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SUMMARY
 A transfinite sequence ,

 σ = σ0;σ1;σ2;.....

is proposed. These are defined by the set of relations
σn2 = σn−1;n = 1,2,3,...

2σ = K0

After a discussion of the natural  arithmetic
properties of this series , we restrict our attention for
the most part to    σσσσ,,,,    for which several models,
combinatorial , algebraic, geometric and analytic are
proposed  .

The  combinatorial model is derived from  the
properties of  collections, called “mixets”,  mixing
distinguishable and indistinguishable elements. A
bivalent cardinal is defined for them. A sequence of
representative mixets is constructed on which a
natural extension of the power set operator can be
inverted on any cardinal. The inversion on the
representative set for  K0 produces the cardinal σσσσ  .
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The geometric model for σσσσ    is based on a
construction on Hilbert Space called a σσσσ-hedron , (
sigmahedron)  . Its construction raises some questions
about the ontological viability of Hilbert Space as an
object of geometry. When speaking about a  countably
infinite dimensional Hilbert Space H , one must
recognize that there can be no “internal evidence”
distinguishing H from any of its proper countably
infinite dimensional  linear subspaces.

We call this the “Principle of Relativity for
Countably Infinite  Dimensional  Hilbert Space”  . This
principle of relativity can be expressed in the
language of mixets. Plausible arguments show that the
cardinal number of the σσσσ-hedron is indeed σσσσ    .

The last model is analytic, utilizing   the
coefficients of the collection of Fourier series defined
by the vertices of the σσσσ-hedron.

Introduction
“Mathematics is purely hypothetical; it produces

nothing but conditional propositions. Logic, on the contrary
, is categorical in its assertions.” - C.S. Peirce

 The cardinal number of the power set P(S)  of a finite set S is a

simple function of  the cardinal number of  S .

Let  #S = cardinal number of S, #P (S) = cardinal number of P(S) . Then

Theorem I (Classical): #P (S) = 2#S

Corollary: #P (S) > #S for all finite S, ( including the null set, φφφφ ) .

The extensions of this corollary via the  Cantor Diagonal
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Construction, are the foundation from which all of transfinite arithmetic

arises. As it is neither  a definition nor a theorem in its own right, the

extension of  Corollary 1 into transfinite arithmetic  should properly be

stated as an axiom:

Axiom I : If T is any  infinite set well-defined by the Zermelo-

Fraenkel axioms , and  P(T) is its power set, then

#P (T) > #T

The customary notation,   #P (T) = 2#T , is an arbitrary , not

entirely satisfactory convention for infinite sets. The Continuum

Hypothesis renders it even more questionable. We will assume the

Generalized Continuum Hypothesis in the paper (Jech, pg. 46) because

(i) it is not directly relevant to the constructions presented here, and (ii)

doing so simplifies the arguments. However, we will not assume that

Sierpinsksi’s Theorem ( GCH ---> AC ; Smullyan and Fitting, pg. 109)

applies to the special class of ‘pre-countable’ transfinite sets that we will

be considering.

Other properties of  #P  for sets, finite or transfinite, are :

(i) If  #X = #Y , then

#P (X) = #P (Y)

(ii) Conversely,

#P (X) = #P (Y)  ----> #X = #Y

(ii) is perhaps open to question. It is not easy to see how one goes

about proving that infinite sets of different cardinalities must produce

power sets of different cardinalities. Although a 1-to-1 correspondence ζζζζ

: A--->B induces a natural 1-to-1 correspondence   ζζζζ *: P(A)--->P(B) , it

does not automatically follow that any 1-to-1 correspondence

µµµµ∗∗∗∗    P(A)--->P(B) must   be invertible into a 1-to-1 correspondence
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µµµµ: P(A)--->P(B) . However we will assume it here. 

These properties enable us to define a function ΓΓΓΓ    (n) explicitly  on

the class of cardinal numbers, C .

 If X be a set of cardinal n, P (X) its power set, then

ΓΓΓΓ(n) = #P(X) = m, where m is  independent of the choice of X.

Theorem 2 : #S finite -----> #P (S) finite

#P (S) finite -----> #S finite

# S infinite -----> P (S) infinite

# P (S) infinite -----> S infinite

The proof follows from Axiom 1 and because αααα is always

considered to be larger than ββββ when    αααα is infinite and ββββ is finite.

Corollary: “ Finitude” and “ Infinitude” are invariant under

both the power set operation and the inverse power set operation, (

defined on the range of P  ) .  Designating the lowest transfinite , #Z+,

by the symbol  K0  , (Aleph-naught) , a sequence of higher  transfinite

numbers can be generated from the cardinals of the  iterations of the

power set operator acting on Z + , and on their  limit sets. There may

exists other processes which generate other transfinite series; we will be

looking at one of them in this paper. This series K0, K1 , K2 , .....

will be referred to as the standard sequence .

Observation : The sets in the standard sequence are all either

power sets or limit sets of power sets . With the sole exception of K0  ,

their cardinals are either of the form C = ΓΓΓΓ((((####P (c) ), c being the previous

cardinal, or C = Γ( c;c < C)U  . Some subtleties arise from the interplay

of cardinals and ordinals. From the perspective of cardinal arithmetic

one can say that  K1 = #P (K0) . From the perspective of ordinal

arithmetic ωωωω1 is the limit of limits of polynomial sequences of the form
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Σajϖ
j . If, as in Jech’s “Set Theory”, cardinals are defined  as limit

ordinals (pgs. 25-28;38-39) no problems arise. But as we intend to show

here, this identification is an over-simplification.

Theorem III : With the exception of K0  , all infinite cardinals

derive from  an iterative or a limit process on other infinite cardinals.

Question: Where does  K0   come from?

Making that question meaningful
There does not exist, in standard set theory, a set S with the

property

that its power set is countably infinite.  This property distinguishes  K0

from  the transfinite cardinals that follow it. The next cardinal with the

same  property is  Kωωωω    : we will not be looking at the higher limit

cardinals in this paper. The situation invites speculation: might there

exist a natural generalization of set theory which allows for the

inversion of ΓΓΓΓ on K0  ?  Another means for invoking this possibility is

to note that all infinite sets with cardinalities greater than  K0  have

proper subsets that are also infinite but of lesser cardinality . Now that

we have learned, ( thanks to the inspired  investigations of our

colleague, Georg Cantor), that the

“Infinite “ has a hierarchical structure, there  exist neither axiomatic nor

intuitive reasons for asserting that it  has to have an abrupt starting

point at the first transfinite , K0  .

Arithmetic Properties of the  σσσσ  -series
It is a simple matter to demonstrate that extending  the standard

transfinite sequence  with the sequence of  weakly infinite cardinals ,{ σσσσ

j }  is consistent with the algebraic structure of  transfinite arithmetic.



#6...

The more difficult task is that of extending standard set theory itself to

include a set with σσσσ as its cardinal number.

Once this is done it will be relatively straightforward, through

back reconstruction and iteration on the process ππππ : K0  ---> σσσσ  to

construct models for the chain of weakly infinite cardinals,

σσσσ1111,,,,        σσσσ2222,,,,        σσσσ3333,,,,    ........................    An example of the way in which this construction

might be carried out is sketched in another section.

An obvious requirement for the  weak transfinites  is that

addition, multiplication, and exponentiation  be compatible with

transfinite arithmetical logic . I say “logic” rather than “laws” , as the

structure of this arithmetic is, somewhat arbitrarily, based on

generalizations upon the  elementary properties of one-to-one

correspondence.

The principles of this logic are :

Let αααα , ββββ be ordinals

Let N be any finite cardinal ( positive integer)

Then:

(i)  αααα <ββββ    −−−−−−−−−−−−>>>>    Kαααα    ++++    Kββββ    ====    Kββββ
(ii)    αααα <ββββ    −−−−−−−−−−−−>>>>    Kαααα    Kββββ    ====    Kββββ
(iii)    αααα <ββββ    −−−−−−−−−−−−>>>>    Kαααα    Kββββ    ====    Kββββ++++1111    ;;;;    KββββKαααα        ====    Kββββ
(iv)     ΝΝΝΝKαααα    ====    Kαααα    ++++    Kαααα    ++++....................++++    Kαααα        ((((N times) ====    Kαααα    
(v)     KααααΝΝΝΝ====    Kαααα    ....    Kαααα    ....    ............    ....Kαααα    ((((N times) ====    Kαααα    

    ((((vi)             ΝΝΝΝKαααα    ====        Kαααα    

Addition and multiplication are commutative, associative and

(trivially), distributive. Indeed, any algebraic expression involving trans-
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finites, as long as they do not appear in the exponents,  is equal to the

transfinite of highest index in  the expression.

Since the weakly infinite cardinals ought to be “stronger” than

the integers,  the natural extension of this structure is :

  

j ≥ k →σ j + σk = σ j

∀j,k( kk + σ j = kk )

j ≥ k →σ j .σk = σ j

∀j,k( kk .σ j = kk )

It is easily shown that the initial segment of the standard

sequence,

( including Z+ and all the transfinites up to but not including Kωωωω ) ,

can be consistently extended to include an initial segment of the weakly

infinite cardinals, by means of  a representation, µµµµ   , onto a semi-group

acting on the set:

Z+ ⊕ Z0
− ⊕ Z0

+

Z+ = 1,2,3,....,n,....

Z0
+ = 0,1,2,3,....,n,...

Z0
− =....−n,−(n −1),....−2,−1,0

This set can also be notated as:
A⊕ B⊕C

= 1a , 2a ,... na ,...;... mb , m−1b ,... −1b , 0;b 0c , 1c ,..., kc ,...

The representation then becomes:
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µ:Z+ → A:n → an

⊕Z0
− → B:σm → bm

⊕Z0
+ → C:Kk → ck

The structure of the semi-group on the letters a , b, and c is given by:
al + ah = al+h

al • ah = alh

2al

= a2l

q ∈B⊕C,then

qaj = q

q + aj = q

q ≤ p→ q + p = p,qp = p

2bm = bm−1

2b0 = c0

2ck = ck+1

It is self-evident that this semi-group is well-defined.

Infinity, Actual and Potential
Finitism revisited

The sequence S=   { σσσσj }  furnishes us with a new particular
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solution to the ancient, ( Zeno-Aristotle) , antinomy of potential versus

actual infinity. This construction:

(i) Eliminates  the philosophically dubious assumption

that the limit   of the finite cardinals  is   K0  ( It does make a certain

amount of sense, however, to use this terminology for ordinals, defining

the first transfinite ordinal, ωωωω ,  as the limit of the finite ordinals. The

concept of a limit enters naturally into any ordinal process. )

(ii) “Actual” infinity can be restricted  to the hierarchy

of transfinites,  B⊕C  . “Potential” infinity pertains to  statements

involving the elements of Z .

It makes sense to us to posit that the  infinite  cannot  be reached

via a limit process on the finite. From this perspective,  the expression
lim nf
n →∞

 is not well defined. On the other hand, an expression

something like lim nf = f ,if f − f n < ε,n > N  

is   well-defined, as are statements such as  
limsin z

z
z → 0

= 1

, since these involve infinitesimals. Infinitesimals have to do with

continuity,  the infinite with counting, which are very different ideas.

The infinite ought not to be definable directly in terms of any finite

process, although some of its attributes may be defined fin terms of

what the finite is not.Thus, one may   continue to employ the fiction z--

> ∞∞∞∞ , as a kind of short-hand for w --> 0 , w = 1/z .

Mixets
The representation of distinct  unordered repetitions of identical

elements has been considered  paradoxical in European philosophy
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since 100 B.S. 1  The recognition of this dilemma may well go back to

the first computer revolution,  the evolution of the human brain. The

obstacles to intuitive understanding of such objects may prove to be

neither deep nor metaphysical. They may in fact  have no more

significance than some accident of brain physiology:  such objects do

not have natural representations on the brain’s video screen.

Consider the familiar paradigm of Buridan’s Ass:

‘ buridan’s ass....a hypothetical dilemma in which a person is

postulated as presented with two equally attractive and attainable

alternatives and thereby loses freedom of choice.  “  (Webster’s Third

International Dictionary, 1981) .

The life of Jean Buridan,  14th French philosopher, runs

concurrently with the Hundred Years’ War and the Black Death.

Despite these calamities ( cf. Barbara Tuchman, “ A Distant Mirror” ), he

managed to hold onto good jobs in the academic world, even after

William of Ockham placed his works on the Index  . Indeed, much of

his professional life was wasted in engaging in spite wars with William

of Ockham, inventor  of the  metaphor of “Ockham’s Razor” , the

elimination of arbitrary or “ad hoc” hypotheses from scientific theories. 2

The couplet of metaphors  “Ockham’s Razor” and “Buridan’s Ass”  form

an antinomy,  that of Action/ Inaction, in the sense of Kant.  From the

Britannica we learn more information:

“....the animal mentioned in Buridan’s commentary on Aristotle’s

De Caelo... is actually a dog, not an ass. His discussion centers on the

method by which the dog chooses between two equal amounts of food
                                    
1Before Socrates.
2Clearly William of Ockham was careful to avoid a too rigorous application of his razor
so as not to be burned at the stake for atheism!
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placed before him...  ”  ( Encyclopedia Britannica, 15th Edition , 1997 ;

Micropedia 2, pg. 651)

To which one merely adds, that the dilemma is rendered  more

applicable to the human condition when it is cast as a choice between

equally disgusting or horrible situations, one of which is unavoidable.

In very general terms, it is difficult to think about things in other

than a sequential fashion. One thought chases out another, although it

may continue to hover close by in the subconscious. In the dilemma of

Buridan’s dog, one imagines the pathetic animal thinking sequentially

of the merits of the bowl of Alpo and  the bowl of Purina , then once

again about the Alpo, and so forth and so on ....until he dies of

malnutrition; as we see in our own day, in which  we find ourselves

surrounded by numerous examples of mass starvation, physical,

cultural, emotional, in the richest society in history.

Although such objects are not readily picturable, not forming a

natural Gestalt in intuition,  they are at the foundations of  a good part

of all of the hard sciences:  mathematics, physics, biology and chemistry.

Examples:  The equation w = (z- 2222 )k   has a single root, repeated

k times. When talking about one of these roots , it makes no sense to

refer to  its ‘place’ in the sequence of roots. However, the binomial

expansion of this equation provides us with a set of coefficients

cj = 2k (
k

j
) = 2k k!

j!(k − j)!  which are in general distinct , and

come with a natural ordering  provided by the exponents of the

developed equation. Thus, finite sequences of indistinguishable

quantities can serve as the basis for finite, or even infinite, ordered

sequences of distinguished elements. Among these we identify several
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kinds:

(i) Totally ordered sequences.  The elements may be identical or

distinguished  , but ordinally arranged, as with the set of the

coefficients of the polynomial

y = xn + xn−1+....+x +1
(ii) Sets of distinguished elements which cannot be ordered.  One

may call these “dual”, or “adjoint” sets. The prime example of this

phenomenon is the couple √√√√-1 = ( i. -i ). The assignment of the minus

sign is arbitrary. There cannot, in theory, be any reason for stating that

one of these two roots has any claim to either the plus or the minus

sign. As we know , this is not true of the pair, 1, -1 , in so far as 1x1 = (-

1) x (-1) = 1 indicates an essential asymmetry between them.

(iii) Sets of distinguished elements, each accompanied by a

(potentially infinite) list of unique or exceptional characteristics.  These

may be ordered, partially ordered, or unordered. This description

applies certainly to the integers, 0,1,2,3,.... each one of which appears to

abide on a different planet, but it can also apply to the something like

the set of all bounded real functions on the interval [-1,+1] to which no

direct scheme of total ordering can be applied. ( All indirect schemes

depend on one’s commitment to the Axiom of Choice.)

Definition: A  mixet  shall be a finite or infinite mixture of

distinguished, and undistinguished elements. Another way of stating

this is to say that  a mixet consists of distinguished elements and their

multiplicities. Q = (a,a,b,a,c,b,b, d) is a mixet. In certain instances the

ordering is important, but in general we shall be concerned with

unordered mixets, so that Q can also be written  as (a,a,a,b,b,b,c,d ).

Presentation
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Consider mixets of the form  M = (a,a,a,a,a) .  It may or may not be

reaching to the outer limits of casuistry ( Random House Dictionary,

1987 : over-subtlety  ) to suggest that an Axiom of Choice may be

required even for such sets - particularly in those situations in which the

content of the anonymous entry , “a”, is unknown and can be only

determined through an act of choosing .

A philosophical philanthropist tells you that there are five exactly

identical gold pieces in a box. You’re invited to reach inside the box,

feel around without looking , and pull one of them out. You do so,

retrieving a valuable coin worth  $1,000.

 You can keep the gold piece he says , on the condition that you

can tell him which of the five pieces you’ve chosen! You argue that

there can’t be any way of doing so because, by hypothesis, the pieces

are all absolutely identical. He replies: “ How is it, therefore, that you

were able to select just one of them and none of the others?”

The argument goes back and forth. Finally he announces to you

that you will be allowed to keep the gold piece, provided you help him

in the solution of this philosophical dilemma, which has kept him

awake for several months! A few weeks later you return with an Axiom.

Your benefactor is satisfied and lets you keep the gold piece.

What is your Axiom? :

Axiom of Choice for Mixets ( finite or in finite): A
mixet S is not well-defined  unless an ordinal for  S is
implied in its definition.

In this particular case the presentation consisted of the way in

which the coins were placed inside the box. The box, which is basically

a reference frame, bestows  a unique identity on each coin where none
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existed before. Take away the box and it will be impossible to make a

selection of even one of the coins.

Definition: A mixet S is “ presented”  when its
definition  asserts  ( with or without constructibility ) , the
existence of an ordinal γγγγ    of the same cardinality as S ,
together with a 1-to-1 correspondence between γγγγ        and the
elements of S.

Example: Again consider the equation  w = (z-2) 5 . This has five

roots, all of them “ 2 ” .  We can create a presentation of this root mixet

by forming the derivatives of w. Since w’ = 5(w-2) 4 , we can argue that

the first   root of w is the one that disappears from the root mixet of w’ .

Clearly, for a finite mixet, if there is a systematic way of distinguishing

just a single element in each sub-mixet , (essentially a ‘choice function’)

one will obtain a presentation of the entire  mixet through induction.

For infinite mixets one needs  Zermelo’s Well-Ordering Theorem.

All presentations of a finite mixet are equivalent.  There is a

natural isomorphism between the ordinals associated with all the

permutations of a ( presented) finite mixet. One may make a further

distinction between mixets whose presentation ordinal can be

constructed, and those for which there may be at most an existence

proof for this ordinal. The former may be called ‘presented’ sets (

mixets) , the later ‘presentable’ sets (mixets) . Example:  The set of

computable real numbers C is not recursively enumerable, yet it is

known to be countable. C, therefore, is ‘presentable’ but cannot be

‘presented’.

The paradigm for finite presentable mixets which we will be

employing in this paper, is that of the vertices of the  νννν - hedron T , in n-
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1-dimensional space. ( v being the Greek letter for n . Thus

‘tetrahedron’ in 3-space , ‘quintahedron’ in 4-space, etc.  ) ,

The set of vertices VT , of the νννν-hedron T , is presented   whenever

T is positioned relative to a frame of reference. In the absence of any

frame of reference,  VT  is unpresented  , but then it is still presentable

by our above definition and is well defined as a mixet.

This point is in need of further clarification.

Relative to any reference frame in n-space, the vertices of the

corresponding νννν-hedron are certainly distinguishable. Given one set of

vertex specifications ( v1, v2 , .....vn+1) , one may, by a combination of

rotations and reflections, produce another representation  ( vππππ(1), vππππ(2 ),

.....vππππ(n+1)) , where ππππ is any permutation on n+1 indices.  If we

eliminate the reference frame and try to speak of the intrinsic properties

of the    νννν-hedron , then we can say that all of its vertices are n-fold

indistinguishable   , meaning that there is no property of any subset of

k vertices , k< n , which is not also present in any other subset of k

vertices of VT .

Bivalent Cardinals
Let B be any mixet:

Definitions :  The internal cardinal    iB  , is defined as the number

of classes of distinguished  elements in B.

The external cardinal  ,   eB , is the total number of

elements of B, counting multiplicities.

The bivalent cardinal  , or simply cardinal  , of B, is defined as

#B = (  iB , eB )

Examples:

(1) S = (a,a,a,b,c )
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iS = 3 , eS = 5  ,  #S = (3.5)

(2) R = (  a,a,b,b,c,c  )

iR = 3  , eR = 6  , #R = (3,6)

(3) T = (a,b,a,b,a,b, ....... ) . Lacking  a presentation for T,

we can say nothing about the external cardinal, but the internal cardinal

is given by iT = 2

(4) U = (a,b,a,a,b,a,a,a,b,a,a,a,a,b,....................)

In the case the mixet has a built-in presentation. We have
iU = 2  ,  eU =  K0  , #U  = (2, K0 )

This definition of a bivalent cardinal for mixets will be sufficient

for the arguments in this paper. 3

The Power Set Operator On Mixets
Definition: If M is a mixet, then we define P (M) , the power

set of M , as a collection of all the distinguished subsets of M,

(including the null set)

Example:  Let S = ( a,a,a,b,c). Then  P (S) = { φφφφ , {a} , {b}. {c} , {a,a} ,

{a,a,a} ,  {b,c} , {a,b}, {a,c} , {a,a,b} , {a,a,c}  , {a,a,a,b}, {a,a,a,c}, {a,b,c}, 

(a,a,b,c}, {a,a,a,b,c} )

This definition of the power set of M coincides with the usual

definition of the power set when M is a set.

 The cardinal of the power set of a mixet can be any integer:

(1) U = (a,a,b)   ;   P (U) = (φφφφ, {a}, {b}, {a,a}, {a,b}, {a,a,b} )
                                    
3For finite, unordered mixets, one can construct a univalent cardinal which gives more
information. Suppose that a finite mixet K is composed of elements a1 , a2 , .... aq , with
multiplicities m1 , m2 , ....., mq . We can then assume that K is so arranged that  m1 ≤≤≤≤ m2
≤≤≤≤, .....,≤≤≤≤ ml . Define the cardinal  nK as the composite product = 2m1 . 3m2 . .....plmq ,
where pq is the qth prime number. nK will be unique for a given distribution of
distinguished and undistinguished elements. Then iK = q  ; eK = (1+m1 ) (1+m2) .
.....(1+mq) = ϕϕϕϕ  (nK), where    ϕϕϕϕ      is the Euler    ϕϕϕϕ -function.
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# P (U)    = 6

(2) V = (a,a,b,b,c,c) ;  P (V) = ( φφφφ    , {a} , {b}, {c},......)

#P (V )  = 28

In general , if the multiplicities of the elements of a mixet M, are

n1 , n2 , ...nk , then # P (M )  = (1+n1 ) (1+n2) ....(1+nk) + 1.

Homogeneous Mixets
Let 

    
An = (a,a,....a)

n
1 24 34

, ( with n = 0 for the null set). These will be called ‘homogeneous mixets

”. The  collection C of all of these for finite n can  be enlarged to include
the (presented) mixet 

    
AK0

 . In general we see that the inner cardinal of

a homogenous mixet  is iAn = 1 , the outer cardinal is eAn = n, while the

cardinal of the power set is #P(An) = n+1,

Because of our way of defining the power set operator, P  , there is

, associated with C , the set of its power sets, designated

S = { P(An) = { Zn } ;  
    
P(AK0

) = Z0
+ = (0,1,2,3,4,.....)

Taking C ⊕S  as our universe, we see that:

(i) The cardinals of the power sets of the elements of C

can be any positive integer.

(ii) The power set operator, P, can be inverted from any

set of S  back to C .
(iii) Z is the power set of 

    
AK0

(iv) The cardinal of Z is K0 .
We  therefore assign,  to the set   

    
AK0

    , the cardinal σσσσ    . This mixet,

which we call the  σσσσ-mixet , shares properties both of the singleton {1} ,

and of Z.
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The σσσσ - hedron
Introduction:

Let K be any set of cardinality c. Zermelo’s well-ordering theorem

says  that there exists an ordinal of cardinality c.  It can be argued that

this does not mean that K can be well-ordered.  In order to say that K

itself can be well-ordered, one must assert that any  arbitrary process of

selection must   terminate in some  ordinal of cardinal c, without any

way of knowing which ordinal that will be. Indeed, knowing  which
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ordinal one will end up with means that K must have been pre-

counted, which is circular reasoning. If one cannot say which ordinal

the process will terminate in, how can one say that the process must

terminate?

Geometry is the study of distinguishing relations between

indiscernibles. The prime characteristic of space is its homogeneity. This

is not problematic when the number of dimensions is finite; yet owing

to the fact that in a countably infinite dimensional Hilbert space, a

rotation can be equivalent to the addition of a new dimension, one

must allow for the existence of certain ‘pre-countable’ infinite sets, such

as the collection of vertices of the σσσσ-hedron. Indeed, the term “ pre-

countable transfinites” may turn out to be more suitable to the

description of the series { σσσσj } , than the term ‘weakly infinite cardinals’

used in this paper.

The σσσσ-hedron is a K0-simplex constructed  in a given Hilbert

space, which is then cut free of external reference frames. This object is

countable, by construction. Yet any counting process will fail to cover

all possible vertex collections

. It may be the case that the    σσσσ-hedron provides a simple model for

the independence of the Axiom of Choice from the rest of Set Theory.

Reference Frame Independent Simplexes
in Finite Euclidean Spaces

Let T3  be a regular tetrahedron in 3-space, considered intrinsically

in the absence of reference frames . T3  is given sequentially to the
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members of a board of  examiners . Each examiner takes T3 into an

isolation cell,

( thereby assigning it a reference frame) .  After completing their

investigations each of them writes up a report which is handed in to the

office of the project manager. Here the data is assembled and analyzed.

The final result is a document issued in the name of the collectivity.

Among its conclusions one finds  that there can exist no way of

knowing if the order in which the vertices were inspected by one of the

examiners is the same, or different, from that of  the others. There are 24

different ways of ordering the set of vertices but no way of knowing

which of them was used. 4   Only with the tetrahedron right in front of

them, is there a  way of comparing their systems of labeling.

There was still quite a lot that they could agree on.

(1) Each examiner counted 4 vertices, in the order “1” , “2”,

“3”, “4” . Both the cardinal and the ordinal of the vertex set were 4.

(2) The same intrinsic solid geometry of the tetrahedron is

deduced independently by each examiner.

(3) Each maintains that their  count, exhausted the set of

vertices.

The result is quite general, and can be extended to  νννν - hedra in

any finite n-dimensional space ( νννν = n+1) : both the cardinal, and the

ordinal, of the n-hedron is νννν ;the associated labeling process exhausts

the set of vertices; the object has an unambiguous internal geometric

structure.

 This situation changes dramatically when we move to  the

                                    
4  A few of the examiners  did get into arguments with others who, like them, insisted that
their labelling method was the correct one.
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countably infinite Hilbert Space, Hωωωω .  The object under examination,

which we call the σσσσ-hedron , or ∆∆∆∆    ,,,,        has K0 vertices -  meaning that,

unlike the situation in finite n-space, its’ vertices can be put into 1-1

correspondence with the axes of the reference frame. This  observation

leads to a chain of  unforeseen  consequences.

Once again, each examiner in turn disappears with  ∆∆∆∆    into his

isolation cell for an indefinite period of time , studies it thoroughly  and

writes his report. Now agreement can now be maintained on only some

of the previous  conclusions :

(1) Each examiner counted the same number of vertices.

(2) The geometry appears to be the same when developed by each

examiner. However,

(2) There exists no way of telling whether even one   of them

exhausted the full set of vertices!

It is possible, for example, that the vertices counted by  Examiner I

were  all   different from those counted by  Examiner II. The causes of

this are non-trivial:  each time an examiner  moves from one vertex to

the next, he must make an arbitrary leap into a  new dimension. Since

the number of dimensions is  ( countably ) infinite, there is no way

of showing how the path of one examiner differs from the path of any

other.

We go over the ground in a slightly different fashion, with only

two

independent examiners, X and Y. The project manager sees  both of

them at work, but  they cannot always see one another. X labels the

vertices of his  σσσσ - hedron with the letters U1 ,U2 , U3 ,...... When X has

finished, he hands it to Y . Y goes back to his cell and,  using  a method
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identical to that used by X   , labels the vertices W1 , W2  , W3 , ......

The project manager, who sees everything, realizes that, purely by

accident,  they happened to have worked in such a fashion that,  for all

k, Wk = V2k . Although X and Y  are convinced  they’ve examined the

same object, Y’s  σσσσ    - hedron is properly contained within X’s.

 Under the guidance of the manager, they count vertices together,

giving a new series   V1 ,V2 , V3 .... Satisfied with their labors they

prepare to go home, but the manager stops them at the door. He

intends to show them that, no matter how carefully the count is done, it

is necessarily incomplete.

Parametrizing the σσσσ    -hedron  

Within a predetermined  Hilbert Space reference frame, the σσσσ-

hedron can be built from the ground up, One starts with an equilateral

triangle in 2-space, then  adds faces and hyperfaces. Let Tn  be  an n-

space  νννν-hedron with edges of length “1” . Embed Tn in a fixed n+1-

space , locate its centroid and  erect an altitude hn+1 from this point.

hn+1  can be  extended to a  point Vn+1 which  is at a distance of “1“

from all the other vertices of Tn . Working in this fashion we  construct

a sequence of vertices:

0V = (0,0,0,0,...............)

V1 = (1,0,0,0,.................)

V2 = (1 2, 3 / 2,0,0,.......)

V3 = (1 / 2, 3 6, 2 3,0,0,...)

................................................

Vn = ( n
2x , n

3x , n
4x ,......., n

n+1x ,0,0,0..)

This construction has the following  properties:



#23...

(i) For n> 2 , the first n-2 terms of Vn are identical to the first n-2

terms  of Vn-1.

(ii) For all i ≠≠≠≠ j, the distance | Vi - Vj| = 1

(iii) The length |Vi|= 1 for all i ≠≠≠≠0

(iv) The sequence   { n
nx }    converges to 1/√√√√2

Let  nu = vn − (0,0,0,... n
nx ) = ( n

1x , n
2x , n

n−1x ,0,0,0,...)  .  This set of

vectors converges to a  limit vector,  Vωωωω    = (1/2,√√√√3/6, 1/√√√√24,..........)

Vωωωω        has the following properties:

(a) |Vωωωω | =  1/2

(b) |Vj -  Vωωωω | = 1/2 , for all finite j

(c)  Vωωωω is the only point in this Hilbert Space with the above

properties. One might be tempted to conclude from this that our σσσσ -

hedron is  complete:  Vωωωω is the only possible candidate for another    σσσσ-

hedron  vertex, and its’ length is half what it would have to be to

qualify .

However :  let $ designate the shift operator. It moves the vertex

q= (p1, p2, p3,.....) in Hωωωω to the point $q= (0, p1, p2, p3,....). Under the

of $, the σσσσ- hedron vertices Vj are moved to Vj’ = ( 0, Vj ). In particular,

the vertex V0 remains fixed.  $ therefore acts like a rotation on ∆∆∆∆   ,

transforming it into a new σσσσ-hedron ∆∆∆∆’ with the same  intrinsic

relations. Indeed, ∆∆∆∆  and ∆∆∆∆’ are congruent, but   ∆∆∆∆ ‘ has a new vertex:

V* = (1/√√√√2, Vωωωω ) !

Where did V* come from? It must have been sitting in   another

Hilbert Space  Hωωωω’  embedding  Hωωωω . When we transform Hωωωω’  back

into   Hωωωω via the inverse shift operator, ( which can be interpreted

either  as the reverse  rotation, or the projection of  Hωωωω’  onto   Hωωωω), V*

dissapears.
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We now return to the story of the independent examiners. After

waiting, ( with infinite patience ) ,  for them to finish, the project

manager points out  that if they had rotated ∆∆∆∆  a little bit, they would

have discovered V*.  Everyone goes back to the laboratory, sandwiches

V* in somewhere, and begin relabeling. But of  course there is no

guarantee that we will not  neglect other vertices  V**, V***, and so

forth, including some of those from the previous counts.
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Principle of Relativity for Euclidean  K0-
Space

( Hilbert  Space ) :
“ The Hilbert space   Hωωωω  is formally indistinguishable from any of

its infinite  dimensional subspaces. It is intrinsically impossible to

devise a test for detecting  any feature of a Hilbert space that cannot also

be found in any one of its infinite-dimensional sub-spaces. In particular,

it is impossible to determine if the space  Hωωωω  is or is not a subspace of

some larger Hilbert space : an arbitrary leap can always be made into a

new dimension. “

Corollary : The expression     ∀H ω  ( “All of Hilbert Space”)  is

meta-geometric  ;  it is not  logically well-formed in the language of

geometry

Corollary ( Not news ) : In the absence of a pre-determined

reference frame, there  exists no complete orthonormal basis for Hωωωω    .

Letting Fp stand for the collection of all periodic functions  f : R ---> R,

then an orthonormal basis for a representation space   can be considered

complete only relative to that sub region of Fp to which it has been

Taylored ( sic!) . For  example, the Fourier algebra of functions in  L2

[−−−−ππππ,,,,++++ππππ] has as its basis the collection of functions B = { cosnx, sinnx} . B

is included in the class L2 [−−−−2222ππππ,,,,++++2222ππππ] of all functions represented by the

basis B* =  { cosnx/2, sinnx/2 }

The vertex set of the    σσσσ - hedron will be assigned the cardinality

    σσσσ    , the first weakly infinite cardinal.  The cardinality of the power set

of a

σσσσ−−−−hedron,  ∆∆∆∆ , is thus the number of distinguishable  n-simplexes. This
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is clearly k0 . We have produced a geometric model  for weak cardinal

arithmetic.
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Defining models for     σσσσ1,  σσσσ2 , σσσσ3  ,......
 This section is  only heuristic:

Let U be the set { 0.1} , V the singleton set {0}  and W the

singleton set  { 1111 } . Let ζζζζ        be   a 1-to-1 correspondence from V to W . 5

The power set of U is  P(U) = ( x1 , x2 , x3 , x4 ) , where x1= φφφφ , x2=

{0}  , x3 = {1} , x4 = {0,1} . The Boolean algebra of union, intersection and

complement induces a natural lattice structure over P (U) , which we

designate M. The corresponding lattices on V and W can be designated

A and B  .

The correspondence  ζζζζ     induces a lattice-isomorphism between   A

and B ,,,,    ρρρρ  . We wish to extend ζζζζ        and    ρρρρ    to mappings

 

ζ̂ ,ρ̂;

ρ̂:M → B

ζ̂:U → W

        

These mappings are extensions of ζζζζ    and ρρρρ .All elements of M

which are also elements in A  are sent into their corresponding element

in B . However, elements which are in M   but not in A  are sent to the

null set , φφφφ . The mapping ρ̂  therefore induces by back construction the

mapping  ζ̂   , which sends the element of U which is also in V into the

element “ 0 “ , and the element of U which is not in V into an abstract

entity which we shall write as “ * “ .   * is nothing more than a formal

symbol with the property that {*} = φφφφ    .  *   is perhaps the “ content  of

the null set” . Likewise , the null set can be interpreted as the “power

set” of *, which therefore functions as a kind of ‘pre-set’ . Then *  may

                                    
5 Who says that mathematicians have no sense of humor!
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be defined “implicitly” by means of the diagram:

  

P (W) →
ρ
^

φ

P ↑ ↑P

W →
ζ
^

*

Let δδδδ = ( *,*,*,......,*,......) countably many times. δδδδ has the same

relationship to σσσσ    that σσσσ has to  K0  . The following postulate seems

reasonable : Sets consisting of finitely many copies of  *   are identical to

the null set  .

Thus  φφφφ    = (*)  = ( *,* ) = (*,*,* ) = .... Under this assumption we

can conclude that the power set P ( δδδδ    ) = { φφφφ    ,,,,    φφφφ,,,,    φφφφ,,,,    ....................,,,,    φφφφ    ,,,,    ............ } . The

cardinal of this set is σσσσ . One may, in similar fashion, construct a series

of weakly infinite cardinals with the formal property that

n−1σ = nσ2   .

All of this might be interpreted as so much ‘symbol mysticism’ ,

which in some sense it is. It may also be understood as a legitimate

extension of Zermelo-Fraenkel  set theory, consistent with the axioms,

representing an original solution to the antinomy of actual versus

potential infinity .The assumption that the “infinite” somehow springs

directly   out of the

“finite “ can easily be dispensed with . The countable sets whose

elements and equicardinal sub-sets become distinguishable only when

placed within a “box” or appropriate reference frame, provide the

essential counter-example.

Families of Orthonormal Functions
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Let T =  { cosnx, sinnx } be the basis of some Hilbert Space  Hωωωω .

Let  T*  be any proper countable  subclass of T. By the  Principle of

Relativity  for Hilbert Spaces  , the space spanned by T is internally

indistinguishable  from that spanned by  T*. This sets up a natural

isometry between the respective  functional spaces L2 (T) and   L2 (T*)

.

In particular, let  T* = T2  be the collection of functions

 { cos2nx, sin2nx } , with L2 (T2 ) as the corresponding function space.

There are two ways of  interpreting the relationship between  L2 (T)

and   L2 (T2 )  :

(i) One can say that  the length of the periods of the functions of

 L2 (T2)  are half those of  L2 (T)   ;

(ii)  One can  say that the functions of L2 (T)   are the same as

those of   L2 (T2 )  , relative to a different orthonormal basis.

By the first interpretation, we stay inside the original Hilbert

space and interpret L2 (T2 )   as  with the sub-space of functions of

period ππππ  . By the second interpretation we develop two kinds of

Fourier expansion for the functions of L2 (T2 )  , over the bases T and

T2 respectively.

This suggests a more satisfactory way of defining the L2 norm:

 One usually writes

< f ,g >=
1
π

( fgdx0
2π
∫ )

We suggest the  generalization :
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< f ,g >= Lim
L→∞

2
L

( fgdx0
L
∫ )

Observe that  T  is unaltered by this new definition. At the same

time, the general class of summable functions is now enlarged to

include all

periodic and almost periodic functions of a finite number of

independent,

non-commensurable periods. It is then possible to discuss the rotations

of

the σσσσ-hedron independent of all reference frames.

Returning to the table on page 20,  we can express  the

coordinates of the nth sigmahedral vertex as

Vn = ( t1 , t2 , ........, tn-2 , qn , pn , 0 ,0 , 0 , ........)

The tj  ’s represent  the growing  sequence of fixed terms, while qn and

pn are unique to Vn . By induction one may show that, for all k > 2:

 

tk =

2( j
2t )−1

1

k−1
∑

2 1− j
2t

1

k−1
∑

qk = k−1p
k

pk = 1− j
2t

1

k−1
∑
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 In line with the previous discussion, the application of the shift

operator $ produces another  σσσσ-hedron including the new vertex

V* = (1/√√√√2, Vωωωω ) .

In  L2 (T) , shifting all the coefficients  forward eliminates the

constant term.  The set of functions G associated to the vertexes of the

shifted  σσσσ-hedron in Hilbert Space is therefore:
g1(x) = sin x

g2 = sin x 2 + 3cos x 2

g3 = sin x 2 + 3cos x 6 + 2 sin2x 3

...........................................

gω = sin x 2 + 3cos x 6 + sin2x 24 +....

With the addition of a constant term, 1/√√√√2 , to gωωωω        , the forward

shift has created a  new  orthonormal family G*, with the additional

member,

g* = 1/√√√√2 +gωωωω    

G* can in turn be interpreted as an orthonormal basis for the

Hilbert Space H*ωωωω : the trigonometric functions  {cosnx, sinnx} can all

be expressed as linear combinations of them. One could  therefore build

a new σσσσ- hedron   on  the new basis. The result is a collection of

functions  ΛΛΛΛ =  { λλλλj (x)} , with a new limit function, λλλλ*(x) = 1/√√√√2 +    λλλλωωωω(x)

outside the space spanned by the g’s.

Unless restrictions are placed on the rotations in  Hωωωω  , which is

the same as saying that one begins with a predetermined reference

frame, one cannot “count” the vertices of    ∆∆∆∆ in the usual fashion. Yet

whenever a frame is added, its cardinal comes out to be   . We therefore
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assign the ‘pre-countable’ transfinite of σσσσ      to ∆∆∆∆ .

The question remains whether the weak cardinal of the limit mixet

Aωωωω = (a,a,a,a,,,,,) is really the same as that of the vertex collection of the

σσσσ-hedron. We argue that it is:  Aωωωω   is assumed to be presentable,

meaning that there exists, in theory, a reference frame, box, or some

other kind of presentation with respect to which all of its elements

become distinguishable. That it shares this property with the vertex set

of the

σσσσ-hedron is our motivation for assigning it the same weakly infinite

cardinal, σσσσ  .
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