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1. Introduction

Most physicists and physics students understand the correspondence principle as the
requirement that the results of quantum physics go over to those of classical physics in
some appropriate limit, say of high quantum numbers, or of large numbers of quanta, or
as Planck’s constant h goes to zero. This is what one typically finds in textbooks. One
can also find such formulations by participants of the quantum revolution. For example
in his 1933 lectures published under the title Moderne Physik , Max Born cites Bohr’s cor-
respondence principle as the Grundidee of the provisorische Atommechanik prior to the
emergence of matrix mechanics. According to Born, it demands that “die neue Mechanik
für den Grenzfall großer Massen oder großer Bahndimensionen in die klassische Mechanik
übergeht.” [20, p. 67] In 1925, at the very birth of the new quantum mechanics, in “The
Fundamental Equations of Quantum Mechanics,” P. A. M Dirac characterizes the corre-
spondence principle as the requirement that “the classical theory gives the right results in
the limiting case when the action per cycle of the system is large compared to Planck’s
constant h, and in certain other special cases.”[25, p. 642] According to these formulations,
the correspondence principle functions as a constraint on theorizing.

This leaves us with a kind of puzzle. Bohr’s two fundamental postulates, the principle
of stationary states and the Bohr frequency condition,

(1) E′ − E′′ = hν,

when applied to atomic systems yield only predictions about the frequencies of radiation
emitted or absorbed in transitions between stationary states. They do not yield, on the
one hand, any predictions about the state of polarization of emitted radiation. On the
other, they do not make any predictions about the emission and absorption probabilities.
This means they say nothing about which transitions are allowed or forbidden and nothing
about the intensity of the radiation emitted from an ensemble of systems. The above
formulation of the correspondence principle as a constraint on quantum theorizing provides
for empirical content at best constraining the determination of stationary states in the limit
(of slow frequencies or large quantum numbers). It cannot milk out of the two fundamental
postulates any information about transition probabilities or polarization. Yet in the period
prior to matrix mechanics the correspondence principle was widely presumed to do just
that. As a “rational” generalization of classical electrodynamics into the quantum realm,
it served to give quantum physics predictive muscle, something that can accrue to theory
only by the annexation of substantive physical hypotheses. The puzzle then is that if the
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correspondence principle was introduced to extend the quantum theory to make predictions
not just about frequencies, but about polarization and transition probabilities as well, how
did it come to pass that the correspondence principle is now most commonly taken to
constitute a constraint on theory construction?

This also means that, in speaking of “the” correspondence principle, we must be careful
about what is to be understood. In what follows I first develop the original doctrine, or
strategy associated with Bohr’s correspondence principle before attempting to identify a
definitive formulation of the principle. In then looking for such a formulation, we’ll find
that Bohr was not uniformly consistent in stating the principle. Nonetheless, formulations
can be found that include the major predictive components of that doctrine and thus
cast the principle as making substantive assertions. I’ll then turn to a brief survey of
various “extensions” of the correspondence principle. Apart from interest in their own
right, they will lead us back to the reintroduction of the correspondence principle within
the Copenhagen school explicitly as a constraint on quantum theorizing.

2. The Core Doctrine: Transition Probabilities and Polarization

That the correspondence principle in the old quantum theory was intended to extend
Bohr’s postulates in such a way as to provide predictions about transition probabilities
and polarizations is certainly indicated by one of the terser formulations that can be found
in the literature. According to Back and Landé, in their 1925 monograph on the Zeeman
effect and the multiplet structure of spectral lines:

The correspondence principle asserts that the rate of occurrence (probabil-
ity) of a quantum jump, which is manifested by the intensity of the spectral
emission line, as well as the polarization of the emitted radiation is deter-
mined by the intensity and polarization of the “corresponding” component
oscillations [Einzelschwingungen] of the ersatz classical radiation process.
([1], p. 17)

For this to be helpful, though, one needs to know (a) what are “the ‘corresponding’ compo-
nent oscillations of the ersatz classical radiation process,” and (b) what is the determining
relation.

In order to flesh this out, consider Bohr’s address “Über die Serienspektra der Elemente”
given to the Deutsche Physikalische Gesellschaft in Berlin on April 27, 1920 [5]. Although
Bohr is supposed to have first developed the correspondence principle two years earlier in
parts one and two of On the Quantum Theory of Line-Spectra [2, 3, 4] (hereafter Q.o.L,
following Bohr), it is on this occasion that he first used the terminology Korresponden-
zprinzip. He introduces it in the context of treating the hydrogen atom.

Assume for simplicity the mass of the nucleus to be infinite in comparison to that of the
electron. Then, as a Kepler problem due to the Coulomb attraction, the latter revolves
classically with angular frequency ω around the former in an ellipse with semi-major axis
a with

(2) ω =

√
2W 3

π2e4m
, 2a =

e2

W
,
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where e is the charge and m the mass of the electron and W is the work required to remove
the electron to infinity. Bohr proceeds to use (what he calls) the Balmer formula

(3) ν =
K

n′′2 −
K

n′2 ,

where K is the Rydberg constant, as a quantization condition. Multiplying both sides by
h yields an instance of the Bohr frequency condition (1), suggesting that the energy of the
nth state is

En = −Kh
n2

.

Substituting this for W in (2) yields

(4) ωn =
1
n3

√
2h3K3

π2e4m
, 2an =

n2e2

hK

for the orbital frequency and semi-major axis, respectively, of the nth stationary state.
Now assume n′ > n′′ and τ = n′ − n′′. Then, holding τ fixed, the ratio ωn′′/ωn′ converges
to unity as n′ goes to infinity. The Balmer formula (3) can be rewritten

ν =
K

n′′2 −
K

n′2 = τK
n′ + n′′

(n′)2(n′′)2
.

When n′ and n′′ are large in comparison to their difference τ , we get from this and (4) the
approximation

(5) ν ∼ τω

√
2π2e4m

Kh3
,

where ω is the orbital frequency of one or the other of the two states.1

Now e, m, h, and K are all independently measurable physical constants. It so happens
that, to within experimental error,

K =
2π2e4m

h3
.

Thus, the radical on the r.h.s. of (5), as a matter of empirical fact, is unity, so that (5)
reduces to

ν ∼ τω.

Following Ehrenfest [27] and after him van Vleck [47], call this the frequency theorem.
Although here it follows from the ad hoc use of the Balmer formula as a quantization
condition and the experimental identity K = 2πe4m/h3, it can be derived generally from

1Bohr’s reasoning here appears to be that if n′, n′′ >> τ , then n′ and n′′ can be equated in the term

n′ + n′′

(n′)2(n′′)2

and
n+ n

n2n2
=

2

n3
.
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the usual action-angle quantization conditions for multiply-periodic systems, as Bohr did
in Q.o.L.

The physical significance is this. For any periodic motion of frequency ω (and thus for
elliptical motion in particular) the displacement x in any given direction can be represented
as a function of time by a Fourier series of the form

(6) x =
∑

Xτ cos 2π(τωt+ cτ ),

where the sum is taken over all positive integer values of τ . Classically, a charged par-
ticle undergoing such motion radiates at each of the overtones τω of the fundamental
frequency ω with an amplitude proportional to the square of Xτ . This is the ersatz radi-
ation process referred to by Back and Landé above. The component oscillations are the
overtones τω. The spectral line emitted quantum-mechanically in the transition from the
n′th to the n′′th state has the same frequency as the τth overtone of the classical ersatz
process and hence that quantum transition corresponds to the τth component oscillation of
the classical ersatz process. Since I want to distinguish between the various components of
the doctrine associated with the correspondence principle, let us call this correspondence
the correspondence mapping .

Before moving on, it should be stressed, as did Bohr, that, although one arrives at this
convergence in frequencies, the mechanisms of radiation remain utterly distinct even in the
limit of slow oscillations. Classically, a single atom radiates at all the overtone frequencies,
while quantum theoretically an atom will emit radiation at a single frequency equal to the
τth overtone corresponding to the transition from state n′ to state n′′. An ensemble of
atoms is required in the initial state n′ in order to replicate the spectrum of the classical
radiation process.

We have now given an answer to (a) above, viz., the question, what are “the ‘corre-
sponding’ component oscillations of the ersatz classical radiation process.” It remains to
address (b), viz., how is the transition probability of a quantum jump and the polariza-
tion of the emitted radiation determined by the intensity and polarization of the radiation
classically emitted by the corresponding component of the classical radiation process.

The frequency theorem leads immediately to an expectation concerning intensities. As
Bohr puts it in his 1920 Berlin address:

If we now inquire into a deeper meaning of the correspondence established,
we are naturally led to expect first that the correspondence arises not only
in an agreement of the frequencies of spectral lines determined by the two
methods, but will remain valid also for their intensities; an expectation
that is equivalent to the proposition that the relative probability of a given
transition between two stationary states is connected in an easily stated
way with the amplitude of the corresponding harmonic component of the
motion. ([5], p. 431. Emphasis in original. See also [8], p. 27.)

Assuming n′, n′′ >> τ , the easily stated connection is that of identity between probability
amplitudes and amplitudes of oscillation. In other words, for one dimension the connection
is that, the probability of a the transition from state n′ to state n′′ is proportional to X2

τ .
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For the three dimensional case, we need to consider the Fourier expansions in the y and z
directions with amplitudes Yτ and Zτ , respectively. Then the probability of the transition
is proportional to X2

τ + Y 2
τ + Z2

τ . Call this the slow-vibration hypothesis for transition-
probabilities.

Given Yτ and Zτ in addition to Xτ , the state of polarization of the classical radiation
component of frequency τω is fully determined. Bohr makes the additional assumption
that, in the same regime, the state of polarization of the radiation emitted in the quantum
transition from state n′ to state n′′ is the same as for the corresponding classical radiation.
Call this the slow-vibration hypothesis for polarization.

The slow-vibration hypotheses seem like eminently rational extensions of the frequency
theorem. There is, of course, no question of finding proofs of them, as one has for the
frequency theorem. For Bohr’s theory, as mentioned earlier, simply makes no predictions
about intensities and polarizations of emitted light in the vast regime in which n′ and n′′

are not both large with respect to their difference τ . So there is no place from which to
start. Rather, the entire point of the slow-vibration hypothesis is to provide a point of
entry to fill that lacuna. Bohr’s proposal is to start with the slow-vibration hypothesis and
then to attempt to extrapolate downward into the regime in which the frequency theorem
fails, i.e., to take the amplitudes of the Fourier components as indicative in some way of
the probabilities of the corresponding quantum transitions and the polarization of the light
thereby emitted, even if the the quantum numbers lie well below the slow-vibration range.
Call this the downward extrapolation project . How one should extrapolate downward is not
straightforward. As Sommerfeld puts it in a way that might be construed as criticism:

This determination of the intensity and polarisation is not, however, fully
unambiguous, and this fact in itself characterises it as a process of approx-
imation. In calculating the [Fourier expansion] are we to use as our basis
the conditions of the initial orbit or those of the final orbit, or, perhaps,
an intermediate orbit that is to be defined by taking the mean of both?
No answer is vouchsafed to this by the principle of correspondence. It is
easy to see in a general way, indeed, that with the asymptotic condition
[n′, n′′ >> τ ], the coefficients [Xτ ] that are obtained from the initial or final
orbit, or from an intermediate orbit must come out appreciably equal. In
the case of values of [τ ] that are comparable with [n′ or n′′], however, the
[Xτ ’s] in general become different for the initial and the final orbit and hence
a certain arbitrariness remains in applying the principle of correspondence.
([44], pp. 581–582)

Nonetheless various averaging schemes were proposed and calculations performed, most
notably by H. A. Kramers in his 1919 doctoral dissertation under Bohr [34] and later
by the American physicist Frank Hoyt [30, 31] while visiting Copenhagen as a National
Research Fellow.2 Despite a measure of empirical success, the problem of non-uniqueness
remained a thorn. As Max Born explains in his Winter 1925–1926 MIT lectures:

2van Vleck also proposed a general scheme in his 1924 paper. See [47], p. 334. Hoyt was still working
along these lines as late as October of 1925. See [32].
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By this method Kramers has succeeded in representing satisfactorily the
results of observations in certain cases. It is not satisfactory in principle
that we should not find in quantum theory, in the form here presented, a
unique determination of the intensities. This is one of the main reasons
which led us to formulate our new quantum theory, where the difficulty is
overcome. ([19], pp. 30–31).

There were, however, distinguished cases, in which the non-uniqueness problem could
be overcome and the correspondence principle gained credibility by making correct predic-
tions. These cases are ones in which the Ritz combination principle fails: certain transitions
simply do not occur. The correspondence principle identifies the reason for the “forbidden”
transition with the absence of the corresponding Fourier components. Suppose, now, in
the regime where n′, n′′ >> τ , the amplitudes Xτ , Yτ , Zτ vanish for some particular value
of τ . Then, according to the slow-vibration transition-probability hypothesis, the inten-
sity of the classical radiation emitted is identically zero, and hence the probability of the
transition from state n′ to state n′′ is identically zero, and so the transition simply cannot
occur. This result can be unambiguously extrapolated downward if the amplitudes of the
τ -th component are zero not only for the initial state, but also for the final state and all
intermediate states. As Sommerfeld explains,

In this case we shall also have no scruples in inferring the value zero of the
radiation. The principle of correspondence then becomes specialised and
condensed into a principle of selection; it forbids the occurrence of such
spectral lines the corresponding partial vibrations of which do not occur in
the series expansion. ([44], p. 82)

The simplest example is that of a Planckian oscillator. Since for each state no terms occur in
the Fourier expansion other than the term for τ = 1, the selection rule ∆τ = 1 for emission
and ∆τ = −1 for absorption follows immediately, and the frequency ν of the emitted
radiation is just the mechanical frequency ω. In Q.o.L Bohr appeals to the absorption
spectra of diatomic gases as an empirical realization of this case. The appearance in some
gases of a faint line at double the fundamental frequency is explained by assuming that
the vibrations along the axis connecting the two atoms is not strictly harmonic. (See [2]
or [4], p. 16)

More sophisticated cases involved the spectra of hydrogen subject to a constant, uniform
external field. These systems are not simply period but conditionally (or, multiply) period.
The Fourier expansions involve multiple fundamental frequencies, in this case two, call them
ω and σ:3

(7) x =
∑

Xτ,κ cos 2π[(τω + κσ)t+ cτ,κ],

and similarly for y and z, where τ and κ are summed over all integral values, positive and
negative. For the case of a magnetic field H (Zeeman effect), the effect is the superposition
of a uniform rotation of frequency σ = eH/4πmc on the original unperturbed orbit with κ

3Think of ω as governing the original elliptical motion and σ the rate of precession of the perturbed
orbit about the axis of symmetry of the field.
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restricted to −1 ≤ κ ≤ 1. The selection rule for κ is then ∆κ = −1, 0, 1 corresponding to
the splitting of the unperturbed line into the classical triplet. Moreover, the correct polar-
izations are predicted. For κ = 0, the oscillations are rectilinear parallel to the magnetic
field with frequencies τω, while for κ = ±1, the oscillations are in a plane perpendicular
to the field with frequencies τω ± σ.

For the case of a uniform electric field F (Stark effect), σ = 3eF/8π2maω and κ is
less restricted, corresponding to the proliferation of new spectral lines. Again, the correct
polarizations are given. When τ+κ is even, Bohr argues, the oscillations are linear parallel
to the direction of the field, and when odd, elliptical perpendicular to the field. (See [5] or
[8] for details.)

3. The Scope of the Principle

Thus, the correspondence principle, or should we say, the doctrine associated with it, was
not without its successes. That doctrine, we found, has a number of distinctly identifiable
components:

• the frequency theorem
• the correspondence mapping
• the slow-vibration transition-probability hypothesis
• the slow-vibration polarization hypothesis
• the downward extrapolation project
• the selection principle(s)

Which among these, or rather, which subset of these, constitutes the correspondence prin-
ciple?

Keep in mind that I judiciously selected the Back and Landé quote so as to motivate
coverage of all these components of the doctrine. But what right do we have to take Back
and Landé to be any more authoritative than Born or Dirac? Can we not find a concise and
definitive formulation in Bohr’s writings? Unfortunately, Bohr was not always clear nor
necessarily consistent. There are passages in which the correspondence principle appears
to be no more than a selection principle. For example,

. . . the possibility of the occurrence of a transition accompanied by radia-
tion, between two states . . . is conditioned by the presence of certain har-
monic components in the expression [for] the electric moment of the atom.
. . . We, therefore, call these the “corresponding” harmonic components in
the motion, and the substance of the above statement we designate as the
“Correspondence Principle” for multiply periodic systems. ([11], p. 22; [13],
479)

This has lead, for instance, A. Bokulich to insist that Bohr intended it to be no more
than a selection principle. (See [16], pp. 81–94 and [17]) But such a selection principle
is just a special case of zero probability, and elsewhere Bohr connects the correspondence
principle explicitly with both probabilities and polarizations. In the 7th Guthrie lecture,
given March 24, 1922, he says:
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This law, which has been called the “correspondence principle,” states that
the occurrence of each transition between two stationary states accompa-
nied by emission of radiation is correlated to one of the constituent har-
monic oscillations into which the electric moment of the atom considered as
a function of time can be resolved, to the extent that the probability of the
occurrence of a transition shall depend on the amplitude of the correspond-
ing harmonic oscillation of the atom, in such a way that in the limit when
the quantum-number is large, the intensity of the emitted radiation in unit
time in the mean shall be the same as that which would follow from the
classical laws of electrodynamics. A similar connection with the classical
theory will be exhibited by the polarisation of the emitted radiation. If, for
instance, the corresponding harmonic oscillation in all states of the atom
is a linear vibration or a circular rotation, the radiation will have the same
constitution as that which on the classical theory would be emitted by an
electron executing harmonic motion of that type. ([9], p. 284; [13], p. 428)

Moreover, Kramers’ contribution to the 1923 Die Naturwissenschaften festschrift for Bohr
claims to speak on Bohr’s behalf as follows:

The occurrence of a transition between two stationary states accompanied
by the emission of radiation is uniquely correlated with one of the har-
monic oscillations into which the motion of the particle (or more precisely:
the electric moment of the atom) can be decomposed. This correlation re-
quires that the probability for the occurrence of a transition depends on the
amplitude of the corresponding harmonic component, and in fact so that
in the region of large quantum numbers the intensity per unit time of the
emitted radiation will be the same on average as would be expected accord-
ing to classical electrodynamics. The polarization of the emitted radiation
will display a similar analogy with classical electrodynamics. Thus, if the
corresponding harmonic oscillator in all states is a linear oscillation parallel
or a circular rotation perpendicular to a fixed line, then the radiation will
possess the same properties as that which is emitted by an electron which
executes an oscillation of this type. ([35], p. 552)

Kramers adds to this a remarkable footnote:
It seems most appropriate to construe the correspondence principle thus
formulated as a postulate (or axiom), in complete analogy with Bohr’s two
fundamental postulates.

It is pretty clear that the correspondence principle thus formulated is more than just
a selection principle. And construed as a postulate that yields substantive predictions
beyond what is entailed by Bohr’s first two postulates, it does not appear to have the form
of a constraint on theory construction.4

4According to Bohr and Kramers, the correspondence principle also did work in perturbation theory and
the construction of the shell structure for the periodic chart. For the former, see [3] and [5]. For the latter,
see [6], [7], and [35].
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4. Some “Extensions” of the Correspondence Principle

The correspondence principle thus understood provides a guide to the determination
of transition probabilities for spontaneous emission and the polarization of the emitted
radiation. But what about transitions in the opposite direction that do not involve radi-
ation, such as inelastic collisions in the bombardment of atoms with electrons, as in the
Frank-Hertz experiment?5 How is one to estimate the transition probabilities?

For such processes, Pauli introduced, in his doctoral dissertation under Sommerfeld [41],
what he called a “mechanical” correspondence principle, which he attempted to craft in
analogy with Bohr’s electrodynamical principle. There Pauli starts with the observation
that, just as classical electrodynamics breaks down, so should classical mechanics applied
to inelastic collision processes. For classically, the amount of energy ∆E that an electron
can give up to its target system varies continuously, while quantum mechanically this
is impossible, since the target system can exist only in a discrete manifold of stationary
states and consequently ∆E can take on only discrete values. In the limit of large quantum
numbers, however, the energy states converge toward a continuum, and thus one should
expect the laws of classical mechanics to hold in the limit. This can be taken to be the
analogue of the frequency theorem, but it is something assumed, not proven. Nonetheless,
it is like the frequency theorem it that the agreement holds only for ensembles, and not
for individual transitions. For the analogue of transition probabilities for high quantum
numbers Pauli proposes that one take the averages of the classical outcomes when one fixes
the initial energy and varies the other initial conditions (direction of the initial velocity,
distance of the trajectory asymptote from the center of gravity of the atom, phase of
the motion of the electron and of the atom bombarded). These are to be regarded as
uncontrollable. For smaller quantum numbers, one “extrapolates” downward: classical
mechanics “must give an (at least approximate) measure for the relative frequency of the
various possible quantum energetic inelastic collisions (with a given initial energy for the
colliding electron).” ([41], p. 187. Emphasis in original.) If a particular collision process is
classically impossible, then one has a selection rule forbidding that transition.

Pauli realizes that given the current state of the art this is predictively pretty weak.
Nonetheless he holds out hope that eventually some of the calculational difficulties can
be overcome. At least one gets some definite consequences by considering that the law
of reversibility must continue to hold. Thus, for every quantum mechanical process, the
time-inverse process must also be possible. This leads to so-called “collisions of the second
kind” postulated by Klein and Rosseland [33] in Copenhagen on the basis of considerations
concerning thermal equilibrium between atoms and free electrons. For example, an electron
should be able to experience an increase in velocity when striking an atom in an excited
state which decays into a lower energy state.

The existence of such inelastic collisions was confirmed [24] but P. Tartakowsky subse-
quently took Pauli to task for the manner of his formulation of the “mechanical” corre-
spondence principle [45]. According to Tartakowsky, Pauli’s point of departure was the

5Also, what about electron capture under bombardment with the the emission of X-rays? For Kramers’
attempt to calculate transition probabilities in this case, see [36].
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requirement that the results of quantum theory and classical mechanics must coincide in
the case of large quantum numbers. That, however, was not the complaint. It was rather
that Pauli did not establish a correspondence, in Bohr’s sense of the word, which, for
Bohr, was specifically between the components of the Fourier expansion of the motion in
the stationary state and the radiation emitted in quantum jumps. In other words, Pauli
had not established an analogue for what I earlier called the correspondence mapping . So
Tartakowsky took it upon himself to establish an analogous correspondence relation, in
this case, between the Fourier expansion for the motion and the energy given up by one
system to another in the absence of emission. Again, the self-described point of departure
is the requirement that the results of quantum theory and classical mechanics agree in the
realm of high quantum numbers. Tartakowsky then takes up the problem, not of electron
scattering, but of a radiationless energy exchange between two quantum systems A and
B that does not result in the production of additional kinetic energy, in other words for
which we have the energy exchange relation

EA − E′
A = −(EB − E′

B),

where the primed quantities refer to final states. He makes the connection with the Fourier
expansions by introducing what he calls a hidden coupling mechanism [verborgenen Kop-
pelungsmechanismus], the details of which, however interesting, we do not have time for.
The important point here is that, although Tartatowsky begins with the constraint that
the results of quantum theory go over to those of classical in the limit of large quantum
numbers, he does not take this to be the principle itself, but instead only a preliminary to
the formulation of a “mechanical” correspondence theorem.

Contrast this with the tenor of the first part of Van Vleck’s two part 1924 paper, [47]
which bears the subtitle “Some Extensions of the Correspondence Principle.” There he
makes it clear that, in the case of emission, whereas the asymptotic connection between
quantum and classical physics for frequencies is a mathematical consequence of the quan-
tum conditions,6 the existence of an analogous relation for intensities is a hypothesis. This
is what I referred to above as the transition-probability hypothesis for slow vibrations. Van
Vleck calls it the correspondence principle for emission and formulates it “analytically” by
explicitly calculating the Einstein spontaneous emission probability (A-coefficient) in the
classical limit as a function of the amplitudes and frequencies of the Fourier expression for
the motion of the particle. From this he derives a correspondence principle for absorption,
viz., that in the limit of high quantum numbers the energy extracted from a non-zero radia-
tion field as determined by the Einstein B-coefficients for absorption and induced emission
agrees with the classical prediction for absorption. Also demonstrated is a second exten-
sion of the correspondence principle to a correspondence principle for orbital distortions:
in the limit of large quantum numbers the orbital distortion resulting from a transition be-
tween nearby stationary states agrees with that which would follow as a result of classical
radiation involving only the frequency component associated with the transition.

6Including, of course, the Bohr frequency condition.
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You can see from this that in extending “the” correspondence principle, van Vleck fo-
cuses on the behavior of quantum systems in the limit of large quantum numbers. He
does consider briefly the downward extrapolation project, but not under the rubric of a
correspondence principle. Selection rules do not come under discussion.7 And there is no
overt construction of a correspondence mapping. This is not to say these are beyond his
ken. For he spells these out explicitly in his 1926 monograph length report for the National
Research Council [48].8 Rather, they do not serve the development towards the principal
result, which is to show that Kramers’ generalization of Ladenburg’s quantum dispersion
formula goes over into the classical formula in the limit of large quantum numbers “not
just when the quantized system is a linear oscillator, but also when it is the most general
type of non-degenerate multiply periodic orbit.” (p. 345) In the 1926 report, he calls this
the correspondence principle for dispersion.

5. The Correspondence Principle as Constraint

That the formula goes over to the classical formula in the limit is claimed by Kramers
in the letter to Nature, written in March of 1924, in which he first introduced it.

It is, however, possible to establish a very simple expression . . . , which
fulfills the condition, claimed by the correspondence principle, that, in the
region where successive stationary states of an atom differ only compara-
tively little from each other, the interaction between the atom and the field
of radiation tends to coincide with the interaction to be expected on the
classical theory of electrons. ([37], p. 673)

But note that here we do not have the framing of the proposition that the quantum
formula goes over to the classical in the region of high quantum numbers as an extension
of the correspondence principle. Rather, that it do so, and presumably any other law
about the interaction of radiation and matter, is taken to be a requirement of the original
correspondence principle. Here we have the implementation from within the Copenhagen
school of a new significance for “the” correspondence principle. Whereas just a year earlier
Kramers had characterized the correspondence principle as something that could be viewed
as a fundamental postulate alongside the the frequency condition and the postulate of
stationary states, it is now taken explicitly to function in a different capacity, viz., as a
constraint on further theory construction. To my knowledge, this is the first appearance
in the literature of “the” correspondence principle as explicitly imposing a constraint.

Its use as such caught on immediately, especially in the literature on dispersion. The
exchange of letters in Nature between Gregory Breit and Kramers that August is premised
on the use of the correspondence principle in this capacity [23, 38]. Born, in his “Über

7He uses the selection rule for the harmonic oscillator as a consequence of “the correspondence principle”
but does not pause to consider which, among those in his catalogue of correspondence principles, it comes
from.

8There he continues with the strategy of cataloguing correspondence principles. The reader should not
find it remarkable if some of these map onto components of the doctrine associated with the correspondence
principle outlined above.
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Quantenmechanik” of 1924, comments concerning his quantum formula for perturbation
energy that the first of its two most important properties is that “it goes over for large
nk (large in relation to τk) into the corresponding classical formula, thereby satisfying the
correspondence principle.” ([18], p. 389; [46], p. 192) And again, “the [Kramers dispersion]
formula in the limit of large quantum numbers (nk large compared to τk) goes over into
the corresponding classical formula, as required by the correspondence principle.” ([18],
p. 390; [46], p. 193) Not surprisingly in their joint paper on dispersion of 1925 Kramers and
Heisenberg write, “In particular the principle requires that in the region of high quantum
numbers the actual properties of the atom can be described asymptotically with the help
of the classical laws of electrodynamics.” ([39], p. 684; [46], p. 226) Even Bohr, in a paper
dated November 1, 1924 on a different topic — the polarization of fluorescent light —
follows Kramer’s lead. Despite the absence in degenerate systems of a direct connection
between atomic motion and polarization, which is to be taken as analogous to the lack of a
direct relation between atomic motion and spectral frequencies, “the asymptotic agreement,
demanded by the correspondence principle, of the consequences of the classical theory and
the quantum theory in the limit, where neighboring stationary states deviate relatively
little from one another, is kept.” ([12], p. 1117)

6. Conclusion

I do not mean to suggest that following Kramers’ letter to Nature, which appeared in
May 1924, all subsequent uses of the term “correspondence principle” suddenly fell in line
with this apparently new usage. One has only to consider the quote from Back and Landé’s
1925 monograph above. Nor does there appear to be any hint of a sensed tension between
the use of the principle as constraint vs. postulate. Earlier in the letter in which Kramers
first invokes the principle as constraint, he cites it in its traditional capacity:

On Bohr’s principle of correspondence, the possibility for such transitions is
considered as being directly connected with the periodicity properties of the
motion of the atom, in such a way that every possible transition between
two stationary states is conjugated with a certain harmonic oscillating com-
ponent in the motion. ([37], p. 673; [46], p. 178)

W. Kuhn in early 1925 writes concerning his sum rule:
In the region of high quantum numbers, the above theorem on the p-
summation can be directly understood as a requirement of the correspon-
dence principle. In the region of low quantum numbers, in case the initial
assumptions made about dispersion should prove correct, our rule repre-
sents a strengthening [Verschärfung]9 of the correspondence principle . . . .
([40], p. 410 [46], p. 255.)

Of course, it takes only a minor adjustment in viewpoint in order to regard, e.g., the slow-
vibration transition-probability hypothesis not as “something we are lead to expect” as a

9Heisenberg in his 1925 paper on polarization and fluorescence [28] also proposes a Verschärfung of the
correspondence principle.
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matter of inductive generalization from the frequency theorem, but rather as a constraint
to be imposed on any theoretical attempt to calculate transition probabilities; or in order
to see the frequency theorem as proof that the Bohr frequency condition satisfies the
constraint on predicted frequencies. Thus, the “claim” of the correspondence principle
when the theory is extended to other aspects of the interaction between radiation and
matter.

It is important, though, not to lose sight of the downward extrapolation project, applied
across the board, and thus the introduction of empirical content beyond mere constraint,
as part of what “the” correspondence principle involved. We have seen this in averaging
schemes, selection principles, and polarization predictions. There was also a tradition
dating back to Sommerfeld [42] of exploiting a classical-quantum correlation in the guise
of replacing differential quotients with quotients of differences, a procedure referred to by
Born and Jordan as a korrespondenzmäßige Umformung .10 ([22], p. 870; [46], p. 290)
Born and Jordan also refer to the application of an ingenious correspondence consideration
[geistreiche Korrespondenzbetrachtung ] ([22], p. 859; [46], p. 278) in Heisenberg’s derivation
of the law of multiplication in his seminal Umdeutung paper [29]. Indeed, matrix mechanics
can be claimed as the ultimate fulfillment of the downward project. As Born, Heisenberg
and Jordan put it in their famous Dreimännerarbeit :

This similarity of the new theory with the classical theory also precludes
any question of an independent correspondence principle in addition to the
theory; rather the theory itself can be regarded as an exact formulation of
Bohr’s correspondence ideas [Korrespondenzgedanken]. ([21], p. 558; [46],
p. 322)

Without the need for any principle outside the theory, i.e., any downward extrapolations,
what is left of “the” principle is the shell of the constraint.
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