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1 Introduction

Toil in the field of quantum computation promises a bountiful harvest, both
to the pragmatic-minded researcher seeking to develop new and efficient so-
lutions to practical problems of immediate and transparent significance, as
well as to those of us moved more by philosophical concerns: we who toil
in the mud and black earth, ever desirous of those remote and yet more
profound insights at the root of scientific inquiry. Some of us have seen in
quantum computation the promise of a solution to the interpretational de-
bates which have characterised the foundations and philosophy of quantum
mechanics since its inception (e.g., [Deutsch, 1997). Some of us have seen
the prospects for a deeper understanding of the nature of computation as
such (cf., [Hagar & Korolev, 2007; [Hagax, 2007). Others have seen quantum
computation as potentially illuminating ongoing debates in epistemology and
the philosophy of mind (e.g., Hameroff, [1998). These are only some of the
topics to which quantum computation may be relevant [

The investigation represented by this present piece should be understood
to be of a kin with these more philosophical inquiries, though my goals are

*This is a draft version. Please do not cite.
'For a survey of some of the philosophical issues relevant to quantum computation, see
Hagan (2011); [Aaronson (2013).



perhaps more modest than some. Specifically, I aim to clarify the discus-
sion surrounding the claim that the presence of a quantum system in a pure
entangled state is sufficient to allow a quantum computer to realise a compu-
tational advantage (or ‘quantum speedup’) over a classical computerﬁ Call
this claim the “sufficiency of entanglement thesis”. In the literature on quan-
tum computation, one often encounters the statement that the sufficiency of
entanglement thesis is false. Motivating those who would deny the sufficiency
of entanglement thesis is the Gottesman-Knill theorem (Gottesman, 1999).
According to this theorem, any quantum algorithm which exclusively utilises
the elements of a restricted set of quantum operations can be re-expressed
using an alternative formalism which shows us how the algorithm can be
efficiently simulated by classical means. Since some of the algorithms which
exclusively utilise operations from this set involve the use of pure entan-
gled states, it seems that entanglement cannot be sufficient to enable one to
achieve a quantum speedup.

Two distinct ways of expressing the sufficiency of entanglement thesis
should be distinguished here, however. The first is this: the mere presence of
a pure entangled state is sufficient to realise quantum computational speedup.

2T will be focusing almost exclusively on the computational capabilities associated with
pure states in this paper. A system in a mixed entangled state can be thought of as being
in the presence of “noise”, strong enough, in some cases, to prevent the system from being
capable of realising more than a very small speedup (cf. [Linden & Popescu, 2001). Our
concern, however, is mainly with the issue of whether even an entangled system not in
the presence of any noise whatsoever (i.e., a pure state) is sufficient to enable speedup.
Although the analogy with noise suggests a particular ontological relationship between
pure and mixed states, the present study should be of interest whether or not one inter-
prets pure states as somehow ontologically prior, for there obviously are philosophically
interesting conceptual relationships that obtain between pure and mixed states considered
as distinct classes. The fact, for instance, and the different ways in which, every mixed
state can be viewed as an imperfect perspective on some underlying pure state (or states)
is surely of philosophical interest. It is of course possible that certain properties of pure
states will not generalise to, or even contradict—as the direction of motion of a single
particle may run contrary to the tendency of the fluid as a whole to which it belongs—the
properties of mixed states (for a claim to this effect in the context of quantum computing,
see see, for example, Biham et al) 2004). Thus a more general analysis of these topics
awaits if we are to come to a full understanding of the situation before us. But it must
await—or more properly put: it must attend upon and be responsive to the conclusions of
the more special investigation, for whatever one thinks of the ontological priority of pure
states, the fact that one can view the more general description as a generalisation over
pure states is a property that the general description must satisfy and therefore conform
itself to.



The Gottesman-Knill theorem shows, conclusively, that this claim is false.
The second, arguably more interesting, way of expressing it is the following:
quantum entanglement is a resource sufficient to enable, or make possible,
quantum computational speedup; i.e., no other physical resources are needed
to make quantum speedup possible if one begins with a quantum system in
a pure entangled state. This claim, or so I will argue, is true. What the
Gottesman-Knill theorem shows us is only that if we limit ourselves to the
Gottesman-Knill operations, we will not have used the entanglement with
which we have been provided to its full potential; for, as I will clarify, all
of the Gottesman-Knill operations are such that their associated statistics
(even when they involve entangled states) are reproducible in a local hidden
variables theory.

In arguing for this latter claim, it will be necessary to clarify just what it
is that we mean to express with the notion of a local hidden variables theory.
In particular I will make the case that it can be conceptually illuminating to
distinguish three different types of local hidden variables theory, all compat-
ible with Bell’s minimalist conditions on a local hidden variables theory, and
yet characterised, respectively, by distinct plausibility constraints specifying
just what we take to be allowed in such theories. Making such a conceptual
division provides us, I will argue, with a natural way of framing the difference
in the relative capabilities of classical and quantum computers, and helps to
make clear the precise sense in which the sufficiency of entanglement thesis
is true.

Tangentially, making this distinction also provides a fresh perspective
from which to evaluate the relationship between various of the traditional
“no-go” theorems of quantum theory. Two in particular that I will focus
on here are the “GHZ” and “CHSH” inequalities. According to a commonly
held opinion, the GHZ inequality is a more powerful refutation of local hidden
variables theories than the CHSH inequality. Yet as I will argue, whether the
GHZ refutation is more or less powerful than the CHSH inequality depends
on the way in which we explicate what we mean by such a theory.

In Section [2] of this paper I will introduce the Gottesman-Knill theorem
and motivate the assertion that the sufficiency of entanglement thesis is false.
In Section [ I will consider in more detail a version of this assertion due to
Jozsa & Linden (2003). T will begin to formulate a response to this assertion
by, at the end of the section, attempting to physically motivate the content
of the Gottesman-Knill theorem on the basis of a consideration of the CHSH
inequality. In Sections ] and [l I will broaden the discussion by including



systems subject to the GHZ inequality. In Sections [§] and [6] I will consider
the consequences of our discussion for our understanding of the sufficiency of
entanglement thesis, and for the explication of the notion of a local hidden
variables theory.

2 The Gottesman-Knill theorem

Call] an operator A a stabiliser of the state |y if

Alp) = [¢). (2.1)

For instance, consider the Bell state of two qubitsﬂ
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X ® X and Z ® Z are thus both stabilisers of the state |®*). Here, X and
Z are the Pauli operators:
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3In the following exegesis of the Gottesman-Knill theorem I have drawn substantially
from Nielsen & Chuang (2000) and from |Gottesman (1999).

4A qubit is the basic unit of quantum information, analogous to a classical bit. It can
be physically realised by any two-level quantum mechanical system. Like a bit, it can be

on”: |0), or “off”: |1), but unlike a bit it can also be in a superposition of these values:
8/0) + BI1), o, € C.




The remaining Pauli operators, I (the identity operator) and Y, are defined

as
(1 0 (0 —2
1:(0 1), y:(l_ 0).

The set P, of n-fold tensor products of Pauli operators (plus those multiplied
by a € {£1,+i}) forms a group of operators, called a Pauli Group, which
is closed under matrix multiplication. For example, for n = 2: P, = {all,
aIX, alY, alZ, aXI, aXX, aXY, ..} Bf

Call the set Vg of states that are stabilised by every element in S, where
S is some group of operators closed under matrix multiplication, the vector
space stabilised by S. Consider a state |¢)) € Vg. For any s € S and any
unitary operation U, we have

Uly) = Usly) = UsU'U|y), (2.2)

where the last equality follows from the definition of a unitary operator. Thus
UsUT stabilises Ult)) and the vector space UVy is stabilised by the group
USU' = {UsU'|s € S}. Consider, for instance, the state |0), stabilised by
the Z operator. To determine the stabiliser of this state after it has been
subjected to the (unitary) Hadamardd transformation H |0) = |+) we simply
compute HZHT. Thus the stabiliser of |+) is X.

Now let sq,...,s,, be elements of S. sq,...,s, are said to generate the
group S if every element of S can be written as a product of elements from

5The I, X, Y, Z operators are also sometimes denominated as o;, ox, oy, oz, and
sometimes as og, 01, 02, 03.

SFor brevity, from now on I will usually omit the tensor product symbol ® from the
expressions for joint operators; i.e., AB can be considered as a shorthand form of A ® B.
Similarly for states: |a/5) and |a)|8) should be understood as shorthand forms of |a) ®|5).
Additionally, all of the following should be taken to be equivalent:

Al ®A®..® A4, = A%,
la)1 @ a)e @ ... ® |a), = [a") = )" = |a)®".

"The Pauli operators I, X, Y, Z are rare in that they are both unitary and Hermitian
operators (it is because of the latter, of course, that they are also called the Pauli observ-
ables). When we generalise these operators to allow multiples o = {£1, +i}, however, this
is sometimes no longer the case. For example, the operators ¢ X and —: X, though unitary,
are not Hermitian (they are anti-Hermitian).

8The H or Hadamard operator takes |0) to ‘0>j§|l> = |4) and |1) to ‘0>\;§‘1> =|-).




S1, ..., Sm. For instance, the reader can verify that the subgroup, A, of P,
defined by A = {I1I,ZZ1,1Z7,Z1Z} can be generated by the elements
{ZZ1,1Z27} (Nielsen & Chuang, 2000, §10.5.1). We may thus alternately
express A in terms of its generators as follows: A =(ZZ1,1Z7).

In order to compute the action of a unitary operator on a group S it
suffices to compute the action of the unitary operator on the generators of
S. For instance, |0)®™ is the unique state stabilised by (Z1, Z, ..., Z,,) (where
the latter expression is a shorthand form of (ZI1®"~1 [Z[%"=2  [®"=17)).
Consequently, the stabiliser of the state H®"|0)®" is (X1, X5, ..., X,,). Note
that this state, expressed in the standard state vector formalism:

HE"0)%" = ﬁ(m) +11))1(10) +[1))2. .. (|0) + [1))n (2.3)
:ﬁ(mo...om+\00...01>+-~-+\11...10>+|11...11), (2.4)

specifies 2" different amplitudes. Contrast this with the stabiliser description
of the state in terms of its generators (X7, X, ..., X,), which is linear in n
and thus capable of an efficient classical representation

Using the stabiliser formalism, it can be shown that all, as well as all
combinations, of the following operations are capable of an efficient classical
representation. (i) The Clifford group of gates; i.e., those unitary transforma-
tions which map elements of the Pauli group to other elements of the Pauli
group These are the Pauli (I, X, Y, Z) gates, the Hadamard gate, the
Phase gate (a 7/2 rotation of the Bloch spherd] about the z-axis), and the

9A basic distinction, in Computational Complexity Theory, is between those computa-
tional problems that are amenable to an efficient solution in terms of time and/or space
resources, and those that are not. Easy (or ‘tractable’; ‘feasible’; ‘efficiently solvable’, etc.)
problems are those for which solutions exist which involve resources bounded by a polyno-
mial in the input size, n. Hard problems are those which are not easy, i.e., they are those
whose solution requires resources that are ‘exponential’ in n, i.e., that grow faster than
any polynomial in n (Nielsen & Chuang, [2000, p. 139). Note that the term ‘exponential’
is being used rather loosely here. Functions such as n'°8™ are called ‘exponential’ but do
not grow as fast as a true exponential such as 2".

10A quantum ‘gate’ is just a unitary transformation. In a quantum computational circuit
it plays a role analogous to a logic gate in a classical circuit.

1The Bloch sphere is a geometrical representation of the state space of a single qubit.
States on the surface of the sphere represent pure states, while those in the interior repre-
sent mixed states (cf. Nielsen & Chuang, [2000).



controlled not (“CNOT”) gate 130 (ii) Clifford group gates conditioned on
classical bits (indicating, e.g., the results of previous measurements). (iii)
State preparation in the computational (i.e., {|0),]1)}) basis. (iv) Mea-
surements of observables in the Pauli group. This is the content of the
Gottesman-Knill theorem (Nielsen & Chuang, 2000, §10.5.4).

What is especially notable about this theorem from the point of view
of our discussion is that some of the states which may be realised through
the operations in this set are actually entangled states. In particular, by
combining a Hadamard and a CNOT gate, one can generate any one of the
Bell states (which one is generated depends on the value assigned to the
input qubits); i.e.,

uor, 10)|0) +[1)]0) ovor, [0)[0) + [1)1)

10)[0) % 7% = &%),
el |0)[1) +[1)[1) cnvor |0)[1) +[1)[0)
10Y/1) % 7 = |¥7),
wer, [0)]0) = [1)]0) cxor, [0)[0) = [1)[1)
11)]0) 7% 7 =|®7),
[y Het 0)[1) — [D[1) oxor, [0)[1) = [1)[0) _ -y,

V2 V2

In fact many quantum algorithms utilise just such a combination of gates
(e.g., teleportation; cf., Bennett et al. [1993). Recall that the sufficiency of
entanglement thesis is the claim that the presence of a quantum system in
a pure entangled state is sufficient to allow a quantum computer to realise
a computational advantage over a classical computer. If all of operations
from this set are efficiently classically simulable, however, then it appears
as though the sufficiency of entanglement thesis must be false, for evidently
there are quantum algorithms utilising pure entangled states that are effi-
ciently simulable classically.

12The CNOT or controlled-not gate takes two qubits |s)[t) to |s)|t & s), where |s) is the
control, |t) the target qubit, and @ is addition modulo 2 (i.e., ‘exclusive-or’). Intuitively,
the control qubit determines whether or not to apply a bit-flip operation (i.e., a NOT or
X operation) to the target qubit.

I3Note that the Hadamard, Phase, and CNOT gates by themselves suffice to generate
the Clifford Group.



3 The significance of the Gottesman-Knill the-
orem

Reflecting on this circumstance in their influential (2003) article (in a section
entitled Is entanglement a key resource for computational power?), Jozsa & Linden
write:

Recall that the significance of entanglement for pure-state com-
putations is derived from the fact that unentangled pure states

. of n qubits have a description involving poly(n) parameters
(in contrast to O(2") parameters for a general pure state). But
this special property of unentangled states (of having a ‘small’
descriptions [sic.]) is contingent on a particular mathematical
description, as amplitudes in the computational basis. If we were
to adopt some other choice of mathematical description for quan-
tum states (and their evolution), then, although it will be mathe-
matically equivalent to the amplitude description, there will be a
different class of states which will now have a polynomially sized
description; i.e. two formulations of a theory which are mathe-
matically equivalent (and hence equally logically valid) need not
have their corresponding mathematical descriptions of elements of
the theory being [sic.] interconvertible by a polynomially bounded
computation. With this in mind we see that the significance of
entanglement as a resource for quantum computation is not an
intrinsic property of quantum physics tself, but is tied to a par-
ticular additional (arbitrary) choice of mathematical formalism
for the theory. ... An explicit example of an alternative for-
malism and its implications for the power of quantum compu-
tation is provided by the so-called stabilizer formalism and the
Gottesman-Knill theorem ... Thus, in a fundamental sense, the
power of quantum computation over classical computation ought
to be derived simultaneously from all possible classical mathe-
matical formalisms for representing quantum theory, not any sin-
gle such formalism and associated quality (such as entanglement),
... (Jozsa & Linden, 2003, 2029—2030).

141 will limit my discussion to lJozsa & Linden (2003), but lJozsa & Linden are not alone
in concluding that pure state entanglement is insufficient to realise speedup. Similar



Rather than trying to make sense of the general notion of two equivalent
mathematical representations of the same theoretical entity having inelim-
inably vastly differently sized descriptions, let us restrict ourselves to the
particular case under consideration. It is easy to see, first of all, that even
within the amplitude formalism one and the same system can admit of either
a large or a small description. We have seen an example of this already. The
state that results from applying H®" to a system in the state |0)®™ can be
described as a superposition of 2" states, as in Eq. (24). It can also be
described as a product of n states, as in Eq. ([23)—an exponentially smaller
description. Indeed we can do much better than this, and can make do with
one of the even more compact expressions:

2" —1

S0+ o S . (31)

All of these descriptions are equivalent. In this case there is no mystery
as to why. Facts about the underlying system are what make the alternative
descriptions possible. For instance, the fact that the properties of each indi-
vidual subsystem are maximally specifiable makes it possible to represent the
superposition (24]) as the product state (2.3)). And since in this particular
case each subsystem is in an identical state, we do not really need to single
out any one of them, and thus we can use one of the descriptions given in
B.D.

This is not true in general. It is a quantum mechanical fact that subsys-
tems of entangled systems are not maximally specifiable (i.e., their states are
never pure). Thus entangled quantum systems cannot be given a product

considerations, presumably, lead [Datta et al! to write: “the Gottesman-Knill theorem
... demonstrates that global entanglement is far from sufficient for exponential speedup.”
(2005, 1). Nielsen & Chuang (2000, ibid.) writing some years earlier, are, perhaps, more
cautious: “The Gottesman-Knill theorem highlights how subtle is the power of quantum
computation. It shows that some quantum computations involving highly entangled states
may be simulated efficiently on classical computers. ... There is much more to quantum
computation than just the power bestowed by quantum entanglement!” I say that this
statement is more cautious because while [Nielsen & Chuang correctly point out that an
entangled quantum state will not, so to speak, yield a quantum speedup of its own accord,
they (intentionally or not) decline to make the stronger claim, strongly suggested in my
above quote of lJozsa & Linden, that further (or perhaps some other) physical resources
besides entanglement (which are, according to lJozsa & Linden, hidden by the formalism)
are required in order to make quantum speedup possible. 1 will discuss this distinction
further as we proceed.



state representation. Descriptions of entangled states and of the transitions
to and from them cannot therefore be compressed in the same way that (2.4])
is compressible into (Z23]). At least this is true in the standard amplitude for-
malism. Strangely, if we move from the amplitude to the stabiliser formalism
it seems as though it s possible, somehow, to give more compact descrip-
tions of these states and their transitions, despite the quantum mechanical
fact just mentioned.

However let us persist, for a little while longer at least, in our conviction
that it is facts about the underlying system and its transitions which make
alternative (smaller) descriptions possible. And let us try and determine, if
we can, just what these further facts may be. The Gottesman-Knill theo-
rem does not say that all quantum state transitions are efficiently classically
simulable when expressed in the stabiliser formalism, but only that a specific
restricted subset of them are: the Clifford group of transformations (possibly
conditioned on classical bits) which map the Pauli group into itself, mea-
surements of observables in the Pauli group, and state preparation in the
computational basis. Let us consider whether these transformations share
anything in common apart from this abstract mathematical fact.

Consider, to start with, state preparation. This is, by hypothesis, the
preparation of a product state in the computational basis. This means that
each qubit will initially be in one of the states |0) or |1), stabilised by Z and
—Z respectively; i.e., each qubit will begin in a state equivalent to either Z|0)
or —Z|1). The Pauli gates X, Y, and Z (! is just the trivial transformation)
represent 7 rotations of the Bloch sphere about the z, y, and z axes respec-
tively. Applied to Z they yield: XZX' = —Z YZY' = —Z, 227 = Z.
Applied to X and Y they yield: XXX = X, YXY =X ZXZ' = -X,
XYXT = -Y,YYY! =Y, ZYZ! = —Y. The Hadamard gate is a /2-
rotation about the y-axis, followed by a w-rotation about z. Applied to X,
Y, and Z it yields HXH' = Z, HYH' = —Y, and HZH' = X. The Phase
gate (R) is a /2 rotation about the z-axis, with: RXR' =Y, RYR' = X,
RZR'" = Z. The CNOT gate is a two qubit gate but its result is either an
X or [ transformation applied to the target qubit.

From the foregoing it is readily seen that the combined effect of any of
these operations, for any subsystem of the system, must be equivalent to
the measurement of one of the Pauli observables £X, Y, &7 on one of the
computational basis states |0), |1). The reader can easily verify that this fact
continues to hold if we also include the generalisations of the Pauli operators
+iX, £1Y, and +¢Z among our allowed operations. Thus this fact holds

10



true for all of the Gottesman-Knill operations.

Now since the Pauli observables (disregarding I') represent 7 rotations of
the Bloch sphere about the z, y, and z axes, the respective orientations of
different ends of an experimental apparatus set up to conduct an experiment
on a combined system will never differ by anything other than an angle
proportional to 7/2. There is something very special about orientations of
experimental devices which satisfy this property. These are precisely the
orientations for which it is possible to provide a local hidden variables theory
to reproduce the statistics associated with a Bell state.

To clarify, for a system in the singlet state (|¥~)), the expectation value
for joint experiments on its subsystems is given by the following expression:

(Om ® 0y) = — - = — cos b. (3.2)

Here o0,,, 0, represent spin-m and spin-n experiments on the first (Alice’s)
and second (Bob’s) subsystem, respectively, with 772, 2 the unit vectors repre-
senting the orientations of their two experimental devices, and 6 the difference
in these orientations. It is well known that it is not possible to provide a
hidden variables theory to reproduce all of the predictions of quantum me-
chanics for this state if that theory makes the very reasonable assumption
that the probabilities of local experiments on Alice’s subsystem (and like-
wise Bob’s) are completely determined by Alice’s local experimental setup
together with a shared hidden variable taken on by both subsystems at the
time the joint state is prepared.

Consider the following expression relating different spin experiments on
Alice’s and Bob’s respective subsystems for arbitrary directions m,m’', n,n':

[{(om @ 0n) + (Om @ o) + (O @ 0n) — (O @ 0.

Let Ax(m) € {1}, BA(n) € {&1} represent the results, given a specification
of the hidden variable A, of spin experiments on Alice’s and Bob’s subsystems.
Given the aforementioned reasonable assumption, once A is specified there
are no further dependencies between Alice’s and Bob’s local experimental
configurations. Thus we may substitute (A,(m)By(n)) for (o,, ® 0,,). This
yields:

[{Ax() Ba(2)) + (Ax () BA(R))] + [(Ax (") Ba(72)) — (Ax (i) BA(7))

which, as the reader can verify, must always be < 2. This expression, a
variant of the ‘Bell inequality’ (2004 [1964]), is known as the Clauser-Horne-

Shimony-Holt (CHSH) inequality (cf.,|Clauser et all,[1969;Bell, 2004 [1981]).

11



Quantum mechanics violates the CHSH inequality for some experimental
configurations. For example, let the system be in the singlet state and let
the unit vectors m, m’, n,n’ (taken to lie in the same plane) have the orienta-
tions 0, 7w/2, /4, —m /4 respectively. The differences, 0, between the different
orientations (i.e., m —n,m — ', m' —n, and m’ — 7’) will all be in multiples
of m/4 and we will have, from (3.2):

{(Om @ ) + (T @ 0|+ (O @ 00) — (O @ o) = 2V2 £ 2.

The predictions of quantum mechanics for arbitrary orientations m, 1m/,
n, N’ cannot, therefore, be reproduced by a hidden variables theory in which
all of the correlations between subsystems are due to a common parameter
endowed to them at state preparation. They can, however, be reproduced
by such a hidden variables theory for certain special cases. In particular, the
inequality is satisfied (as the reader can verify) when m and n, m and n/, m/
and n, and m’ and 7/ are all oriented at angles with respect to one another
that are given in multiples of 7/ 2[4

The Gottesman-Knill transformations are, therefore, precisely those for
which the resultant quantum statistics for a system in a Bell state are repro-
ducible by a local hidden variables theory; i.e., by an alternative theory in
which the statistics for joint experiments are factorisable, and hence “com-
pressible”, into the products of the statistics of the (fully specified) individ-
ual subsystems. In light of this it seems unsurprising—i.e., we have given
a physical motivation for the fact—that these transformations are efficiently
simulable with a classical computer. Also unsurprising, since the quantum
mechanical predictions are presumed to be consistent with a local hidden
variables theory, is the fact that it is possible to give a “small” description
(using the stabiliser formalism) of a system subjected to these operations
without leaving the quantum mechanical conceptual framework.

4 The GHZ argument

But alas things are not quite so simple, for while the statistics associated with
the Bell states for measurement angles which differ by an angle proportional
to m/2 are reproducible by a local hidden variables theory, this is not prima

5These are the cases for which Eq. ([B3.2) predicts perfect correlation (§ = ), perfect
anti-correlation (6 = 0), or no correlation (6 = 7/2).

12



facie true for every entangled state. In particular, one can use the so-called
GHZ (a.k.a. “cat”) state, a kind of generalisation of the Bell state for n
qubits, to demonstrate, using measurements of Pauli observables exclusively,
an incompatibility between the predictions of certain local hidden variables
theories and the predictions of quantum mechanics. Moreover one can cast
the demonstration in the form of a quantum circuit which uses only the
Gottesman-Knill operations.

We begin@ by considering three spatially separated spin-1/2 systems,
a, b, ¢, which, having previously interacted, are now in the GHZ state

1
V2

In this state, the eigenvalues associated with X and Y observables on individ-
ual subsystems are (as always) +1, while each of the tripartite observables,

(10)a]0)6l0)c + [1)al1)s[1)e)- (4.1)

X'@Y'®Y Y'oX'eY Y'Y’ ® X (4.2)

takes the eigenvalue —1.

Spin measurements on distinct particles are compatible with one another.
However, the X and Y spin observables for any single system are incompat-
ible (since they anticommute). Despite this, (4.2) is a set of compatible (i.e.,
commuting) operators, for the product of any two of the tripartite observ-
ables in (4.2]) contains an even number of such anticommutations.

If we assume that the result of a combined measurement is factorisable,
i.e., that it is just the product of the results of its constituent measurements,
then we must have:

V(XY @Y%) = -1 =v(X) - v(Y") - v(Y),
(Y@ X' @Y%) = —1=0uY" - u(X") - v(Y°),
V(Y @Y ® X9 = -1 =0(Y?) - v(Y") v(X°), (4.3)

6The original version of the GHZ argument was published (1989) by Greenberger,
Horne, & Zeilinger (hence the name “GHZ”). Our discussion will be based on the version
of the argument subsequently given by Mermin (1990). Mermin indicates that his version
is intended as a simplification of |Clifton, Redhead, & Butterfield’s (1991) generalised and
refined version of GHZ’s original proof. Note that GHZ also produced their own generalised
and refined version in collaboration with Abner Shimony (1990).

1"The label “GHZ” actually refers not just to this but to the family of states: \% (J0y®" 4+

BEDY

13



where v(A) is the result of measuring the observable A.

According to the EPR reality criterion: “If, without in any way disturb-
ing a system, we can predict with certainty (i.e., with probability equal to
unity) the value of a physical quantity, then there exists an element of phys-
ical reality corresponding to this physical quantity” (Einstein et al., [1935).
With this in mind, note that, given the relationships (4.3]), one can, without
disturbing it, predict with certainty the result of measuring X and Y on any
of the systems a, b, or ¢. For instance, to determinately predict v(X®) we
first measure Y and Y if v(Y?) - 0(Y¢) = +1, then v(X?) = —1, otherwise
if v(Y?) and v(Y°) yield opposite results, then v(X¢) = +1. In a similar
manner it is possible to determine all of the v(X®) and v(Y®). According
to the EPR reality criterion we may, therefore, take these measurements to
reveal six independently existing elements of physical reality corresponding
to the x and y spin components of each of the three individual particles:

a a b b c c
Sas Spy Sas Sys Sgy Sy (4.4)

where s¢ = v(X%), s® = v(X?), and so on. This is significant, for since
spin measurements in distinct directions on a single system do not commute,
orthodoxy would have it that a single system simply does not possess simul-
taneous values for both spin-x and spin-y. The apparent ability to ascribe
elements of physical reality corresponding to both components of spin for
each of the three particles flies very much in the face of the orthodox inter-
pretation.

There is a problem with these elements of reality, however, for if we take
the product of the commuting observables in (4.2)), then since XY = iZ =
—YX, XZ ==Y =—7ZX,YZ=iX=-2Y, XX=YY =77 =1, this
must yield:

(Xa®Yb®Yc) . (Ya®Xb®Yc) . (Ya®Yb®Xc)
- X2 X'® X" (4.5)
This implies that
v(X*® X" ® X9 = 1. (4.6)

Yet our description in terms of local hidden variables—the elements of reality

(EL4)—has it, from (E3), that
V(X ® XP® X°) = 0(X?) - v(X°) - v(X) = —1.
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Figure 1: A quantum circuit diagram representation of the GHZ argument. The
boxes at the far right indicate measurements (of X or Y observables in this case).
Up to that point the diagram should be read as: CNOTAcCNOTaApHA|0)|0)|0).
All of the operations depicted, including the final measurements, are examples of
Gottesman-Knill operations.

We therefore conclude that it is impossible to give an independent specifi-
cation of each of the elements of reality depicted in (£4) in a way that is
consistent with the predictions of quantum mechanics.

Now in light of the GHZ argument it seems that the physical motivation
for the content of the Gottesman-Knill theorem which, in the previous sec-
tion, we gleaned from the CHSH inequality cannot be maintained beyond
that particular case. Indeed it is easy to represent the GHZ argument by
means of a series of exclusively Gottesman-Knill operations (see Figure [I]).

5 The sufficiency of entanglement thesis

And yet there is nevertheless and in spite of this still a sense in which the
physical insight we gleaned from our consideration of the CHSH inequal-
ity can in fact be maintained. This will become increasingly clear as we
proceed. To frame our discussion from here on, consider the following hid-
den variables theory (Tessien, [2004; [Tessier et al., 2005) for reproducing the
statistics associated with Pauli measurements on the three-qubit GHZ state
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(1/4/2)(]000) + [111)) :

ga dB qc
X | RoRs R, R
Y tRi{RoRs 1R{Rs 1R Rs (5.1)
Z Ry Ry Ry
I 1 1 1

44, qB, and qc are the constituent qubits of the system, offering themselves
up to be measured by Alice, Bob, and Chris respectively. X, Y, Z, and
I refer to measurements of Pauli observables. The R, are random variables
which return a value of +1 with equal probability. They are to be interpreted
epistemically in the sense that they represent a determinate value of either
+1 or —1 that is taken on by the system at state preparation. This value
can only be revealed by measurement; i.e., nothing can be done at state
preparation to fix the value of Rj: distinct systems subjected to identical
state preparations will in general have different values for their Rk To de-
termine the outcome of a particular measurement, we multiply the entries in
the lookup table corresponding to the sub-measurements performed on each
qubit, with (Ry)? = 1, discarding any lone straggling value of 7 that remains
after calculating the final result. For example, v(XXX) = ReR3RoR3 = 1,
’U(XYY) = RgRgiRlRQiRle = —1, U(YYX) = iRleRgiRleRg = —1,
’U(XYI) = RyR3i1R 1Ry = 1 = +£1, etc.

It can be verified that all of the predictions of quantum mechanics for
joint Pauli experiments on the GHZ state are recovered by this hidden vari-
ables theory. Unfortunately the results of these experiments cannot be made
consistent with one another under the assumption that each qubit’s x and
y spin component is an independently existing element of reality associated
with the system. For instance, the outcome of the joint measurement XYY
is v(XYY) = RyRsiR1ReiR1R3 = —1. Under the supposition that each
qubit possesses independent values of both spin-z and spin-y, this joint mea-
surement outcome must be consistent with the product of the outcomes
of the individual measurements XII, IYI, and IIY. But it is not, for
'U(XI[) X U(IYI) X U(I[Y) = (RgRg)(RlRQ)(Rle) =1.

This can, however, be compensated for. We can ensure consistency by
adding just a wee bit of signalling to the model. For instance, Bob and Alice

18No such interpretation of the variables Ry is given in either [Tessier (2004) or
Tessier et all (2005), but such an interpretation is implicit if one is to make sense of
any of the claims made therein.
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can agree that he will send her a single classical bit indicating whether or
not he performed a Y measurement on his qubit. Upon receipt of this bit,
Alice should flip the sign of her local outcome if either she or Bob (or if
both of them) measured Y. Thus for the case above we will have v(X11) x
v(IYT) x v(I1Y) = (—RaR3)(R1Rs)(R1R3) = —1, consistent both with the
value obtained for the joint measurement XYY and with the individual
results for the measurements X1, IYI, and IIY (each of the latter three
produces a random outcome of +1 with equal probability). In this manner it
is possible to make the outcome of every joint measurement specifiable in the
model consistent with the corresponding product of individual measurement
outcomes.
The scheme generalises. For an n-qubit GHZ state

L
V2

only n—2 bits of classical communication are required to accurately model the
statistics associated with measurements of Pauli observables on the system.
Indeed, unsurprisingly given the discussion of Section 3] this is true for any
circuit consisting exclusively of Gottesman-Knill operations (details are given
in [Tessier 2004).

Tessier characterises the significance of these results in the following

way {1

Our results yield an alternative perspective on the GK theorem,
and demonstrate that we may replace the nonlocal hidden vari-
ables represented by the stabilizer generators with LHVs and an
amount of classical communication that scales efficiently with the
size of the problem. This is a general feature of quantum circuits
obeying the constraints of the GK theorem since, as our model
illustrates, such circuits do not utilize the full capabilities of the
available entanglement in the probability distributions that they
generate (Tessier, 2004, 103).@

(10" £ [1)="),

Conjecturing that the amount of classical communication required to sim-
ulate measurements of observables outside of the Pauli group will grow ex-
ponentially with the number of qubits in the system, Tessier concludes:

19See also (Tessier et al. (2005).
204GK” refers to Gottesman-Knill; “LHV” stands for local hidden variables.
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The success of our simulation provides strong evidence that the
power of quantum computation arises not directly from entan-
glement, but rather from the nonexistence of an efficient, local
realistic description of the computation, even when supplemented
by an efficient amount of nonlocal, but classical communication
(Tessier, 2004, 117).

While I am in agreement with the spirit of Tessier’s conclusions, there are
some points which require further clarification if confusion is to be avoided.
In particular, the claim that “the power of quantum computation arises not
directly from entanglement” requires some qualification. First, we must clar-
ify precisely what is meant by “arises” in this context. Both the necessity and
sufficiency of entanglement for enabling quantum speedup have been ques-
tioned on independent grounds, and indeed they are separate questions. For
even if realising an entangled state is enough to enable a quantum speedup,
it may be that there are alternative ways in which to achieve thisP] On the
other hand, from the fact that entanglement is required to enable quantum
speedup, it does not follow that nothing else is.

The Gottesman-Knill theorem is most relevant to the question of suffi-
ciency: the fact that a quantum algorithm utilising entanglement is efficiently
simulable classically does not rule out that entanglement may nevertheless
be required to enable quantum speedup. Yet it does seem to rule out that the
realisation of an entangled state is enough to achieve a quantum speedup.

We have so far distinguished two senses in which the power of quantum
computation may be said to “arise” from quantum entanglement, but this
analysis is still too coarse for our purposes, for even the question of sufficiency
may be given different significations. It will be helpful to illustrate this with
an analogy. It may rightfully be said that a life vest is sufficient to keep me
afloat in the event that I lean over too far and fall overboard while enjoying
the Mediterranean sun on the deck of my neighbour’s yacht. In saying this
the intention is not to convey that the mere presence of a life vest in the water
will be sufficient to keep me from drowning, for of course I must actually wear
the vest if it is to perform its function. That, however, is not a fact about
the life vest’s capabilities, but about my choice of whether to use it or not.
In seeking for an explanation for a physical process, it is usually helpful,
conceptually, to distinguish facts about the capabilities of a system from

21For some examples purportedly demonstrating that entanglement is unnecessary for
enabling speedup, see [Biham et all (2004); Datta et all (2008).
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facts pertaining to what is actually done with it in particular cases. Both
of these questions are valuable but they should not be confused. Only the
former question can be interpreted as an inquiry into the resources available
in physical systems.

Thus if one asks, as do lJozsa & Linden (cf. §3] of this paper), whether
entanglement is a sufficient resource to enable quantum speedup, then the
question one is asking is whether any further physical resources are required
to make quantum speedup possible once one has a system in an entangled
state. The answer to this question is, I would argue, no. Consider the individ-
ual state spaces of two quantum mechanical systems, Hfl and H§l2, where d;
and dy are the dimensionality of the first and second system, respectively. In
quantum mechanics, the overall state space of the combined system is given
by the tensor product of the two systems, Hfl ® Hg2, with dimensionality
dy-ds. Thus the state space of a combined system of n two-dimensional qubits
is @"H?, with overall dimensionality 2". In classical mechanics, on the other
hand, the total state space of two individual subsystems wfl, w§2 is given
by the Cartesian product, w‘lh X w§2, with dimensionality d; + dy. Thus the
dimensionality of the state space of a classical system of n two-dimensional
subsystems is 2n.

As both [Ekert & Jozsa (1998) and Bub (2010) note, the possibility of
entangled quantum systems is what is responsible for this difference in the
allowable state space. To illustrate, consider how one would go about repre-
senting a general superposition of n two-dimensional values classically. It is
possible to describe certain classical systems in terms of superpositions; for
instance, the state of motion of a vibrating string can be characterised as a su-
perposition of its two lowest energy modes, in the same way that the state of
a qubit can be characterised as a superposition of the states |0) and |1). The
joint state of a system of n strings, however, will always be a product state;
general superpositions which include, in particular, values representable by
entangled quantum states, cannot be physically represented using n classical
systems in this way. Indeed I made essentially the same point in §3 when I
there remarked that superpositions associated with entangled states are in
general, ‘incompressible’.

It is, of course, possible to classically represent a general superposition of n
two-dimensional values in a more roundabout way; one may use, for instance,
a single classical system which allows for the discrimination of 2™ resource
levels within it. The cost of such a representation scales exponentially with
n, however, either (if the spacing between resource levels is kept fixed) in

19



terms of the total amount of resource required, or (if the total amount of
the resource is kept fixed) in terms of the increasing precision required to
discriminate the different resource levels (Ekert & Jozsa, [1998).

Quantum systems, in contrast, are not subject to this limitation; be-
cause of the possibility of entanglement, a superposition of n d-dimensional
quantum systems can be used to represent a general superposition of n d-
dimensional values directly; i.e., without incurring the cost associated with
the roundabout classical method 22 Quantum mechanical systems, therefore,
allow us to efficiently exploit the full representational capacity of Hilbert
space. Classical systems do not; they require exponentially more resources
in order to do so. If we have an n-fold entangled quantum system, therefore,
it follows straightforwardly that the possibilities for representation associated
with such a system cannot, in general, be efficiently simulated classically’

Evidently, it is possible to utilise only a small portion of the state space of
a quantum system. This has no bearing on the nature of the actual physical
resources that are provided by the quantum system, however. Thus pace
Tessier, there is a sense (which we are still in the process of clarifying) in
which the power of quantum computation can be said to arise directly from
entanglement despite this P

ZZDuwell (2004, Ch. 8) calls this ‘well-adaptedness’.

23There is the caveat, of course, that a quantum computer will never be found, when
experimented upon, to be in one of these ‘extra’, nonseparable, states, and thus the final
‘readout’ of a quantum computer will never be one of those states. Any problem, therefore,
whose solution requires such a representation cannot be solved efficiently by a quantum
computer. Nevertheless, such states represent a wealth of resources that are capable of
being used as intermediaries in the calculation of a solution which is representable as a
separable final state.

24The reader familiar with the literature on quantum computation will perhaps object
that quantum speedup has not yet been conclusively proven. Thus although this is gen-
erally believed to be very unlikely, it may be the case that for every polynomial time
quantum algorithm there is a polynomial time classical algorithm to achieve the same re-
sult (though note that because a classical computer is incapable of efficiently representing
most quantum states and state transformations, such an algorithm would have to achieve
its results using a method very different than the quantum one). Even in this unlikely
event, however, the—still interesting—question remains as to which resources enable a
quantum computer to solve certain computational problems in polynomial time, and the
question of the source of quantum speedup can be recast accordingly. The answer to it
will likely not change. I am indebted to Filippo Annovi for this observation.

2°Note that my characterisation of entanglement as a physical resource is not motivated
only by the conceptual arguments I have just given. To cite but one of many examples,
one can show (Masanes, |2006) that for any non-separable state p, some other state o is
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Though this was worth mentioning, considered as a challenge to Tessier’s
conclusions it is arguably no more than a nitpicking one, for I am not fun-
damentally in disagreement with the spirit of Tessier’s statements on this
point. More problematic, however, is Tessier’s claim that the Gottesman-
Knill operations are recoverable using only “LHVs and an amount of classi-
cal communication that scales efficiently with the size of the problem.” It is
his characterisation of the theory (5.1]) as local, in particular, which deserves
our attention. Presumably Tessier calls the theory local because one can
view the correlations associated with different spin measurements as arising
from purely local interactions. Figure ] illustrates this. All of the opera-
tions depicted there that are involved in the preparation of the GHZ state
are localised in space and time. This includes the CNOT gates, whose im-
plementation requires the qubits involved to be brought together in order
to interact 29 During these interactions, the variables R; come to be shared
amongst the qubits, and it is these variables which give rise to the corre-
lations that are responsible for the measurement results that follow. These
Ry, are clearly local variables, and the way in which they are shared in the
GHZ state is clearly locally explicable. They are also noncontextual: for a
particular system (i.e., for any one particular system of an ensemble), each
Ry, takes on the same values regardless of the experiment performed. This is
visualised in Figure [l

Unfortunately the theory, as interpreted, is in fact nonlocal, for the vari-
ables R; do not, by themselves, completely determine the results of spin
measurements; the i terms are essential in predicting the outcome of a com-
bined measurement like XYY and yet the ¢ terms associated with different
qubits interfere nonlocally to prevent us from unambiguously assigning values
to the x, y, and z components of each qubit’s spin. The classical commu-
nication that is subsequently employed to compensate for this contextuality
should not, therefore, be seen as a supplement to an otherwise local hidden
variables theory. Rather it should be seen as a corrective to compensate for
the nonlocal influences present in the model.

capable of having its teleportation fidelity (cf. Nielsen & Chuang, 2000, §9.2.2) enhanced
by p’s presence. It is also possible to quantify the amount of entanglement contained in a
given state by means of so-called entanglement measures, the theory of which is surveyed
in [Plenio & Virmani (2007). Conceptual considerations aside, these uses legitimate, in
this author’s mind, the characterisation of entanglement as a physical resource.

26Tf this were not so, one could use a CNOT gate to signal faster than light (D’Hooghe,
2003).
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| 94 qB _ 4dc |94 4B qc |
X| R Ro R3 " X|1 Ra R3
|000) : Y |—iR1 iRy iR3 A, Y |iRi iRy iR3
Z| 1 1 1 Z|Ri 1 1
Il 1 1 1 Il1 1 1
| 94 aB qc | ga 9B qc |
X | Ro Ro R3 X | R2R3 Ro R3
CNOTas, iR1Rs iR1Rs iRs CNOTac, iR\RaRs iR1Rs iR1R3
Z| R R 1 A Ry Ry R
Il 1 1 1 I 1 1 1

Figure 2: A series of hidden variables tables modelling the preparation of the
state GHZ = (]000) + |111))/v/2 (Tessier, 2004). The update rules for the H and

CNOT gates are: H: Xf = zi, v/ = —vi 7/ = X', CNOT: X{ = XX},
vi = vixi zl = 7i, X/ = xi, v/ = zivi, z] = ZiZi, where P! is the
specification of P before the given transformation and P7 is its new specification.

s and t refer to the control and target qubits, respectively, involved in a given
CNOT operation.

6 The idea of a local hidden variables theory

Despite this it is, in fact, possible to cast the hidden variables theory (5.1]) as
local. Doing so, moreover, is conceptually illuminating for our understanding
of the capabilities associated with a quantum system, for it brings to bear
our discussion of the physical motivation for the Gottesman-Knill theorem
from Section [3] as well as our comparison, from the last section, of the state
spaces available to systems limited to product states versus the state spaces
available to systems not so limited. Doing so, however, requires reinterpret-
ing that theory. This reinterpretation, illustrated in Figure [, is motivated
by the idea that actually observing the result of a combined measurement
outcome requires that one actually combine the results of the various indi-
vidual sub-measurements. To put this another way: the point being made
here is that if one wishes to verify that the sub-measurements associated
with, for example, an XYY measurement yielded, say, —1, +1, and +1, or
even only the statistics associated with a sequence of such measurements, one
must somehow gather together the results registered locally by Alice, Bob,
and Chris in order to examine them. There is simply no getting around this.
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“XYY” “YXY” “YYX” “XXX”
Ri Ry R3 | RoR3tR1RoiR1\R3 | iR1RoR3R21R1R3 | tR1RoR31R1RoR3 | RoR3RoR3
+1 +1 +1 -1 -1 -1 +1
+1 +1 -1 -1 -1 -1 +1
+1 -1 +1 -1 -1 -1 +1
+1 -1 -1 -1 -1 -1 +1
-1 +1 +1 -1 -1 -1 +1
-1 +1 -1 -1 -1 -1 +1
-1 -1 +1 -1 -1 -1 +1
-1 -1 -1 -1 -1 -1 +1
“XII7 “IYT” “ITY”
Ry Ry Rj RoR3 1R1Ra 1R1R3
+1 +1 +1 +1 +1 +1
+1 +1 -1 -1 +1 -1
+1 -1 +1 -1 -1 +1
+1 -1 -1 +1 -1 -1
-1 +1 +1 +1 -1 -1
-1 +1 -1 -1 -1 +1
-1 -1 +1 -1 +1 -1
-1 -1 -1 +1 +1 +1

Figure 3: A “Tractarian” (Wittgenstein, 2005 [1921], 5.15-5.156) summary of the
statistics for Pauli measurements on the GHZ state, with the R representing the

“atomic propositions.

9

Each row specifies the R of a particular system from an

identically prepared ensemble. Probabilities for outcomes of experiments are deter-
mined by taking the ratio of the number of rows favourable to an outcome, to the
total number of rows. Thus Pr(XYY = —-1) = Pr(YXY = -1) = Pr(YYX =
—1) =Pr(XXX =+41)=8/8 =1. For all X, Y, and Z measurements on a single
qubit, we have Pr(- = +1) =4/8 = 0.5.
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Figure 4: A reinterpretation of Tessier’s (Tessiern, |2004; [Tessier et all, 2005) hid-
den variables model.

Whether the parties physically meet with one another to discuss the results
over tea, or whether they physically transmit their results to a neutral party
via telegraph, or use some other physical means, it is absolutely necessary
that the results be collated together at some point, somehow, if the combined
outcome is to be actually observed.

During this process of collating the results, there is time for Alice, Bob,
and Chris (or more conspiratorially: for their systems) to signal classically to
one another (at a velocity no greater than that of light) so as to coordinate the
observed outcomes of their individual sub-measurements. If we now take our
measurement event to consist in the act of actually observing the combined
result, then all of this signalling activity will have taken place in the past light
cone of that measurement event. Thus interpreted this way the theory (5.1])
is indeed a local hidden variables theory And from this point of view we
can see how to recover the physical motivation we appealed to in §3 for the
content of the Gottesman-Knill theorem; i.e., it is available to us once again to
argue that the Gottesman-Knill transformations are precisely those for which
the resultant quantum measurement statistics of the system are reproducible
by a local hidden variables theory; i.e., by an alternative theory in which the
statistics for joint experiments are factorisable, and hence “compressible”,
into the products of the statistics of the fully specified individual subsystems.

The reader will likely balk at the suggestion that considering such a
contrived local hidden variables theory can provide any physical motivation
whatsoever, to the Gottesman-Knill theorem or to anything else. For surely,

2TNote that, of course, no claim is being made here that (5.1 fully models the measure-
ment statistics corresponding to the GHZ state; we are here speaking only of measurements
of observables in the Pauli group.
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it will be objected, the device of delaying the evaluation of the combined
measurement result until the parties have found time to meet together over
crumpets and tea is ad hoc and conspiratorial, almost comically so. In re-
sponse, I ask the reader to consider the following: what is our goal when
we provide an alternative hidden variables theory to reproduce the statistics
associated with the quantum state?” More succinctly: what question do we
take a hidden variables theory to be answering?

One possibility is that we are answering what 1 will call a theoretical
question; i.e., is there a (and if so, what is the) deeper underlying theory of
the world in relation to which quantum mechanics is only an approximation?
Any answer to this question will need to be very serious. It will not only
need to reproduce the statistical predictions of quantum mechanics; it will
also need to satisfy a number plausibility constraints. Such an answer, for
instance, will need to be consistent with our other theories of physics (and if
not it will need to provide a convincing reason why those should be modified),
and with the body of our experiential knowledge in general. The de Broglie-
Bohm family of theories is an example of a (nonlocal) answer that takes
these particular constraints very seriously. Our reinterpretation of (5.1), on
the other hand, is an example of an answer which does not.

A second possibility is that we are answering what I will call a purely
conceptual question; i.e., what is logically possible and still consistent with
the predictions of quantum mechanics? Answers to this question need not
be very serious at all in the above sense; in fact they need satisfy no plausi-
bility constraints whatsoever. The various toy theories are examples of such
answers. Maudlin’s (2011, 89-90) criticism of Howard’s claim that outcome
dependence implies separability, for instance, utilises a toy theory of this
sort.

There is yet a third way of posing this question, which is neither theo-
retical nor purely conceptual. I call this the practical question. By this I do
not intend anything to do with pragmatics, nor do I mean to imply that the
question is any less profound or important. Rather I am using practical in its
old signification as having to do with action and in particular human action;
i.e., the practical question asks what we are capable of doing with the aim of
reproducing the predictions of quantum mechanics. This is not merely the
question of whether it is possible to provide a toy theory for the quantum
state, for as we will see, answers to the practical question do, just as do
answers to the theoretical question, have to satisfy plausibility constraints;
and yet these are not the same constraints which must be satisfied by the
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answer to the theoretical question.

Who do we think we are? We who can make ‘measurements’,
we who can manipulate ‘external fields’, we who can ‘signal’ at
all, even if not faster than light? Do we include chemists, or only
physicists, plants, or only animals, pocket calculators, or only
mainframe computers? (Bell, 2004 [1990], 245).

Indeed who do we think we are? For the purposes of answering the prac-
tical question I would argue that the appropriate thing to say is that it is we
who can perform computations, we for whom this activity is modellable by
Turing machine; indeed we whose calculational abilities Turing’s analysis is
specifically intended to capture (Turing, 1937, 1938). Turing computability
is not the only constraint an answer to the practical question must satisty,
however. For although the constraint of Turing computability serves to de-
lineate the space of answers that are possible for us (or rather for idealised
versions of ourselves), what we seek is not bare possibility but plausibility;
we seek for answers suitable to beings with finite time and space resources.
Thus an answer to the practical question must not simply be modellable by
Turing machine; it must also be efficiently modellable, in the sense that the
quantum statistics are no harder (i.e., require additional resources that are
at most polynomial in the input size n) for a system described by our prac-
tical local hidden variables theory to produce than they are to produce for a
quantum mechanical system.

Any efficient classical computational simulation of quantum statistical
predictions is itself, therefore, a local hidden variables theory that is neither
a toy theory nor an attempt to describe what the world is actually like. Our
reinterpretation of the theory (5.)) is thus, in this sense, a local hidden vari-
ables theory to recover the predictions associated with Pauli measurements
on the state (A1]). And yet no-go theorems such as Bell’s (and others) assure
us that it is impossible to provide a local hidden variables theory to recover
the predictions associated with all possible measurements on states like the
Bell states, or states like ({]). Thus for this reason if we limit ourselves
to the Gottesman-Knill operations, we will not have used the entanglement
with which we have been provided to its full potential.

Returning now to the GHZ argument, it is hard to overestimate the im-
pact the GHZ proof has had upon the physical and philosophical community.
For Mermin, for instance,
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This is an altogether more powerful refutation of the existence
of elements of reality than the one provided by Bell’s theorem
for the two-particle EPR experiment. Bell showed that the el-
ements of reality inferred from one group of measurements are
incompatible with the statistics produced by a second group of
measurements. Such a refutation cannot be accomplished in a
single run, but is built up with increasing confidence as the num-
ber of runs increases |...] In the GHZ experiment, on the other
hand, the elements of reality require a class of outcomes to oc-
cur all of the time, while quantum mechanics never allows them
to occur. [...] I recently declared in writing that no set of ex-
periments, real or gedanken, was known that could produce such
an all-or-nothing demolition of the elements of reality. With a
bow of admiration to Greenberger, Horne and Zeilinger, I hereby
recant (Mermin, [1990).

Mermin’s sentiment is widely shared, and yet it is misleading to claim
that GHZ’s argument is in this sense more ‘powerful” than Bell’s. For before
one can say this one must first specify what one will admit within the class
of possible hidden variables theories; i.e., one must be clear on the context
in which the question is being asked. From a theoretical point of view it
may be that the GHZ argument is more powerful than Bell’s. From either
a purely conceptual or a practical point of view, however, this is not the
case at all, for the quantum mechanical predictions for measurements of
Pauli-group observables on the GHZ state are fully reproducible by a local
hidden variables theory like (our reinterpretation of) (5.II). Of course, if
we allow measurements of observables outside of the Pauli group, then it
will no longer be the case that the ensuing statistics can be modelled by a
local hidden variables theory like (our reinterpretation of) (5.1). But then
the contradiction with quantum mechanical predictions will be a statistical
one—certainly it will not be an “all-or-nothing demolition of the elements of
reality.”

7 Conclusion

I have argued, in this paper, that there is an important sense in which en-
tanglement may be said to provide sufficient physical resources to enable
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a quantum computer to achieve quantum computational speedup. In sup-
port of this conclusion, I have argued that claims to the contrary rest on a
misunderstanding of the implications of the Gottesman-Knill theorem—that
indeed, far from being a problem for the view that entanglement is a suffi-
cient resource, the Gottesman-Knill theorem serves to highlight the role that
is actually played by entanglement in the quantum computer and to clarify
exactly in what sense it is sufficient.

Though I will not argue this here, I believe it unlikely that an investigation
into quantum computation and quantum information theory will, by itself,
resolve any of the interpretational debates at the heart of the foundations
and philosophy of quantum mechanics. I also do not believe it likely that an
investigation into the capabilities of quantum computers will, by itself, lead
us to revise our understanding of the nature of computation as such, or to
resolve any of the truly foundational questions at the centre of computational
complexity theory. What I do believe likely, however, is that investigating the
characteristics of quantum computers will furnish us with a fresh perspective
from which to consider all of these old questions—a new opportunity to
reconsider exactly what we mean in asking them. The foregoing essay is an
attempt in this direction.
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