they show that, under the assumptions that the free fields φ(x) in the time-ordered 
products Sn(φ(x1)...φ(xn)) in (8) are CPT invariant, and the interaction Lagrangian density L int is 
CPT invariant, then the regularized time-ordered products of fields are CPT invariant.  
Schematically, Dütsch and Gracia-Bondía's CPT theorem thus takes the following form: 
 
[(Causal perturbation theory axioms) & (CPT invariance of free fields and interaction)] 
 ⇒ (CPT invariance of regularized time-ordered products of fields) 
 
Thus CPT invariance 'survives' the process of distribution extension that solves the UV Problem.  
This is surely an advantage over the typical purist understanding of CPT invariance.  It was 
argued in Section 3.1 above that, under the latter, CPT invariance can only be predicated of free 
(or trivially interacting) states.  Dütsch and Gracia-Bondía demonstrate that CPT invariance is 
not limited to such states; rather, 'regularized' states can be said to possess it, too.  Intuitively, 
such states are one step removed from free (or trivially interacting) states, and one step closer to 
the non-trivially interacting states of pragmatist's approaches. 
 
One might now wonder how this compares with the pragmatist understanding of CPT invariance.  
In particular, it was argued in Section 3.2, that, under the latter, CPT invariance can be predicated 
of both free and interacting states (on pain of confronting the Renormalization Problem).  Thus, 
given that CPT invariance can be said to hold of regularized states under the causal perturbation 
                                                
32 Since f 2 ∈ D(Rd \{0}), t0(f 2) =

|α|=
∑
|ρ|+1

xα t0(ψα) is well-defined, and one can show that the scaling degree of the 

distribution xα t0 is less than n (Brunetti and Fredenhagen [2000], p. 647); thus by result (i), xα t0 has a unique 
extension, call it t'. 
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theorist's understanding, to what degree can it be said to hold of non-trivially interacting states?  
This is the subject of the next section. 
 
 
6.3.  The Problem of Empirical Import and the Adiabatic Limit 
In the causal perturbation theory approach, there are two obstacles to interpreting the formal 
expression (8) as a non-trivial, interacting S-matrix.  The first is that the formal test functions 
g(x) that appear in it must be removed.  These may be interpreted as a low-energy (IR) cut-off 
that regulates long-distance degrees of freedom in the interaction.  As such, they address the IR 
problem for massless theories like QED (see footnote 15 above).  Moreover, an IR cut-off also 
addresses the pragmatist's Problem (a) of Section 3.2 above (recall this generated the 
Renormalization Problem), as Brunetti and Fredenhagen observe: 
 
 Now in a translationally invariant theory, the interacting fields approach the asymptotic free 

fields only in a rather weak sense (LSZ-asymptotic condition [viz., (5)]).  Moreover, the Haag 
Theorem forbids the construction of interacting fields in the vacuum Hilbert space of the time-
0 free fields.  In the Epstein and Glaser scheme, these problems are, in a first step, 
circumvented by choosing interactions which take place only in a bounded region of space-
time.  Then the scattering operator can be defined in the interaction picture as the time 
evolution operator from the past, before the interaction was switched on, to the future, after the 
interaction was switched off (Brunetti and Fredenhagen [2000], p. 626). 

 
To remove the g(x), one must take an 'adiabatic limit' g(x) → 1.  There are two versions of this 
limit:  a weak version requires that the time-ordered products of fields generated from the S-
matrix (8) exist as distributions in the limit g(x) → 1, whereas a strong version requires, in 
addition, that the S-matrix itself (as a formal power series) exists as a unitary operator (see, e.g., 
Pinter [2001], p. 337).  Note that the strong sense is a necessary (but not sufficient) condition for 
causal perturbation theory to address both the pragmatists' Existence Problem, and the purists' 
Problem of Empirical Import.  Recall that the former is the problem of whether the perturbative 
power series expansion of the S-matrix actually exists as a convergent series.  The latter is the 
problem of whether (non-trivial) interacting models of the causal perturbation theory axioms 
exist (and in particular, axiom 1).  Thus, if the power series expansion (8) exists as a convergent 
series, or if there are (non-trivial) interacting models of axiom 1, then a corresponding unitary S-
matrix operator must exist (this assumes that an appropriate notion of convergence for operators 
exists in the corresponding Hilbert space; i.e., that, if all the terms in (8) exist and converge to a 
well-defined expression (8), then likewise the operators corresponding to the terms in (8) 
converge to a well-defined operator).  On the other hand, in a theory that only satisfies the weak 
adiabatic limit, only the individual terms in (8) are guaranteed to exist, as opposed to the full 
expansion itself.  With this in mind, Pinter reports the following: 
 
 The weak adiabatic limit was proved to exist for massive theories, QED and massless λ:Φ2n : 

theories.  The existence of the adiabatic limit in the strong sense has only been proved for 
massive theories (Pinter [2001], p. 337). 

 
This suggests that only massive theories have a chance of being exactly formulated in causal 
perturbation theory.  Whether or not they can be is just the second obstacle to interpreting (8) as 
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a non-trivial interacting S-matrix mentioned at the start of this section.  The question this second 
obstacle raises for the causal perturbation theorist is, Does the formal power series expression (8) 
for the S-matrix exist as a convergent series with a corresponding linear operator for non-trivial 
interacting RQFTs?  This is simply the pragmatist's Existence Problem; namely, it is the problem 
of whether the perturbative power series expansion of the S-matrix (and/or relevant quantities of 
interest) exists as a convergent series for interacting RQFTs.  In causal perturbation theory, since 
the existence of the S-matrix appears as one of the axioms, this pragmatist problem is simply the 
purist's Problem of Empirical Import; namely, it is the problem of whether a non-trivial 
interacting model of the causal perturbation theory axioms exists, in particular, axiom 1. 
 
These observations indicate the sense in which causal perturbation theory, in seeking to provide 
a rigorous foundation for perturbation theory, can be viewed as mediating between pragmatism 
and purity.  In particular, regardless of whether the adiabatic limit exists in either the weak or the 
strong sense, causal perturbation theory fails to address the purist's Problem of Empirical Import:  
there are no (non-trivial) interacting models of its axioms.  On this account, causal perturbation 
theory is no different from other purist approaches.  However, the fact that its axioms include a 
formal expression for the perturbative power series expansion of the S-matrix suggests that, in 
causal perturbation theory, the purist's Problem of Empirical Import is simply the pragmatist's 
Existence Problem.33 
 
 
7.  Conclusion 
I'd like to conclude by first comparing casual perturbation theory with the standard bearers of 
pragmatism and purity, and then drawing two lessons and a general moral from this comparison.  
Wallace's ([2011]) cut-off QFT (CQFT), as a pragmatist approach, addresses the Renormalization 
Problem by expressing renormalized parameters as functions of a finite UV cut-off Λ, and then 
simply not taking Λ to infinity.  CQFT also solves the pragmatist's UV Problem by employing Λ 
to regulate divergent integrals in expressions like (2).  A consequence of using such a permanent 
cut-off is that CQFT is not Lorentz invariant; but, as Wallace ([2011], p. 123) argues, one of the 
assumptions underlying CQFT is that it holds only for energy scales on the order of Λ, and 
conceivably Lorentz invariance could reappear at higher energy scales.  Finally, CQFT leaves the 
pragmatist's Existence Problem unsolved.  Fraser's ([2011]) axiomatic/algebraic QFT (AQFT), as 
a purist approach, and as typically formulated, leaves both the Problem of Empirical Import and 
the purist's UV Problem unsolved.  Note, however, that there is nothing to stop an AQFTer from 
adopting the method of distribution extension as a solution to the latter.  Moreover, perturbative 
AQFT (pAQFT) offers a means of incorporating the advantages of casual perturbation theory 
into the AQFT framework (see footnote 32).  Finally, causal perturbation theory solves the 
                                                
33 The application of causal perturbation theory to AQFT (i.e., "pAQFT") is associated with an 'algebraic adiabatic 
limit'.  Whereas the weak and strong adiabatic limits are characterized by holding fields and states fixed in the 
asymptotic past and future, the algebraic adiabatic limit is characterized by holding the fields fixed in regions in the 
interior of spacetime (Holland and Wald [2003], p. 136).  Summer ([unpublished], pp. 47-8) indicates that, while 
pAQFT 'falls comfortably within the framework of AQFT', it faces what this essay has referred to as the Existence 
Problem and the Problem of Empirical Import:  '[T]aking expectations of observables in states in this approach 
results in a formal complex power series, not a complex number.  Hence, in order to make the connection to 
experiments one must deliberately consider a partial sum of this series, i.e. consider the perturbation series only to a 
finite order, as is done in heuristic QFT.  Since these series are not convergent, one is returned to the question, "Is 
there an exact model?".' 
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purist's UV problem (for instance, by the method of distribution extension); and while it cannot 
be said to solve the purist's Problem of Empirical Import, it can be interpreted as converting this 
purist problem into the pragmatist's Existence Problem. 
 
This comparison provides two lessons for the debate between pragmatists and purists.  First, 
problems associated with renormalization should be made distinct from problems associated with 
perturbation theory.  In particular, the pragmatist's Renormalization Problem is conceptually 
distinct from the pragmatist's UV Problem and Existence Problem, the latter being problems 
associated (indirectly and directly) with perturbation theory.  This suggests that purists need not 
completely reject the tools of renormalized perturbation theory that underlie the empirical 
success of pragmatist approaches:  One can object to renormalization as mathematically suspect 
while engaging rigorously with perturbation theory.  Second, the purist Problem of Empirical 
Import is not necessarily conceptually distinct from the pragmatist Existence Problem.  This 
suggests that pragmatists should acknowledge that purists may be taken to task on the Problem of 
Empirical Import to the same extent that pragmatists may be taken to task on the Existence 
Problem. 
 
The above discussion also suggests a general moral for the debate between pragmatists and 
purists.  As we've seen, both approaches face particular sets of problems.  In the absence of a 
formulation of RQFTs that is entirely problem-free, it would seem that the best approach to 
foundational issues would be to employ all available formulations, being aware of the types of 
problems any given formulation faces.  Thus, for instance, in addressing the question, 'Why is 
CPT invariance an essential property of RQFTs?', it helps to consider both pragmatist and purist 
formulations of the CPT theorem, as opposed to focusing on any one particular formulation.  
Moreover, as Section 5 demonstrated, an appreciation of the problems associated with alternative 
formulations of the CPT theorem can help dispel potential misunderstandings associated with it.  
In general, the existence of alternative formulations of a theory should not be something to 
despair over; rather it should be embraced.  Such alternatives indicate a robust and fertile theory 
with sufficiently complex core structure to underwrite multiple non-trivial realizations. 
  



 26 

Appendix 
Greenberg's ([2002]) proof that, at a Jost point, RLI of τ-functions entails WLC of Wightman 
functions may be demonstrated as follows (after Dütsch and Gracia-Bondía [2012], pp. 432-3).  
We wish to show that, at a Jost point, any Wightman function satisfies W(x1, ..., xn) = 
W(x1, ..., xn).  We first assume Wightman functions satisfy RLI; that is, we assume there is a 
representation of the restricted Lorentz group, L↑

+  Λ  U(Λ), such that 
 
 W(Λx1, ... Λxn) = U(Λ)W(x1, ..., xn)U(Λ)−1,   ∀Λ ∈ L↑

+ (A1) 
 
RLI of τ-functions is the analogous assumption that 
 
 τ (Λx1, ... Λxn) = U(Λ)τ (x1, ..., xn)U(Λ)−1,   ∀Λ ∈ L↑

+ (A2) 
 
Now suppose (x1, ..., xn) is a Jost point (see footnote 4).  This means that (xi − xj) is spacelike for 
all xi, xj ∈ (x1, ..., xn), i ≠ j.  For such points, it is always possible to choose two Lorentz 
transformations Λα, Λβ ∈ L↑

+ such that they time-order (x1, ..., xn) in opposite ways; i.e., (Λα x1)0 > 
... > (Λ1xn)0 and (Λβ x1)0 < ... < (Λβ xn)0.  Then 
 

W(x1, ..., xn) = U(Λα)−
1W(Λα x1, ... Λα xn)U(Λα) (A1) 

 = U(Λα)−
1τ (Λα x1, ... Λα xn)U(Λα) Definition of Λα and (7) 

 = τ (x1, ..., xn) (A2) 
 = U(Λβ)−

1τ (Λβ x1, ... Λβ xn)U(Λβ) (A2) 
 = U(Λβ)−

1W(Λβ xn, ... Λβ x1)U(Λβ) Definition of Λβ and (7) 
 = W(xn, ..., x1) (A1)  
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