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It is widely accepted that the violation of Bell inequalities excludes local
theories of the quantum realm. This paper presents a stronger Bell argu-
ment which even forbids certain non-local theories. The remaining non-local
theories, which can violate Bell inequalities, are characterised by the fact
that at least one of the outcomes in some sense probabilistically depends
both on its distant as well as on its local setting. While this is not to say
that parameter dependence in the usual sense necessarily holds, it shows that
some kind of parameter dependence cannot be avoided, even if the outcomes
depend on another. Our results are the strongest possible consequences from
the violation of Bell inequalities on a qualitative probabilistic level.
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1. Introduction

1. Introduction

Bell’s argument (1964; 1971; 1975) establishes a mathematical no-go theorem for theories
of the micro-world. In its standard form, it derives that theories which are local (and fulfil
certain auxiliary assumptions) cannot have correlations of arbitrary strength between
events which are space-like separated. An upper bound for the correlations is given by
the famous Bell inequalities. Since certain experiments with entangled quantum objects
have results which violate these inequalities (EPR/B correlations), it concludes that
the quantum realm cannot be described by a local theory. Any correct theory of the
quantum realm must involve some kind of non-locality, a ‘quantum non-locality’. This
result is one of the central features of the quantum realm. It is the starting point for
extensive debates concerning the nature of quantum objects and their relation to space
and time.

Since Bell’s first proof (1964) the theorem has evolved considerably towards stronger
forms: there has been a sequence of improvements which derive the inequalities from
weaker and weaker assumptions. The main focus has been on getting rid of those
premises which are commonly regarded as auxiliary assumptions: Clauser et al. (1969)
derived the theorem without assuming perfect correlations; Bell (1971) abandoned the
assumption of determinism; GraBhoff et al. (2005) and Portmann and Wiithrich (2007)
showed that possible latent common causes do not have to be common common causes.
What is common to all of these different derivations is that they assume one or an-
other form of locality. Locality seems to be the central assumption in deriving the Bell
inequalities—and hence it is the assumption that is assumed to fail when one finds that
the inequalities are violated.

In this paper we are going to present another strengthening of Bell’s theorem, which
relaxes the central assumption: one does not have to assume locality in order to derive
the Bell inequalities. Certain forms of non-locality, which we shall call ‘weakly non-local’
suffice: an outcome may depend on the other outcome or on the distant setting—as long
as it does not depend on both settings, it still implies that the Bell inequalities hold. As
a consequence, the violation of the Bell inequalities also excludes those weakly non-local
theories. So it does not require any kind of non-locality, but a very specific one: at least
one of the outcomes must depend probabilistically on both settings. While previous
strengthenings of Bell’s theorem secured that a certain auxiliary assumption is not the
culprit, our derivation here for the first time strengthens the conclusion of the theorem.

We start by briefly reviewing the underlying experiments with entangled photons and
introduce an appropriate notation (section 2). Second, we formulate the standard Bell
argument in an explicit and clear form and state exactly which of its premisses we are
going to strengthen (section 3). In section 4 we develop a comprehensive classification
of probability distributions for EPR experiments and show which of these distributions
implies Bell inequalities. Here we find the surprising fact that besides the local distri-
butions also the weakly non-local ones imply the inequalities. Finally, we formulate the

!The debate about common common causes vs. separate common causes is to some degree still unde-
cided (cf. Hofer-Szabd, 2008).



2. EPR/B experiments and correlations

new stronger Bell argument (section 5) and discuss some of its immediate consequences
(section 6).

2. EPR/B experiments and correlations

Many arguments for a quantum non-locality consider an EPR/B setup with polarisa-
tion measurements of photons (fig. 1; Einstein, Podolsky, and Rosen 1935; Bohm 1951;
Clauser and Horne 1974). One run of the experiment goes as follows: a suitable source C
(e.g. a calcium atom) is excited and emits a pair of photons whose quantum mechanical
polarisation state 1) is entangled. Possible hidden variables of this state are called A, so
that the complete state of the particle at the source is (0, A). Since the preparation pro-
cedure is usually the same in all runs, the quantum mechanical state 1 is the same in all
runs and will not explicitly be noted in the following. (One may think of any probability
being conditional on one fixed state ¥ = 1)y.) After the emission, the photons move in
opposite direction towards two polarisation measurement devices A and B, whose meas-
urement directions a and b are randomly chosen among two of three possible settings
(a = 1,2; b = 2,3) while the photons are on their flight. A photon either passes the
polariser (and is detected) or is absorbed by it (and is not detected), so that at each
measuring device there are two possible measurement outcomes a = + and 8 = +.
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Fig. 1: EPR/B setup

On a probabilistic level, the experiment is described by the joint probability distribu-
tion P(afBab)) := P(a = a,3 = f,a = a,b =b, A = \) of the five random variables just
defined.? We shall consistently use bold symbols (a, 3, a,...) for random variables and
normal font symbols («, 3, a, .. .) for the corresponding values of these variables. We use
indices to refer to specific values of variables, e.g. a— = — or a; = 1, which provides use-
ful shorthands, e.g. P(a_fia1b2)) := Pla = —,8=+,a =1,b=2,A = \). Expres-
sions including probabilities with non-specific values of variables, e.g. P(«ala) = P(«a),
are meant to hold for all values of these variables (if not otherwise stated).

Containing the hidden states A, which are by definition not measurable, the total
distribution is empirically not accessible (‘hidden level’), i.e. purely theoretical. Only the

2While the outcomes and settings are discrete variables, the hidden state may be continuous or discrete.
In the following I assume A to be discrete, but all considerations can be generalized to the continuous
case.



3. The standard Bell argument

marginal distribution which does not involve A, P(afBab), is empirically accessible and
is determined by the results of actual measurements in EPR/B experiments (‘observable
level’).?

Although the EPR/B setup is constructed in order to weaken and minimize correl-
ations between the involved variables,* a statistical evaluation of a series of many runs
with similar preparation procedures yields that there are observable correlations: the
outcomes are correlated given the parameters,’

P(aflab) = P(a|Bab)P(B) = { (Corr)
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(where ¢gp is the angle between the measurement directions a and b). These famous
EPR/B correlations between space-like separated measurement outcomes have first been
measured by Aspect et al. (1982) and are correctly predicted by quantum mechanics.

3. The standard Bell argument

Since according to (Corr), one outcome depends on both the other space-like separated
outcome as well as on the distant (and local) parameter, the observable part of the prob-
ability distribution is clearly non-local. Bell (1964) could show that EPR/B correlations
are so extraordinary that even if one allows for hidden states A one cannot restore local-
ity: given EPR/B correlations the theoretical probability distribution (including possible
hidden states) must be non-local as well. Hence, any possible probability distribution
which might correctly describe the experiment must be non-local.

This ‘Bell argument for quantum non-locality’, as I shall call it, runs as follows. Bell
realised that EPR/B correlations have the remarkable feature to violate Bell inequalities.
Since Bell then did not know that suitable measurements indeed yield the correlations,
the violation was merely hypothetical, but today the violation of Bell inequalities is
an empirically confirmed fact. It follows that at least one of the assumptions in the
derivation of the inequalities must be false. Indeterministic generalizations (Bell, 1971;
Clauser and Horne, 1974; Bell, 1975) of Bell’s original deterministic derivation (1964)

3The (theoretical) transition from the total probability distribution to the observable marginal distri-
bution is given by a marginalisation over A, P(afab) = >, P(afBab)). In order to be empirically
adequate, any theoretical distribution must in this way yield the distribution which describes the
statistics of EPR/B measurements.

4First, the settings are random and statistically independent. Second, the parameters are set after the
emission, so that the setting may not influence the state of the particles at the emission. And, finally,
but most importantly, the wings of the experiment are space-like separated, so that according to the
First Signal Principle of relativity there cannot be any influence from one outcome to the other or
from one setting to the outcome on the other wing.

5A correlation of the outcomes means that the joint probability P(af|ab) is in general not equal to the
product P(aab)P(Blab) = 1 -1 =1

4
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employ two probabilistic assumptions, ‘local factorisation’
P(aBlab\) = P(ajaX)P(B]bA) (¢F)

and ‘autonomy’

P(Mab) = P()). (A)

Another type of derivation (Wigner, 1970; van Fraassen, 1989; GraBhoff et al., 2005) ad-
ditionally requires the empirical fact that there are perfect correlations (PCorr) between
the outcomes if the measurement settings are equal. For both types of derivation we
have the dilemma that any empirically correct probability distribution of the quantum
realm must either violate autonomy or local factorisation (or both). Since giving up
autonomy seems to be ad hoc and implausible (‘cosmic conspiracy’), most philosophers
conclude that the empirical violation of Bell inequalities implies that local factorisation
fails.” And since local factorisation states the factorisation of the hidden joint probabil-
ity distribution into local terms, the failure of local factorisation indicates a certain kind
of non-locality, which is specific to the quantum realm—hence ‘quantum non-locality’.

In order to make the logical structure clear let me note the Bell argument in an
explicit logical form (where (I1), (I2), ... indicate intermediate conclusions). Here and
in the following I shall use the Wigner-type derivation of Bell inequalities because, as we
will see, it is the most powerful one allowing to derive Bell inequalities from the widest
range of probability distributions:

(P1) There are EPR/B correlations: (Corr)

(P2) EPR/B correlations violate Bell inequalities: (Corr) — —(BI)

(I1) Bell inequalities are violated: —(BI) (from P1 & P2, MP)
(P3) EPR/B correlations include perfect correlations: (Corr) — (PCorr)

(I2) There are perfect correlations: (PCorr) (from P1 & P3, MP)

(P4) Bell inequalities can be derived from autonomy, perfect correlations and local
factorisation: (A) A (PCorr) A (¢F) — (BI)

(I3) Autonomy or local factorisation has to fail: =(A) Vv —(/F)
(from I1 & I2 & P4, MT)

Tocal factorisation’ is my term. Bell calls (£F) ‘local causality’, some call it ‘Bell-locality’, but most
often it is simply called ‘factorisation’ or ‘factorisability’. Bell’s terminology already suggests a
metaphysical interpretation, which I would like to avoid in this paper, and the latter two names are
too general since, as I shall show, there are other forms of the hidden joint probability which can be
said to factorise; hence ‘local factorisation’.

"Though not a majority view, there are suggestions to explain the violation of Bell inequalities by a
violation of autonomy (e.g. Price, 1994; Szabd, 2000; San Pedro, 2012). Our analysis in this paper
does not apply to these cases. We shall consistently assume that autonomy holds.
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(P5) Autonomy holds: (A)

(C1) Local factorisation fails: —(¢F) (from I3 & P5)

(P6) Quantum non-locality is the failure of local factorisation:
(QNL) :+» —(¢F) (definition)

It is obvious that the argument from (P1)—(P5) to (C1) is valid. It shows that
if autonomy holds, EPR/B correlations mathematically imply a non-locality which is
called quantum non-locality, (P6). (P6) is not a premise of the Bell argument but labels
its result with an appropriate name; it determines what quantum non-locality according
to the standard view amounts to an a probabilistic level.® It is clear that if the Bell
argument could be modified to have a stronger conclusion, the definition (P6) would
have to be adapted. What we call ‘quantum non-locality’ depends on the result of
the Bell argument. Note that defining quantum non-locality as the conclusion of the
Bell argument, the logical structure of the argument is such that quantum non-locality
only provides necessary conditions for EPR/B correlations, i.e. for being empirically
adequate. So we have to keep in mind that the analysis of quantum non-locality is not
an analysis of EPR/B correlations but of a necessary condition for them.

The core idea of my critique concerning the standard view of quantum non-locality
is that the result of the Bell argument is weaker as it could be. I do not say that the
argument is invalid nor do I say that one of its premises is not sound, I just say that the
argument can be made considerably stronger and that the stronger conclusion will allow
us to define a tighter, more informative concept of quantum non-locality: one can be
much more precise about what EPR/B correlations imply (if we assume that autonomy
holds) than just saying that local factorisation has to fail. I shall show that besides
the local classes EPR/B correlations also exclude certain non-local classes. Given this
new result, the standard definition of quantum non-locality (P6) will turn out to be
inappropriately weak, because it includes those non-local classes which can be shown to
be forbidden.

Specifically, I shall show that it is premise (P4) which can be made stronger (while
leaving the other premises basically at work). Being an implication from autonomy, per-
fect correlations and local factorisation to Bell inequalities, it is clear that we can make
(P4) the stronger the weaker we can formulate the antecedens, i.e. the assumptions to
derive the inequalities. This idea is not essentially a new one. Since Bell’s original proof
(1964) considerable efforts have been made to find derivations with weaker and weaker
assumptions. For example, one of the milestones was to show that one can derive Bell

8We should note that the term ‘quantum non-locality’ is not unambiguous. According to the definition
we use here, (P6), it refers to probabilistic facts—not to causal or metaphysical ones. Moreover,
we do not mean the specific non-locality inherent in quantum mechanics (or the true theory of the
quantum world, whatever it may be). It is clear that one could be more precise about this latter
non-locality than saying that it violates local factorisation. Rather, by ‘quantum non-locality’ here
and in the following we denote the general probabilistic fact, which follows from the violation of Bell
inequalities and which characterises any viable theory of the quantum realm. Given the standard
Bell argument this is just the failure of local factorisation.
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inequalities without the original assumption of determinism. Currently, autonomy and
local factorisation seem to constitute the weakest set of probabilistic assumptions which
allow a derivation. What will be new about my approach is to try to find alternatives to
local factorisation, which (given autonomy and perfect correlations) also imply that Bell
inequalities hold. Since local factorization is the weakest possible form of local distribu-
tions, it is clear that such alternatives have to involve a kind of non-locality, i.e. what
I am trying to show in the following is that we can derive Bell inequalities from certain
non-local probability distributions.

4. Classes of probability distributions

We can find potential alternatives to local factorisation if we consider what it is: a
particular feature of the hidden joint probability, as I shall call P(a/f|ab)). According
to the product rule of probability theory, for any of the possible hidden probability
distributions the joint probability of the outcomes (given the other variables) can be
written as a product,

P(aBlabX) = P(a|BbaX)P(B|ab)) (1)
= P(Blaab))P(albaX). (2)

Since there are two product forms, one whose first factor is a conditional probability of
«a and one whose first factor is a conditional probability of 3, for the time being, let us
restrict our considerations to the product form (1), until at the end of this section I shall
generalize the results to the other form (2).

The product form (1) of the hidden joint probability holds in general, i.e. for all
probability distributions. According to probability distributions with appropriate inde-
pendences, however, the factors on the right-hand side of the equation reduce in that
certain variables in the conditionals can be left out. If, for instance, outcome inde-
pendence holds, B can disappear from the first factor, and the joint probability is said
to ‘factorise’. Local factorisation further requires that the distant parameters in both
factors disappear, i.e. that parameter independence holds. Prima facie, any combination
of variables in the two conditionals in (1) seems to constitute a distinct product form
of the hidden joint probability. Restricting ourselves to irreducibly hidden joint prob-
abilities, i.e. requiring A to appear in both factors, there are 2° = 32 combinatorially
possible forms (for any of the three variables in the first conditional and any of the two
variables in the second conditional besides A can or cannot appear). Table 1 shows these
conceivable forms which I label by (HY) to (H$;) (the superscript « is due to the fact
that we have used (1) instead of (2)).

The specific product form of the hidden joint probability is the essential feature of
the probability distributions of EPR/B experiments. For, as we shall see, it not only
determines whether a probability distribution can violate Bell inequalites but also carries
unambiguous information about which variables of the experiment are probabilistically
independent of another. Virtually any interesting philosophical question involving prob-
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Table 1: Classes of probability distributions
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4. Classes of probability distributions

abilistic facts of EPR/B experiments depends on the specific product form of the hidden
joint probability. Hence, it is natural to use the product form of the hidden joint prob-
ability in order to classify the probability distributions. We can say that each product
form of the hidden joint probability constitutes a class of probability distributions in the
sense that probability distributions with the same form (but different numerical weights
of the factors) belong to the same class. In order to make the assignment of probability
distributions to classes unambiguous let us require that each probability distribution
belongs only to that class which corresponds to its simplest product form, i.e. to the
form with the minimal number of variables appearing in the conditionals (according to
the distribution in question).

This scheme of classes is comprehensive: Any probability distribution of the EPR/B
experiment must belong to one of these 32 classes. In this systematic overview, the class
constituted by local factorisation is (HSy) (see table 1, column IX), and if we allow that
there might be no hidden states A, we can assign the quantum mechanical distribution
to class (HY) (for mazimally entangled quantum states, noted by ‘QMwyg’) or to (HS),
respectively (for partially entangled states, noted by ‘QMpg’).” The de-Broglie-Bohm
theory falls under class (H§'), and similarly any other theory of the quantum realm has its
unique place in one of the classes. The advantage of this classification is that it simplifies
matters insofar we can now derive features of classes of probability distributions and
can be sure that these features hold for all members of a class, i.e. for all theories whose
probability distributions fall under the class in question.

The feature that we are most interested in is, of course, which of these classes (given
autonomy) imply that Bell inequalities hold. We provide the answer by the following
theorem:

Theorem 1: Given autonomy, perfect correlations and perfect anti-correlations,
a hidden joint probability implies Bell inequalities if each of the two factors
in its product form involves at most one parameter.

Before we shall comment on the theorem, let us say that its proof can be found in the
mathematical appendix. Although the proof is the core of our argument in this paper,
nothing in what follows depends on understanding its details. We should remark that
the perfect (anti-)correlations are required for letting a maximum of product forms imply
Bell inequalities.

The result of theorem 1 is remarkable. So far it has been believed that local product
forms imply Bell inequalities, but the theorem does not refer to this characteristic at
all. It just requires that an outcome may not depend on both parameters. What does
this mean? Which classes imply Bell inequalities according to the theorem? In order
to make this clear let us partition the classes into three groups, depending on which

°The typical case for EPR/B experiments is to prepare a maximally entangled quantum state (e.g.
[v) = pl+)|+) + VI =p|-)|—) with p = 1), because one wants to have a maximal violation of
the Bell inequalities. The slightest deviation from maximal entanglement (p # %), however, breaks
the symmetry of the state. The probability distribution of such partially entangled states shows a
dependence on the local setting in the second factor; they fall in class (HS).
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variables appear in their constituting product forms:'"
Local® classes: (H$y)—(HS,) (imply Bell inequalities)
each factor only contains time-like (or light-like) separated variables

Weakly non-local® classes: (H{5)—(HSg) (imply Bell inequalities)
at least one of the factors involves space-like separated variables, but none
of the factors involves both parameters

Strongly non-local® classes: (H{)-(H$Y) (do not imply Bell inequalities)
at least one of the factors involves both parameters

(Note the superscript «, which indicates that we refer to classes deriving from (1) instead
of from (2)).

Local classes involve only time-like (or light-like) separated variables in the factors
of their hidden joint probability. When a product form is local, none of the outcomes
depends on its distant parameter, so none of the outcomes depends on both parameters—
hence, according to theorem 1, Bell inequalities follow. This is a well-known fact.

The surprising consequence of theorem 1 is that even certain non-local classes imply
Bell inequalities. We have called those non-local classes, which imply Bell inequalities,
‘weakly non-local®’ (in contrast to strongly non-local® ones, which do not). According to
weakly non-local® classes, at least one of the factors in the product form involves space-
like separated variables, but none of the factors involves both parameters. So weakly
non-local® classes do fulfil the criterion of theorem 1, which means that they imply Bell
inequalities, although they involve non-local dependences. For instance, the outcomes
may depend on their distant parameters if they do not depend on their local one,

P(aflabA) = P(albA)P(Blar). (H3)
Or an outcome may depend on the other outcome,

P(aflab)) = P(a|Bar)P(B[bA), (Hfs)
or both of these non-localities may occur,

P(aflab)) = P(a|BbA) P(BlaX). (H5)

Our proof of theorem 1 shows that all these product forms imply Bell inequalities, be-
cause none of its factors involves both parameters. From the perspective of the standard
view this result is surprising because here we have cases where (as we shall show in the
second part) parameter dependence or outcome dependence or both hold, and still Bell
inequalities are implied. We emphasise that the proof of theorem 1, which shows that
besides local theories also weakly non-local® ones imply Bell inequalities, is the source
of all new consequences we shall derive in this paper.

10Column VIII in table 1 introduces an even finer partition of the classes, which, however, is only relevant
for the proof of theorem 1. We shall not comment on it in the main text.

10



5. A stronger Bell argument

As soon as there is a dependence on both parameters in at least one of the factors of
the product form, which is how we have defined strongly non-local® classes, one cannot
derive Bell inequalities from the product form any more. For each of these product
forms one can easily find examples of probability distributions which do wviolate Bell
inequalities. Thus, strongly non-local® classes do not imply Bell inequalities, because
some distributions in each of the classes violate them. This is, however, not to say
that probability distributions in those classes necessarily violate Bell inequalities. On
the contrary, one can as well find probability distributions of that form, which obey
Bell inequalities. So depending on both parameters in one of the factors is only a
necessary condition for violating Bell inequalities; it is not a sufficient one. Sufficient
criteria to violate Bell inequalities would have to involve conditions for the strength of
the correlations. As we have said in the introduction, mutual information between two
variables is a measure for how strong the correlation between them is, so the information
theoretic works which derive numerical values for how much mutual information has to
be given in order to violate Bell inequalities, provide an answer to that question (see
Maudlin 1994, ch. 6 and Pawlowski et al. 2010).

To sum it up: as opposed to what the standard discussion suggests, it is not true
that local factorisation (and the other local product forms) are the only product forms
which allow deriving Bell inequalities. Rather, we have found that 18 of the 32 logically
possible classes imply Bell inequalities if autonomy (and perfect (anti-)correlations) hold,
among them 14 non-local classes. Column VII of table 1 indicates which classes imply
Bell inequalities and which do not (‘C(BI)’ means necessarily, Bell inequalities hold).

5. A stronger Bell argument

This consequence from theorem 1, that one can derive Bell inequalities also from certain
non-local product forms, enables us to strengthen premise (P4) in the Bell argument.
We can now write:

(P4’) Bell inequalities can be derived from autonomy, perfect correlations, perfect
anti-correlations and any local® or weakly non-local® class of probability
distributions:

(A) A (PCorr) A (PACorr) A ( i; (Hf‘))} ~ (BI)

=15

Compared to (P4), we have made two changes. First, we have replaced local factorisa-
tion in the antecedent by the disjunction of the local® and weakly non-local® classes
(including local factorisation (H$y)). This makes the antecedent of (P4’) weaker than
that in (P4) and, hence, the argument stronger. Second, we have added the condition
that there are perfect anti-correlations (PACorr), since certain weakly non-local® classes
require them for the derivation. This additional assumption however does not weaken
the argument since the perfect anti-correlations follow from the EPR/B correlations (as
the perfect correlations do). We just have to modify premise (P3) to

11



5. A stronger Bell argument

(P3’) EPR/B correlations include perfect correlations and perfect anti-correlations:
(Corr) — (PCorr) A (PACorr)

Changing these two premises has a considerable effect on the Bell argument. Instead
of the standard conclusion (C1), that the violation implies the failure of local factorisa-
tion, by the modified argument from (P1), (P2), (P3'), (P4) and (P5), we arrive at the
essentially stronger conclusion:

(C1’) Both local® and weakly non-local® classes fail:

32
(A -m)
i=15
While the original result, the failure of local factorisation, implied that all local® classes
fail (because the other local classes are specializations of local factorisation), the new
result additionally excludes all weakly non-local® classes.

Our considerations leading to this new result of the Bell argument rest on the fact
that we have found alternatives to local factorisation from writing the hidden joint
probability according to the product rule (1) and conceiving different possible product
forms (table 1). However, we can as well write the hidden joint probability according
to the second product rule (2), and similar arguments as above lead us to a similar
table as table 1, whose classes, (Hf )f(H§2), differ to those in table 1 in that the out-
comes and the parameters are swapped. For instance, class (Hf6) is defined by the
product form P(af|abA) = P(B|ab))P(ala)) in contrast to (Hfy), which is constituted
by P(af|ab\) = P(«a|BaX)P(B[bA). Note that this new classification is a different par-
tition of the possible probability distributions. Any probability distribution must fall
in exactly one of the classes (HY)—(HS,) and in exactly one of the classes (H? )7(H§2)
Analogously to theorem 1 one can proof for the new partition that the local® and weakly
non-local? classes imply Bell inequalities as well, so that we can reformulate (P4) as:

(P4") Bell inequalities can be derived from autonomy, perfect correlations, perfect
anti-correlations and any local®, weakly non-local®, local® or weakly non-
local? class of probability distributions:

32 32
[(A) A (PCorr) A (PACorr) A ( \ @) v\/ (Hf))] — (BI)

=15 =15

Then we can formulate an even stronger Bell argument from (P1), (P2), (P3), (P4")
and (P5) to

(C1") All local®, weakly non-local®, local® and weakly non-local” classes fail:

32 32
(AmeAwﬂg

=15 =15

12



5. A stronger Bell argument

This is the conclusion of the new stronger Bell argument. It takes the usual result
from any kind of non-locality (the mere failure of local factorisation) to a more specific
one (namely exclusive the weakly non-local® and weakly non-local® classes). Stating
which classes are excluded, the result formulated here is a negative one. But it is easy
to turn it into a positive formulation: since our scheme of logically possible classes is
comprehensive, the failure of all local® and weakly non-local® classes is equivalent to
the fact that one of the strongly non-local® classes, (H{)—(H{y), holds. Analogously,
if a probability distribution is neither local® nor weakly non-local?® it must be strongly
non-local®, i.e. belong to one of the classes (H? )—(Hf 1)- Therefore, equivalently to (C1”)
we can say:

(C1”) One of the classes strong non-locality® and one of the classes strong non-
locality” has to hold.

14 14
(\/(H?) A \/<H?>>

i=1 i=1

This is the positive conclusion of the stronger Bell argument in terms of classes.
Finally, we can formulate the same result in terms of which features the hidden joint
probability must have. Let us define the following concept:

Probabilistic Bell Contextuality (PBC) holds if and only if according
to each product form of the hidden joint probability P(af|ab)) at least one
of the outcomes depends probabilistically on both settings.

Then, equivalently to (C1”) or (C1”), we can say:
(C1"") Probabilistic Bell Contextuality holds.

(C17), (C1") and (C1™) are equivalent conclusions of the stronger Bell argument.
Since in section 3 we have seen that the result of the original Bell argument defines
what we call quantum non-locality, it is clear that given these new results we have to
adapt the definition appropriately. It simply becomes implausible to stick to the old,
looser definition including weakly non-local classes, given that we now know that we
have to exclude them. Quantum non-locality cannot any more be regarded as the failure
of local factorisation. Rather, with the new result of the Bell argument we can be much
more precise about what it amounts to on a probabilistic level and re-define it as:

(P6’) Quantum non-locality is Probabilistic Bell Contextuality.

Of course, using (C1”) or (C1”) instead of (C1””) one can as well have equivalent
formulations in terms of classes.

According to the logic of the Bell argument, we have noted in section 3, quantum
non-locality is a necessary condition for EPR/B correlations and their violation of Bell
inequalities. Since the logical structure of the argument has not essentially changed,
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this is still true for the new result. Furthermore, we now know that the new concept
of quantum non-locality is not sufficient for EPR/B correlations because we have seen
that there are strongly non-local distributions which do not violate Bell inequalities.
On the other hand, since we have also found that all strongly non-local classes include
distributions which violate Bell inequalities and reproduce EPR/B correlations, we can
say that on a qualitative level, which only considers the product forms of the hidden
joint probability, i.e. probabilistic dependences and independences, we cannot improve
the argument any more. It is impossible to reach a stronger conclusion than (C1”) by
showing that we can derive Bell inequalities from still further classes. For if my argument
is correct, there are no classes left which in general may imply Bell inequalities. Any
future characterisation of quantum non-locality which is more detailed must involve
reference to the strengths of the correlations in the strongly non-local classes.!! In this
sense, my new concept of quantum non-locality, although not being sufficient for EPR/B
correlations, captures their strongest possible consequences on a qualitative probabilistic
level.

6. Discussion

Why has this stronger consequence of the Bell argument, that we have derived, been
overlooked so far? Obviously, it has wrongly been assumed that local factorisation is the
only basis to derive Bell inequalities, and the main reason for neglecting other product
forms of hidden joint probabilities might have been the fact that, originally, Bell in-
equalities were derived to capture consequences of a local worldview. The question that
shaped Bell’s original work clearly was Einstein’s search for a local hidden variable the-
ory and his main result was that it is impossible: locality has consequences which are
in conflict with the quantum mechanical distribution—one cannot have a local hidden
variable theory which yields the same predictions as quantum mechanics. Given this
historical background, the idea to derive Bell inequalities from non-local assumptions
maybe was beyond interest because the conflict with locality was considered to be the
crucial point; or maybe it was neglected because Bell inequalities were so tightly as-
sociated with locality that a derivation from non-locality sounded totally implausible.
Systematically, however, since it is now clear that the quantum mechanical distribution
is empirically correct and Bell inequalities are violated, it is desirable to draw as strong
consequences as possible, which requires to check without prejudice whether some non-
local classes allow a derivation of Bell inequalities as well—and this is what we have
done here.

My argument resolves two common misunderstandings in the debate about quantum
non-locality. First, in the discussion Bell inequalities are so closely linked to locality
that one could have the impression that Bell inequalities are locality conditions in the
sense that, if a probability distribution obeys a Bell inequality, it must be local. Of

" Maudlin (1994, ch. 6) and Pawlowski et al. (2010) characterise quantum non-locality in terms of
information. Since Shannon mutual information is a measure for the strength of correlations between
variables, these approaches provide a more detailed analysis in the sense described.
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course, Bell’s argument never really justified that view, for the logic of the standard Bell
argument is that local factorisation (given autonomy and perfect (anti-)correlations)
is merely sufficient (and not necessary) for Bell inequalities. Maybe the association
between Bell inequalities and locality might have arisen from the the fact that up to
now local factorisation has been the only product form which was shown to imply Bell
inequalities. Given only this information, it was at least possible (though unproven)
that the holding of Bell inequalities implies locality. However, since we have shown
that weakly non-local classes in general imply Bell inequalities and since the simulations
show that even some strongly non-local distributions can conform to Bell inequalities, it
has become explicit that this is not true. Not all probability distributions obeying Bell
inequalities are local. So if a probability distribution obeys a Bell inequality it does not
have to be local.

Second, sometimes it has been said that the violation of Bell inequalities by EPR/B
correlations implies that there cannot be a screener-off for the correlations (e.g. van
Fraassen, 1989). Table 1 shows that this is not true either. Among the strongly non-local
classes there are classes according to which « is screened-off from 3 (namely all classes
with the value 0 in column II). Consider for example class (Hg) for which the product
form reads P(af|ab\) = P(a|ab\)P(Blab)). Here we have it that the conjunction
of a, b and A screens the correlation off. Including the distant parameter for both
outcomes, this is of course not a local screener-off. But that there can be a screener-off
for the correlations, although non-local, shows that it is not true saying that EPR/B
correlations disprove Reichenbach’s Common Cause Principle (or the Causal Markov
Condition). This claim would only be true if one excludes non-local screener-offs by
adding the premise of locality, which, however, would be odd, because the violation of
Bell inequalities shows that we cannot avoid a non-locality anyway. Of course, the true
theory of the quantum realm might in fact have a distribution which does not screen-off,
but to argue for that one needs further assumptions; this claim is not in general implied
by the violation of Bell inequalities.

Most importantly, my argument points out that the discussion about the consequences
of Bell’s theorem so far has been based on results which—though not wrong—are weaker
than they could be. Capturing all non-local classes the standard concept of quantum
non-locality (the failure of local factorisation) includes classes which we have found to be
compatible with Bell inequalities (weakly non-local classes). In this sense the standard
concept s inappropriately weak. This is not to say that the discussion about Bell’s
theorem and its consequences has to be rewritten completely. The main result of Bell’s
theorem is that there must be a non-locality of some kind and this insight is well captured
by the standard concept. All results which are based on the mere existence of a non-
locality are save. However, if one explores deeper into the nature of this non-locality it
might matter, whether one assumes the standard concept or starts from our stronger
result. One example might be a probabilistic analysis of quantum non-locality in terms
of pairwise independences. Jarrett (1984) analysed the standard concept of quantum
non-locality, the failure of local factorisation, as what today usually is called ‘outcome
dependence or parameter dependence’, which triggered a large discussion about which
of the two dependences are realised, which of them is compatible with relativity, what
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each means in causal terms, etc. Given our new argument, however, we see that Jarrett’s
analysandum is too weak. It is to be expected that a similar analysis of our new stronger
concept yields different and more informative results.

A precise analysis of the new concept of quantum non-locality will be work for future
investigations. However, without providing a detailed analysis here, we can already say
that Jarrett’s result ‘outcome dependence or parameter dependence’ is at least highly
misleading. According to our stronger result one cannot avoid that an outcome in some
sense depends on its distant parameter. So contrary to what Jarrett’s result suggests,
one cannot avoid a dependence on the distant parameter even if the outcomes depend on
another. Quantum non-locality necessarily involves a dependence on both parameters.
We should stress, however, that this is not to say that parameter dependence in the
usual sense has to hold. Probabilistic dependences between the same variables differ
if they hold conditional on different sets of variables. Parameter dependence as it is
usually defined in the debate is the dependence of an outcome on its distant parameter
given a very specific set of other variables (namely given the local outcome and the
hidden state). The parameter dependence which is required for quantum non-locality
need not be conditional on that set of variables. In fact there are two ways in which a
product form can depend on both parameters: either in the first or either in the second
factor. A detailed analysis reveals that only a dependence on the distant parameter in
the second factor implies parameter dependence in the usual sense. A dependence in the
first factor implies a different kind of parameter dependence, which additionally involves
the other outcome in the set of conditional variables—and this is a totally different kind
of parameter dependence.

Finally, we should note that there is another approach to quantum non-locality whose
results seem to converge with ours. Maudlin (1994, ch. 6) examines the quantum non-
locality not via Bell’s theorem, but directly investigates the EPR/B correlations by
information theoretic methods. He proves that at least one of the outcomes must de-
pend on information about both settings. Since (Shannon mutual) information implies
correlation, it seems that Maudlin’s claim is in accordance with our results. On the
one hand this seems to confirm our findings. Two different methods yielding the same
results are good evidence for the stability of a claim. On the other hand, at this point
of the analysis we can only say that the two approaches agree in the rough sense we
have stated. Whether they do agree in their details would require further investigation.
The crucial point is the one just mentioned that a precise claim about a dependence
of an outcome on its distant parameter would have to state conditional on which other
variables the dependence holds. Since the product forms of the hidden joint probability
are explicit probabilistic statements one can make these facts precise from my results.
It is not clear, however, if one can make them precise from Maudlin’s. Having the exact
conditional dependences might, for instance, be important for causal inference, which is
very sensitive to the exact probabilistic dependences that are present in a given situation.

To sum it up: in this paper we have considerably strengthened Bell’s theorem. We
have given a comprehensive overview of the possible types of probability distributions,
which can describe EPR/B experiments (table 1). The overview has revealed that one
can derive Bell inequalities not only from local theories but also from a large range of
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non-local ones, which we have called weakly non-local. This has enabled us to formulate
a stronger Bell argument than usual to exclude local and weakly non-local theories of the
quantum world. The argument has three immediate consequences. First, the argument
makes explicit that Bell inequalities are mot locality conditions because it shows that
weakly non-local theories imply the inequalities. Second, the overview of the possible
probability distributions makes explicit that the violation of the inequalities does not
necessarily imply that there is no screener-off for the correlations. There are distribu-
tions according to which there are non-local screener-offs. Third and most importantly,
since the result of the Bell argument defines what we appropriately call quantum non-
locality, this new result yielded a tighter, more informative concept of quantum non-
locality, which describes more precisely what the violation of Bell inequalities implies on
a probabilistic level. In fact, my new concept of quantum non-locality—although not
being sufficient for EPR/B correlations—captures the strongest possible consequences
of EPR/B correlations on a qualitative probabilistic level. In this sense, the standard
concept of quantum non-locality, the failure of local factorisation, is too weak, while the
new concept is an appropriate basis for future explorations of the detailed consequences
of Bell’s theorem.
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A. Appendix: Proof of theorem 1

In order to prove theorem 1 it will provide useful to partition the classes into four groups
depending on which variables appear in their constituting product forms (see table 1,
column VIII):

(i) At least one of the parameters does not appear at all: (Hf%)—-(HS;), (HS;)—(HSg),
(H3o)—(H32)
(ii) Both parameters appear separately, one in each factor: (HS;), (HS)

(iii) As (ii) but the first factor additionally involves the outcome B: (Hf), (H{s)

(iv) Both parameters appear together in at least one of the factors: (H{)—(H$,)

While group (iv) is identical to the group of strongly non-local® classes, the groups (i)—
(iii) provide a finer partition of the union of the local® and weakly non-local® classes. In
terms of the partition (i)—(iv), confirming theorem 1 means to prove that given autonomy
and perfect (anti-)correlations, the classes belonging to groups (i), (ii) and (iii) imply
Bell inequalities. Additionally, we shall show that classes in group (iv) in general do not
imply Bell inequalities.

A.1. Group (i)
Consider one version of the Wigner-Bell inequality (Wigner, 1970; van Fraassen, 1989),

P(a-Bylaibs) < Pla-Byilaibe) + Pa—B|azbs). (3)

We can write the probabilities in terms of the hidden probability distribution if we sum
over A,

a_Bylab) = ZP ~BylabA) P(Alab), (4)

and assuming autonomy (A), we can further rewrite it as

a_By|ab) = ZP By labA)P(X). (5)

It is obvious that in this form the empirical joint probability P(«—_ /4 |ab) depends on the
parameters only via the hidden joint probability P(a_f+|ab)). Hence, if a certain para-
meter does not appear in a specific product form of the hidden joint probability (group
(1)), the empirical joint probability becomes independent of this parameter. Consider,
for instance, how class (H{;), the product form of which does not involve the parameter
b,

P(aBlab)) = P(alBa)) P(Bla), (6)
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makes the empirical joint probability independent of b:

P(aBylab) = Y | Pa—|Brad)P(By]ad) P(\) = P(a_B|a). (7)
X

Inserting this empirical joint probability, which does not depend on b, into the Bell-
Wigner inequality, reveals that in this case the inequality holds trivially, just because it
has lost its functional dependence on b:'?

P(a-Bilar) < Pla-Bylar) + Pla_ By ) (8)

(HY,) implying that Bell inequalities hold is surprising because its constituting product
form is both non-local and non-factorising: B depends on the distant parameter a in
the second factor, P(]a)), and o depends on 3 in the first, P(«|Bal), i.e. A and a do
not screen-off the outcomes from another. However, very similarly, we can show that all
other classes in group (i) meet the requirements of Bell inequalities: no matter what kind
of non-localities they involve, if at least one of the parameters does not appear in the
product form, Bell inequalities hold trivially. Hence, we can conclude that if autonomy
holds (which we have used to simplify the expectation value in (5)) distributions in group
(i) imply that Bell inequalities hold:*?

WV am)| - e )
i=17-21
50—

A.2. Group (ii)

Let us now turn to distributions in group (ii). Since according to this group both para-
meters appear in the product form (one in each factor), it is clear that, contrary to
group (i), here Bell inequalities do not hold just because of the functional dependences.
However, local factorisation (HS,) belongs to this group and we know how we can de-
rive Bell inequalities with this product form of the hidden joint probability. Since the
derivation from the other class in this group, (H$,), is very similar, let me first sketch
a derivation with local factorisation, which is based on the ideas of Wigner (1970) and
van Fraassen (1989).

We proceed from the empirical fact that there are perfect correlations between the
measurement outcomes if the settings equal another:

P(aiﬂﬂaibi) =0 (10)

Similarly to (5), using autonomy and local factorisation we can rewrite the empirical

12Note that (7) even directly contradicts the empirical distribution (not only indirectly by making Bell
inequalities true), because it states that the empirical joint probability does not depend on one of
the parameters, which is wrong.

"3The sign ‘\/’ denotes a multiple disjunction, e.g. \/,_, ,,(H{) := (HY) v (H$) v ...V (HY).
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joint probability in terms of the hidden joint probability,

PlasBzlaibi) = 0 = Y P(A)P(az|ai))P(Bz|bi\). (11)
A

Since probabilities are non-negative (and we assume P(\) > 0 for all \), at least one of
the two remaining factors in each summand must be zero, i.e. for all values of ¢ and A
we must have:

[P(atlaid) =0 vV P(B-|bA) = 0] (12)
A [Plac]aid) =0 Vv P(By|bid) =0] (13)

There are two cases. Suppose first that P(a4|a;A) = 0. From there all other probab-
ilities follow as either 0 or 1:

(CE) (CE)

D pla_fan) =1 L P8y |biN) = 0 D pa_|bin) = 1
Here, ‘(CE)’ stands for ‘complementary event’ and refers to a theorem of probability
theory that the sum of the probability of an event A and of its complementary event A
is 1, e.g. P(at|ai) + Pla—|a;\) = 1.

Assume, second, that P(8_|b;, A\) = 0. Again all other probabilities are determined
to be either 0 or 1:

) pgypin) =1 Y pa_lain) =0 D plagjan) =1

In order to avoid contradiction the two cases have to be disjunct. So given a certain
measurement direction 7, the two cases define a partition of the values of A: all values
of X for which P(a4|a;A) = 0 belong to the set A(4), while all other values, for which
P(a_|a;\) = 0, belong to A(i). Note that each value of i defines a different partition.

We can use the fact that the A-partitions depend on just one parameter i to calculate
the hidden joint probability P(af|ab)) for any choice of measurement directions a;b; by
forming intersections of partitions for different parameters (see table 2). Since all values
are either 0 or 1 we have shown that determinism holds on the hidden level.

Given table 2, i.e. determinism and the composability of the A-partitions (each of
which depends on just one parameter), it is easy to show that Wigner-Bell inequalities
must hold. Consider the inequality

P(XNZ)<P(XNY)+PYNZ), (14)

which in general holds for any events X,Y, Z of a measurable space (the validity of the
inequality is obvious if one draws a Venn diagram, see (Neapolitan and Jiang, 2006)).
Assuming X = A(1), Y = A(2) and Z = A(3) gives the inequality

P(A(1) NA(3)) < P(A(1) NA(2)) + P(A(2) NA(3)). (15)

We can now express the probabilities in the inequality by the empirical probability
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Table 2: Values of the hidden joint probability

A€
ADNAG) ADNRG) AGNAG) AGNAG)
P(oy filaibj) = 0 0 0 1
P(oy p—|aibj) = 0 0 1 0
P(a_p4laibj) = 0 1 0 0
P(a_p_|aibj) = 1 0 0 0

distribution if we use the hidden joint probability from table 2, e.g.:

PO NAE) THET ST Py =
AEA(NA(2)

able 2
(tablo 2 ZP a_Bylarby)) =

A) P(

a_6+|a162) (16)

The resulting inequality is the Wigner-Bell inequality (3).

This derivation reminds us how local factorisation together with autonomy and perfect
correlations implies Bell inequalities. The other class in group (ii), (HS,), differs from
local factorisation in that the parameters are swapped: instead of a dependence of each
outcome on the local parameters it involves a dependence on the distant ones. Regardless
of the implicit non-locality it can be used to derive a Bell inequality in a very similar
way: given (H$,), instead of (11) we have

P(ofx|agb;) = ZP P(as b)) P(Bx|aiN). (17)

and by very similar arguments we arrive at a similar partition of the values of A: A(7)
denotes all values of lambda for which P(ay|b;\) = 0, while the complementary set
A(i) is defined by P(a_|b;\) = 0. If we then calculate the values of the hidden joint
probability we arrive at the very same result as in table 2—and the rest of the derivation
runs identically up to the Bell-Wigner inequality (3). Hereby we have found another non-
local hidden joint probability which implies Bell inequalities and the result for group (ii)
reads

(A)/\(PCorr)/\( \/ (H?))] — (BI). (18)

i=22,29
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A.3. Group (iii)

Up to this point one might have been surprised about how easy one can derive Bell
inequalities from product forms other than local factorisation, but that one can do it even
from classes in group (iii) is my strongest claim. These classes include both parameters,
one in each factor, so they do not trivially imply Bell inequalities as classes in group (i).
Neither, it seems, can they imply Bell inequalities in the same way as classes in group
(ii) because they additionally involve 3 in the first factor. However, they do imply Bell
inequalities, and they do it in a very similar (yet slightly more complicated) way than
classes in group (ii), if besides perfect correlations for equal settings (10) we also assume
perfect anti-correlations (PACorr) for perpendicular settings (a;b; ):

P(aiaﬁikli’bij_) =0 (19)

Let me sketch the proof for class (H;) which follows along the lines of that for local
factorisation. By autonomy and the product form of (H{y) we rewrite (10) and (19) as

Plaslub) =0 = 3 POYPlliroid) P(6rio) (20)

P(atpilaibi, ) = ZP P(ot|B+ai ) P(B+|bi, ), (21)

and again, at least one of the factors in each summand must vanish, i.e. for all values
of 7 and A (assuming P(A) > 0) we must have:

[Plas]B-aiX) =0 Vv P(6-|biA) = 0] (22)
A [Plaz|Braid) =0 vV P(B4]biA) = 0] (23)
A [Plag|Braid) =0 vV P(Bi|b;, A) = 0] (24)
A [Plaz|B—aid) =0 vV P(B-|b;, ) = 0] (25)

As above, from these conditions we can infer that all involved probabilities must be
0 or 1, depending on which of the following two cases holds.
If Play|B—a;\) =0:

D Pla_|p_an) = 1 2 P(5_[bi, N) =0
S P(ay b N =1 %) Play|Brair) = 0
) Pla_|Brain) =1 2 P(Bylbix) = 0
D pa_jbin) = 1
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If P(B_|b;\) = 0:

D p(sy i) =1 2 Pla_|Brar) =0
D Play]Bran) =1 2 P(Bafbi,2) =0
D pa_jpi N =1 ) Pla_|B_ain) =0
D play|Ban) =1

The cases are disjunct and, hence, define a partition for the values of A for each
measurement direction i: A(7) includes all values of A for which P(84|b;A) = 0, while
A(i) includes the complementary values, which make P(S_|b;A) = 0. Calculating the
hidden joint probability P(af|abA) for an arbitrary choice of measurement directions
a;b; gives us the very same result as in table 2—and again a Wigner Bell inequality
follows.

Since the derivation for class (Hjs) runs mutatis mutandis, we have shown:

(A)/\(PCOH)/\(PACOH)/\( \/ (Hg))] — (BI) (26)
i=15,16

A.4. Group (iv)

Finally, classes of group (iv) do not imply Bell inequalities. Involving both parameters
in at least one of the factors, they neither fulfill Bell inequalities by their functional
dependences nor do they admit of deriving a Bell inequality in the manner of classes in
group (ii) or (iii). In order to rule out that there are other kinds of derivations one has
to find explicit examples of probability distributions for each class in the group which
violate Bell inequalities. Requiring just any example we can assume a toy model with
only two possible hidden states (A = 1,2). Then the probability distribution P(aSab))
is determined by assigning a value to each of the 2° = 32 probabilities which conform
to the laws of probability theory (each value lies in the interval [0, 1] and all values sum
to 1). Furthermore, the values have to be chosen such that autonomy and the specific
product form of the class in question hold and that Bell inequalities are violated. I
have found appropriate distributions for each class (H{)-(H{,) by solving numerically a
corresponding set of equations. This fact, that some probability distributions of these
classes violate Bell inequalities, means that none of these classes implies Bell inequalities
in general, i.e. by its constituting product form. Of course, this does not mean that
all probability distributions in these classes violate Bell inequalities: in fact one can as
well find examples of probability distributions in each class (H{)—(H{,) which fulfill Bell
inequalities. This means that for these classes the product form alone does not determine
whether Bell inequalities hold or fail; whether they do depends on the numerical values of
the specific distribution. On the general level of the classes we can only say that classes
in group (iv) neither imply Bell inequalities nor do they imply their failure. Probability
distributions in those classes can violate Bell inequalities.
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