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1 Introduction

The conventional wisdom regarding the role of time in quantum theory is
this: “time is a parameter in quantum mechanics and not an operator”
(Duncan & Janssen, 2013, p. 216, original emphasis). The reason for this
is ‘Pauli’s theorem,’” a collection of results that show that (subject to a
mild restriction on the Hamiltonian) conventional quantum mechanics does
not permit the definition of a time observable, i.e. a self-adjoint operator
canonically conjugate to energy.! If one wishes to have time appear as a
genuine observable of the theory, then this is obviously a problem, called by
some “the problem of time in quantum mechanics” (Hilgevoord & Atkinson,
2011; Olkhovsky, 2011). Hilgevoord’s (2005) attempted resolution of the
problem rests on his rejection of a particular motivation that one might have
for wishing to regard time as a genuine observable. Hilgevoord’s argument is
essentially this: there is nothing problematic about time being represented
by a parameter rather than an operator since space is represented by a
parameter rather than an operator as well.

In his otherwise excellent recent historical survey Hilgevoord (2005) con-
tends that the demand that time be an observable can be traced back to a
conceptual confusion common among the progenitors of quantum mechanics,
in particular Dirac, Heisenberg, Schrodinger, and von Neumann. I will argue
that the conceptual confusion is somewhat less severe, and the motivations
somewhat more subtle, than Hilgevoord alleges. Hilgevoord claims that the
expectation of the authors of quantum mechanics that time should be an

!See Srinivas & Vijayalakshmi (1981) for a rigorous derivation of this result.



observable was due to this confusion between space and position: led by the
role of position as an observable of the theory, they were mistakenly led to
the idea that time should be observable too. He traces the source of the
confusion to the frequent use of the spatial co-ordinates (x,y, z) to denote
the spectral values of the position observable of a single particle (¢z, gy, g-)-

When presented with an operator whose spectral values appear to cor-
respond to points of space, it is natural to expect also an operator whose
spectral values correspond to instants of time. And given the expectation
of these authors that quantum mechanics would ultimately be a relativistic
theory, it is reasonable to demand of a theory set in space-time that time
and space should appear on the same footing. However, as Hilgevoord points
out, the spectral values of position are not identical with spatial points—
this correspondence is only valid for a system comprising a single particle.
In general the dimension of configuration space (and so the spectrum of the
position observable) is 3N, where N is the number of particles. Once this
confusion is made apparent and it is realized that time ¢ (a parameter) is to
be contrasted with space (z,y, z) (also parameters) the apparent asymmetry
is removed and so the justification for defining a time operator (i.e. a time
observable) is removed, or so Hilgevoord claims. This leads him to dismiss
later developments, such as the recent use of POVMs (Positive Operator
Valued Measures) to define (generalized) time observables, as conceptually
confused for the same reason (Hilgevoord & Atkinson, 2011).

Now, with regard to this particular justification for regarding time as
an operator, I agree that Hilgevoord offers an apt diagnosis: what is being
contrasted here is not time and space, but time and position. But while I
agree wholeheartedly that it would be a mistake to confuse space, time and
position in this way, I am not convinced that this was a confusion to which
many (or perhaps any) of the authors of quantum theory were prone. In-
deed, Hilgevoord (2005) acknowledges that there were other reasons which
led to the expectation that temporal properties were apt for representation
by operators. It is my view that these other reasons for defining time oper-
ators were more important to those authors—I will claim that some remain
compelling today—and thus are not so easily dismissed as resulting from a
simple conceptual error.

In this paper I will be concerned with analyzing in more detail how ideas
and expectations regarding the role of time in the theory arose and evolved
in the early years of quantum mechanics, from 1925-27. The general theme
will be that expectations which seemed reasonable from the point of view
of matrix mechanics and Dirac’s g-number formalism became implausible in
light of Dirac-Jordan transformation theory, and were dashed by von Neu-



mann’s Hilbert space formalism which came to replace it. Nonetheless, I
claim that the physical motivations behind these expectations were often
sound, and in particular I will identify two concerns that remain relevant
today. The first of these concerns Hilgevoord’s accusation of conceptual
confusion against those who seek a ‘time observable.” The crux of my argu-
ment is the idea that time observables in quantum theory need not ‘measure
time’ (as would a physical clock) but may instead serve to provide probabil-
ity measures for the occurrence of events at particular (sets of) times, just
as the position observable provides probability measures for the occurrence
of events at particular (sets of) spatial points. This provides the means to
resist Hilgevoord’s accusation of pursuing a false analogy since if ‘the’ time
observable concerns the location of an event in time, then it is no false con-
trast to draw an analogy with the position observable, which concerns the
location of an event in space (the event in question being, at first blush,
something like ‘the particle’s being here’).

Secondly, I point out Dirac’s use of an ‘extended’ classical phase space
(which includes time and energy as conjugate variables from the outset)
to define his quantum dynamics means that the corresponding quantum
variables are not subject to Pauli’s ‘no-go’ theorem (nor later related results)
and, moreover, his motivations for using this extended configuration space
are not merely relativistic. This indicates another way to avoid this ‘problem
of time:” by defining an ‘extended’ Schrodinger equation for functions of
space and time we can have a quantum theory in which time and (minus the)
energy are represented by canonically conjugate observables, as Dirac had
originally intended. I will also attempt to show how these considerations are
related: exploring the first claim (that the time of an event is an observable
quantity) leads naturally to the second (that quantum theory should be
defined on extended configuration space).

The structure of the paper is as follows. In Sections 2—4 I survey three
historical episodes in early quantum theory that are relevant to my claims.
Section 2 is concerned with matrix mechanics and the reasons behind at-
tempts to define time as an observable (i.e. a matrix) in that context, and
their later discrediting at the hands of Pauli. Section 3 tells the story of an
ill-fated (and short lived) interpretation of matrix mechanics as a theory of
‘quantum jumps,’ events occurring at definite times. Section 4 contains a
detailed exploration of the ways that time entered into Dirac’s early quan-
tum theory, arguing that his motivations for regarding time as an operator
were quite distinct from those in the matrix mechanics camp, and thus un-
touched by Pauli’s complaints. In Section 5 I make a positive argument for
the consideration of event time observables as providing legitimate grounds



for considering time operators and survey the impact of ‘Pauli’s theorem.’
Section 6 contains some details of the history of attempts to define event
time observables while avoiding these no-go results, ultimately as time shift
covariant POVMSs. I conclude in Section 6 by advocating a recent proposal
by Brunetti et al. (2010) that links the use of event time observables to
Dirac’s extended Schrodinger equation.

2 Time in Matrix Mechanics

The expectation that energy and time must form a canonically conjugate
pair arose within the matrix mechanics camp from the close relation of the
new quantum mechanics to the action-angle form of classical (Hamiltonian)
mechanics that inspired it. In Heisenberg’s famous Umdeiitung (Heisen-
berg, 1925) time plays an almost identical role in the description of the
new quantum variables as it did in the specific classical cases he sought
to re-interpret. The classical equation of motion, Hamilton’s equation in
action-angle co-ordinates (J, w), read

dw OH  dJ  OH
dt - aJ C dt - ow
The time dependence in action-angle form is particularly simple since the
canonical transformation into these co-ordinates is chosen such that J = 0
and w = vg, a constant. Thus J is time independent and w is linear in t.
This being the case, a general solution z(t) of these equations (for periodic
systems) may be Fourier decomposed into a sum over components labeled
by amplitude and phase:

m(t) — Z ZAT(Jn)e27TiTUnt7

n=—oo 7+1

with the sum over 7 = +1 serving to ensure that x(¢) is real. Thus it was
this special form of classical Hamiltonian mechanics—one in which time de-
pendence takes an especially simple form—that provided the basis of the
emerging quantum kinematics. As we can see from the position of the vari-
able v, in the above expression, the time evolution of these solutions was
entirely confined to a set of complex phases, and so it was to be in the new
quantum theory.

In the matrix mechanics of Born & Jordan (1925) kinematical quantities
are represented by Hermitian matrices whose time dependence takes the



same form,

eQTrw(nm)t; 627rw(nm)t )

p(t) = p(nm) q(t) = q(nm)

Having obtained a matrix representation of these kinematical quantities, it
follows from the relation

v(inm) =W, — Wy,

that the time derivative of an arbitrary matrix function g(pq) may be writ-
ten

g

i 1
T h T h
where W = §,,,,W,, is a diagonal matrix (pp. 288-9). Since the diagonal
form of W was critical to the validity of this relation, the major practical
difficulty of applying the new quantum mechanics to a particular system
with a classical Hamiltonian of known functional form became essentially
that of finding a basis in which the quantum mechanical energy became a
diagonal matrix.

(W = Win)g(mn)] = - (Wg — gW), (1)

By writing the Hamiltonian matrix H as a function of p and ¢ Born and
Jordan derived the following dynamical equations for quantum variables in
the same form as Hamilton’s equations in classical mechanics,?

They argued that the same relation holds for a general function g(pq) as
well, yielding the so-called Heisenberg equation of motion,

g=1[Hg - gH), @)
which immediately gave the result that H = 0, i.e. that energy is con-
served. These results formed the basis of the more detailed analysis of the
Dreimannerarbeit of Heisenberg, Born and Jordan (1925), where the prob-
lem of solving the equations of motion was reduced to the problem of finding
a transformation S of canonical variables qq, pg such that SH (qopo)S~! is
a diagonal matrix.

2See Van Der Waerden (1967, p. 49) for skepticism about the validity of the derivation.



2.1 Discussion and Postscript

There is in this formalism no reason to suppose that time could not be
represented by a matrix, and the fact that in classical mechanics the angle
w behaves very much like a time parameter is suggestive of the idea that
there should be a matrix ¢(gp) canonically conjugate to H (which, as we’ve
seen, is constant with time). Indeed, if one demands that this matrix t vary
linearly with time then (2) appears to imply that it is canonically conjugate
to energy H since

t=1= [Ht—tH] = —ih. (3)

The heuristic underlying this relation is quite different to Dirac’s motivation
for regarding time and energy as conjugates (which I turn to Section 4).
Here, the time matrix ¢ is defined as having a particular property, namely
varying linearly with time (in analogy to the classical angle variable), and it
is seen that this leads to the relation of conjugacy with H. In contrast, Dirac
kept the Hamiltonian conceptually and formally distinct from the operator
conjugate to time, as evidenced by the fact that in Dirac’s scheme it is not
energy that is conjugate to time but minus the energy.

This distinction is important to bear in mind when considering Heisen-
berg’s later analysis of the uncertainty equations where he appears to regard
the canonical pair (energy, time) as equivalent to (action, angle) (Heisenberg,
1927b, p. 66). Specifically, Heisenberg makes use of the conjugacy relation
(3), which suggests that he had this motivation in mind rather than Dirac’s,
in which case the sign is correct (contra Hilgevoord Hilgevoord (2005, p.
44)). However, as Hilgevoord reports (pp. 45-46), Heisenberg’s analysis of
the Stern-Gerlach experiment fails to elucidate this relation physically due
to several unfortunate confusions (which I will pass over). Despite this con-
fusion, Heisenberg’s paper contains another physical interpretation of the
time-energy uncertainty relation, which I address in the following section.

A more severe difficulty for the relation (3) was raised by Pauli (1933),
following up on work by Schrédinger, who had considered the uncertainty
relations for a ‘quantum clock’ embodying this canonical pair. Schrodinger
pointed out that if such a system had definite value for the time variable
then the value of its energy would be completely uncertain, a situation that
he considered “physically meaningless” (Hilgevoord, 2005, pp. 49-50). Pauli
(1933), on the other hand, argued that the equation above, which states that
H and t are conjugate variables, implies that t is the generator of shifts in
energy, just as position is the generator of shifts in momentum. Since the
shift in energy was arbitrary this implied, he argued, that the existence
of a Hermitian matrix ¢ is inconsistent with the energy H having discrete



eigenvalues, as in the case of a harmonic oscillator.

Later it was realized that this result only holds rigorously if the expo-
nentiated Weyl form of the canonical commutation relations are assumed to
hold for H and T, which is a strictly stronger condition.? In that case, the
Stone-von Neumann theorem entails that every such canonical pair is unitar-
ily equivalent to the Schrodinger representation of position and momentum,
and thus every operator that features in such a pair has the spectrum of
the real line (Prugovecki, 1971, p. 342). This conflicts with a different re-
quirement on the spectrum of the Hamiltonian operator, namely that it be
bounded from below.*

Evidently the Hamiltonian for the harmonic oscillator and free particle
obey this condition since there is a state of lowest energy in those cases,
but we might also want to impose the condition that a Hamiltonian have a
spectrum bounded from below generally as a hallmark of physical reason-
ableness. This result provides the justification for the conventional wisdom
that time in quantum mechanics is not an operator, and lies at the heart
of the difficulties with the time-energy uncertainty relation—since time and
energy are not a conjugate pair, the standard rigorous derivations of uncer-
tainty relations do not apply.’

3 The Time of a Quantum Jump

Evidently, the question of whether time and energy are conjugate variables
is closely related to the existence of a time-energy uncertainty principle.
Reading Heisenberg’s famous anschaulichen Inhalt paper today (Heisenberg,
1927b), one is struck by the centrality of the time-energy uncertainty relation
in his informal discussions of the ‘intuitive content’ of the theory. It is clear
that this relation is just as important as the position-momentum uncertainty
relation for Hesienberg’s attempt to articulate a physical interpretation of
the theory. As he was to later put it: “I wanted to start from the fact
that quantum mechanics as we then knew it [i.e. matrix mechanics] already

3Ironically, the number and phase operators of the harmonic oscillator do not form
such a pair, so that Pauli’s ‘theorem’ fails and one can construct a (periodic) time ob-
servable conjugate to the Hamiltonian. See Galindo (1984); Garrison & Wong (1970) for
a discussion of the distinction between the Weyl and Heisenberg forms and an explicit
counterexample; see Galapon (2002) for a detailed critique of Pauli’s original argument.

4See Section 2 of Srinivas & Vijayalakshmi (1981) for a detailed analysis and several
proofs of this result.

5For a recent discussion of such difficulties and attempts to surmount them see Busch
(2007).



imposed a unique physical interpretation” (Heisenberg & Pomerans, 1971,
p. 76).

Looking more closely, we see that Heisenberg’s concern was often not
with time in the abstract (i.e. on a par with space) but rather the relationship
between the energy of the system and the time of a particular event—a
so-called “quantum jump,” regarded as a real physical process. Take the
following passage:

“According to the physical interpretation of quantum theory
aimed at here, the times of transitions or “quantum jumps” must
be as concrete and determinable by measurement as, say, ener-
gies in stationary states. The spread within which such an in-
stant is specifiable is ... h/AFE, if AE designates the change in
energy in a quantum jump.” (Heisenberg, 1927a, p. 77)

This illustrates his faith that the observable content of the theory should be
fixed by theory, but also suggests the view was that these quantum jumps
took place at definite moments of time, albeit times about which we have
limited knowledge.

Moreover, Heisenberg discusses how the possibility of measuring a defi-
nite value of the energy depends on performing a measurement between the
moments at which jumps occurred.

In quantum mechanics, this behavior [of interruption by quan-
tum jumps] is to be interpreted in these terms: as the energy
is really changed by external perturbations or quantum jumps,
every energy measurement, insofar as it is to be unequivocal,
must be performed in the interval between two disturbances.%
(Heisenberg, 1927a)

The implication is that a quantum system is to be understood as having
a determinate energy at all times, but that this energy fluctuates due to
exchanges with the environment or between subsystems—quantum jumps.
This was the view he had taken in his previous paper regarding energy
exchanges between two coupled systems, which had inspired Dirac’s trans-
formation theory.” Given this view, we come to appreciate why the time-
energy uncertainty relation has such a central role for the interpretation of
the theory: since Heisenberg regarded the physical content of the theory as
corresponding to discontinuous processes of energy exchange occurring at

51 have made minor amendments to the translation here.
"See (Duncan & Janssen, 2013, pp. 177-179) for more details.



definite times, the energy-time relation was naturally of central importance
to his project of providing an intuitive grasp of the physical content of the
new mechanics.

It is also of interest that Jordan’s view at this time is very similar to
Heisenberg’s, and one imagines that this is something that they had dis-
cussed together. In his Habilitation lecture (later published in English as a
Nature article of 1927) Jordan chose to address the question of indetermin-
ism with reference to the time of a single quantum jump:

What predictions can our theory make on this point? The most
obvious answer is that the theory only gives averages, and can
tell us, on the average, how many quantum jumps will occur
in any interval of time. Thus, we must conclude, the theory
gives the probability that a jump will occur at a given moment;
and thus, so we might be led to conclude, the exact moment is
indeterminate, and all we have is a probability for the jump. But
this last conclusion does not necessarily follow from the preceding
one: it is an additional hypothesis. (from Duncan & Janssen
2013, pp. 187-188).

It seems that Jordan is taking here a very similar view to Heisenberg: the
view that quantum jumps are physical events taking place at some definite
time. In the first part of his answer, Jordan seems to approach Dirac’s
opinion that “[the theory] enables one to calculate the fraction of the total
time during which the energy has any particular value, but it can give no
information about the times of the transitions” (Dirac, 1927, p. 622). But
Jordan goes further to say that there is information here about the rate of
occurrence of quantum jumps. He goes even further in suggesting that the
theory might be considered to supply information about the probability that
a jump might occur at a particular time. This is distinguished from the view
that the moment of time at which the jump occurs is indeterminate, leav-
ing open the possibility that the probabilities involved could be interpreted
objectively rather than epistemically. However, Jordan is not prepared to
commit himself either way on this question.

What is clear is that there was at this time a strong tendency to regard
quantum jumps (i.e. energy exchanges) as concrete physical processes oc-
curring at determinate moments of time. In retrospect, this physical picture
clearly had its roots in Bohr’s atomic theory. By substituting the energy
eigenstates of the new quantum mechanics for the stationary states of the
old quantum theory one would naturally come to regard matrix mechanics
as a theory of discontinuous transitions between energy eigenstates. This



physical picture informed Heisenberg’s initial discussion of the time-energy
uncertainty relation, which arose in this context from considering the time
of an event. This is a distinct role for time in quantum theory not considered
by Hilgevoord, who treats time as an external co-ordinate to be measured
by a physical clock.

3.1 Postscript and Discussion

The period of time during which this ‘quantum jump’ interpretation of the
theory remained plausible was short-lived. By the time of Heisenberg’s pre-
sentation with Born at the Solvay conference of October 1927 he no longer
held the opinion that the time of a quantum jump was a physically mean-
ingful quantity. Born and Heisenberg’s presentation contains the following
passage,

If one asks the question when a quantum jump occurs, the theory
provides no answer. At first it seemed that there was a gap here
that might be filled with further probing. But soon it became
apparent that this is not so, rather, that it is a failure of prin-
ciple, which is deeply anchored in the nature of the possibility
of physical knowledge. One sees that quantum mechanics yields
mean values correctly, but cannot predict the occurrence of an
individual event. (Bacciagaluppi & Valentini, 2009, p. 384)

This seems to represent a retreat to Dirac’s position that only the time
average was a physically meaningful quantity. However, the rest of their
presentation reveals a more radical point of view. Bacciagaluppi and Valen-
tini read their claim that “matrix mechanics deals only with closed periodic
systems, and in these there are no changes. In order to have true processes
...one must restrict one’s attention to a part of the system” (Bacciagaluppi
& Valentini, 2009, p. 185) to suggest that they shared the view of Campbell
(endorsed by Heisenberg in a letter to Pauli) that time is a statistical phe-
nomenon, absent in atomic systems but emerging at the macroscopic level
like temperature or pressure.

Since the time-independent Schrodinger equation is solved by the sta-
tionary states corresponding to eigenfunctions of energy, if one makes the
supposition that a system is always in such a state and the theory supplies
probabilities for the ‘jump’ from one state to another, then it would be as
if time did not exist except for these discontinuous transitions. Though
Schrodinger introduces it only to reject it, his report contains a detailed
analysis of this proposal, in which quantum systems considered as a whole

10



involve no passage of time, and according to which time emerges from the
theory as a macroscopic parameter related to the number of quantum jumps
occurring between subsystems. According to this view there is no change,
and thus no passage of time in between quantum jumps. Rather, time
emerges as a parameter related to the rate at which jumps occur.

Limiting our attention to an isolated system, we would not per-
ceive the passage of time in it any more than we can notice its
possible progress in space. ... What we would notice would be
merely a sequence of discontinuous transitions, so to speak a cin-
ematic image, but without the possibility of comparing the time
intervals between transitions. (Bacciagaluppi & Valentini, 2009,
p. 409)

According to Campbell’s hypothesis, “one cannot regard the jump proba-
bility in the usual way as the probability of a transition calculated relative
to unit time” (p. 409). On this view, the theory supplies probabilities for
transitions between states and, in terms of temporal information, can only
provide probabilities that one transition occur before or after another.

The alternative, says Schrodinger, is to regard the system not as occupy-
ing a single stationary state (along the lines of Bohr’s earlier atomic theory)
but rather as having a state that may be an arbitrary linear superposition
of energy eigenstates. Taking this view—which was, of course, the view to
win out—time appears in terms of the evolution of the relative phases of the
energy eigenstates. This became the modern Schrodinger picture, in which
the state but not the observables varies with time and the dynamics is given
by the Schrédinger equation, which provides a alternative to the Heisen-
berg picture suggested by matrix mechanics (in which the observables vary
according the the Heisenberg equations of motion rather than the state).
There is more to say here about the emergence of the modern notion of
state and of measurement, some of which is covered by Duncan & Janssen
(2013), but we can see that already these developments were fatal to the
idea of the quantum jump as a discontinuous transition between stationary
states, which relied critically on the hypothesis that a system remain in an
energy eigenstate at all times.

The failure of the quantum jump interpretation, however, should not be
read as prohibition on the introduction of the notion of the time of an event
into quantum theory. The downfall of the idea of the time of a quantum
jump, and ultimately the quantum jump itself, was not idea that the theory
should supply probabilities for the temporal distribution of the occurrence
of particular events, but the reliance on the idea that a system must exist

11



in an eigenstate of energy. This idea, which can be traced directly back
through the old quantum theory to Bohr’s model of the hydrogen atom, was
to prove an unjustified restriction on the development of quantum theory.
Without the expansion of the theory to consider superpositions of energy
eigenstates, there could be no time development of the system state (in the
Schrodinger picture), and the state would be essentially frozen in time.

To those familiar with the so-called problem of time in canonical quan-
tum gravity this situation will sound eerily familiar: there, the ‘timeless’
Wheeler-DeWitt equation seems to suggest that the dynamics of the uni-
verse (a closed system) are similarly frozen.® Moreover, similar pronounce-
ments about the elimination of time from physical theory abound in the
interpretative literature, e.g. Barbour (1999); Earman (2002). If there is a
lesson from history to be found here then perhaps it is this: the existence and
nature of dynamics in quantum theory can be quite sensitive to background
interpretative assumptions regarding the system state. Thus one might be
advised to adopt a cautious attitude towards arguments that suggest the
elimination of time from one’s ontology on the basis of prototypical forms
of quantum theories.

4 Time as a g-number: Dirac’s Classical Analogy

Dirac, working in relative isolation in Cambridge, was led to the dynami-
cal equations of matrix mechanics by pursuing a structurally richer classical
analogy. Like Born and Jordan, he recognized the non-commutativity of the
multiplicative operation as the key feature of Heisenberg’s quantum vari-
ables, but, rather than focusing on a particular (matrix) representation of
the variables, Dirac’s approach led him to identify shared algebraic opera-
tions of the classical and quantum theories. Here we will briefly follow his
development of the theory in his initial paper ‘The Fundamental Equations
of Quantum Mechanics’ (Dirac, 1925).

Whereas Born and Jordan’s derivative operation came for free from
their use of matrix multiplication, Dirac sought to define his operation alge-
braically from the two basic conditions such an operation much satisfy: dis-
tributivity and the Leibniz law. He shows that the operation ax — xa, which
is to say the commutator of two ‘g-numbers’ (meaning quantum numbers—a
nomenclature introduced in a subsequent paper) satisfies these two condi-
tions and so can be interpreted as a differentiation of x with respect to some
parameter v. For a special case, Dirac let a be the diagonal matrix repre-

8This is briefly discussed by Bacciagaluppi & Valentini (2009, p. 188).
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senting the energies of the allowed transitions, in which case v is the time
and the commutator returns &, just as Born and Jordan had found.

But in contrast to Born and Jordan, who built up their dynamical equa-
tions from matrix operations acting according to the quantum condition,
Dirac instead sought to establish a correspondence between classical and
quantum operations by setting up a structural analogy between the two
theories. He argued that as the quantum numbers become large the quan-
tum commutator corresponds to the classical Poisson bracket (multiplied by
a factor of —ih ).

{x’y}zz{gx dy Oy (%v}
- qr Opr dq, Opy
The Poisson bracket is a canonical invariant, meaning that it takes the
same value evaluated in any canonical co-ordinates. Moreover, the Poisson
bracket expressions satisfy the two demands Dirac placed on an operation
of differentiation. This suggested to him that the quantum commutator
represented the same mathematical operation, valid for non-commuting ‘g-
numbers’—his own version of the correspondence principle.

Once this correspondence was established, the quantum equation of
motion (2) followed immediately from the corresponding classical Poisson
bracket by mere transcription according to Dirac’s new quantum schema.
The difference in his approach was manifest in his ability to import results
from classical mechanics directly into his theory (although he was soon to
see that his translation procedure led to ordering ambiguities). Since action-
angle variables are classical conjugates with {w, J} = 1 (having been reached
by a canonical transformation) the suggestion is very strong indeed that w
and J, considered as g-numbers, must also be a canonical pair. Indeed,
obtaining numerical results from Dirac’s theory required transcription of
the results of the corresponding classical problem, expressed in action-angle
form.?

4.1 ‘Relativity Quantum Mechanics’

When Dirac came to consider relativistic quantum physics his approach
was, naturally enough, to define a suitable relativistic classical description
in terms of Poisson Brackets, and then apply his quantum translation pre-
scription (Dirac, 1926b).!0 It is worth quoting in full Dirac’s description of

9See Darrigol (1993, pp. 309 —329) for a detailed discussion of this period.
10Note that this work was done before he was aware of Schrédinger’s wave mechanics.
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this procedure and his view of the significance of defining suitable classical
canonical variables, and his purposes for doing so.

It will be observed that the notion of canonical variables plays
a very fundamental part in the theory. Any attempt to extend
the domain of the present quantum mechanics must be preceded
by the introduction of canonical variables into the corresponding
classical theory, with a reformulation of the classical theory with
P.B.’s [Poisson Brackets| instead of differential coefficients. The
object of the present paper is to obtain in this way the extension
of the quantum mechanics to systems for which the Hamiltonian
involves the time explicitly and to relativity mechanics. (Dirac,
1926b, pp. 406-7, emphasis added)

Hilgevoord (2005, pp. 38-40) appears to take the view that it was the latter
relativistic motivation that Dirac found most compelling, and that neither
motivation was to survive the subsequent developments that led to Dirac’s
transformation theory (which survives today in the so-called Dirac-von Neu-
mann formalism). I will argue instead that the former motivation, which
doesn’t not involve relativity, was important to Dirac’s development of the
theory, and does indeed persist within Dirac’s thought, at least up until the
genesis of transformation theory, recorded in Dirac (1927).

Returning to Dirac’s paper of 1926, in the following section entitled
“Quantum Time,” Dirac immediately claims that “[t|he principle of relativ-
ity demands that the time shall be treated on the same footing as the other
variables and so it must therefore be a g-number” (p. 407). In order to do
so, Dirac defines a classical Poisson bracket that includes time ¢ as a variable
along with its canonical conjugate —W (i.e. , minus the total energy).

Oox 0 Oy Ox oz 0 Oy Oz
{x,y}=2{ L2 }—y+ Y

dq, Op,  Oqy Opy oW ot ' oW ot

In defining this Poisson Bracket, the set of canonical variables is extended
by two to include ¢t and —W, and so the dynamics of the system now takes
place in this extended phase space. The physical solutions are defined by
the demand that the Hamiltonian (defined on the extended phase space)
vanishes with the total energy W, what is called today a constraint equation,

H—W=0. (4)

So while ¢ and —W are variables conjugate on the extended phase space
(leading to the quantum commutators detailed in Dirac’s equation (7)) the

14



dynamics of the system are confined to a subspace of the phase space defined
by this constraint (called today the constraint surface).!!

Note that there is nothing about the use of extended phase space which
implies that the system in question is relativistic, since it is just the fact that
the Poisson bracket is defined on the extended phase space which implies
time and (minus the) energy are conjugate variables. Although considering
a relativistic Hamiltonian provides a compelling motivation to consider the
extended phase space, it is not the only motivation one might have, and
there is no reason not to consider a non-relativistic system in this context.'?
Hilgevoord (2005) regards the use of relativistic arguments to motivate the
demand that energy and time be canonical conjugates in quantum mechanics
as misguided due to the limited role that relativistic particle mechanics plays
in classical (p. 36) and quantum physics (p. 42). Regardless, it remains the
case that (classically) the conjugacy of energy and time has little to do
with the fact that a system is relativistic, and everything to do with the
fact that the system’s dynamics are defined in the extended phase space.
Although in the case of a relativistic system the use of extended phase
space is unavoidable, it is clear that Dirac also viewed the (non-relativistic)
Schrodinger equation as a wave equation defined on functions of space and
time, i.e. as an equation that applies in the extended phase space.

4.2 The Time-Dependent Schrodinger Equation

Introduced by means of an optical-mechanical analogy, Schrodinger’s wave
mechanics was initially met with hostility from the matrix mechanics camp.
However, as we have seen, Dirac’s g-number approach was not tied to a ma-
trix representation, and was as a result more flexible for extension in other
directions. Following Heisenberg’s discovery of a connection between the
solutions of Schrédinger’s wave equation and the energy eigenvalues that of
the Hamiltonian matrix, Dirac seized on Schrodinger’s new approach, which
provided the means to free himself from overly restrictive reliance on classi-

1n fact, Dirac notes that the conjugacy relations may be inconsistent with the con-
straint, but this is just to say that the relations don’t necessarily hold for functions on the
constraint surface. Without the Schrédinger equation in hand, it is not yet clear that the
dynamical equation is in fact a wave equation satisfied by certain functions, whereas the
relations of conjuagacy hold generally for functions of the extended configuration space.
It is also worth emphasizing that, whereas position and momentum are conjugate vari-
ables on both the unextended and extended phase space, energy and time are conjugate
variables on the extended phase space alone.

123ee, for example, Dirac’s later development of this formalism (Dirac, 1966).
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cal methods.'® Unencumbered by the conceptual baggage of Schrodinger’s
painstaking path through classical physics, Dirac’s starting point was the
realization that quantum systems could be described by functions obeying
a linear wave equation, and he quickly moved to explore the consequences.

In a remarkable paper ‘On the Theory of Quantum Mechanics’ (Dirac,
1926a) he laid out the essentials of an approach which would serve as the
basis for the later integration of wave and matrix mechanics. He demon-
strated the power of this new formalism by deriving the Bose-Einstein and
Fermi-Dirac statistics for an assembly of identical systems from elementary
conditions on the permutation of the wavefunctions describing the individ-
ual systems. The foundation of this approach was the recognition that
Schrodinger’s theory allowed for the explicit representation of conjugate
variables as differential operators. To write down the time-dependent wave
equation, therefore, merely required him to make the substitutions

0 0

W = —ih—

r = _‘hi;
P ‘ ox ot

into the equation (4) above, treated as a wave equation, i.e.,
(H = W) =0. (5)

Hence Dirac’s derivation of the time-dependent equation depended on the
extended phase space description described in (Dirac, 1926b). To explain:
the replacement of the conjugate variable —W by the corresponding differ-
ential operator relies on the existence of a space of functions of ¢ on which
it acts. The implication is that ¢ is also a g-number, now an operator that
acts by multiplication on this space of functions of extended configuration
space.

In order to set up a correspondence with the Heisenberg equations of
motion Dirac is required to fix the value of the (c-number) variable ¢, but
in doing so he makes it quite clear that the functions (or superpositions of
functions) that satisfy the general wave equation are functions of time and
space.

As an example of a constant of integration of the dynamical
system take the value z(tp) that an arbitrary function x of the
p’s and ¢’s, W and t has at a specified time ¢ = t3. The matrix

13See (Darrigol, 1993, pp. 329-333) for a discussion of the difficulties introduced by the
degeneracy of energy levels arising in systems of many particles.

14Note again that the space of functions on which W acts is not identical with the space
of wavefunctions that satisfy the wave equation (5).
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that represents x(to) will consist of elements each of which is a
function of ¢y. (Dirac, 1926a, p. 665)

Under the special condition that the Hamiltonian is time independent (i.e.
a constant of integration), so that the energy W has a diagonal matrix
representation, Dirac was able to derive the time dependence of the matrix
elements of a g-number x (although, as he is at pains to point out, only for a
Hamiltonian that does not involve time explicitly). This reverses the logical
order of Born and Jordan’s derivation of (1), which assumed the time depen-
dence by means of Heisenberg’s classical analogy. Dirac here instead shows
how this time dependence arises from the dynamics of quantum mechanics,
that is, the Schrodinger equation.

However, Dirac explicitly states that he views this separation of time
and space as inessential, and describes the alternative (solving directly in
terms of the extended phase space without considering variation in t) as
more fundamental:

It should be noticed that the choice of the time ¢ as the variable
that occurs in the elements of the matrices representing variable
quantities is quite arbitrary, and any function of ¢ and the ¢’s
that increases steadily would do. ...It is probable that the rep-
resentation of a constant of integration of the system by a matrix
of constant elements is more fundamental than the representa-
tion by a matrix whose elements are functions of some variable
such as ¢ ... (Dirac, 1926a, p. 666)

In summary, we can see that there was another motivation, independent
from relativistic considerations, which led Dirac to regard energy and time as
conjugate variables: his expression for the time-dependent Schrodinger equa-
tion required that energy be represented by a differential operator —ihd/dt,
which was defined on a space of functions of time. Note also that Dirac did
not yet have a dynamics that could apply to time-dependent Hamiltonians,
since the treatment he had given assumed from the outset that the allowed
energies were time independent. He remained convinced that this would be
found by considering the Hamiltonian dynamics in extended phase space.

4.3 Time in Dirac’s Transformation Theory

The culmination of Dirac’s work on the foundations of quantum mechanics
was his transformation theory, which aimed to give a unified framework for
both wave and matrix mechanics. In Dirac’s presentation of transformation
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theory, ‘The Physical Interpretation of the Quantum Dynamics’ (1927) it
is apparently assumed from the outset that the theory involves the split
between space and time that had been introduced in the earlier paper.

These matrix elements [of a dynamical variable g] are functions
of the time only. In the present paper we shall not take rela-
tivity mechanics into account, and shall count the time variable
wherever it occurs as merely a parameter (a c-number). (Dirac,
1927, p. 625)

However, although time is not explicitly considered by Dirac as an oper-
ator, I will argue that there remains a role for the extended phase space
in conceptualizing time development within the theory, and in particular
the inclusion of time-varying Hamiltonians, which Dirac had originally an-
nounced as a important motivation for using the extended phase space.

In the course of the development of the transformation theory, which
Dirac intends to provide a generalization of matrix mechanics to address
non-periodic systems and continuous observables, he makes the (oft-quoted)
crucial link with Schrédinger’s wave mechanics:

The eigenfunctions of Schréodinger’s wave equation are just the
transformation functions ...that enable one to transform from
the (q) scheme of matriz representation to a scheme in which the
Hamiltonian is a diagonal matriz (Dirac, 1927, p. 635, original
emphasis)

As Heisenberg had proposed, these eigenfunctions are in fact the energy
eigenstates, so what Dirac has found at this stage is the connection to
Schrodinger’s time-independent wave equation, which appears in the fol-
lowing form,

H(q. —iﬁ%)@/a’) = H(o/)(d)/o). (6)

It remains for him to provide a link to the time-dependent equation that he
had derived previously, i.e. the Heisenberg equations of motion. Remarkably,
he does not do so: in his presentation of the theory the time dependence
of the quantum variables is apparently assumed from the outset (condition
(ii) of p. 327, ibid.). Neither does he try to derive the time-dependent
Schrodinger equation in a way that we would recognize today. In fact,
although the time-dependent Schrodinger equation does make an appearance
in the paper, it does so almost by accident, as the conclusion to an argument
that seeks to establish the dynamics for a time-varying Hamiltonian. Indeed,
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the only place Dirac explicitly considers time dependence of the solutions of
the Schrodinger equation is in considering time varying Hamiltonians: first
in general (p. 635) and then as a perturbation (p. 640). I contend that
this indicates that, in 1927, Dirac viewed that state as a time-independent
object, unless acted on in a time-varying way.

In the first part of the paper Dirac had only identified his transformations
with energy eigenstates, and then relied on the relation to the extended clas-
sical phase space to consider dynamics. The time variation of the quantum
variables he first considered—“constants of integration”—was particularly
simple on this pseudo-classical picture. So long as the Hamiltonian was con-
stant with time, the time variation was given by the Heisenberg equations
of motion (2). However, if the Hamiltonian is time-dependent then the ma-
trix scheme cannot have this simple time dependence. Dirac explains the
problem as follows:

For systems in which the Hamiltonian involves the time explic-
itly, there will be in general no matrix scheme with respect
to which H is a diagonal matrix, since there will be no set of
constants of integration that do not involve the time explicitly.
(Dirac, 1927, p. 635)

Yet the result of the derivation that follows is an equation for a Hamiltonian
H that does not explicitly involve time—an equation that we immediately
recognize today as the time-dependent Schrédinger equation for a time-
varying wavefunction v (x),

i (=it ) (/o) = Hlarp ) (o) = in g (Jel). ()
qr ot
This equation (numbered (12) in Dirac’s paper) is immediately followed by
Dirac’s claim that it gives “Schrodinger’s wave equation for Hamiltonians
that involve time explicitly” (p. 636). In discussing this equation, (Darrigol,
1993, p. 341) presents an alternative derivation (not Dirac’s) which follows
Dirac’s earlier paper 1926a in assuming that H is a constant of the mo-
tion. However, it is quite clear that this was not Dirac’s intention, since he
explicitly assumes that the Hamiltonian in question varies with time.
Dirac’s initial comment about the lack of a matrix scheme with respect
to which a time varying Hamiltonian is diagonal could be read in two ways:
he could mean (a) that one and the same scheme will not suffice at every
instant or (b) that the time dependent Hamiltonian cannot be brought into
diagonal form at all. First note that Dirac in his treatment of time dependent
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perturbations (p. 640) shows that such a Hamiltonian can be written as a
diagonal matrix whose entries depend on ¢. Thus he must be considering a
time dependence here that cannot be written perturbatively. Dirac describes
the properties of a matrix scheme on (p. 627). Dirac’s condition (ii) gives
the dynamics of the matrix scheme in terms of the Heisenberg equations of
motion (2). Condition (iii) states that the Hamiltonian must be given as a
diagonal matrix, but Dirac later says (on p. 628) that he will consider more
general transformations for which that is not the case. This appears to refer
to transformations which (e.g.) bring the matrices into the position basis,
in which the Hamiltonian is not diagonal. This would be the case for any
variable that does not commute with H, and Dirac makes it clear that he is
considering here variables that do not have time dependence.

But in the derivation of the equation of motion for a time varying Hamil-
tonian, it is explicitly assumed that we are dealing with such time varying
quantities, which thus moves us beyond the ambit of the Heisenberg equa-
tions of motion. Dirac begins the derivation (p. 635) by considering the
Hamiltonian at an instant ¢ = 7, and the corresponding instantaneous vari-
ables ¢r, pr. Functions of ¢, and p; do not involve time explicitly, and so we
can regard the Heisenberg equation of motion (for variation in 7) as acting
on these functions. From this it follows that

Old, /o)

H’T'(q;'a/) = th 37_

This first part of Dirac’s derivation establishes that we can use a time-
varying version of the Heisenberg equations of motion. But key to this
move is the idea that 7 is something like a gauge fixing parameter rather
than a variable on which the constants of integration might depend. This
indicates, I contend, that he begins by considering solutions of the ‘extended’
Schrédinger equation that lie in the extended configuration space, for which
there are no eigenfunctions in the ‘instantaneous’ space of spatial functions.

However, Dirac immediately suggests (p. 636) that we write ¢ for 7 and
q for qr, which removes the time dependence of H, and gives (7). Hence
does Dirac apparently arrive at the time-dependent equation for a time
independent Hamiltonian. Now it is quite plausible that Dirac has merely
suppressed the time dependence here on both sides, rather than dropping
it entirely, so that we indeed have here the Schrédinger equation for time-
dependent Hamiltonians.'> Yet there is something odd about interpret-
ing equation (7) in this way, since when applied to a time-independent

15Thanks to Prof. Fleming for pushing me on this point, which I here concede.
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Hamiltonian the right hand side would be zero, as there is no time vari-
ation in that case. What this shows is that Dirac was apparently unaware
that the state could vary with time while the Hamiltonian did not, and
was thus deeply wedded to (what we would call today) the Heisenberg pic-
ture. As Dirac interpreted it, then, this was not yet the modern day time-
dependent Schrodinger equation, which applies to both time-varying and
time-independent Hamiltonians.

But it is clear in retrospect that equation (7) can be interpreted in pre-
cisely this way: comparing (6) with (7), we see that what Dirac had found
was that the variation of the state (¢’/a’) in time is given by the Hamiltonian
operator in the position representation (rather than the energy representa-
tion). That Dirac apparently did not immediately recognize the equation in
this way illustrates the pull of the extended phase space on his conception
of the quantum state. As Dirac was aware, the space of instantaneous solu-
tions was the only one in which his transformations could be defined. But
in the course of the derivation, these instantaneous spaces were reached by
fixing a particular value of the variable ¢ in the extended space and consid-
ering variation with respect to a parameterization 7 of that value. That is,
the time variation was now to be given in an instantaneous form. Thus did
Dirac successfully, although haltingly, put an end to his earlier conception
of the Schrodinger equation as involving an operator —W conjugate to time.

The alternative was to consider a full blown four-dimensional wave equa-
tion applying to functions of time and space, a much more formidable prob-
lem. The middle ground that Dirac had found by dealing with the problem
in this manner was to lead to the modern conception of the time-dependent
Schrédinger equation, in which variation in time is given with respect to the
parameterization of the unitary representation group of time translations,
generated by H. But at this time—before he became aware of Hilbert space
methods—Dirac did not possess the modern notion of a quantum state as a
vector state. Moreover, the notion of a (Schrodinger picture) instantaneous
state was one to which he was to remain resistant: specifying a time param-
eterization for the variation of the state meant that the state could not be
given a relativistically invariant meaning.!

18The modern notion of state only appeared in the second edition of Dirac’s Principles
of Quantum Mechanics. See (Brown, 2006, p. 402-403) for more details. Also note that,
contrary to Hilgevoord’s claim that “this view disappeared from his later work” (Hilgevo-
ord, 2005, pp. 36-37), the use of the extended phase space was essential to Dirac’s work
on constrained Hamiltonian mechanics, e.g. Dirac (1966).
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4.4 Postscript and Discussion

In the subsequent years the rise of von Neumann’s Hilbert space formalism
led to the grounding of the success of the Dirac-Jordan transformation the-
ory in the results of functional analysis. Crucial to this development was von
Neumann’s proof of the spectral theorem in 1929, which allowed for the rep-
resentation of unbounded self-adjoint operators like position by an integral
over a spectral family of projection operators.!” Subsequently, Stone’s theo-
rem of 1930 established a role for self-adjoint operators as the generators of
one-parameter unitary groups, which correspond to symmetry transforma-
tions (Prugovecki, 1971, pp. 331-338). This gives rise to an interpretation
of the Weyl commutation relations as expressing a symmetrical relationship
between two self-adjoint operators, i.e. that one is the generator of shifts in
the spectrum of the other, and vice versa. As was discussed in Section 2.1,
this framework is demonstrably incompatible with the introduction of a time
observable, understood to be a self-adjoint operator canonically conjugate
to the Hamiltonian.

Hence it is clear that, at least with respect to the current Dirac-von
Neumann formalism, several of the expectations described in the previous
section regarding the role of time in quantum theory turned out to be wrong:
time and energy are not conjugate variables, the Schrodinger equation must
be defined for functions of space alone, and there is no such thing as the
time of a quantum jump (or, alternatively, of collapse).!® Nonetheless, I
have shown that the motivations of the authors were not just the result of
simple conceptual confusion, i.e., of mistaking one thing for another (al-
though later physicists may have been misled along those lines). Instead, I
have attempted to paint a more complex picture, revealing the distinctive
motivations that led to two separate proposals for the conjugacy of time and
energy.

To rephrase the two conjugacy relations we have arrived in the language
of von Neumann’s formalism, the relation of Heisenberg from Section 2 reads

[H,T)t = —ihap for all ) € H (8)

(or at least a dense domain) and asserts the conjugacy of the Hamiltonian H
and a putative time observable T'. As discussed in Section 2.1, the arguments
of Pauli (1933) and those who followed serve to rule out the existence of such

17See (Duncan & Janssen, 2013, pp. 240-241) for a discussion.

180f course, the dynamics of the theory can be modified ¢ la GRW to bring about a
stochastic collapse process at particular moments of time, but I will not consider here
these alternative dynamics.
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an operator. However, the relationship assumed by Dirac may be expressed
[-W, Ty = —ihy for all ¢ € Hy, (9)

where the similarity of form obscures the important point that the Hilbert
space on which the operators —W and T are to be defined is not the
space on which H is defined, i.e. H # Hy. To take a concrete example,
let # = L?[R3], which is apt for describing a single spinless particle. The
instantaneous state of the system is thus given by a vector ¢ (z) € H (assum-
ing the state is pure), where o ranges over space. In contrast, H, = L?[R%],
the space of square integrable functions on the extended configuration space,
and vectors in this space ¢ (x,t) € H, are (superpositions of) functions of
space and time.

Restrictions on the spectrum of H are motivated by the fact that the
eigenvalues of H reflect the allowed energies of the system, but there is no
analogous physical interpretation of W. Hence there is no restriction on the
spectrum of W, and so (9) may harmlessly assert that —W is the generator
of shifts in time Ty, and wvice versa. Thus the classically conjugate variables
t and —W may be promoted to quantum operators on H, without running
into the difficulties described in Section 2.1. With this understanding, there
is no conceptual reason standing in the way of following Dirac’s (1926) sug-
gestion in the context of modern quantum theory, so long as it is understood
that the formalism is to be extended to include functions of space and time.
However, it remains to be shown that there a good motivation to do so, and
a coherent interpretation of the theory that results. The rest of the paper
is devoted to that task.

5 In Defense of Event Time Observables

Let us return to Hilgevoord’s (2005) rejoinder that time already has an ap-
propriate representation in the theory as a parameter, and so the use of
extended phase space is misguided. In order to understand (and sidestep)
these complaints it will be helpful to outline Hilgevoord’s classification of
the ways that time may arise in a physical theory (his Section 1.1). The
main distinction that Hilgevoord draws is between external time and in-
ternal times. External (or co-ordinate) time ¢ is the partner of the spatial
co-ordinates x, y, z in a co-ordinatization of the space-time in which the sys-
tem is situated, (x,y, z,t). Hilgevoord contends that this role for external
time suggests that it should remain a parameter rather than a variable,
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and regards the use of the extended phase space in classical mechanics as
‘unnatural’ (Hilgevoord, 2005, p. 36).
Internal times, by contrast, are to be found among

... the internal spatial and temporal variables connected with the
specific physical systems the theory aims to describe, such as the
position variables of particles and time variables of clocks. These
variables are dynamical: they obey equations of motion. ...if we
look for time operators we must look for internal times provided
by special physical systems, ‘clocks.” (Hilgevoord, 2005, p. 31)

Thus, for Hilgevoord, the only valid motivation for defining time operators
comes from the canonical quantization of variables that describe physical
clocks. However, this ignores a large body of foundational work in quantum
theory regarding what I will term event time observables.

For example, in a recent review of the time-energy uncertainty relation
Busch (2007) describes another role for time in addition to external and
internal (or intrinsic) time, which he calls observable time. He motivates
this definition as follows:

the study of dynamics often involves experimental questions about
the time of an event, the time difference between events, or the

duration of a process associated with the object system. This

[also] raises the quest for a treatment of time as an observable.

(Busch, 2007, p. 76)

Note that this motivation is quite distinct from the idea that external time
should be promoted to a variable (for whatever reason). In this case, we
begin with an experimental quantity—the time of an event, such as the
moment that a Geiger counter clicks, or the duration of a process, such as
tunneling time—and demand that the theory provide a suitable prediction
for the distribution of these events in time (or durations). This motivation is,
therefore, most closely related to Heisenberg and Jordan’s notion of the time
of a quantum jump, regarded as an event occurring at a definite moment of
time (discussed in Section 3). However, there is an important difference since
proponents of event time observables do not purport to be measuring the
time of a quantum jump, or collapse, or what have you. The idea is that the
events in question correspond to determinable outcomes of an experiment,
which are considered to be distributed in time rather than, say, space.

In this case, then, the analogy to position is a good one: an event time
observable concerns the position of an event in time just as the position
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observable concerns the position of an event in space. In this connection it
may help to visualize a standard diffraction experiment, in which the ex-
perimentally determinable positions concern the location of a dot on, say,
a photoluminescent screen. In this context, the event time observable con-
cerns the distribution of times at which a dot appears, whereas the position
observable concerns the distribution of spatial locations at which a dot ap-
pears. In modern quantum theory, to derive such a distribution from the
system state we are required to define a suitable operator, customarily a self-
adjoint operator. Observables are often defined by their properties under
symmetry transformations, for example Jauch (1968, pp. 197-199) regards
the covariance of the position operator with spatial translations (generated
by the total momentum) as expressing the homogeneity of space. Essen-
tially, Wightman (1962) shows that requiring this covariance is sufficient to
uniquely define a self-adjoint position operator.

An event time observable is to be defined, therefore by its behavior under
temporal translations, generated by the Hamiltonian. In particular, we will
require such observables to covary with time translations.'® In effect, what
this means is that the experimental results (depending on relative times)
will be independent of the time at which the experiment begins, and so this
expresses the homogeneity of time. However, ‘Pauli’s theorem’ (Srinivas &
Vijayalakshmi, 1981, §2) entails that there is no time translation covariant
Projection Valued Measure (PVM) mapping intervals of time to orthogonal
projections, and, since the PVMs and self-adjoint operators are in one-to-
one correspondence, there is thus no self-adjoint operator corresponding to
the time of an event.?’ Nonetheless, there are time translation covariant
Positive Operator Valued Measures (POVMs) which map intervals of time
to positive operators with spectrum [0, 1].2!

The first thing to note is that in the usual identification of observables
with self-adjoint operators it is assumed that these these operators act in-
stantaneously. In the Schrodinger picture (in which the states vary with
time) the expectation value of an observable A in the (pure) state vy = Uyt)
is (A); = (Y| Atly), whereas in the Heisenberg picture (in which the observ-

19This is to be regarded as a necessary, not a sufficient condition.

20For a proof of this fact about PVMs see, e.g., (Teschl, 2009, Theorem 3.7, p. 97).

2! An operator is positive, A > O, if (¢|A¢) > 0 for all ¢ € H. A (normalized) POVM
is a map X — E(X) from X € X, a og-algebra of a nonempty set 2, to F(X), a positive
operator, such that: (i) E(X) > O; (ii) E(Q) = [; (ili) E(UX;) = Y E(X;) for disjoint
sequences X; C X. A PVM is a POVM such that E(X)? = E(X), or equivalently
E(XUY) = E(X)E(Y), in which case I write P(X). See Busch et al. (1995) for more
details of their use in quantum theory.
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ables vary with time) the expectation value of an observable A(t) is given
by (A(t)) = (|Uf AU|).22 In the Schrédinger picture it makes very little
sense to ask when a particular event occurs (in the sense of a probability for
it occurring during some interval of time) since we may only interrogate the
state at a instant of time. In contrast,

“event time measurements are extended in time, with sensitive
detectors waiting to be triggered. The experimenter has no con-
trol over the time instant at which the detectors fire. This very
instant constitutes the outcome of such a measurement.(Busch,
2007, p. 19)

However, in the Heisenberg picture we may define operators that involve
more than one instant of time (indeed, a measurable subset of instants) by
integrating over t.

To take a simple example, consider an experiment consisting of a single
radioactive atom and a Geiger counter that fully surrounds it. If the half-
life of the atom is 1 hour, then the probability that the counter clicks in
the first hour is 1/2, the probability it clicks in the second hour 1/4, the
probability it clicks in the third hour is 1/8, and so on. Thus the probability
that the counter clicks at some point in the future is given by an arithmetic
series that tends to one as t tends to infinity. However, once the counter
has been observed to click, the probability that it clicks in the future is
essentially zero. This is evidently a experimentally meaningful situation,
and we should expect that this phenomenological law may be derived from
a detailed quantum mechanical description of the decay process. However,
within the standard account of measurement there is provably no way to
implement this simple scheme.

This description would involve a (Heisenberg picture) quantum mechani-
cal vector state 1 in a Hilbert space ‘H, a Hamiltonian H describing the time
evolution of the system, and a series of projection operators T; representing
the proposition “the system decays during hour i” such that (|T1¢) = 1/2,
(Y|Toep) = 1/4, and (¢|T31p) = 1/8, and so on. Requiring that the distribu-
tion of results respect the time translation symmetry implemented by the
unitary group U; = e " we have that T) = UtTTlUt, T; = U:TgUt, and so
on (where ¢ is one hour). Even this bare bones sketch is enough to tell us
something interesting about the operators T;: if H is a self-adjoint operator
with spectrum bounded from below then it follows that (¢|T;+1T;]¢) # 0

22Evidently these return the same expectation value, (A); = (A(t)), but they are not
identical expressions.
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and so these operators T; cannot be projections onto mutually orthogonal
subspaces of #.23

Thus there is no mixed state decomposition in terms of distinct eigen-
states 1; of T; (for which T;y; = ;) such that the v; would correspond
to the system decaying during distinct intervals of time, and neither can
the T; together serve to define a self-adjoint ‘time of decay’ operator. The
former implication indicates that von Neumann’s famous projection postu-
late cannot be applied to this situation; the latter than the identification of
observables of the theory with self-adjoint operators is ill-suited to include
the time of an event as an observable quantity. Yet there seems every reason
to suppose that the theory should be able to answer questions like, “When
will the Geiger counter click?” or in a diffraction experiment, “When will a
dot appear on the screen?” In failing to answer these questions, the theory
would be fail to be empirically adequate; this failure would constitute a real
‘problem of time’ for the theory. But this problem can be overcome, and
without modifying the dynamics: at first blush, the problem is not with the
way that quantum mechanics defines the state of the system, but the way
that probabilities are derived from the state.

6 Defining Event Time Observables

The history of attempts to define event time observables in quantum me-
chanics begins with Aharonov & Bohm’s (1961) critique of the energy-time
uncertainty relation, understood as a limitation on the possibility of mea-
suring the energy of a system precisely in an arbitrarily short time. In
essence, Aharonov & Bohm’s objection amounts to the observation that the
Hamiltonian is a self-adjoint operator like any other, and so can (according
to the usual Dirac-von Neumann formalism) can be measured effectively at
an instant. To combat what they see as a prevalence of somewhat heuristic
arguments based on particular experimental setups adduced in support of
the erroneous interpretation, they provide a detailed analysis of an exper-
iment which serves as a counterexample, i.e. one in which the energy of
the system under observation can be determined precisely in arbitrary short
time. The ‘apparatus’ in this experiment is modeled by a free particle in
one dimension, considered as providing a physical clock to measure the time
at which the measurement interaction occurs.

ZTFor a proof of this result see Unruh & Wald (1989, p. 2606), whose argument is easily
adapted to the current case if it is assumed that there is some k > 0 such that for all i > k
the probability of decay is zero.
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However, the operator they suggest is closely related to the time of ar-
rival of a classical free particle, and so it is plausible that the operator they
define is better understood as representing the time of an event rather than
a clock. The classical time of arrival is arrived at by a simple rearrangement
of the expression for position as a function of time, ¢(t) = ¢(0) + vt. That
is, the classical time of arrival at the point x = 0 is

Now, we immediately see that there is a problem with this definition when
p = 0, but this has a physical interpretation: a free particle with zero
momentum will never arrive at the origin.2? Thus, in the classical case,
it seems clear that ¢(¢(0),p) provides the time co-ordinate of a particular
event: the event of the particle’s passing the origin.

The first difficulty one encounters in transcribing this classical expres-
sion into quantum form is that Q(0) = @ (the Schrédinger picture position
operator) does not commute with P (the momentum operator), so this ex-
pression contains an ordering ambiguity. Following the usual procedure of

symmetrization (first suggested by Dirac) we obtain:2°
m
T,=-75 QP+ P7Q).

This operator displays a similar difficulty with p = 0, which results in its
domain of definition being restricted to functions (considered in the mo-
mentum representation) which behave suitably as p — 0. This restriction
entails that T, while symmetric on its domain, cannot be extended to a
self-adjoint operator on H = L2[R]. It is thus a mazimally symmetric op-
erator.?S Nonetheless, T}, is canonically conjugate to H = (1/2m)P? in the
sense that (formally at least)

T, H] = % (PUQ, P?) + Q. P21P~") = —ih.

241f ¢(0) # 0 then it will never get to the origin, if ¢(0) = 0 then it will never leave and
hence never arrive.

25This differs from the expression given by Aharonov & Bohm (1961, p. 1652) by an
overall sign. This presumably justifies their interpretation of the operator as a clock since
the corresponding classical expression returns ¢(t) = vt, which entails that ¢(0) = 0 so
that the position of the particle is proportional to the elapsed time. Note that in that
case the relevant position operator is the Heisenberg picture Q(¢) rather than Q(0) = Q.

*63ce (Egusquiza & Muga, 1999, §3) for a recent discussion of these difficulties.
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But since T, is not a self-adjoint operator, this blocks the derivation of a
Weyl commutation relation with H and so T, avoids ‘Pauli’s theorem’ of
Section 2.1.27

This is a good illustration, then, of the mutually supportive relationship
between the requirement that observables must correspond to self-adjoint
operators and the idea that time covariance is constitutive of an event time
observable: to the extent that event time observables are operators that
covary with time shifts, T, is an event time observable, but to the extent
that observables must be self-adjoint T, is not an observable at all. As I
have suggested, the way out of this impasse is to allow for the experimentally
observable quantity (the time of an event such as a detector firing) to be
represented by a time covariant POVM. But this move does not involve the
promotion of T, to an observable; the relation of T, to the corresponding
time covariant POVM is more subtle, although there is a sense in which a
maximally symmetric operator does uniquely determine such a POVM.

The first steps towards this understanding of the quantum time of ar-
rival were taken by Allcock (1969) and Kijowski (1974).28 Kijowski took an
axiomatic approach to defining the quantum distribution of arrival times.
The axioms he chose were based on axioms that were sufficient to derive the
classical distribution. One of these axioms ensured its characteristic covari-
ance under time translations. Corresponding to the corresponding quantum
distribution he found our time of arrival operator T,. Since every maximally
symmetric operator defines a unique POVM (Akheizer & Glazman, 1993,
Theorem 2, p. 135), this distribution can also be obtained from the POVM
I+ E"2(I) so defined.

Allcock, on the other hand, provided the first analysis of the difficulties
of the time of arrival in terms of the positivity of H. By means of an analytic
continuity argument he was able to show that the condition H > O entails
the non-orthogonality of the (generalized) eigenstates of T}, characteristic of
its failure to be self-adjoint.?? He found that he could avoid this problem by
‘doubling’ the domain of definition of T} to include negative eigenstates of H
(i.e. negative energies), arriving at a new operator 7.+ that was self-adjoint,

2TRecall that Pauli’s theorem rests on the fact that the Weyl commutation relations are
logically equivalent to the mutual covariance of those operators with shifts generated by the
other. But Ty, is not a self-adjoint operator and thus, given the one-to-one correspondence
of self-adjoint operators and PVMs, there can be no PVM corresponding to T, at all.
Therefore, it follows that H does not covary with shifts in energy since 7T, generates no
unitary group.

Z8For details of these and other interesting episodes in the development of the quantum
time of arrival see Muga & Leavens (2000).

29See, again, (Akheizer & Glazman, 1993, Theorem 2, p. 135).
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but defined on a ‘larger’ Hilbert space H' D H. This operator is canonically
conjugate to the doubled Hamiltonian H* and, so I + pri (I) is time shift
covariant PVM on H’.

This provides another way to avoid Pauli’s theorem, since the spectrum
of H* is not bounded from below. However, the self-adjoint operator 7" he
defined (and its corresponding PVM) is of negligible physical relevance since
the Hamiltonian of a free particle evidently does have a spectrum bounded
from below. Nonetheless, as is well-known (although apparently not by
Allcock), by projecting the operators pra (I) to the original Hilbert space
via an orthogonal projection Py one obtains positive operators E7a(I) =
PHPTSE (I), i.e. the positive operators that form the time of arrival POVM
I — E'a(I) defined by T,. This result is an instance of Naimark’s famous
dilation theorem, which establishes that a POVM can always be extended
to a PVM in a ‘larger’ Hilbert space in this way, to which it is related by a
projection.3’

Allcock and Kijowski can perhaps be forgiven for failing to making these
connections, writing as they were at a time before the development of the
POVM formalism by Holevo (1982), Kraus (1983), Ludwig (1983) and others
(in response to various problems in quantum measurement theory). It was
left to Werner (1986) to make the connection of the time of arrival to time
covariant POVMs, which he did in some generality to arrive at a treatment
of what he termed screen observables. Making use of results from operator
algebra and Mackey’s theory of imprimitivity, Werner obtained a general
recipe for constructing POVMs covariant under a unitary group by means
of their Naimark dilation. Screen observables are defined as POVMs co-
variant under the translation group of an arbitrarily chosen hyperplane. As
such, they include the usual position observable (corresponding to an instan-
taneous hyperplane) and the time of arrival POVM just discussed (which,
in three dimensions, corresponds to a timelike hyperplane). Werner showed
that the resulting POVM could be uniquely defined (subject to some other
restrictions) for both non-relativistic and relativistic symmetry groups.

Screen observables apply to a typical diffraction experiment where an
electron, say, is emitted and some time later detected at a photoluminescent
screen. Since the screen is sensitive to the presence of an electron at all
times, and electrons in an ensemble will be detected at different times, an
instantaneous position observable cannot suffice to describe even the spatial
distribution of detection events. For these screen observables, one assumes

30See Egusquiza & Muga (1999) for a complete discussion of this particular case, and
(Busch et al., 1995, p. 31) for a statement of the theorem in this form.
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that the detector will fire at some time ¢, and so the sum of the probability
of detection over all times is unity. Note that very few real experimental
arrangements (if any) correspond to anything like an instantaneous position
measurement, which (under this interpretation as a screen observable) would
provide probabilities for a detector spread out through all of space which
fires exactly once when switched on for an instant.

More recently, Brunetti & Fredenhagen (2002) supply a general recipe
for constructing event time observables from an instantaneous projection or
positive operator (an effect) taken to correspond to the occurrence of an
event. Key to this construction is the technique of operator normalization,
by which a time covariant POVM is normalized according to the condition
that the event in question occurs exactly once (in analogy with screen ob-
servables). A straightforward example concerns the detection of a particle
within a detector occupying a volume of space A rather than a plane. In
this case, the detection event is represented by the instantaneous projection
PA(t) = U;r PAUy;, with the probability of detection at a time ¢ for a system
in the (Heisenberg picture) state 1 given by (| Pa(t)), .

Naively, one might expect the following positive operator to describe
detection during the time interval I = [ty 2],

to
TA(I) := P (t)dt.
t1
However, there is no guarantee that the expectation value of TA will be less
than one, and so this is not a normalized POVM. Brunetti & Fredenhagen’s
suggestion is to use the maximal such operator, in this case

oo
Ta®) = [ Pato,
—0oQ
known as the dwell time operator,! to provide a suitable normalization in
the following way.
Being positive, Ta (R) has a unique positive square root such that (Tx (R)'/2)% =
Ta(R). Using the inverse of this operator, we define

Ea(I) = Ta(R)™Y2Ta(I)Ta(R) /2.

It is easily verified that Ea(I) is a time translation covariant POVM.3?2
This operator normalized POVM returns Ea(R) = I and so the probability

31Gee Jose Munoz et al. (2010) for a recent discussion.

32Brunetti & Fredenhagen (2002) supply a general recipe for obtaining such a POVM
from any instantaneous effect which takes considerably more care with domains of defini-
tion and so on.

31



distribution obtained reflects the condition that the event given by Pa occurs
at some t, i.e. this POVM supplies a conditional probability.33

Clearly, then, recent years have seen considerable progress made in the
quest to define event time observables for quantum theory. The main puzzle
raised by event time observables such as these is, in my view, one of providing
a suitable update rule. The first worry I have is conceptual, the second
technical. First, the very normalization of a POVM such as Ea(I) which
made it suitable for its role as an event time observable makes it ill-suited
to provide probabilities for events that occur subsequent to detection. For
example, it is unclear that we can obtain a definite answer to the question:
What is the probability that the particle is first detected in A during I
and subsequently in A’? To answer this question appears to require a new
normalization scheme since now the particle is detected in both A and A’, i.e.
twice. But if we normalize along those lines then we have lost the conditional
nature of the probabilities desired: the question was, what is the probability
of finding the particle in A’ given that it was already detected in A?

Secondly, while POVMs play the same predictive role as PVMs,>* POVMs
are particularly ill-suited to supply the means to update the state, which is
typically defined for a projection through Liiders’ Rule, which projects the
state into the eigenspace of the measured eigenvalue (normalizing according
to the trace). That is, for a projection Pj onto the eigenspace associated
with k, PP
~ kPLE
PP [Pl

This rule leads to the following expression for conditional probability

= tr [F'p], (10)

valid for projections E, F' such that ' < E, where < is the relation of
subspace inclusion.

The fact that a positive operator B > O has a unique square root
(B'/2)2 = B leads to the standard generalization of Liiders’ rule to posi-

33In connection with the time of arrival, Hoge (2008) verifies that the POVM E”=(T) is
returned from Fa(I) in the limit |A] — 0, that is, as detection within a volume becomes
detection at a plane (or point).

34 As with a projection, a normalized positive operator E supplies probabilities through
taking the trace of the density operator p, Tr[pE].
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tive operators (or effects), the so-called Liiders operation3®
Bl/QpBl/2
p w(B (11)

which reduces to Liiders’ rule when B? = B. By following the earlier exam-
ple of (10) we would be led to define

tr [BY/2ABY?p)]
tr [Bp]

W(A|B) = tr [Ap] = (12)
as a conditional probability for the effect A given the effect B. But it is
easily seen that this does not have the form of a conditional probability
(unless B is a projection) since if B2 # B then W (B|B) # 1.

This suggests that event time POVMs would be ill-suited to describe,
say, a cloud chamber experiment in which a series of ionization events occur
within the detector, one after another. However, Brunetti et al. (2010) pro-
vide the hint of a solution, which also provides a novel motivation for adopt-
ing Dirac’s extended phase space. In this context, this amounts to considera-
tion of a Hilbert space of functions of space and time v (z,t) € L*[R*] = H
on which a self-adjoint time operator may be defined, the spectral projec-
tions of which provide the means to define event time observables as time
covariant PVMs rather than POVMs. They would thus appear to be appro-
priate for the application of Liiders’ rule, if only the trace were defined on
this space.

The solution to this difficulty lies in considering instead the extended
Schrédinger equation, defined for functions of time and space as Dirac orig-
inally envisioned it,

(H — W)(z,t) = 0.

The problem with this equation is that the operator (H — W) has a continu-
ous spectrum, and so there is no vector ¢ (z,t) € H4 which is an eigenvector
with eigenvalue 0. Without going into the details, Brunetti et al. (2010) show
how solutions to this equation may be written in terms of a linear functional
rather than a vector. While these physical solutions don’t form a Hilbert
space, and define non-normalizable ‘weights’ on the algebra of observables
of H rather than algebraic states, there is a construction which, given an
operator on H, representing the occurrence of an event, leads to a (GNS)
Hilbert space representation giving the expectation values for (a subset of)

35See (Busch et al., 1995, p. 37).
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the algebra of observables on H—the algebra of events—on the condition
that the event in question did occur.

This weight thus provides a replacement for the trace, such that by con-
ditionalizing on these events one can calculate probabilities for subsequent
events, e.g. a detector’s firing again elsewhere. This theory has a good claim
to be regarded as a straightforward generalization of the usual Schrédinger
dynamics, but the form that the theory takes is surprisingly distinct: the
solutions of the extended Schrédinger equation do not form a Hilbert space,
the dynamics are not given by a unitary operator, and there is no meaning
to the phrase ‘the state of the system’ without first specifying an event (the
occurrence of which can be used to give a probability assignment to fur-
ther events). Such probability assignments thus appear to correspond to a
conditional state. The interpretative possibilities offered by this ‘extended’
quantum theory are, I submit, exciting and deserve further exploration.
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