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Abstract

Thought experiments are widely used in the informal explanation of

Relativity Theories; however, they are not present explicitly in formalized

versions of Relativity Theory. In this paper, we present an axiom system of

Special Relativity which is able to grasp thought experiments formally and

explicitly. Moreover, using these thought experiments, we can provide an

explicit definition of relativistic mass based only on kinematical concepts

and we can geometrically prove the Mass Increase Formula m0 = mk ·
p

1− v2 in a natural way, without postulates of conservation of mass and

momentum.

1 Introduction

David Hilbert’s still open 6th problem is about to provide a foundation of Physics

similar to that of Mathematics. The search for this foundation means to find suit-

able formal axiomatic systems in which we can prove the formal counterparts

of the predictions of Physics.

Why is Hilbert’s problem still important? Because, the role of basic assump-

tions and basic concepts in Physics is at least as important as in Mathematics.

Therefore, we would like to have a clear and well-structured understanding of

these concepts and assumptions.

As part of this project we would like to support predictions of Physics with

precise proofs. This fact also motivates us to use mathematical logic because
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mathematical logic is currently the best framework in which we can present the

most precise proofs.

Using the formal language of mathematical logic, we can clarify the tacit

assumptions and opaque notions, as well as we can provide precise proofs for

the predictions of Physics.

Another advantage of using mathematical logic is the powerful device of

model theory: using these tools we are not only able to decide whether a proof is

correct or not, but to discover the exact boundaries of our theories. For example,

we can prove that if a statement is unprovable.

Here come the methods of reverse mathematics into the picture. Using model

theoretical tools we are able to examine the exact dependencies of the axioms,

what is more: we can find more and more fundamental, sufficient conditions to

prove an important statement. For example, [4] showed that the Mass Increase

Theorem can be proved from conservation of the centerline of mass without

using the conservation of mass and linear momentum.1 This means also that the

Mass Increase Theorem is true even in those models in which the conservation

of mass or linear momentum fails (but the conservation of centerline of mass is

valid).

This reverse mathematical perspective will be also important in this paper:

we base our dynamics on an even more general foundation than what was used

in [4].

At the very beginning of such a foundation, we have to choose a math-

ematical logic. And we have to choose wisely: not all of them are suitable

for axiomatization. We have to choose one which is rich enough to formu-

late Physics, but not too rich to obscure some basic assumptions by making

them “unknowable” because it decides them in the meta level, see [1, §Why

FOL?], [31, §11]. The standard choice is classical first-order logic. For example,

all of [2], [3], [7], [8], [15], [22], [28] choose first-order logic to axiomatize

relativity theories.

However, thought experiments, which are a natural and common tool in the

everyday practice of Physics, do not fit very well in these classical framework,

1Another good example is that faster than light motion of particles per se is logically inde-

pendent from both relativistic kinematics [32] and relativistic dynamics [25]. For an axiomatic

approach defining coordinate systems moving faster than light, see [20].
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they seem to use more than models. In section 2 we show that thought experi-

ments are good candidates for being transformations between classical models.

One could say, that this is not surprising at all: as real experiments change the

reality, the thought experiments change the models of reality. The need for this

research was already articulated in [4, §6] and [5, pp.6-7].

Anyhow, there is a logic capable of expressing thought experiments, and is

rich and safe enough to provide axiomatic bases for relativity theories. This is

the first-order logic of ‘possible worlds’: the first-order modal logic. This paper is

not the first one connecting modal logic and relativity theories. [14], [30], [29]

use modalities locally to axiomatize the causal ordering of events in Minkowski

spacetimes, and [18] uses first-order modal logic to eliminate the explicit use

of reference frames. We use the modalities to express thought experimentation,

i.e., transforming classical models of Special Relativity, more explicitly to dis-

tinguish axioms referring to fundamental physical laws and axioms postulating

fundamental properties of thought experiments.

1.1 Results

The main results of this paper can be summarized as follows:

• We prove standard predictions of special relativity by formal thought ex-

periments in a natural way, very close to the informal explanation. The

motivation of formal thought experiments will be presented in section 2.

• We develop a first-order modal logic axiomatization of relativistic kine-

matics and dynamics in which it is possible to distinguish between actual

and potential object. This will be done in section 3 and 4.

• We define mass explicitly using thought experiments in subsection 4.1.

• We prove the relativistic Mass Increase Formula

m0(b) =mk(b) ·
p

1− vk(b)2. (1)

in subsection 4.3 (Thm. 11, p.35) using thought experimentation.
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2 On the Formalization of Thought Experiments

To explore the nature of the thought experiments present in the discourse of rel-

ativity physics, we show a typical argument about that the simultaneity of events

is not absolute (i.e., is observer dependent): the train and platform thought ex-

periment.

Our main assumption about the physical reality is a simple consequence of

Einstein’s two original postulates [12]:

The speed of light is constant for each observer. (AxPhObs)

“Theorem” 1. Simultaneity is not absolute.

“Proof” 1. Consider a train and a train station, such that the train is passing by

the station with constant speed. Suppose that Alice is on the train, while Bob is

standing on the station. We assume that Alice is sitting in the middle of the train

according to Bob. We now show that there could be two events simultaneous

according to Bob, which are not simultaneous for Alice.

To do so, let us make a thought experiment: Imagine that two lightnings

strike the two ends of the train simultaneously for Bob.

By the fact that the speed of light is constant for Bob (AxPhObs), the light of

the flash in front of Alice reaches her first, and (if the train is slower than light2)

the light from her back reaches Alice second. The physical reality is the same for

both Alice and Bob; therefore, Alice also observes the light signals in different

events. We can assume that Alice is sitting on the middle of the train according

to her as well.3 Since the speed of light is constant also for Alice according

to (AxPhObs), and the two flashes occur equidistantly with respect to her, the

flash in front of her occur at a different time than the one behind according to

Alice, see Fig. 1. So we proved that there could be two events simultaneous for

Bob but not for Alice, so the simultaneity of events is not absolute. “Q.E.D.”

In the previous informal proof, we used a lot of natural but tacit assumptions.

2The statement “no inertial observer can go faster than light” follows from the basic assump-

tions we use in this proof, so we can use it. For a precise proof, see [6].
3This basic statement can be proved using the very same assumptions as we use in this proof.
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Figure 1: Illustration of the thought experiment showing the observer-

dependence of simultaneity

Thought experiment

AliceBob

Bob Alice

BobAlice

Alice Bob

Lightning strikes

Observations: The physical reality is the same for each observer (AxEv)4, and

the observers coordinatize themselves in the origin (AxSelf).

Mathematics: Since we used notions such as distance and speed, we relied on

some axioms of the real numbers.

However, this proof does not work for Alice and Bob if the two flashes are not

“possible” in the very special space-time locations as we used in the proof: they

occurred simultaneously for Bob, they were equidistant with respect to Alice,

and they were oriented in the direction of the movement of Alice. This intro-

duction of photons is a very good example for what we usually call a thought

experiment. So in this sense we relied on a thought experimentation axiom:

4Later we will introduce a modal version of this assumption, see AxMEv on p.18
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Light Signal Sending Thought Experiments: In every space-time location, in

every direction, it is possible to send out a light signal. (AxPhExp)

Why postulating the existence of “possible” photons are legitimate? For ex-

ample, because the notion as simultaneity should be independent from the ac-

tual existence of some photons, i.e., the simultaneity should be understood in

terms of possible events.

However, in what sense the two flashes in the example are “possible”? Log-

ical consistency is a good starting point: the two flashes are possible because

their existence does not violate the other axioms we use (e.g., AxPhObs or Ein-

stein’s more general postulates). Then the step of introduction of the two pho-

tons can be interpreted as a transformation of a model of the (classical) axioms

into a very similar model of the same axioms: this model is more only in the

aspect that it has two extra photons in the locations where we need them to be.

So a model transformation which expands the model with two photons obey-

ing to AxPhObs is a good candidate for a formal counterpart of the light signal

sending thought experiment AxPhExp. This gives the idea that physical thought

experiments should be formalized as transformations of classical models.

2.1 Logic for thought experiments

Non-trivial transformations of models are always understood between two dif-

ferent models. However, the truth of a formula must be based on only one

model (otherwise it is not a model). Either way, if we would like to formalize

the notion of thought experiment, the truth of corresponding formulas should

be based on two models: on the model before and after the transformation.

The solution comes from modal logic. A modal model is a set of classi-

cal models connected with a relation. This relation can be the representative

of thought experimentation, i.e., model transformation. While the thought

experimentation-free (classical) formulas are evaluated in the usual way, we

introduce the (modal) formulas ◊ϕ with the intended meaning of “there is a

transformed model in which ϕ is true” or “there is a thought experiment such

that ϕ.”

Formally: In the classical model w of the modal model M the formula ◊ϕ is
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true iff there is a (“transformed”) model v Rw in which ϕ is true.5

3 Kinematics

3.1 Language

Since we will reduce the notion of mass to kinematical notions, the language

and models of Dynamics will be very similar to that of Kinematics’. The only dif-

ference will be the presence of an individual constant naming the mass-standard

body to determine the standard unit of mass. Therefore, we discuss the language

and models of Dynamics now.

Our main predicate is about coordinatization:

W(k, b, t, x , y, z): “Observer k coordinatizes body b

at the space-time location (t, x , y, z).”

We will use mathematical variables x , y, z, t, x1, . . . to denote numbers, e.g.,

coordinates, and physical variables b, c, d, k, l, h, m, . . . to denote bodies and ob-

servers. We will assume that every observer is a body but not the other way

around. For this differentiation we introduce a predicate for inertial observers:

IOb(k): “k is an inertial observer,” where k is a physical term.

Since we stay in Special Relativity, in the rest of this paper we omit the expres-

sion “inertial.”

Light signals play an important role in Relativity Theories; so we introduce

a primitive predicate for them as well:

Ph(k): “k is a light signal,” where k is a physical term.

Our only non-variable primitive physical term is the mass-standard ε which will

play a central role in Dynamics in section 4.

5Note that the starting idea, that thought experiments should be understood as tests for

logical consistency, is fulfilled.The truth of ◊ϕ involves also classical logical consistency with the

classical axioms. If ◊ϕ is true, then there is a (transformed) classical model in which ϕ is true.

Since the classical axioms must be true in each world of the modal model, they are also true in

the transformed model. That means that ϕ is consistent.
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In the case of mathematics we use the usual + and · basic operations and

the ordering ≤.

To form complex formulas we use the usual classical connectives ¬, ∧, ∨,→,

∀, ∃ to express “not”, “and”, “or”, “if-then”, “for all”, “there exists”, respectively.

We use the following abbreviations to simplify our formulas:

(∃b ∈ ϕ)ψ
def.

⇐⇒ ∃b(ϕ(b)∧ψ), (∀b ∈ ϕ)ψ
def.

⇐⇒ ∀b(ϕ(b)→ψ).

For the same reason, we refer to n-tuples using the vector notation:

∀ x̄ϕ( x̄)
def.

⇐⇒ ∀x1, . . . , xnϕ(x1, . . . , xn).

Our only non-classical connective is the modal operator ◊ with the intended

meaning that “there is a thought experiment according to which. . . ” or “the

actual model can be transformed in a way such that. . . ”. We define a dual

operator �ϕ as ¬◊¬ϕ; hence �ϕ is true iff “ϕ is invariant under model trans-

formations/thought experiments.” Therefore, an axiom of the form �ϕ means

that “we use only those thought experiments according to which ϕ is invariant.”

3.2 Semantics

A model for MSpecRel:

M= 〈Q,P,WM〉 where
Q= 〈Q,+M, ·M,≤M〉,
P= 〈S,R, D, IObM, PhM,εM〉.

Here Q is the mathematical and classical (Tarskian) part of the model:

+M, ·M: Q2→ Q, ≤M⊆ Q2,

and P is the physical and modal part of the model. The set S is the set of possible

worlds, which is a nonempty set used for naming the classical first-order models.

R is a reflexive binary relation on S called the alternative-relation. The pur-

pose of this relation is to select those possible worlds which can be reached from

the actual world by thought experiments. The precise calibration of this relation

will be done by axioms containing modal operators � and ◊.
D is a function assigning to each w ∈ S a (possibly empty) set Dw. These

sets are considered as the domain of physical quantification, or simply the set of
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existing or “actual” physical objects in the world w. The possible objects are the

objects that are “actual-in-some-possible-world”:

U
def.
=
⋃

w∈S

Dw.

IObM and PhM are modal predicates for observers and photons. Since the sets

of observers and photons can vary in different worlds, the modal predicates are

functions assigning subsets of U to each world w:

IObM, PhM : S→P (U).

Function εM assigns a possible object, the one and only (and not necessarily

existing) mass-standard for each w ∈ S in a way that the denotation of ε cannot

vary between R connected worlds (i.e., it is a so-called rigid designator):

εM : S→ U and wRv⇒ εMw = ε
M
v .

Finally WM is the “hybrid” modal and classical predicate for coordinatiza-

tion. This is also a function, since the world-views can vary from world to

world:

WM
w ⊆ D2

w ×Q4.

Assignments. Let σQ be an assignment of the classical part of the model in

the classical sense, i.e., a function assigning the elements of Q to the mathemat-

ical variables. In the case of the physical and modal parts, let an assignment

σU mapping possible individuals to the physical variables. Then a two-sorted

assignment for a model of MSpecRel:

σ(x)
def.
=

(

σQ(x) if x is a mathematical variable,

σU(x) if x is a physical variable.

We define the x-variant assignments in the usual way:

σ
x
≡τ

def.

⇐⇒ for all y 6= x : σ(y) = τ(y).

Terms. The denotation of terms are defined in the usual way:

tM,w,σ def.
=

(

σ(t) if t is a variable,

f M,w,σ
i (tM,w,σ

1 , . . . , tM,w,σ
n ) if t = fi(t1, . . . , tn).
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Truth. To define truth, we introduce the following notation:

M, w |= ϕ[σ].

We read this in the following way: ϕ is true in the world w of the modal model

M according to an assignment σ. The precise definition is given by recursion:

The truth of the atomic sentences made by = and W:

M, w |=W(k, b, x̄)[σ]
def.

⇐⇒ 〈kM, bM, x̄M〉 ∈WM
w ,

M, w |= t1 = t2[σ]
def.

⇐⇒ tM1 = tM2 .

The truth of the other atomic formulas is defined similarly. The truth of formulas

connected by ∧, ∨,→ and↔ are defined in the usual way; however, the truth

of the quantified and modalized formulas are special:

M, w |= ∃xϕ[σ]
def.

⇐⇒

(

there exists a τ≡xσ such that

M, w |= ϕ[τ],

M, w |= ∃bϕ[σ]
def.

⇐⇒

(

there exists a τ≡bσ such that

τ(b) ∈ Dw and M, w |= ϕ[τ],

M, w |= ◊ϕ[σ]
def.

⇐⇒

(

there exists a w′ ∈ S such that

wRw′ and M, w′ |= ϕ[σ].

Note that in the case of the physical sort, we quantify over Dw, i.e., over the

actually existing bodies. The possible existing bodies are only accesible using

modalities, such as ◊∃b, �◊◊∀b, etc.

A formula is said to be true in a model, M |= ϕ iff it is true in all of its worlds

according to any assignment.

The worlds we use are not ordinary classical models, because the classical

axiom schema of universal instantiation (∀bϕ(b)→ ϕ(t/b)) is false in them. To

show this, we give a simple example: Consider the following model illustrated

on Fig. 2:

〈R, S, R,D, IObM, PhM,εM,WM〉

• R is the field of real numbers.

• There are only two worlds w1 and w2, i.e., S = {w1, w2}, such that w2 is

a transformed version of w1, and both worlds are transformed versions of

themselves:

R= {〈w1, w2〉, 〈w1, w1〉, 〈w2, w2〉}.
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Figure 2: An example for a first-order modal model of our language

Dw1

IObM
w1 PhM

w1

Dw2

IObM
w2 PhM

w2

e

p
k k

R

• In both worlds there exist only two entities: Dw1
= {k, p},Dw2

= {k, e}. So

the possible entities are U= {k, p, e}.

• k is an observer in both worlds, IObw1
= IObw2

= {k}, p is a photon

in w1, Phw1
= {p}, Phw2

= ∅, e is the mass-standard of w1 and w2, i.e.,

e = εMw1
= εMw2

(they cannot differ, since w1Rw2).

• k sees itself in the origin in both worlds, k coordinatize p moving from 0

in the direction of its x-axis in the world w1, e is stationary for k in w2.

WM
w1
=

(

〈a, b, t, x , y, z〉 : k = a and
if b = k then x = y = z = 0,

if b = p then t = x , y = z = 0,

)

WM
w2
=

(

〈a, b, t, x , y, z〉 : k = a and
if b = k then x = y = z = 0,

if b = e then x = 2, y = z = 0,

)

Let us now consider formula (∃b) b = ε expressing that ε exists. For express-

ing existence this way, we use the following abbreviation:

E(c)
def.

⇐⇒ (∃b) b = c.

Now E(ε) is true in w2 but not in w1, since εMw1
= e /∈ Dw1

. However, the formula

∀bE(b) is true in w1, since E(b) and E(p) are true, but since for the truth of

∀-statements we examine only the elements of Dw1
, the falsity of E(ε) does not

count. This means that in our models the classical axiom schema of universal

instantiation,

∀bϕ(b)→ ϕ(t/b) (UI)
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fails. Therefore, we do the standard abstraction present in the first-order modal

literature (see [11], [16]): we replace this by the actual instantiation schema:

E(t)→ (∀bϕ(b)→ ϕ(t/b)). (AI)

3.3 Logical axioms

The logical axioms are

• the usual axioms and derivation rules of classical propositional logic.

• the usual axioms and derivation rules of classical first-order logic for math-

ematics.

• the usual axioms and derivation rules of classical first-order logic for physics,

except the law (UI). We use (AI) instead.

• [13] showed that this system still not proves that the quantifiers of the

same sort commute. We postulate these commutativities and we let com-

mutate the quantifications of different sorts too:

∀b∀cϕ↔∀c∀bϕ ∀b∀xϕ↔∀x∀bϕ.

• the usual axioms of identity for both sorts, and a new modal axiom about

identity expressing that identity is invariant under thought experiments.

During the axiomatization of special relativity we do not use such a radical

thought experiment which could split one object into two different ones.

t = t, t = s→ (ϕ(t/x)→ ϕ(s/x)), t = s→ (ϕ(t/b)→ ϕ(s/b))

t 6= s→�(s 6= t).

• the axiom and the derivation rule of the most general normal modal

propositional logic K:

�(ϕ→ψ)→ (�ϕ→�ψ),
ϕ

�ϕ
.

For us, these express that the modal logical tautologies are invariant under

thought experiments, and that invariance under thought experiments is

closed to modus ponens.
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• For simplicity, we assume that every world counts as a transformed version

of itself, i.e., R is reflexive.6 This can be ensured by the axiom:

ϕ→ ◊ϕ.

This proof system is strongly complete with respect to the semantics we

use, see [11, Thm. 2.9 (i), p. 1502.].7

3.4 Mathematical Axioms

For the mathematical part, we use the theory of Euclidean fields.

Axiom 1 (Axioms of Euclidean Fields).

AxEField : The mathematical part of the model is a Euclidean field, i.e., an

ordered field8 in which every positive number has a square root.9

3.5 Axiom for characterizing the Framework

Here we specify some minimal requirements on the thought experimentation

we will use.

Axiom 2 (Axioms of Modal Framework).

AxMFrame : Mathematics is invariant under thought experiments, and every

(existing) observer remains an existing observer, i.e., the observers and their

ability to coordinatize cannot vanish after a thought experiment:

(∀k ∈ IOb)�(E(k)∧ IOb(k)),

(∀x , y, z) x + y = z ↔ �x + y = z,

(∀x , y, z) x ·y = z ↔ �x ·y = z,

(∀x , y) x ≤ y ↔ �x ≤ y,

(∀x , y) x = y ↔ �x = y.

6However, this assumption can be evaded by replacing � and ◊ with ϕ ∧�ϕ and ϕ ∨◊ϕ in

all our axioms.
7 [11] proved strong completeness for only one-sorted modal languages, but our language

can be interpreted into it in the usual way, i.e., we introduce a D and a Q predicate to distinguish

the sorts. To construct a one-sorted model for our system, we only have to stipulate that the

mathematical part of the R-connected worlds are the same, i.e., it is invariant under R.
8For the axioms of ordered fields, see e.g., [10, p.41].
9That is, (∀x > 0)(∃y) x = y2.
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Note that AxMFrame allows an object to be an observer in a world w and a

non-observer in an other world w′. This axiom ensures only that w′ cannot be a

transformed version of w, i.e., the relation R cannot connect them in this order.

The postulates about atomic statements of the mathematical sort implies that

µ↔ �µ whenever µ is a “purely” mathematical formula. Practically these ax-

ioms say that we do not consider thought experimentations according to which

2+ 2 can be 5.

3.6 Physical axioms

In our first physical axiom, we use the following notations:

x̄ ∈ wlinek(b)
def.

⇐⇒ W(k, b, x̄),

x̄ t
def.
= x1, x̄s

def.
= (x2, . . . , xd),

Time( x̄ , ȳ)
def.
= | x̄ t − x̄ t |, Space( x̄ , ȳ)

def.
= | x̄s − x̄s|.

Axiom 3 (Axiom of Observation of Light Signals.).

AxPhObs : Every observer sees the world-lines of photons as of slope 1. See

Fig. 3:

(∀k ∈ IOb)(∀ x̄ , ȳ)
�

(∃p ∈ Ph) x̄ , ȳ ∈ wlinek(p)→
Space( x̄ , ȳ)
Time( x̄ , ȳ)

= 1
�

.

Figure 3: Axiom of Observation of Light Signals

=⇒

k

x̄s ȳs

x̄ t

ȳt
k

x̄s ȳs

x̄ t

ȳt p

p

ȳ

x̄

=

Space

=

Tim
e

Axiom 4 (Axiom of Light Signal Sending).

AxPhExp : Every observer can send a photon through coordinate points of

slope 1. See Fig. 4:

(∀k ∈ IOb)(∀ x̄ , ȳ)
�

Space( x̄ , ȳ)
Time( x̄ , ȳ)

= 1→ ◊(∃p ∈ Ph) x̄ , ȳ ∈ wlinek(p)
�

.
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Figure 4: Axiom of the Light Signal-Sending

k

x̄s ȳs

x̄ t

ȳt
k

x̄s ȳs

x̄ t

ȳt p

p

ȳ

x̄
=

Space

=

Tim
e ⇒

R
w w′

This axiom practically says that if there are two space-time locations where,

according to AxPhObs, there could be a photon, (i.e., their slope is 1) then

there is a thought experiment which transforms the actual world into a world in

which there is a photon crossing through these space-time locations. That was

the axiom we used in the example in section 2.

The most important message of the special theory of relativity is that rela-

tively moving observers coordinatize the world differently even with respect to

time and simultaneity. So the most interesting relation of this theory must be

the relation which connects the “corresponding” coordinate points of different

observers, because if we want to say something about relativistic effects, such as

time dilatation, length contraction, etc., we have to compare different observers’

“corresponding” coordinates. The usual way to achieve this is to introduce the

notion of events. Intuitively an event is a meeting, an encountering, a collision

etc. which itself is observer-independent. What is observer-dependent, is the

space-time location of these events in the observers’ coordinate-systems. We can

introduce an observer-dependent formal counterpart for the notion of event:

Definition 1. An event at a coordinate point x̄ according to k in a world w is

the set of existing (actual) bodies occurring there:

evk( x̄) = {b ∈ E : W(k, b, x̄)}.

Let w and w′, respectively, be the worlds before and after the thought ex-

periment in the story of Alice and Bob in section 2. Then we had the following
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events:

in w : ∅, {Alice}, {Bob}, {Alice, Bob}.
in w′ : ∅, {Alice}, {Bob}, {Alice, Bob}, {p1}, {p2}, {Alice, p1}, {Alice, p2}.

This is not the usual concept of events. Since usually events are interpreted

as possible events, usually different events correspond to different coordinate

points. For possible events, this holds true even in our modal framework be-

cause, by AxPhExp and AxPhObs, the possible events are different in different

coordinate points. For example, if Alice observes the same sets of bodies in two

different coordinate points, say {Bob} at x̄ = 〈0,1, 0,0〉 and ȳ = 〈1,1.1, 0,0〉,
then there could be a photon (there is a possible photon) moving in such direc-

tion that it is in x̄ but cannot be in ȳ . Such a photon can distinguish the sets of

possible bodies in x̄ and ȳ .

So if events evAlice( x̄) and evAlice( ȳ) contained not only actual, but possible

bodies, there would be a photon telling apart the two sets. In this case, the

following relation for connecting the “corresponding” coordinate points would

be perfect:

“wkh( x̄ , ȳ)
def.

⇐⇒ evk( x̄) = evh( ȳ).”

However, such a notion of possible event is inexpressible since we have only

actualist quantifications — we cannot quantify over possible bodies. Anyway, we

can define appropriate worldview transformations using thought experiments.

If two coordinate points are corresponding, i.e., the same set of possible bodies

occur there, then we cannot tell apart them with thought experiments we have,

and this can be formulated as:

¬◊evk( x̄) 6= evh( ȳ).

Definition 2 (Worldview transformation). We say that k sees at x̄ what h sees

at ȳ iff in all transformed worlds the event in x̄ for k is the same as the event

in ȳ for h. In other words, k sees at x̄ what h sees at ȳ iff it is impossible to tell

apart these two events by thought experiments:

wkh( x̄ , ȳ)
def.

⇐⇒ �evk( x̄) = evh( ȳ).

Prop. 1 shows that AxPhExp provides enough thought experiments to prove

that worldview transformations give a one-to-one correspondence between co-

ordinate points.
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Sometimes, to simplify our formulas, we list the conjuncts in a column:










ϕ1
...

ϕn











def.

⇐⇒ (ϕ1 ∧ · · · ∧ϕn).

Proposition 1. Worldview transformations are injective functions.

{AxEField,AxMFrame,AxPhExp,AxPhObs} `

(∀k, h ∈ IOb)(∀ x̄ , ȳ , z̄)

 

(wkh( x̄ , ȳ)∧wkh( x̄ , z̄))→ ȳ = z̄

(wkh( ȳ , x̄)∧wkh(z̄, x̄))→ ȳ = z̄

!

Proof. By the definition of worldview transformation, it is clear that wkh( x̄ , ȳ) =

whk( ȳ , x̄). Therefore, wkh is injective iff whk is a function. So by the symmetry

of h and k in the statement, it is enough to prove that wkh is a function. To do

so, let us assume towards contradiction that wkh( x̄ , ȳ), wkh( x̄ , z̄), but ȳ 6= z̄ in a

world w. In this case, by AxPhExp and AxPhObs, h could send out a light signal

from ȳ in such a direction that it avoids z̄, i.e., there is a possible world w′ Rw,

where there is a photon p such that

p ∈ evh( ȳ) but p /∈ evh(z̄). (2)

However, since it is true in w that

wkh( x̄ , ȳ) ⇐⇒ �evk( x̄) = evh( ȳ),

wkh( x̄ , z̄) ⇐⇒ �evk( x̄) = evh(z̄),

By the definition of �, it is true also in w′ that

evk( x̄) = evh( ȳ) and evk( x̄) = evh(z̄), hence evh( ȳ) = evh(z̄).

This contradicts (2), which proves that wkh is a function.

By Prop. 1, we can use the following notation for worldview transformations:

wkh( x̄) = ȳ
def.

⇐⇒ wkh( x̄ , ȳ).

So far we have not assumed that there is at least one corresponding coor-

dinate point in the worldviews of observers. That is, in some sense we have

not assumed that observers coordinatize the same physical reality. This is an

important statement, so we take it as an axiom.
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Axiom 5 (Axiom of Events).

AxMEv : The possible events are the same for every observer, i.e., there is no

possible world in which there is an event for an observer, which is not observed

by every other observers:

(∀k, h ∈ IOb)(∀ x̄)(∃ ȳ) wkh( x̄) = ȳ .

Proposition 2. If we assume AxMEv, AxPhObs and AxPhExp, then worldview

transformations are bijections from Q4 to Q4.

Now we introduce two more axioms to standardize coordinatizations:

Axiom 6 (Axiom of Self-Coordinatization).

AxSelf : Every observer coordinatizes itself stationary in the origin:

(∀k ∈ IOb)(∀ x̄ ∈ wlinek(k)) x̄s = 0̄.

Axiom 7 (Axiom of Symmetry).

AxMSym : All observers use the same system of measurements:

(∀k, h ∈ IOb)(∀ x̄ , x̄ ′, ȳ , ȳ ′)(Time( x̄ , ȳ) = 0∧ Time( x̄ ′, ȳ ′) = 0∧

∧wkh( x̄) = x̄ ′ ∧wkh( ȳ) = ȳ ′)→ Space( x̄ , ȳ) = Space( x̄ ′, ȳ ′).

Within this axiomatic framework, we are able to introduce the axiomatiza-

tion of modal kinematics of special relativity:

MSpecRel
def.
=

{AxEField,AxMFrame,AxPhExp,AxPhObs,AxMEv,AxSelf,AxMSym}

Within this axiom system we can prove all the special relativistic kinematical

effects such as time dilation and length contraction. See [3] for a direct proof

for these effects in a classical axiomatic framework. Here instead of proving

these effects directly, we prove that worldview transformations are Poincaré

transformations, which imply all these effects.

Theorem 3.

MSpecRel ` (∀k, h ∈ IOb)“wkh is a Poincaré transformation.”

The proof is in Appendix 5.1.
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4 Dynamics

From now on we will assume MSpecRel without further mentioning.

4.1 Definition of Mass

In this section we introduce the special relativistic dynamics based on kinemati-

cal notions. We base our definition of mass on possible collisions with the mass-

standard. So first we have to give a definition for inertial bodies and collisions.

Instead of giving a definition generally for all type of collisions, we restrict our-

selves to the inelastic collisions involving only two bodies. However, this does

not mean that our dynamics is applicable only these types of collisions. The

method can easily be generalized, see [31]. The reason why we choose these

simple collisions is that they give a sufficient basis to define the relativistic mass

explicitly.

Definition 3 (Inertial bodies and their speed). A body is inertial iff its worldline

can be covered by a line:

IB(b)
def.

⇐⇒ (∃k ∈ IOb)(∀ x̄ , ȳ , z̄ ∈ wlinek(b))

( x̄ t ≤ ȳt ≤ z̄t → | x̄ − ȳ|+ | ȳ − z̄|= | x̄ − z̄|).

If a body b is inertial and exists in at least two coordinate points, the following

definition of speed is well-defined:

vk(b) = v
def.

⇐⇒ (∃x , y ∈ wlinek(b))
�

x 6= y ∧ v =
Space(x , y)
Time(x , y)

�

.

Two trivial examples for inertial bodies are the inertial observers (by AxSelf),

and the photons (by AxPhObs). However, our intention with the definition of

inertial bodies is to introduce the type of bodies to which we would like to assign

mass. So first, inertial observers (i.e., coordinate-systems) are not such entities.

Second, for simplicity, in this paper we will not consider the mass of photons.

Therefore, we introduce the following notion for other inertial bodies.

Definition 4 (Ordinary body). We call a body ordinary iff it is an inertial body

which is not a photon nor an inertial observer:

OIB
def.
= (IB− IOb)− Ph.
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For ordinary bodies other than the mass-standard we introduce the following

notation:

OIB−
def.
= OIB− {ε}

Definition 5 (Collision). See Fig. 5. We say that b and c collide inelastically

resulting a body d according to an observer k at the space-time-location x̄ , in

formula inecollk, x̄(b, c : d), iff b and c are different existing inertial bodies and

their worldlines end in x̄ , and the worldline of the existing inertial body d begins

also in x̄ according to k.

ink( x̄)
def.
= {b ∈ IB : b ∈ evk( x̄)∧ (∀ ȳ ∈ wlinek(b)) ȳt < x̄ t ∨ ȳ = x̄},

outk( x̄)
def.
= {b ∈ IB : b ∈ evk( x̄)∧ (∀ ȳ ∈ wlinek(b)) ȳt > x̄ t ∨ ȳ = x̄},

inecollk, x̄(b, c : d)
def.

⇐⇒
�

b, c, d ∈ E∧ b 6= c ∧ ink( x̄) = {b, c} ∧ outk( x̄) = {d}
�

.

The omitted variables intended to be quantified over existentially:

inecollk, x̄(b, c)
def.

⇐⇒ (∃d ∈ IB)inecollk, x̄(b, c : d),

inecollk(b, c)
def.

⇐⇒ (∃ x̄)inecollk, x̄(b, c),

inecoll(b, c)
def.

⇐⇒ (∃k ∈ IOb)inecollk(b, c).

Figure 5: ink( x̄), outk( x̄) and inelastic collision

x̄

k
outk( x̄)

ink( x̄)

x̄

k
outk( x̄) = {d}

ink( x̄) = {b, c}b c

d

We also introduce a notation for the space-time location of collisions:

locinecollk(b, c) = x̄
def.

⇐⇒ inecollk, x̄(b, c).

Let us note that, by the definition of inecoll, locinecollk(b, c) is well-defined.

Definition 6 (Covering line of inertial bodies). The covering line wlinek(d) of

inertial body d according to observer k is the line which contains the world-line
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of d.

wlinek(d)
def.
=











z̄ : (∀ x̄ , ȳ ∈ wlinek(d))











| x̄ − ȳ|+ | ȳ − z̄|= | x̄ − z̄|∨
| x̄ − z̄|+ |z̄− ȳ|= | x̄ − ȳ|∨
|z̄− x̄ |+ | x̄ − ȳ|= |z̄− ȳ|





















For inertial bodies participating in inelastic collisions, we can use the follow-

ing notation since the covering line of these bodies cannot be horizontal:

wlinek(d, t) = s̄
def.

⇐⇒ 〈t, s̄〉 ∈ wlinek(d),

wlinek(d, t) = s̄
def.

⇐⇒ 〈t, s̄〉 ∈ wlinek(d).

How could we decide which of two colliding bodies, say b and c, is more

massive? We can observe the resulting body d of the collision: if d is stationary,

then the masses of b and c are equal; if d moves towards where from c have

arrived, then b is more massive than c. So we can examine the ratio of the

covering lines of the bodies b, c and d intersected with the simultaneity of an

observer k, see Fig. 6. If this ratio is greater than 1, then b is more massive; and

if this ratio is say 2.7, then b is 2.7 times more massive than c.

We will define the ratio of collision only for those collisions in which the

resulting body’s worldline is between the two colliding ordinary bodies, like in

Fig. 6. Formally:

Betweenk(b, d, c)
def.

⇐⇒

(∀ x̄ ∈ wlinek(b))(∀ ȳ ∈ wlinek(c))(∀z̄ ∈ wlinek(d))(∃t)

[0< t < 1∧ z̄ = t x̄ + (1− t) ȳ]∨ x̄ = ȳ = z̄.

Definition 7 (Ratio of Collision). We say that b is r times more massive than c

according to k, and we denote this by (b : c)k = r, iff the covering line of the

resulting body of the collision produced by b and c divides the simultaneity of

k between the body b and c in the ratio of r:

(b : c)k = r
def.

⇐⇒ inecoll(b, c)∧ Betweenk(b, d, c)∧

∧ (∃t < locinecollk(b, c)) r =
|wlinek(c, t)−wlinek(d, t)|

|wlinek(b, t)−wlinek(d, t)|
.
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Figure 6: The Collision Ratio

k

(b : c)k
def
= B

C

b c

C B

Having the notion of ratio of collision we are close to give a mass function.

Let us consider the following situation: Let c be the mass-standard ε. Then

(b :ε)k = r should be read as “b is r times more massive than the mass-standard

according to k.” And what else would we like to understand by that “b has the

relativistic mass r according to k” if not this?10

However, such a definition for mass seems to be too strict. There are three

problems with this definition:

(1) Problem of the Non-interacting. How could we say anything about bodies

that do not collide with something? Do they lack mass? Even if we do

not know about the mass of such a body, it should have mass or at least it

should be meaningful to speak about its mass.

(2) Problem of Reusability. If the mass-standard collides with a body, how could

it collide again if we use only inelastic collisions?

(3) Problem of the Stationary. The mass-standard should have the mass 1 only

if it is stationary since relativistic mass, similarly to length and time, de-

10Suppose that we already have a mass function m having the usual properties. So mk(b)

denotes the mass of b according to k. Let b and c be two colliding bodies, and k be the inertial

observer according to which the center of mass of b and c is stationary. Then (b : c)k is the

ratio vk(c)/vk(b). Therefore, the collision ratio (b : c)k corresponds to the ratio mk(b)/mk(c) by

the conservation of linear momentum. And since Poincaré transformations preserve the ratio of

points on a line, the ratio of collision means the ratio of masses even if we choose a different

observer than k. Practically, the ratio of collision is a formal implementation of Weyl’s definition

for ratios of masses, see [21, (1.4) on p.10.], implemented to special relativity.
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pends on speed in relativity theory. What if b is at rest, too? How could

such a stationary b be collided with the mass-standard such that the mass-

standard is also stationary?

We solve these problems using possible world semantics and thought exper-

iments. (1) can be solved by speaking about collisions in alternative possible

worlds where it collides with the mass-standard instead of the actual one where

it does not. This also solves (2): the actual world can be counted as the “first

use” of the mass-standard, and the alternative world can be the “second use.”

And similarly every other measurement (collision with the mass-standard) can

be done in another alternative world of the actual one.

So shortly: to define relativistic mass we will use collisions in alternative

possible worlds. We can summarize the answer to the first two problems in a

sketch of a definition of mass for moving bodies:

“Definition” 1 (Mass of the Moving). The relativistic mass of a moving ordinary

body b according to an observer k is r, iff it could be r times more massive than

the mass-standard: there is a “very similar” alternative world in which b collides

with the mass-standard with the collision ratio of (b :ε)k = r.

We can also solve (3) using this “definition,” i.e., we can define rest mass

based on the mass of moving bodies by using a “transmitting body” between

the stationary mass-standard and the stationary body which is going to be mea-

sured:

“Definition” 2 (Mass of the Stationary). The relativistic mass of a stationary

body b is r1 · r2 according to k iff it could be r1 times more massive than a body

which could be r2 times more massive than the mass-standard: There is a “very

similar” alternative possible world in which b collides with a (moving) body c

with the collision ratio (b : c)k = r1 and the relativistic mass of c is r2.

There is only one problem with these two definitions: What does it mean

that the alternative world is “very similar” to the actual one? Obviously not

any kind of world is relevant if we want to collide the mass-standard to a body

b. We are interested only in those worlds where b has the same speed. These

considerations motivate the following two semantical definitions.
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Since in modal logic, the predicates can vary in different worlds, when it

is not straightforwardly determined by the context, we label the predicates by

worlds. So here and from now on, superscript w in predicates Pw and terms tw

denote the worlds from which we took them.

Definition 8 (Collision Thought Experiments and their Relevance). We say that

in world w body c is collidable to b according to k iff b is an existing ordinary

body and k is an existing observer in w, and there is an alternative world w′

where these are still existing, inertial, the observer is still an observer, and there

c is an existing ordinary body colliding with b. Formally, in w a body c is collid-

able to b according to k iff

(∃w′ ∈ S)wRw′,

b ∈ Dw ∩OIBM,w ∩Dw′ ∩OIBM,w′ ,

c ∈ OIBM,w′ ∩Dw′ ,

k ∈ IObM,w ∩Dw ∩ IObM,w ∩Dw′ ,

(∃ x̄ ∈ wlinek(b)w)inecollk, x̄(b, c)w′ .

We call such a 〈w, w′, k, b, c〉 tuple a collision thought experiment.

We call a collision thought experiment 〈w, w′, k, b, c〉 relevant iff the world-

line of b before the collision is the same in both worlds according to k.

(∀t ≤ locinecollk(b : c)wt ) wlinek(b, t)w = wlinek(b, t)w
′
.

The following axiom ensure that all collision thought experiments are relevant:

Axiom 8 (Axiom of Relevant Collisions).

AxCollRel : Every collision thought experiment is relevant:

(∀k ∈ IOb)(∀b ∈ OIB)(∀ x̄ , ȳ)
��

ȳt ≤ x̄ t ∧W(k, b, ȳ)
�

→�
�

(∃c ∈ OIB)inecollk, x̄(b, c)→W(k, b, ȳ)
�

�

.

This axiom is the “engine” of our Dynamics. If we would like to collide an

ordinary body c to an ordinary body b, then we have two expectations: The

worldline of b changes after the collision and remains unchanged before the col-

lision (otherwise its speed changes and that would ruin the whole experiment).

So this axiom erases the worldline after a certain point to make room for a col-

lision, but keep the rest of the worldline to preserve the speed. This axiom also
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Figure 7: Direct Measurement
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ensures a very important fact: the relative speed of two observers remains the

same in collision thought experiments, see Item 1. of Prop. 4.11

Now that we are able to filter out the relevant collisions, we can introduce

collision experiments designed to determine the masses of the moving and sta-

tionary bodies.

Definition 9 (Measurements). A collision experiment 〈w, w′, k, b, c〉 is a direct

measurement iff it is relevant, c is the mass-standard and it is stationary accord-

ing to k. See Fig. 7. A collision experiment 〈w, w′, k, b, c〉 is an indirect mea-

surement iff it is relevant, b is stationary, and there exists a direct measurement

〈w′, w′′, k, c,ε〉. See Fig. 8.

The following two axioms will ensure that the measurements described above

11Note that the expressive power of first-order modal logic is not as strong as it seems. For ex-

ample, it is hopeless to show a formula expressing exactly the following: “There is an alternative

world w′ in which every object from w having property Pw , has a property Qw′ in w′.” The main

reason for this is that we cannot ‘quantify back’ into the previous world after we used a ◊ oper-

ator. For a summary of expressivity problems of first-order modal logic, see [17], [19]. Now the

dynamical statement like “Only b’s worldline changes” is also such a statement. So this control

is beyond the expressibility power of first-order modal logic. In the conference LR12 [26] and

in [27], we sketched a solution which used a trick to enforce this kind of thought experiments,

but it cost a lot: it used two modal operators such that one of them was a transitive closure of

the other. A strong completeness theorem for such a logic is impossible, see [9, §4.8 Finitary

Methods I.]. So AxCollRel seems to be the appropriate axiom which makes collision thought

experiments possible, and is still expressible.

25



Figure 8: Indirect Measurement
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are determined uniquely.

Axiom 9 (Axiom of Direct Measurements).

AxDir : According to any observer, every relatively moving ordinary body, other

than the mass-standard, is uniquely collidable with the mass-standard such that

the mass-standard is stationary for that observer:

(∀k ∈ IOb)(∀b ∈ OIB−)

vk(b) 6= 0→ (∃!r)

 

◊[vk(ε) = 0∧ (b :ε)k = r]

�[vk(ε) = 0→ (b :ε)k = r]

!

.

If AxDir is assumed, we can define the mass of relatively moving ordinary

bodies (except the mass-standard) as it was illustrated on Fig. 7:12

m−k (b) = r
def.

⇐⇒ ◊[vk(ε) = 0∧ (b :ε)k = r]. (3)

Axiom 10 (Axiom of Indirect Measurements).

AxIndir : For every observer, every stationary ordinary body is involved in an

indirect measurement, and the results of indirect measurements are unique, i.e.,

do not depend on the choices of the transmitting body:13

(∀k ∈ IOb)(∀b ∈ OIB)vk(b) = 0→

→ (∃!r)
�

◊(∃c ∈ OIB−)r = (b : c)k ·m−k (c)∧

∧�(∀c′ ∈ OIB−)inecoll(b, c)→ r = (b : c′)k ·m−k (c
′)
�

.

If AxDir and AxIndir are assumed, we can define the mass of stationary

ordinary bodies as it was illustrated on Fig. 8:

m0
k(b) = r

def.

⇐⇒ vk(b) = 0∧◊(∃c ∈ OIB)[r = (b : c)k ·m−k (c)]. (4)

We can define an observer independent concept of rest mass as well:

m0(b) = r
def.

⇐⇒ (∃k ∈ IOb) m0
k(b) = r.

To show that m0
k(b) is a well-defined quantity, we have to prove that m0

k(b) does

not depend on k, i.e., co-moving observers get the same results from indirect

measurements. We prove this in four steps:
12Note that the definitions (3), (4) and (5) express their intended meanings only if we assume

AxCollRel as well.
13It is a question for further research to find natural and more elementary axioms implying

that the results of indirect measurements do not depend on the choices of transmitting body.
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Proposition 4.

1. The relative speed of observers remains the same in collision experiments,

i.e., thought experiments described in Def. 8.

MSpecRel∪ {AxCollRel} `

(∀k, h ∈ IOb)(∃r)(∃b ∈ OIB)[vk(h) = r →

→�
�

(∃c ∈ OIB)inecoll(b, c)→ vk(h) = r
�

].

2. In collision experiments, ordinary bodies have the same collision ratio for

every two inertial observers co-moving with each other.

MSpecRel∪ {AxCollRel} `

(∀k, h ∈ IOb)vk(h) = 0→ (∀b ∈ OIB)�(∀c ∈ OIB)(b : c)k = (b : c)h.

3. Inertial observers co-moving with each other get the same results in direct

measurements.

MSpecRel∪ {AxCollRel,AxDir} `

(∀k, h ∈ IOb)vk(h) = 0→ (∀b ∈ OIB−)(vk(b) 6= 0→m−k (b) =m−h (b)).

4. Inertial observers co-moving with each other get the same results in indi-

rect measurements.

MSpecRel∪ {AxCollRel,AxDir,AxIndir} `

(∀k, h ∈ IOb)(∀b ∈ OIB)m0
k(b) =m0

h(b).

Proof.

1.: Let w be an arbitrary but fixed world in which k and h are inertial ob-

servers moving with the speed of vk(h) = vh(k) = r. Let b an ordinary

body from w. Let w′ an arbitrary but fixed transformed version of w in

which b collides inelastically with an ordinary body c. From AxMFrame

we know that both k and h exist as observers in w′, too. From now on we

omit the details concerning AxMFrame in this proof.
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We have to prove that vk(h) = r in w′, too. To prove that, by Thm. 3, it is

enough to show that the transformations wkh
w and wkh

w′ , the worldview

transformation in w and the worldview transformation in w′, takes one

timelike line to the same line, i.e.,

wkh
w′[`] = wkh

w[`].

For such a line, the covering line of b for k is a perfect choice, since

〈w, w′, k, b, c〉 is a collision thought experiment, and by AxCollRel, it is

relevant:

ww′

kh

�

wlinek(b)
w′
�

= wlineh(b)
w′

AxCollRel

↓
= wlineh(b)

w
=

ww
kh

h

wlinek(b)
wi

AxCollRel

↓
= ww

kh

�

wlinek(b)
w′
�

.

2.: Let w be an arbitrary but fixed world in which k and h are co-moving

existing observers coordinatizing an ordinary body b. Let w′ an arbitrary

but fixed transformed version of w, in which b collides inelastically with

an ordinary body c.

Let d be the resulting body of the collision. To prove (b : c)k = (b : c)h, it is

enough to show in w′, that the covering lines of b, c and d according to k

are parallel to the covering lines of b, c and d according to h, respectively.

By Thm. 3 and AxSelf, assumption vk(h) = 0 ensures this in w. So we

need that vk(h) = 0 in w′ as well. But this follows from Item 1.

3.: Let w be a world in which k and h are co-moving existing inertial observers

cooordinatizing an ordinary body b moving.

By AxDir and AxCollRel, “k can measure” the mass of b directly, i.e., there

is a world w′ Rw in which the stationary mass-standard ε collides with b

with a unique collision ratio r = (b :ε)k. Because r is unique by AxDir,

using Item 2 we have:

m−k (b)
w = (b :ε)k

w′

Item 2

↓
= (b :ε)h

w′ =m−h (b)
w
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4.: Let w be a world in which k and h are co-moving observers cooordinatiz-

ing an ordinary body b stationary.

By AxIndir and AxCollRel, k can measure the mass of b indirectly, i.e.,

there is a world w′ Rw in which a transmitting ordinary body c collides

with b with a collision ratio r = (b : c)k. By Item 2, r = (b : c)h in w′ as

well. By Item 3, m−k (c) = m−h (c) in w′. Since the result of the indirect

measurement is unique because of AxIndir, we have the equations

m0
k(b)w = (b : c)k ·m−k (c)

w′

Item 2,3

↓
= (b : c)h ·m−h (c)

w′ =m0
h(b)

w
.

Definition 10 (Relativistic Mass). Assume AxDir and AxIndir. We define the rel-

ativistic mass of ordinary body b according to observer k by putting definitions

(3) and (4) together:

mk(b)
def.
=

(

m−k (b), if vk(b) 6= 0,

m0
k(b) otherwise.

(5)

Because we defined the mass with the ratios of collision, we have a restricted

“built-in” conservation-theorem: a restricted conservation of the centerline of

mass:

Proposition 5. Assume AxDir and AxIndir. If c is at rest according to k, and

b and c are colliding ordinary bodies, such that b is different from the mass-

standard, then the collision ratio of this collision is the ratio of their masses.

MSpecRel∪ {AxDir,AxIndir} `

(∀k ∈ IOb)(∀b ∈ OIB−)(∀c ∈ OIB)vk(c) = 0→
�

(b : c)k =
mk(b)
mk(c)

�

Proof. By the definition of collision ratio, for all inertial observer k and inertial

bodies b and c:

(b : c)k =
1

(c : b)k
. (6)

By equation (6), we have the following chain of equations:

(b : c)k =
1

(c : b)k
=

m−k (b)

(c : b)k ·m−k (b)
=

m−k (b)

m0
k(c)

=
mk(b)
mk(c)

.
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So the collision ratio is determined by the masses of b and c, or in other

words, the worldline of the resulting body is the continuation of the center of

masses of the colliding bodies. So the centerline is conserved in the following

sense: the covering line of the center of masses is the same as the covering line

of the resulting body.

However, this conservation theorem is restricted: we proved only with the

premise that one of the colliding bodies is at rest according to the observer.

The more general statement in which the colliding bodies can both be moving

according to the observer is the key axiom in [4], [23], [31, §5].14 It is an

interesting fact that in the modal framework we can prove the Mass Increase

Theorem even without this assumption.

4.2 Equivalents of the mass-standard

We need one more “tool for measurement”: the experiments with mass-standard-

equivalents. These are, as their name says, introduced with the purpose to re-

place or substitute the mass-standard. We need such tools usually when we need

more measuring tools than the only mass-standard, e.g., when two relatively

moving observers try to compare their measuring results.

We have two main expectations about mass-standard-equivalents: they should

be able to substitute the mass-standard ε in an equivalent way, and they should

have the rest masses 1. Either property could be a good definition, but we start

from a more basic level. We define mass-standard-equivalents by the follow-

ing expectation: if a mass-standard-equivalent (whatever it is) collides with the

mass-standard itself, then the resulting body should be stationary according to

any “median” observer according to who these two bodies have opposite veloc-

ities.

Definition 11 (Median Observer). An inertial observer m is median of the col-
14Proving that this key axiom does not follow even from our axiom system MSpecRelDyn (see

below on p.34) is out of the scope of this paper, since it involves a complex model construction

(because AxDir and AxIndir forces the (nontrivial) models of dynamics to have infinite number

of worlds). However, the key idea of the construction is clear: we need worlds w, w1 and w2

such that w1 RwRw2, and the measurements between w1 and w2 are not ‘harmonized’, i.e., the

ratios of m−k (b) and m−k (c) determined respectively by w1 and w2 do not correspond to the ratio

of collision of b and c in w.
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lision consisting body b and c iff the velocity of b is the opposite of that of c

according to m:

MedianObb,c(m)
def.

⇐⇒ inecoll(b, c)∧ v̄m(b) + v̄m(c) = 0̄.

Definition 12 (Symmetric Collision). A collision is called symmetric iff there is

a median observer of it coordinatizing the resulting body at rest:

SymColl(b, c)
def.

⇐⇒ (∃m ∈MedianObb,c) (b : c)m = 1.

Definition 13 (Mass-standard-equivalents). A body b is a mass-standard-equivalent

of k iff b is co-moving with k, different from the mass-standard, and whenever

it collides with the mass-standard, it collides with it symmetrically.

Etk(b)
def.

⇐⇒ OIB()−b ∧ vk(b) = 0∧�(inecoll(b,ε)→ SymColl(b,ε))

Theorem 6 (Symmetric Collision Theorem). Symmetric collisions have the colli-

sion ratio of
p

1− v2 according to the co-moving observer of one of the colliding

bodies, where v is the speed of the other body.

MSpecRel ` (∀b, c ∈ OIB)(∀k, l ∈ IOb)
�

[SymColl(b, c)∧

∧ vk(b) = 0∧ vl(c) = 0]→ (b : c)k =
p

1− vl(k)
2
�

For the proof of this theorem see Appendix 5.2.

Proposition 7 (Mass of moving equivalents). Assume AxDir and AxCollRel. Ev-

ery observer k measures every relatively moving l observer’s equivalent(s) to be
1p

1−vk(el )
2
.

MSpecRel∪ {AxDir,AxCollRel} ` (∀k, h ∈ IOb)

vk(h) 6= 0→ (∀eh ∈ Eth) mk(eh) =
1

p

1− vk(h)
2

Proof. Let w a world in which there are two observers k and h and a mass-

standard-equivalent eh of h such that vk(h) 6= 0. Since eh is stationary for h by

definition, it moves for k. Therefore, by AxDir, there is a possible world w′

where eh collides with the mass-standard ε stationary for k. Since eh exists in

both worlds and collides in w′, Item 1 of Prop. 4 ensures that the speed vk(h)
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is the same in w and w′. Since eh is an equivalent of the mass-standard, i.e.,

it collides symmetrically with the mass-standard, we know from the theorem of

symmetric collisions (Thm. 6) that in this world the collision ratio according to

k is

(ε : eh)k =
p

1− vk(h)
2

(6)

↓
⇐⇒ (eh :ε)k =

1
p

1− vk(h)
2
.

This is exactly the definition of the relativistic mass of eh in w.

To prove the substitutivity of the mass-standard, and that the equivalents’

rest masses are 1 we use the following assumption:

Axiom 11 (Axiom of Symmetry of Equivalents).

AxEqSym : The equivalents of the mass-standard collide symmetrically with

each other if there is a median observer of the collision:

(∀k, l ∈ IOb)(∀ek ∈ Etk)(∀el ∈ Etl)

[(∃m)MedianObek ,el
(m)]→ SymColl(ek, el).

We postulate a thought experimentation axiom very similar to the axiom of

direct measurements AxDir. The axiom of pseudo-direct measurement with com-

parison enables to collide bodies with equivalents of the mass-standard (instead

of the mass-standard, as AxDir does) in a way we can compare them with a

median observer. This axiom comes handy, when we should collide “the mass-

standard with itself.”

Axiom 12 (Pseudo-Direct Experimentation with Comparison).

AxPDirComp : According to any observer, every body is collidable with one of

the observer’s mass-standard-equivalents. Moreover, if the body which is going

to be collided is a mass-standard-equivalent as well, then a median observer

stands ready to compare them:

(∀k ∈ IOb)(∀b ∈ OIB)◊[(∃ek ∈ Etk)inecoll(b, ek)∧

∧ [(∃l)Etl(b)]→ (∃m)MedianObb,ek
(m)].

Now we can introduce axiom system MSpecRelDyn, which implies the Mass

Increase Theorem.
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MSpecRelDyn
def.
=MSpecRel∪{AxCollRel,AxDir,AxIndir,AxPDirComp,AxEqSym}

Proposition 8 (Rest mass of mass-standard).

MSpecRel∪ {AxCollRel,AxDir,AxIndir} `m0(ε) = 1

Proof. Let c be the body consisted in the indirect measurement measuring the

rest mass of ε. Since the collided body is the mass-standard, and the alternative

relation is reflexive, we do not have to go further than one world away:

m0(ε) = (ε : c)k · (c :ε)k

(6)

↓
= 1

In special relativity we are mostly interested in those situations, where there

are at least two relatively moving observers. So from now on, we will refer to

this assumption as ∃2IOb:

∃2IOb
def.

⇐⇒ (∃k, l ∈ IOb)vl(h) 6= 0.

Proposition 9 (Rest mass of the equivalents). The rest mass of a mass-standard-

equivalent is 1 if there are two relatively moving inertial observers.

MSpecRelDyn ` (∀k ∈ IOb)(∀ek ∈ Etk) ∃2IOb→m0(ek) = 1

Proof. By AxIndir and AxCollRel, the rest mass is well defined for every equiv-

alent ek of k. We determine the rest mass using a relatively moving observer’s

equivalent:

m0(ek) =m0
k(ek) = (ek : el)k ·m−k (el).

By AxEqSym and therefore the theorem of symmetric collisions (Thm. 6) and

its corollary (Prop. 7), this is

m0(ek) =
p

1− vk(l)
2 ·

1
p

1− vk(l)
2
= 1.
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Now we prove that the equivalents of the mass-standard are also equiva-

lent in a formal sense: the mass-standard can be substituted by its co-moving

equivalents.

Proposition 10 (Mass-standard-equivalence). The mass-standard can be re-

placed by its co-moving equivalents if there are two relatively moving inertial

observer.

MSpecRelDyn ` (∀k ∈ IOb)(∀ek ∈ Etk)(∀b ∈ OIB−)

[∃2IOb∧ v̄k(ek) = v̄k(ε)]→ (b : ek)k =mk(b).

Proof. From Prop. 9 we know that the equivalents have exactly the same rest

mass as the mass-standard. From Prop. 5, we also know that the mass of these

bodies (since ek is at rest for k) determines the collision ratio. So the collision

ratios (b : ek)k and (b :ε)k cannot be different if the mass-standard is at rest. The

latter is the definition of mk(b).

4.3 Mass Increase Theorem

Theorem 11 (Mass Increase Theorem).

MSpecRelDyn ` (∀k ∈ IOb)(∀b ∈ OIB−) m0(b) =
p

1− vk(b)
2 ·mk(b)

Proof. If b is at rest according to k, then the statement is true by Def. 10. So let

us assume that b is moving according to k.

By AxIndir, AxDir and the definition of mass, there is an observer h according

to whom b is at rest, and there is a “transmitting” body c such that there is an

alternative possible world w′ Rw, where

m0(b) =m0
h(b) = (b : c)h ·mh(c),

see (4). Also by AxIndir, m0(b) is independent from the choice of the ‘transmit-

ting’ body c. Since k is moving in h’s coordinate system, by AxPDirComp, we

can use a mass-standard-equivalent of k for such a transmitting body c. Thus

m0(b) = (b : ek)h ·mh(ek)

Cor. 7

↓
= (b : ek)h ·

1
p

1− vk(h)
2
.
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Figure 9: Proof of Thm. 11: Transformation of the Collision Ratio
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Since vh(b) = 0, we have vk(b)
2 = vk(h)

2 and

m0(b) = (b : ek)h ·
1

p

1− vk(b)
2
. (7)

To obtain the theorem from (7), we have to show that

(b : ek)h = (b : ek)k ·
�

1− vk(b)
2
�

.

Let us now consider k’s coordinate system on Fig. 9. Let O be the coordinate

point of the collision, let A be a coordinate point on the very same spatial lo-

cation but ‘one second earlier,’ i.e., As = Os and At = Ot − 1 (so A is on εk’s

covering line). Let B the coordinate point on b’s covering line which is simulta-

neous to A according to k, i.e., Bt = At . Then |BA| = Space(B, A) = vh(b) since

Time(O,A) = 1.

Let Ek be the coordinate point from the covering line of ek which is ‘simulta-

neous’ for h, i.e., wkh(Ek)t = wkh(B)t . Then triangles AOB and AEkB are similar,

since AOB∠= ABEk∠ and BAO∠= BAEk∠ by Thm. 3. Therefore,

|AEk|
|AB|

=
|AB|
|AO|

, that is,
|AEk|
vk(b)

=
vk(b)

1
.
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Hence

|AEk|= vk(b)
2 and |OEk|= 1− vk(b)

2. (8)

Let Ch be the intersection of BEk and the covering line of the resulting body,

and Ck be the intersection of AB line of the resulting body. Then, by the defini-

tion of collision ratio, see Def. 7,

(b : ek)k =
|CkA|
|BCk|

, that is, |CkA|= (b : ek)k · |BCk|, (9)

Since wkh is an affine transformation by Thm. 3, it preserves ratios of Euclidean

distances between points on a line. Therefore,

(b : ek)h =
|ChEk|
|BCh|

, that is, |ChEk|= (b : ek)h · |BCh|. (10)

Let C be the coordinate point from the covering line of the resulting body

which is simultaneous for k with Ek.

Triangles AOCk and EkOC are similar, and the ratio of the similarity is 1−
vk(b)2 by (8). Therefore, using (9), we have

|CEk|= |CkA| ·
�

1− vk(b)
2
�

= (b : ek)k · |BCk| ·
�

1− vk(b)
2
�

. (11)

Now triangles ChEkC and ChBCk are also similar; therefore,

|BCk|
|BCh|

=
|CEk|
|ChEk|

. (12)

Using (10) and (11) we can write the equation (12) in the following form:

|BCk|
|BCh|

=
(b : ek)k · |BCk| ·

�

1− vk(b)2
�

(b : ek)h · |BCh|
,

which simplifies to

(b : ek)h = (b : ek)k ·
�

1− vk(b)
2
�

. (13)

By (13), we can change observer h to k in (7):

m0(b) = (b : ek)k ·
�

1− vk(b)
2
�

·
1

p

1− vk(b)
2
= (b : ek)k ·

p

1− vk(b)
2.

To turn (b : ek)k into mass, we only have to replace tandard-mass-equivalent ek

to the real mass-standard ε. Prop. 10 enables this step, so in w′ we have

m0(b) =mk(b) ·
p

1− vk(b)
2.

And since this is an equation of two numbers, by AxMFrame (the invariance of

mathematics), this equation holds also in the starting point w.
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5 Appendix

5.1 Poincaré Transformation Theorem

Theorem 12.

MSpecRel ` (∀k, h ∈ IOb) “wkh is a Poincaré transformation.”

To prove that wkh is a Poincaré transformation, it is enough to show that it

takes lines of slope 1 to lines of slope 1, since there is an Alexandrov-Zeeman

type theorem which works only with these premises, see [24]. To prove this

lemma, let us introduce the following notation for the speed corresponding to

coordinate points x̄ and ȳ:

v( x̄ , ȳ)
def.
=

Space( x̄ , ȳ)
Time( x̄ , ȳ)

.

Lemma 13 (Light-line). Assume MSpecRel. Then every worldview transforma-

tion is a bijection taking lines of slope 1 to lines of slope 1.

Proof. Worldview transformations are bijections by Prop. 2.

Now we prove that worldview transformations take lines of slope 1 to lines

of slope 1. By AxEField, v( x̄ , ȳ) = v( ȳ , z̄) = v(z̄, x̄) = 1 implies that x̄ , ȳ and z̄

are collinear. Therefore, to finish our proof, it is enough to derive the following

formula:

(∀k, h ∈ IOb)(∀ x̄ , ȳ)[v( x̄ , ȳ) = 1→ v(wkh( x̄),wkh( ȳ)) = 1]. (14)

Let k and h be arbitrary observers in a world w, and let x̄ and ȳ be coordinate

points such that v( x̄ , ȳ) = 1. By AxPhExp, in every w world, there is an acces-

sible world w′ Rw such that there is a light signal p ∈ evk( x̄)∩ evk( ȳ) in w′. By

AxMFrame, k still exists as an observer in w′. So p ∈ evk(wkh( x̄))∩ evk(wkh( ȳ))

by AxMEv. Consequently, by AxPhObs:

v(wkh( x̄), wkh( ȳ)) = 1;

and this is what we wanted to prove.
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Figure 10: The Symmetric Collision Theorem
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5.2 Proof of Symmetric Collision Theorem

Here we are going to prove Thm. 6 stating that:

MSpecRel ` (∀b, c ∈ OIB)(∀k, l ∈ IOb)
�

SymColl(b, c)∧

∧ vk(b) = 0∧ vl(c) = 0→ (b : c)k =
p

1− vl(k)
2
�

.

Proof. Let k and l be observers and let b and c be ordinary bodies in a world

w such that vk(b) = 0, vl(c) = 0 and SymColl(b, c) holds for them. Since

SymColl(b, c) holds, there is an observer m (the so called median observer) in

w such that v̄m(b) + v̄m(c) = 0̄ and (b : c)m = 1. See Fig. 10.

The time dilation effect, i.e.,

(∀k, h ∈ IOb)(∀ x̄ , ȳ ∈ wlinek(h))

Time( x̄ , ȳ) =
Time(wkh( x̄), wkh( ȳ))

p

1− vk(h)2
, (15)

is a consequence of Thm. 3, see [3, Thm. 2.4, (2)]:

We know from (15) that if the clocks of k and l show 0 at A, and the clock

of l shows −1 at C, then the clock of k shows −
p

1− v2 where v is vl(k).

We are interested in (c : b)l , which is now:

(c : b)l =
BD

DC
. (16)
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Since worldview transformation are affine transformations, this ratio is the same

in the worldview of the median observer m, i.e.,

BD

DC
=

B′D′

D′C′
. (17)

Since the worldline of d is an angle bisector of the triangle A′B′C′ in the world-

view of m, by the angle bisector theorem,

B′D′

D′C′
=

B′A′

A′C′
. (18)

Since the clocks of k and l slow down with the same rate for the median observer

m, we know that
B′A′

A′C′
=
p

1− v2. (19)

Since the collision was symmetric, (b : c)k = (c : b)l . Therefore, from (16), (17),

(18) and (19) we have

(c : b)k =
p

1− v2,

and this is what we wanted to prove.

6 Concluding Remarks

We have seen that the act of thought experimentation is a formalizable notion.

The formal counterparts of thought experiments are model transformations of

classical models. Modal logic express a large amount of these transformations.

If we stay in the level of first-order logic, we still have a strong completeness

theorem which is essential in foundational axiomatic approaches. With the aid

of first-order modal logic, we axiomatized relativistic Kinematics and Dynamics

with formal thought experiments.

An advantage of this approach is that we can distinguish actual and theo-

retical (or possible) objects. The philosophical importance of this is that the

ontological statuses of actual and potential objects are clearly different. The-

oretical objects are just non-existing objects we need to prove important state-

ments. For example, the possible photons postulated by AxPhExp are needed

to prove that the worldview transformations are Poincaré transformations. The

transmitting bodies of AxIndir, the mass-standard and its equivalents of AxDir
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and AxPDirComp, respectively, are needed to give a well-defined concept of

relativistic mass based on only kinematical terms.

Using this definition and AxEqSym, we proved the Mass Increase Formula

without using the conservation postulates about linear momentum, mass, or

even the centerline of relativistic mass (the key axiom of [4]). This result sug-

gests that the presence of formal thought experiments make it possible to ‘dig

deeper’ in the foundations of relativity theories.
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