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Abstract. Kochen and Specker’s theorem can be seen as a consequence of
Gleason’s theorem and logical compactness. Similar compactness arguments
lead to stronger results about finite sets of rays in Hilbert space, which we
also prove by a direct construction. Finally, we demonstrate that Gleason’s
theorem itself has a constructive proof, based on a generic, finite, effectively
generated set of rays, on which every quantum state can be approximated.

1. Gleason’s Theorem and Logical Compactness

Kochen and Specker’s (1967) theorem (KS) puts a severe constraint on possible
hidden-variable interpretations of quantum mechanics. Often it is considered an
improvement on a similar argument derived from Gleason (1957) theorem (see,
for example, Held. 2000). This is true in the sense that KS provide an explicit
construction of a finite set of rays on which no two-valued homomorphism exists.
However, the fact that there is such a finite set follows from Gleason’s theorem using
a simple logical compactness argument (Pitowsky 1998, a similar point is made
in Bell 1996). The existence of finite sets of rays with other interesting features
also follow from the same simple consideration. In Pitowsky (1998) some such
consequences, in particular the “logical indeterminacy principle”are pointed out,
and some are given a direct constructive proof. In this section we shall formulate
the general compactness principle underlying these results and mention some new
ones. In the second section there are some explicit constructions of finite sets of rays
whose existence was inferred indirectly in the first section; in particular, a simpler
proof of the logical indeterminacy principle. In the last section we prove that there
is an effective (algorithmic) procedure to construct finite sets of rays which force
a uniform approximation to quantum states. In particular, we provide a short
demonstration that Gleason’s theorem has a constructive proof, a fact previously
established by Richman and Bridges (1999).
Let H be a Hilbert Space of a finite dimension n ≥ 3 over the complex or real

field. A non negative real function p defined on the unit vectors in H is called a
state on H if the following conditions hold:
1. p(αx) = p(x) for every scalar α, |α| = 1, and every unit vector x ∈ H.
2. If x1, x2, ..., xn is an orthonormal basis in H then

Pn
j=1 p(xj) = 1.

Gleason’s theorem characterizes all states:

Theorem 1. Given a state p, there is an Hermitian, non negative operator W on
H, whose trace is unity, such that p(x) = (x,Wx) for all unit vectors x ∈ H, where
(, ) is the inner product.

Gleason’s (1957) original proof of the theorem has three parts: The first is to
show that every state p on R3 is continuous. The second part is a proof of the
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theorem in the case of R3, and the third part is a reduction of the general theorem
to R3. The theorem is also valid in the infinite dimensional case which we shall not
consider.
Let us make more precise what are the formal logical assumptions underlying

the proof of Gleason’s theorem. For simplicity we shall concentrate on the three
dimensional real case which comprises the first two parts of Gleason’s proof. All
our results are extendable to any real or complex Hilbert space of a finite dimension
n ≥ 3.
Consider the first order formal theory of the real numbers (that is, a first order

theory of some standard model R of the reals). This induces a theory of R3, together
with the inner product, and the unit sphere S2. Add to this first order theory a
function symbol p : S2 → R. Let the Greek letters α,β, γ... denote variables ranging
over the reals and x, y, z, ... be variables ranging over S2. Now add the axioms:
G1. ∀xp(x) ≥ 0
G2. ∀x p(−x) = p(x).
G3. For each orthonormal triple x, y, z ∈ S2 an axiom: p(x) + p(y) + p(z) = 1
Note that in G3 we do not use the universal quantifier. Instead G3 is an axiom

schema with a continuum of propositions. The next axiom is just the statement
that every set of reals which is bounded from below has an infimum. However, since
we want to use only first order formulae we write it as an axiom schema:
G4. For every one place predicate of reals A(.) expressible in our language an

axiom
∃β∀α(A(α)→ α ≥ β) −→ ∃β[∀α(A(α)→ α ≥ β)∧∀ε > 0∃γ(A(γ)∧ β > γ − ε)]
Thus, for example, the claim that p itself has an infimum will follow from G1

and the application of G4 to the predicate ∃x(p(x) = α). As a matter of fact, the
proof of Gleason’s theorem requires twice the application of G4, that is, for two
predicates A(.).
The proof that p is continuous depends on the axioms G1-G4. One can see this

from Gleason’s (1957) original proof , or more directly from Pitowsky (1998) that
only a finite number of application of the schema G3 are required.
To prove the second part, that every state on R3 is given by a self adjoint,

non-negative, trace one operator, another axiom is needed:
G5.If p is continuous then its minimum and maximum are obtained:
∀ε > 0∃δ > 0∀x, y(kx− yk < δ → |p(x)− p(y)| < ε) −→ ∃x, y∀z(p(x) ≤ p(z) ≤

p(y)).
An elementary way to complete the proof of Gleason’s theorem on the basis of

G5 is in Cooke et al (1984) or Richman and Bridges (1999). Here the proof is based
on a limiting process. Using the continuity of p, which has been proved from G1-
G4, the claim that p obtains its minimum and maximum follows from G5. Using
the minimum and maximum points of p one determines the operator W , which is
the candidate to represent it. Then one proves that for all ε > 0 the proposition
∀x(|p(x)− (x,Wx)| < ε) holds, which completes the proof.
With these observations it is easy to see how Kochen and Specker’s theorem

follows from Gleason’s theorem. Consider the proposition:
F1. There is a state p such that ∀x(p(x) = 0 ∨ p(x) = 1)
Now, the conjunction of F1 with G1-G4 is inconsistent, since the latter imply

that p is continuous. Hence, there is a proof of a contradiction from G1-G4 +
F1. The proof of that contradiction uses only finitely many cases of the schema
G3 (since any proof is finite). If one collects the directions x ∈ S2 which appear in
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that proof one gets a finite set of directions on which no two valued homomorphism
exists. Of course this compactness argument does not yield an explicit set, but
it may serve as a incentive to look for one, which might have been Kochen and
Specker’s motivation. A similar argument was explicitly used by Clifton (1993).
He simply lifted the vectors which appear in Bell (1966) simplified 0-1 version of
“Gleason’s theorem” to obtain a KS theorem. See also Fine and Teller (1978),
Pitowsky (1982).
But the argument just presented can be easily generalized to include many more

propositions which contradict Gleason’s theorem. Let Γ ⊂ S2 be a finite set such
that x ∈ Γ → −x ∈ Γ. We shall say that p : Γ → R is a state on Γ if p satisfies
G1-G3 for all directions in Γ. Now, consider the statement
F2 There is a state p that has exactly k values ( k ≥ 2). In other words, p

satisfies the proposition:
Ak = ∃x1, x2,...xk

V
i6=j(p(xi) 6= p(xj)) ∧ ∀y(p(y) = p(x1)) ∨ ... ∨ (p(y) = p(xk))

This contradicts Gleason’s theorem since, again by continuity, if p has two or
more values it has infinitely many. Hence, for all k ≥ 2 there is a finite set Γ which
contains elements x1, x2,...xk, y among others, and such that any state p on Γ which
assigns k distinct values to x1, x2,...xk. assigns a different value to y. Also, taking
the disjunction

Wn
k=2Ak, we obtain by the same method that for each n ≥ 2 there

is a finite set Γn such that every non constant state p on Γn has at least n values.
We shall give below an explicit construction of Γn in a somewhat more restricted
context.1

So far we have used only the continuity of p, which is proved by G1-G4, but
Gleason’s theorem puts more severe restrictions on states than continuity. Concep-
tually, one of the important outcomes of Gleason’s theorem are the uncertainty rela-
tions. Casting it in our language it says that any two non-orthogonal, non-opposite
directions cannot both have extreme probability values (zero or one) unless they
are both zero. To see the finite version consider the opposite statement:
F3 There is a state p such that
∃x, y(0 < (x, y) < 1) ∧ ((p(x) = p(y) = 1) ∨ (p(x) = 1 ∧ p(y) = 0) ∨ (p(x) =

0 ∧ p(y) = 1))
Since F3 is false we can prove the following: Given any x, y with 0 < (x, y) < 1

there is a finite set Γ such that x, y ∈ Γ, and every state p on Γ satisfies p(x), p(y) ∈
{0, 1} ←→ p(x) = p(y) = 0. This is the logical indeterminacy principle (Pitowsky
1998) which has been proved by an explicit construction, a simplified construction is
given below. Note that this result is stronger than KS since it is constraining every
probability distribution on Γ, and not merely the “truth values”. It is “logical” in
the sense that it follows from the orthogonality relations alone.
We can obtain more dramatic results of this kind, using the fact that by Gleason’s

theorem p(x) = (x,Wx). However, recall that this consequence is derived in the
form ∀ε > 0∀x(|p(x)− (x,Wx)| < ε). We should therefore be careful when moving
to finite subsets. Let us begin with the simple example of a pure state. If we know
that p(z0) = 1 then, by Gleason’s theorem, p(x) = |(z0, x)|2 for all x. The statement
(p(z0) = 1) ∧ ∃x(p(x) 6= |(z0, x)|2) contradicts Gleason’s theorem, but it is refuted
by showing that given x, and given ε > 0 the condition

¯̄̄
p(x)− |(z0, x)|2

¯̄̄
< ε is

1This result has been used in Breuer (2002) to give an argument against the “way around” KS
(Meyer 1999, Clifton and Kent 2000, see also, Pitowsky 1983,1985, and Appleby 2002).
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satisfied. Hence, one cannot expect to be able to force the relation p(x) = |(z0, x)|2
for each x on a finite set that contains it. Therefore, consider
F4 There is a state p that satisfies (p(z0) = 1) ∧ ∃x(

¯̄̄
p(x)− |(z0, x)|2

¯̄̄
> ε).for

some fixed ε > 0.
The proposition F4 clearly contradicts Gleason’s theorem. Using our method

we conclude: For all ε > 0 and z0, x ∈ S2 there is a finite set of directions Γ such
that z0 x ∈ Γ, and every state p on Γ satisfies: p(z0) = 1→

¯̄̄
p(x)− |(z0, x)|2

¯̄̄
< ε.

Obviously, this is also true for any finite number of directions beside x. The general
case, that of a mixtureW , follows the same pattern. Here it is not enough to specify
the value of p at one point z0. Rather, five points are needed since, in general, W
is a 3 × 3, self adjoint, non negative matrix with trace unity. Given these points
z1, ..., z5, and the values p(zi) = αi, we find for each x and ε > 0 a finite set on which
the conditions p(zi) = αi imply |p(x)− (x,Wx)| < ε. In order construct this set
of directions explicitly one can painstakingly follow the steps of the constructive
proof of Richman and Bridges (1999), and “lift” the vectors in the proof. An
alternative to this tedious procedure is presented in the third section below, where
there is a generic algorithmic way to calculate such graphs (and to demonstrate
that Gleason’s theorem, and theorems like it, have a constructive proof).
All these results are easily extendable to any real or complex Hilbert space of a

finite dimension n ≥ 3, and they are significant for the Bayesian approach developed
in Pitowsky (2003). The results proved here imply that there are finite quantum
gambles in which a rational agent is forced to bet in accordance with the numerical
values of quantum probability, or very near them.
The inverse of these compactness results is the claim that there are very large

subsets Ω ⊂ S2 on which 0-1 valued states exist. The “size” of such possible Ω
depends on set-theoretic assumptions. For example, if the continuum hypothesis
is assumed to hold, there is an Ω whose intersection with every major circle C in
S2satisfies |C \ Ω ∩ C| ≤ ℵ0. Weaker assumptions lead to “smaller” sets (Pitowsky
1983,1985).

2. Some constructions

In this section we shall be using rays (one dimensional subspaces) rather than
unit vectors and take states to be defined on them. Given a Hilbert space H, the
assumption p(αx) = p(x) for every scalar α, |α| = 1 and every unit vector x ∈ H
imply that p actually depends on the ray and not on the unit vector we choose to
represent it. Our first aim is to prove the “logical uncertainty principle”. The proof
here is simpler than Pitowsky (1998) and is based on the “lifting” of the vectors in
an argument of Piron (1976).

Theorem 2. Let a and b be two non orthogonal rays in a Hilbert space H of finite
dimension ≥ 3. Then there is a finite set of rays Γ(a, b) such that a, b ∈ Γ(a, b) and
such that a state p on Γ(a, b) satisfy p(a), p(b) ∈ {0, 1} only if p(a) = p(b) = 0.
Proof. First, consider the three dimensional real space R3. If z and q are two rays
in that space there is a unique great circle which they determine. Let q0 be the ray
orthogonal to both z and q and let q00 be the ray orthogonal to both q and q0. Now,
consider great circle through q and q0 ( figure 1). If r is any ray through this great
circle then r ⊥ q00. Let l be the ray orthogonal to both r and q00. The orthogonality
relations between z, q, q0, q00, l, r is given in the graph G = G(z, q, r) (figure 2).
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Figure 1

Figure 2

Subsequently we shall loosely identify sets of rays with their orthogonality graphs.
If p is a state defined on the rays in the graph G then p(z) = 1 entails p(q) ≥ p(r).
Indeed, p(q) + p(q0) + p(q00) = p(r) + p(l) + p(q00) = 1. Also, since p(z) = 1 we have
p(q0) = 0. Hence p(q) = p(r) + p(l) ≥ p(r).
The relation between the points z, q, and r can be best depicted on the projective

plane, where z is taken as the pole of projection (figure 3). In the projective plane
great circles appear as straight lines, and latitudes (relative to z as the pole) appear
as concentric circles. In the projective plane q is on a line through z, call this line
L(z, q), and r is on the line through q which is perpendicular to L(z, q) at q..
Next, consider three points z, q, r which do not necessarily have that relation.

Assume only that ]zq < ]zr so that if z is the north pole, then r is more to the
south than q. In this case we can find a finite sequence of points q1, q2, ..., qm with
q1 = q and qm = r and such that qk+1 is on the line perpendicular to L(z, qk) for
k = 1, 2, ...,m − 1. A case with m = 5 is considered in figure 4. The number m
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Figure 3

Figure 4

of intermediate points depends on the difference ]zr − ]zq and on the respective
longitude of q and r.
Given this set of vectors we can construct for each k a graph Gk = G(z, qk, qk+1)

in which z, qk, qk+1 play the role of z, q, r respectively (note, z is the same through-
out). Let G0(z, q, r) =

Sm−1
k=1 Gk then any state on G

0 that satisfy p(z) = 1 also
satisfy

p(q) = p(q1) ≥ p(q2) ≥ ... ≥ p(qn) = p(r)
To finish the proof for R3 let a, b be two non orthogonal rays. We can always

choose a sequence of rays c1, c2, ..., cn such that ]ab > ]bc1 > ]c1c2 > ... >
]cn−1cn and such that a ⊥ cn. A case with n = 3 is depicted in figure 5.Consider
b as a pole (projection point) and construct a graph G00 = G

0(b, c1, a) which is like
G0(z, q, r) with b, c1, a play the role of z, q, r respectively. If p is a state on the rays
in this graph with p(b) = 1, then p(c1) ≥ p(a). Consider c1 as a pole and construct
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Figure 5

the graph G01 = G0(c1, c2, b), which is like G0(z, q, r), with c1, c2, b play the role of
z, q, r respectively. For a probability function p on G01 which satisfy p(c1) = 1 we
get p(c2) ≥ p(b). Now construct the graph G02 with c2 as pole and c3, c1 play the role
of q, r respectively, and so on. Suppose that p is a state on G00(a, b) =

Sn−1
j=0 G

0
j the

union of all these graphs. We shall show that if p(a) = 1 then p(b) < 1. Assume, by
negation, that p(a) = p(b) = 1 then, by construction p(c1) ≥ p(a) so that p(c1) = 1.
But then p(c2) ≥ p(b) so that p(c2) = 1, and p(c3) ≥ p(c1) so that p(c3) = 1, and
so on and we finally obtain p(cn) = 1. This is a contradiction since a ⊥ cn. Hence
p(b) < 1.
Now, consider the ray b0 which is orthogonal to b in the plane spanned by a

and b, and let b00 be the ray orthogonal to both b, b0. Repeat the construction of
the graph with b0 instead of b to obtain the graph G00(a, b0), and add this to the
previous graph. Let p is a state on the graph G00(a, b) ∪ G00(a, b0) with p(a) = 1,
then f(b) < 1 and f(b‘) < 1. But then we also have p(b) > 0. Otherwise, p(b) = 0
together with p(b00) = 0 (as b00 ⊥ a and p(a) = 1) entail p(b0) = 1, contradiction.
Hence p(a) = 1 entails 0 < p(b) < 1. Inverting the roles of a and b we construct a
graph

Γ(a, b) = G00(a, b) ∪G00(a, b0) ∪G00(b, a) ∪G00(b, a0)
With a0 a vector orthogonal to a in the plane spanned by a and b. Let p be a

state on Γ(a, b). If p(b) = 1 then 0 < p(a) < 1, and if p(a) = 1 then 0 < p(b) < 1.
Therefore Γ(a, b) is the required set of rays in R3.
In the general case of a finite dimensional Hilbert space H we do the following:

Given rays a, b in H we consider them first as rays in a three dimensional subspace
H0of H and complete the construction there. Then we add to the finite set of rays
in H0additional dimH − 3 orthogonal rays in the orthocomplement of H0. This
completes the proof.

The the above construction entails that pure states should have strictly monotone
behavior

Lemma 1. Given a ray z in a Hilbert space H of a finite dimension ≥ 3, and rays
a and b such that 0 < ](a, z) < ](b, z) then there is a finite set of rays D(z, a, b),



8 EHUD HRUSHOVSKI AND ITAMAR PITOWSKY

Figure 6

which contains z, a, and b, such that every state p on D(z, a, b) for which p(z) = 1
also satisfies p(a) > p(b).

Proof. Consider first R3. Given a ray z, let q be any ray different from z and not
orthogonal to it. Consider once more the vectors in figute 1 and thier orthogonality
graph G = G(z, q, r) in figure 2. Now denote

D1(z, q, r) = G(z, q, r) ∪ Γ(z, l)
where Γ(z, l) is the set of rays in theorem 2 with z, l fulfill the role of a, b. The
situation is depicted in figure 6If p is a probability function on D1(z, q, r) with
p(z) = 1 then, by construction, p(q) = p(r) + p(l), and also 0 < p(l) < 1, hence
p(q) > p(r). Since ](a, z) < ](b, z) we can find a sequence q0, q1, ...,qm such that
q0 = a and qm = b and for all k = 1, 2, ...m the ray qk is on the great circle through
qk−1 and q0k−1, the ray orthogonal to z and qk−1. Putting

D(z, a, b) =
m[
k=1

D1(z, qk−1,qk)

We get that if p(z) = 1 then

p(a) = p(q0) > p(q1) > ... > p(qm) = p(b)

If H is a Hilbert space 3 ≤ dimH < ∞, complete the construction first on the
three dimensional space H1 spanned by z, a, and b (in case they all lie in the same
plane form H 1 by adding any ray orthogonal to them). Subsequently add a set of
orthogonal rays in H⊥1 to complete the construction.

An immediate consequence of this theorem is the construction of a finite sets of
rays on which states must take many values:

Corollary 1. Given a ray z in a Hilbert space H of a finite dimension ≥ 3, and
an integer k, there is a finite set of rays Λk(z) such that every state p on Λk(z) for
which p(z) = 1 has at least k distinct values.
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3. The Effectiveness of Gleason’s Theorem

Recently, there has been an interesting discussion on the question whether Glea-
son’s theorem has a proof which is acceptable by the standards of constructive
mathematics (Hellman 1993, Billinge 1997). The discussion culminated when Rich-
man and Bridges (1999) gave a constructive formulation and proof of the theorem.
Our aim is to give a (much shorter) proof of the conditional statement: If Gleason’s
theorem is true than it must have an effective proof.
The result follows from a generic sequence of approximations of states on finite

sets. As will become clear subsequently the approximations in question are deter-
mined by an algorithm. Again, we shall consider the three dimensional case but
the results generalize immediately. To simplify matters we shall work with general
frame functions, not (positive normalized) states. This means that we replace G1
and G3 respectively by the axioms:
G’1 There is a real constant γ such that ∀xp(x) ≥ γ.
G’3 There is a real constant δ such that for each orthonormal triple x, y, z ∈ S2:

p(x) + p(y) + p(z) = δ
Let e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) be the standard basis in R3 (or

C3) and bij = 1√
2
(ei + ej), 1 ≤ i < j ≤ 3.

Denote by F the set of all functions p : S2 → R that satisfy G’1, G2 and G’3
and let F0 = {p ∈ F ; p(ei) = p(bij) = 0, i = 1, 2, 3, 1 ≤ i < j ≤ 3}. Then
Lemma 2. The following statements are equivalent:
(a) If p ∈ F there is a self adjoint operator W in R3 such that p(x) = (x,Wx).
(b) Every element p ∈ F0 vanishes identically.

Proof. If p ∈ F0 then by (a) we have p(x) = (x,Wx). But then (ei,Wei) = 0 and
(bij ,Wbij) = 0. The latter equation implies that (ei,Wej) = 0 for 1 ≤ i < j ≤ 3.
Hence W = 0 and therefore p = 0.
Conversely, assume (b) holds, let p ∈ F and letW be the symmetric matrix which

satisfies the equations p(ei) = (ei,Wei) and p(bij) = (bij ,Wbij) for i = 1, 2, 3, 1 ≤
i < j ≤ 3. Denote p0(x) = p(x)− (x,Wx). Then p0 ∈ F and p0(ei) = p0(bij) = 0,
and therefore p0 ∈ F0. By (b) p0 = 0 and thus p(x) = (x,Wx).
By Gleason’s theorem (a) is true, so we can take (b) as our formulation of this

theorem. In the following we shall work with the first order formalization of the field
of real numbers, the theory of real closed fields, denoted by R, or the formalization
of the field of complex numbers, the theory of algebraically closed fields (with zero
characteristic), denoted by C. In both theories there is an effective elimination of
quantifiers. This means that there is a (known) algorithm which, given any well
formed formula as input, produces as output an equivalent formula without the
quantifiers ∀, ∃. Consequently the theories are decidable: there is an algorithmic
method to prove every true proposition in them2. Also, we shall denote by R− the
section of R without multiplication (including only the addition operation and the
inequality relation).
As a result of the elimination of quantifiers every definable set (without pa-

rameters) in R is a finite Boolean combination of sets of n-tuples, each defined
by a rational polynomial inequality (or equality). Thus, for example, S2 is the

2For details on these theories see Shoenfeld (1967). For recent results on quantifier elimination
see Basu (1999)
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set {(α1,α2,α3);α21 + α22 + α23 = 1} and therefore definable in R. Similarly
S2+, “the northern hemisphere”, which is like S2 with the additional condition
(α3 > 0) ∨ (α3 = 0 ∧ α1 > 0) ∨ (α3 = 0 ∧ α1 = 0 ∧ α2 = 1), is also definable
in R. Similar remarks apply to C and the unit sphere in the complex, finite di-
mensional Hilbert spaces.
We shall consider the general set-up where X is some definable set of n-tuples,

and Y is a definable set of m-tuples from X. We let F0 be the set of real-valued
functions p on X, such that

Pm
i=1 p(xi) = 0 for all y = (x1, ..., xm) ∈ Y . Our first

aim is to prove the following: If every bounded function of F0 vanishes identically
in every model of R (or C ) then this fact admits an effective proof.
The connection with Gleason’s theorem is as follows: We let X = S2+, and Y is

the set of triples fromX given by Y = B∪{(ei, ei, ei); i = 1, 2, 3}∪{(bij , bij , bij); 1 ≤
i < j ≤ 3}. Here B is the set of orthogonal triples from S2+ and ei, bij as in lemma 2.
B is clearly definable since the inner product of x1 = (α1,α2,α3), x2 = (β1,β2,β3)
is a polynomial in the αi’s and βi’s. Also, the bij ’s are given by a simple formula
(for example, b12 = (α,α, 0) with 2α2− 1 = 0). In sum, Y is definable. In this case
F0 is the set of real-valued functions p which satisfy p(x1) + p(x2) + p(x3) = 0 for
all (x1, x2, x3) ∈ Y . By lemma 2 the conclusion p = 0 for all p ∈ F0 is equivalent
to Gleason’s theorem.
Now for a natural number k > 1 let

Sk(n) = {S ⊂ {0, . . . , n}m : R− ` (∀α0) . . . (∀αn)
^
s∈S
(
mX
i=1

αs(i) = 0)→
n_
j=1

(k|α0| ≤ |αj |)
}.

Let T stand for either R or C then we have:

Lemma 3. Let X be a definable set of n-tuples, Y a definable set of m-tuples from
X, and F0 the set of real-valued functions p on X, such that

Pm
i=1 p(xi) = 0 for

all y = (x1, ..., xm) ∈ Y . Then the following are equivalent
1. Every bounded function in F0 vanishes in every model of T.
2. For some n, T ` (∀x0)(∃x1) . . . (∃xn)

W
S∈Sk(n)

V
s∈S(ys ∈ Y ) where ys =

(xs(1), . . . , xs(m)).

Proof. Let p ∈ F0. If (2) holds for n, then there is S ∈ Sk(n) such that
Pm
i=1 p(xs(i)) =

0 for all s ∈ S. By the definition of Sk(n) we have |p(x0)| ≤ 1
k |p(xj)| for some

1 ≤ j ≤ n. But by (2) for each x0 ∈ X we can find such xj ∈ X. We conclude
therefore that if β > 0 bounds p, so does (1/k)β. Thus repeating the argument we
have proved p = 0.
Conversely, assume that (2) fails. Note that the formulas

φn(x0) = (∃x1) . . . (∃xn)
_

S∈Sk(n)

^
s∈S
((xs(1), . . . , xs(m)) ∈ Y )

define an increasing chain of setsWk(n) = {a;φn(a)}, so their complementsWk(n) =
{a;¬φn(a)} form a decreasing chain, and by assumption no element is empty. By
the compactness theorem (or Gödel’s completeness theorem), there exists a model
M of T and a0 ∈ |M| such that a0 ∈W k(n) for all n.
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We now show that some p ∈ F0(M) is non zero. For each a ∈ X(M), let ca
be a new (and different) constant symbol; let R be the theory consisting of the
axioms of R− and for each (a1, . . . , am) ∈ Y (M) the axiom

Pm
i=1 cai = 0, and for

each a ∈ X(M) the axiom |ca| < k|ca0 |. Then R is consistent, so it also has a
model. Hence, there exists a function g on X(M) into an ordered Abelian group
(B,<) with

P
g(ai) = 0 for all (a1, ..., am) ∈ Y (M) and with |g(a)| < k |g(a0)|

for all a ∈ X(M). In particular, b0 := |g(a0)| > 0. Also, there exists a unique
homomorphism H : B → R with H(z) ≥ 0 whenever z ≥ 0, and H(b0) = 1 . Now
p = H ◦ g is a nonzero element of F0(M), and therefore (1) fails.

This establishes the existence of a constructive proof for Gleason’s theorem in
complex Hilbert spaces. In this case, the condition “every bounded function in F0
vanishes” holds in every model of C, iff it holds in C3. This means that condition
(2) of the theorem states that Gleason’s theorem is true iff ∀x0φn(x0) is provable
in C for some n. But C has an effective decision procedure.
In the real case there is some complication because we do not assume Gleaason’s

theorem for every model , but only for the standard model; though a posteriori
it will follow for every model. Therefore, we have to bridge the gap between “all
models of R” and the standard model R for which Gleason’s theorem is known
to be true. From now on we specialize to the concrete Y relevant to Gleason’s
theorem. More specifically, we shall take X to be the real projective plane, using
its identification with the northern hemisphere S2+ of the previous section (Figure
3). With this identification (and with the point at infinity added) X is compact and
Y is closed. It follows that the setsWk(n), being projections of closed sets, are also
closed sets, and so the sets ,W k(n) are open; but all we need is their measurability
with respect to the uniform measure on the sphere, and the measurability of their
intersections with major circles with respect to the uniform measure on the circle.
Since Wk(n) are definable sets, the subsets of the circle that will be mentioned
below are finite unions of segments (i.e. arcs) and their measure is elementary.

Theorem 3. The conditions below, referring to the model R, are equivalent.
1. Every bounded function in F0 vanishes.
2. For some n, T ` (∀x0)(∃x1) . . . (∃xn)

W
S∈S2(n)

V
s∈S(ys ∈ Y ) where ys =

(xs(1), . . . , xs(m)). (that is, for some n, W 2(n) = ∅)
3. For some n, for every great circle C, the set C ∩ W4(n) has normalized
measure > 1/2 in C.

4. ∩n≥1W 8(n) = ∅.
Condition (2), while phrased for R, is a single elementary statement; thus if true

it holds in every real closed field, and this fact admits an elementary proof. So in
the special case of Gleason’s theorem, we can replace “in every model of R” by “in
R.”.

Proof. We will use the following kind of Fubini principle: Let Cz be the great circle
orthogonal to the point z on the sphere. For C = Cz let µC be the normalized
uniform measure on Cz; and say that a property P holds “for a majority of points”
if µC({x : P (x)}) ≥ 1/2. Let C be a fixed great circle and suppose that a majority
of points z ∈ C are such that for a majority of points q ∈ Cz, the property P (q)

3Knowing the theorem for C automaticaly imply it for every model, since C is universal for
countable models of C; however, R does not have that property.
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holds. Then, assuming {x : P (x)} is measurable on the sphere, it has an area ≥ A,
where A is the area of the unit sphere above the 45th northern latitude. The reason
is that the region {x : P (x)} takes up ≥ 1/4 of the area of a Mercator map of the
sphere; and the region above the 45 latitude has the greatest distortion under this
map. Moving to the projective plane X, we can say that {x : P (x)} takes an area
≥ 1/2 of X, when we use the area measure induced on X by the Mercator map.

Claim 1. If z ∈W k(2n+ 2), then a majority of x ∈ Cz lie in W 2k(n).

Indeed, in the projective plane model, a point x on a given circle C = Cz,
has a unique point ort(x) orthogonal to it on Cz. Suppose the claim fails. So
let z ∈ W k(2n + 2) and assume that a set of points of Cz of measure > 1/2 lies
in W2k(n). Since the function ort is a measure-preserving bijection on Cz, the
set {y : ort(y) ∈ W2k(n)} also has measure > 1/2. So these two sets intersect;
thus there exist x, y ∈ Cz such that x⊥y and x, y ∈ W2k(n). But as x, y, z form
an orthogonal triple, (x, y, z) ∈ Y , so it is easy to see that z ∈ Wk(2n + 2), a
contradiction which proves the claim.
(4) implies (3): Assuming (4), there exists n4 such that W8(n4) has measure

> A, that is, Mercator measure > 1/4. Let n3 = 2n4 + 2. Let C be a great circle.
Suppose, by negation, that a majority of points of C lie in W 4(n3). Then, by the
claim, for each of these points z ∈ W 4(n3) ∩ C, a majority of points x of Cz must
lie in W 8(n4). So this set has (Mercator) area ≥ 1/4. Moving to the projective
plane we get a contradiction. Thus (3) holds.
(3) implies (2): Assume (3) holds for n = n3, and let n2 = 2n3 + 2. If

y ∈ W 2(n2) 6= φ, let Cy be the orthogonal great circle. Then by the claim a
majority of points on Cy lie in W 4(n3), contradicting (3).
(2) implies (1): The same as in lemma 3.
(1) implies (4): As soon as there is a0 ∈ ∩n≥1W 8(n), the proof of lemma 3

works and provides a non-vanishing bounded function in F0.
The theorem provides an effective procedures to prove p = 0 in case every p ∈ F0

vanishes. The reason is that R (and R−) is decidable, which means that there is
a computer program which proves evry true propositions of R, in particular the
proposition (∀x0)φn(x0) for a suitable integer n. Any apparent ineffectiveness in
the proof of theorem 3 is in some sense self-eliminating, as a posteriori one knows
the existence of an effective proof too. Nevertheless, it may be worth remarking
that all the sets occurring in the proof are definable in R. These sets are known to
have a simple structure, and there would be no difficulty in formalizing the proof
in a very small part of Peano arithmetic.
As a consequence of theorem 1 we obtain:

Corollary 2. For any direction x0 there is a finite, fixed size set Γ ⊂ S2+ which
include x0, the ei’s and bij’s such that any p ∈ F0(Γ) satisfy |p(x0)| ≤ 1

2 |p(x)| for
some x ∈ Γ.
Here F0(Γ) is the set of functions p : Γ→ R which satisfy the conditions p(ei) =

p(bij) = 0 and p(x)+p(y)+p(z) = 0 for every orthogonal triple x, y, z ∈ Γ. Iteration
of this process yields a constructive proof of Gleason’s theorem. It would be nice
to give an explicit construction of the set Γ with this property. As noted, there is
a general algorithm to find it, but such algorithm may not be feasible to execute
in practice since the decision procedure for R has a worst case doubly exponential
time lower bound, see Basu (1999).
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We shall end with a few comments on the boundedness condition in Gleason’s
theorem. Suppose that we drop the requirement that the functions p ∈ F0 are
bounded, then the conclusion p = 0 is simply false. One can see this from the
following cardinality consideration:
Denote by G the class of real functions f satisfying f(x) + f(y) + f(z) = 0 for

every orthogonal triple x, y, z ∈ S2+. By Gleason’s theorem the cardinality of all
bounded functions in G is 2ℵ0 . Note that G (including its unbounded functions)
is closed under composition with any additive group homomorphism R → R; i.e.
if g ∈ G and h : R → R, h(x + y) = h(x) + h(y), then h ◦ g ∈ G. Let p be
a bounded element of G given by some non-zero matrix with trace zero. If one
assumes the axiom of choice, there are i2 additive group homomorphisms from
R to R . Composing them with p, we see that G is enormous, and so certainly
Gleason’s theorem fails without the boundedness requirement.
On the other hand consider a model of set theory in which the axiom of choice

fails, Solovay’s (1970) model, or if every set has the property of Baire say. Then
every function R → R is continuous on a set whose complement is meager; if it
is also a group homomorphism, it will be continuous everywhere. Thus, with this
kind of negation of the axiom of choice, it is not implausible that the boundedness
of frame functions might be automatic. Coming back to the remark at the end of
section 1, we also note that in such models there are no large Ω ⊂ S2 on which 0-1
valued states exist (Shipman 1990).
It seems instructive at all events to compare Lemma 3 to what one obtains when

Y satisfies the stronger assumption, that every function (bounded or otherwise)
vanishes. Then one can replace in Lemma 3(2) the reference to Sk(n) by

S∞(n) = {S ⊂ {0, . . . , n}m : R− ` (∀α0) . . . (∀αn)
Ã^
s∈S
(
mX
i=1

αs(i) = 0)→ (α0 = 0)

!
}

The proof is the same as that of Lemma 3, mutatis mutandis, noting that when B is
a divisible Abelian group and 0 6= b ∈ B, there exists a homomorphism H : B → R
with H(b) 6= 0 (not necessarily order preserving.)
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