
A note on information theoretic characterizations of

physical theories

Hans Halvorson∗

Department of Philosophy, Princeton University

December 15, 2003

Abstract

Clifton, Bub, and Halvorson [Foundations of Physics 33, 1561–
1591, (2003)] have recently argued that quantum theory is charac-
terized by its satisfaction of three information-theoretic axioms. How-
ever, it is not difficult to construct apparent counterexamples to the
CBH characterization theorem. In this paper, we discuss the limits of
the characterization theorem, and we provide some technical tools for
checking whether a theory (specified in terms of the convex structure
of its state space) falls within these limits.

1 Introduction

Some would like to argue that quantum information theory has revolution-
ary implications for the philosophical foundations of QM (see, e.g., Bub,
2004; Fuchs, 2003). Whether or not this claim is true, there is no doubt
that quantum information theory presents us with new perspectives from
which we can approach traditional questions about the interpretation of
QM. One such question asks whether there are natural physical postulates
that capture the essence of QM — postulates that tell us what sets QM
apart from other physical theories, and in particular from its predecessor
theories. The advent of quantum information theory suggests that we look
for information-theoretic postulates that characterize (i.e., are equivalent
to) QM.

A positive answer to this question has been supplied by Clifton, Bub,
and Halvorson (2003). Clifton, Bub and Halvorson (CBH) show that, within
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the C∗-algebraic framework for physical theories, quantum theories are sin-
gled out by their satisfaction of three information-theoretic axioms: 1. no
superluminal information transfer via measurement; 2. no broadcasting;1

and 3. no unconditionally secure bit commitment. Nonetheless, the cre-
ative thinker will have little trouble concocting a “theory” that satisfies
these three axioms, but which does not entail QM (see Spekkens, 2003;
Smolin, 2003). Such toy theories might be thought to show that the three
information-theoretic axioms are not sufficient to recover the full structure
of QM.

Since the CBH characterization theorem is a valid mathematical result,
there is a problem of application here — these apparent counterexamples
must not satisfy the premises of the theorem. Besides the three information-
theoretic axioms, the only other premise of the theorem is the C∗ assumption
(i.e., the assumption that a theory’s observables be representable by the
self-adjoint operators in a C∗-algebra). However, in specific cases, it may be
difficult to ascertain whether or not a theory satisfies the C∗ assumption. In
particular, since the axioms for C∗-algebras are rather intricate, and some
of these axioms have no direct physical interpretation (e.g., the C∗-algebraic
product of non-commuting observables does not correspond to any physical
operation on observables), there is a prima facie difficulty in relating the C∗

assumption to specific features of a physical theory.
In this paper, we address the difficulty in determining whether a toy

theory satisfies the C∗ assumption. In particular, it is sometimes easier to
ascertain the convex structure of the state space of a theory (i.e., which
states are mixtures of which other states) than to ascertain the algebraic
structure of the observables of that theory. Furthermore, due to the deep
mathematical results of Alfsen et al. (detailed in Alfsen & Shultz, 2003),
specifying the convex structure of the state space of a theory is sufficient
to determine whether that theory can be formulated within the Jordan-
Banach (JB) algebraic framework. Since a theory permits a C∗-algebraic
formulation only if it permits a JB algebraic formulation, showing that a
theory does not permit a JB algebraic formulation is sufficient to show that
it falls outside of the range of validity of the CBH theorem.

The structure of this paper is as follows. In Section 2, we review the
basics of the theory of JB algebras, and of the dual (but more general) the-
ory of convex sets. We also prove a “Root Theorem,” which forms the basis
for our results in subsequent sections. In Section 3, we address the worry
that the three information-theoretic axioms are not sufficient to entail QM.

1For the case of pure states, broadcasting reduces to cloning.
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In particular, we look at a certain class of toy theories that satisfies the
axioms, and we show that these toy theories do not permit a JB algebraic
formulation. In Section 4, we consider a class of theories that are locally
quantum-mechanical, but which, unlike QM, do not have nonlocally entan-
gled states. We show that the simplest of these theories does not permit a
JB algebraic formulation; and we adduce considerations which indicate that
no such theory permits a JB algebraic formulation.

2 The JB algebraic framework for physical theo-

ries

2.1 Jordan-Banach algebras

The CBH theorem shows that among the theories within the C∗-algebraic
framework, quantum theories are precisely those that satisfy the three information-
theoretic axioms. One limitation of this result is that it excludes from con-
sideration those theories that employ real or quaternionic Hilbert spaces
(and so the result does not shed any light on the physical significance of
the choice of the underlying field for a Hilbert space). We can get past this
limitation by moving to the broader JB algebraic framework.

Let Mn(K) be the set of n × n matrices over K, where K = R,C, or
H (the quaternions). The set Hn(K) of Hermitian matrices in Mn(K) is a
vector space over R. If we set A ◦B = 1

2
(AB+BA), where AB is the usual

matrix product of A and B, then it follows that

((A ◦A) ◦B) ◦A = (A ◦A) ◦ (B ◦A). (1)

The matrix algebra Hn(K) with product ◦ is the prototype for the notion of
a Jordan algebra: a Jordan algebra is any real vector space equipped with
a commutative (not necessarily associative), bilinear product ◦ satisfying
Eqn. 1.

For an element A ∈ Hn(C), we define

‖A‖ = sup{‖Ax‖ : x ∈ C
n, ‖x‖ = 1}, (2)

where the norm on the right is the vector norm on C
n. This norm is complete

in the sense that for any Cauchy sequence {Ai} in Hn(C), there is an A ∈
Hn(C) such that limi ‖Ai − A‖ = 0. That is, Hn(C) is a Banach space.
Furthermore, the norm satisfies the inequalities:

‖A◦B‖ ≤ ‖A‖‖B‖, ‖A◦A‖ = ‖A‖2, ‖A◦A‖ ≤ ‖(A◦A)+(B◦B)‖, (3)
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for all A,B in Hn(C). In general, a Jordan-Banach (JB) algebra is a Jordan
algebra that is complete relative to some norm satisfying Eqns. 3.

States on Hn(C) are given, in the first place, by (equivalence classes of)
unit vectors in C

n. In particular, if |α〉 is a unit vector in C
n, then 〈α|A|α〉

gives the expectation value of A in the state |α〉. Note that the map A 7→
〈α|A|α〉 onHn(C) is linear and continuous. Furthermore, 〈α|I|α〉 = 1, where
I is the identity matrix, and and 〈α|(A ◦ A)|α〉 ≥ 0 for any A. Generally,
we define a state of a JB algebra A to be a linear and continuous mapping
ω : A→ R such that ω(I) = 1 and ω(A ◦A) ≥ 0 for all A in A.

The state space K of a JB algebra A is a convex set; that is, if x and
y are states, and λ ∈ (0, 1), then λx + (1 − λ)y defines a state in a natural
way. The set K also carries two standard topologies. First, a net {ωa} of
states converges in the weak* topology to a state ω just in case the numbers
{ωa(A) : A ∈ A} converge pointwise to the numbers {ω(A) : A ∈ A}. Since
K is a weak* closed subset of the unit ball of the Banach space dual A∗ (all
continuous linear functionals on A), the Alaoglu-Bourbaki theorem (Kadison
& Ringrose, 1997, Thm. 1.6.5) entails that K is weak* compact. Second, K
inherits the standard norm topology from A∗. A net {ωa} converges in norm
to ω just in case the numbers {ωa(A) : A ∈ A} converge uniformly to the
numbers {ω(A) : A ∈ A}. Thus, the norm topology onK is always finer that
the weak* topology. In the finite dimensional case, pointwise convergence
entails uniform convergence, and so the weak* and norm topologies are
equivalent. But in the infinite dimensional case, K will not typically be
compact in the norm topology. (For example, the state space of the JB
algebra B(H)sa of all self-adjoint operators on an infinite dimensional Hilbert
space H is not compact in the norm topology.)

There is a canonical mapping from the category of C∗-algebras into the
category of JB algebras. Indeed, if A is a C∗-algebra, and Asa is the real vec-
tor space of self-adjoint operators in A, then Asa with the symmetric product
is a JB algebra (Landsman, 1998, Thm. 1.1.9). Furthermore, the state space
of A is affinely isomorphic (see the definition below) to the state space of
Asa. In contrast, the nonassociative JB algebra H2(R) has linear dimen-
sion 3, whereas there is no C∗-algebra A such that Asa is a 3-dimensional,
nonassociative JB algebra. (Asa is associative iff A is abelian.) Therefore,
H2(R) is not isomorphic to the self-adjoint part of C∗-algebra, and the JB
algebraic framework is genuinely broader than the C∗-algebraic framework.
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2.2 Convex sets

All JB algebra state spaces are convex sets. But the converse is not true —
not all convex sets are JB algebra state spaces. We now briefly recall some
of the main definitions in the theory of convex sets.

A point x in a convex set K is extreme just in case for any y, z ∈ K and
λ ∈ (0, 1), if x = λy + (1− λ)z, then x = y = z. We let ∂eK denote the set
of extreme points in K. If K is the state space of an algebra, we also call
extreme points pure states. A subset F of a convex set K is said to be a
face just in case F is convex, and for any x ∈ F , if x = λy + (1− λ)z with
λ ∈ (0, 1), then y ∈ F . Clearly the intersection of an arbitrary family of
faces is again a face. For x, y ∈ K, we let face(x, y) denote the intersection
of all faces containing {x, y}. A pair of faces F,G in K is said to be split
if every point in K can be expressed uniquely as a convex combination of
points in F and G. A convex set K is said to be a simplex if mixed states
have unique decompositions into pure states. More precisely, K is a simplex
if for all w, x, y, z ∈ ∂eK, when

λw + (1− λ)x = µy + (1− µ)z, (4)

with λ, µ ∈ (0, 1), then either w = y or w = z. (This definition differs
slightly from the standard definition; see (Alfsen & Shultz, 2001, p. 8).) If
K and L are convex sets, a mapping φ : K → L is an affine isomorphism
just in case φ is bijective, and

φ(λx+ (1− λ)y) = λφ(x) + (1− λ)φ(y), (5)

for all x, y ∈ K and λ ∈ (0, 1). If there is an affine isomorphism φ from K
onto L, then K and L are said to be affinely isomorphic.

2.3 The root theorem

Drawing on the results of Alfsen et al., we now derive some easily checked
necessary conditions for a theory to admit a JB algebraic formulation. (In
this theorem and subsequently, we let Bn denote the closed unit ball in R

n.)

Root Theorem. Let K be a convex set. If K is affinely isomorphic to the

state space of a JB algebra, then:

1. For any distinct x, y ∈ ∂eK, face(x, y) = Bn for some n ≥ 1.

2. If K is not a simplex, then for any distinct x, y ∈ ∂eK, face(x, y) = Bn

for some n ≥ 2.
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3. If x, y ∈ ∂eK are connected by a norm-continuous path, then face(x, y) =
Bn for some n ≥ 2.

The statement of (3) could use some clarification: since we have not made
any assumptions about a topology on K, saying that ∂eK is connected does
not really make sense. However, if K is affinely isomorphic to the state
space K ′ of a JB algebra, then there is a map φ : K → K ′. Thus, (3) should
be understood as referring to the topology on K that is induced, via the
mapping φ, by the norm topology on K ′.

Proof. (1.) The first statement is a non-trivial result (Corollary 5.56 in
Alfsen & Shultz, 2003) that depends on a number of lemmas. Due to space
constraints, we just sketch the structure of the proof for the simple case
where K is a subset of a finite-dimensional vector space.

Suppose that K is the state space of a JB algebra A. Since x, y are
pure states, they correspond to minimal projection operators P,Q ∈ A, and
face(x, y) is the state space of the “projected” algebra

AP∨Q = {(P ∨Q)A(P ∨Q) : A ∈ A}. (6)

The identity of AP∨Q (namely, P ∨Q) is the sum of two orthogonal projec-
tions P and R = (P ∨ Q) − P . We now consider the two cases where this
projected algebra is associative or nonassociative. If AP∨Q is associative,
then it is isomorphic to the algebra of real valued functions on a two-point
set, and its state space consists of two pure states and their convex combi-
nations. That is, the state space of AP∨Q, and therefore face(x, y), is iso-
morphic to B1. If AP∨Q is nonassociative, then in fact the center of AP∨Q

is trivial. By the comparison theorem for projections, there is a symmetry
U ∈ AP∨Q (that is, U ◦ U = I) such that

2(U ◦ (P ◦ U))− P = Q. (7)

Thus, the identity in AP∨Q is the sum of two “exchangeable” minimal pro-
jections. Finite dimensional JB algebras with this property have been com-
pletely classified (see Alfsen & Shultz, 2003, Prop. 3.37), and their state
spaces are isomorphic to Bn, for some n ≥ 2.

(2.) If K is not a simplex, then there are w, x, y, z ∈ ∂eK such that

λw + (1− λ)x = µy + (1− µ)z, (8)

where λ, µ ∈ (0, 1), w 6= y and w 6= z. But then w is an extreme point in
face(y, z). We know from part 1 that face(y, z) = Bn, for some n ≥ 1. Since
there are three distinct extreme points of face(y, z), it follows that n ≥ 2.
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(3.) We prove the contrapositive. Suppose that x, y ∈ ∂eK, and face(x, y) =
B1. Then there are split faces F,G of K such that x ∈ F and y ∈ G (Alfsen
& Shultz, 2003, Lemma 5.54). Let U = F ∩ ∂eK and let V = G ∩ ∂eK.
Since F and G are closed in the norm topology (Alfsen & Shultz, 2001,
Prop. 1.29), U and V are closed in ∂eK. Since ∂eK ⊆ F ∪G, it follows that
∂eK = U ∪V , and U and V are open in ∂eK. Since x ∈ U and y ∈ V , there
is no continuous path in ∂eK connecting x and y.

3 Sufficiency of the axioms

The state space of a quantum system has ambiguous mixtures— i.e., mixed
states with more than one decomposition into pure states — and this fact is
responsible for some of the interesting information-theoretic features of QM.
For example, the BB84 (Bennett & Brassard, 1984) bit commitment protocol
is perfectly concealing because two distinct ensembles can be absolutely
identical relative to a local observer (since these ensembles correspond to
the same quantum state). Thus, in order to find a toy theory that simulates
some of the information-theoretic features of QM, it would be natural to
look for simple theories with ambiguous mixtures.

One such theory has been recently described by Spekkens (2003). (Smolin
(2003) proposes a different sort of theory that satisfies the three axioms. We
look at Smolin’s theory in (Halvorson & Bub, 2003).) The state space S of
Spekkens’ theory (for a local system) has exactly seven points: the pure
states correspond to the unit vectors {ei,−ei : i = 1, 2, 3} in R

3, and the
mixed state corresponds to the origin 0 in R

3. In order to equip S with
partial binary operations corresponding to superposition and mixture, we
identify S with a subset of the Bloch sphere. That is, 0 is an equal mixture
of ei and −ei, for i = 1, 2, 3. However, S does not contain unequal mixtures
of ei and −ei, nor does S contain mixtures of ei and ej when i 6= j. Simi-
larly, ei and −ei can be superposed with equal weights to obtain any of the
states in {ej ,−ej : j 6= i}. However, ei and −ei cannot be superposed with
unequal weights, nor can ei be superposed with ej when i 6= j.

Since S is not convex, it is obviously not the state space of a JB algebra.
However, the failure of convexity can be easily remedied by passing to the
modified theory that allows arbitrary mixtures of Spekkens’ states — i.e.,
the theory whose state space is the convex hull K = co(S) of S.2 Clearly,

2Presumably, Spekkens would want to say that the “transition probability” between e1

and e2 is
1

2
, since e2 is supposed to be an equally weighted superposition of the orthogonal

states e1 and −e1. However, the natural geometric transition probability of e1 and e2,
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K has ambiguous mixtures, and has exactly six pure states. We now show
that convex sets of this sort are not state spaces of JB algebras.

Theorem 1. Let K be a convex set, and suppose that K is affinely iso-

morphic to the state space of a JB algebra. If K is not a simplex, then

|∂eK| ≥ |R|.

Proof. Suppose that K is not a simplex. Then part 1 of the Root Theorem
entails that there are x, y ∈ ∂eK such that face(x, y) = Bn, with n ≥ 2.
Since every extreme point in face(x, y) is an extreme point in K, we have
|∂eK| ≥ |∂eB

n| = |R|.

Spekkens’ theory does not permit a JB algebraic formulation, and a
fortiori, does not not permit a C∗-algebraic formulation. So, this theory
falls outside the range of validity of the CBH theorem. Nonetheless, since
Spekkens’ theory has no obvious physical pathologies, it would be a inter-
esting test case for the claim that physical theories should permit, at the
very least, a JB algebraic formulation.

4 Independence of the axioms

All parties agree that, in the presence of the C∗ assumption (i.e., the assump-
tion that theories permit a C∗-algebraic formulation), the three information-
theoretic axioms entail QM. It seems, then, that the real question is whether
the C∗ assumption is true, warranted, reasonable, or something like that.
Unfortunately, it seems that it would be extremely difficult to give a decisive
answer to this question.

However, there is reason to think that the C∗ assumption is doing too
much work in the CBH theorem. In particular, given the C∗ assumption,
QM is a logical consequence of the first two axioms alone. In fact, given the
C∗ assumption, the no bit commitment axiom is a logical consequence of the
no superluminal signaling and no cloning axioms. We prove this fact here
with the one simplifying assumption that the relevant algebras are actually
von Neumann algebras (i.e., the algebras act on some concrete Hilbert space
H, and are closed in the weak-operator topology).

relative to the convex set K, is 0. (See the definition of affine ratio below.) In particular,
if every affine function from K into R corresponds to an observable (as is usually assumed
in the convex sets approach), then there is a measurement that can distinguish with
certainty between e1 and e2; for example, the measurement corresponding to the function
f(x) = 1

2
(1 + (e1 − e2 + e3) · x). Presumably, then, Spekkens would wish to impose some

restriction on the set of observables.
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Theorem 2. Suppose that A and B are von Neumann algebras. If the com-

posite system (A,B) satisfies the no superluminal signaling and no cloning
axioms, then:

1. (A,B) has nonlocally entangled states; and

2. (A,B) satisfies the no bit commitment axiom.

Proof. Suppose that the pair (A,B) satisfies the no superluminal signaling
and no cloning axioms. On the one hand, the no superluminal signaling
axiom entails that observables in A commute with observables in B (Clifton
et al., 2003, Thm. 1). On the other hand, the no cloning axiom entails that
A and B are nonabelian (Clifton et al., 2003, Thm. 2).

(1.) When A and B are nonabelian, a theorem by Landau (1987) shows
that there are nonlocally entangled (indeed, Bell correlated) states across
(A,B).

(2.) By the generalized HJW theorem (Halvorson, 2003), for any two
equivalent measures µ, ν on the state space of B (i.e., these measures corre-
spond to the same quantum state), there is an entangled state ψ of (A,B)
such that either µ or ν can be prepared from ψ by local operations on A. So,
for any bit commitment protocol for (A,B), if the protocol is concealing,
then it is not binding.

4.1 The Schr*dinger theory

Theorem 2 is somewhat surprising. From an apparently local axiom (no
cloning), it follows that there are nonlocally entangled states. In slogan
form: any locally quantum mechanical theory is nonlocal. We may contrast
this result with Schrödinger’s claim that there should be a locally quantum
mechanical theory without entangled states. Schrödinger says:

Indubitably, the situation described here [in which there are non-
locally entangled states] is, in present QM, a necessary and indis-
pensable feature. The question arises, whether it is so in Nature
too. I am not satisfied about there being sufficient experimental
evidence for that. . .

It seems worth noticing that the paradox could be avoided by a
very simple assumption, namely if the situation after [two sys-
tems] separating were described by the expansion

c1|01〉+ c2|10〉, (9)
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but with the additional statement that the knowledge of the
phase relations between the complex constants c1 and c2 has
been entirely lost in consequence of the process of separation.
This would mean that not only the parts, but the whole system,
would be in the situation of a mixture, not of a pure state. . . . it
would utterly eliminate the experimenter’s influence on the state
of that system which he does not touch.

This is a very incomplete description and I would not stand for its
adequateness. But I would call it a possible one, until I am told,
either why it is devoid of meaning or with which experiments it
disagrees.

(Schrödinger, 1936, pp. 451–452. Eqn. 9 has been adapted to
the present discussion.)

When Schrödinger speaks of the state in Eqn. 9, but with “the knowledge
of the phase relations” lost, he presumably means the mixed state

|c1|
2|01〉〈01|+ |c2|

2|10〉〈10|. (10)

Thus, Schrödinger’s hope is that the true theory will turn out to be locally
quantum mechanical, but with some sort of selection rule that prohibits
superposition of product states for systems that are spacelike separated.

We now know— due to experimental verification of the violation of Bell’s
inequality — that Schrödinger’s hoped-for theory disagrees with experiment.
But, Theorem 2 shows that Schrödinger’s hoped-for theory is “devoid of
meaning” — well, at least if all meaningful theories admit a C∗-algebraic
formulation. But can Schrödinger’s hope be realized within the broader
JB algebraic framework? While we do not currently know the answer to
this question, we will proceed to show that the answer is negative in one
particularly simple case.

Consider the simplest composite quantum system, a pair of qubits. Of
course, we cannot simply throw away the nonlocally entangled states without
doing violence to the linear structure of C

2⊗C
2. But since the complement

of the set of nonlocally entangled states is a convex set, we can throw away
the entangled states and still end up with a theory with a convex state
space. More precisely, recall that a density operator D ∈ B(C2 ⊗ C

2) is a
pure product state just in case D = E ⊗ F , where E,F are projections onto
rays in C

2. The set of pure product states is a closed subset of the pure state
space of B(C2⊗C

2); as such, it is a closed, bounded subset of R
15. (The set

of 4× 4 Hermitian complex matrices has real dimension 16, and the subset
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of positive, trace-1 matrices has real dimension 15.) Let K denote the set of
convex combinations of pure product states; in other words, K is the space
of separable states of B(C2 ⊗ C

2), and corresponds to a compact convex
subset of R

15. (For some results on the geometry of K, see (Bertlmann,
Narnhofer, & Thirring, 2002).)

Since K is a convex set, it gives a genuine theory in the convex sets
approach; we call this theory the Schr*dinger theory. (This ad hoc con-
struction is for conceptual purposes only; we do not think that Schrödinger
really had this theory in mind when he expressed his hope for an alternative
to QM.) The observables of the Schr*dinger theory are the elements of the
real vector space A(K) of affine functions from K to R. The expectation
value of observable f ∈ A(K) in state x ∈ K is f(x). Clearly, each self-
adjoint operator A ∈ B(C2 ⊗ C

2) gives an observable for the Schr*dinger
theory via the mapping x 7→ Tr(xA).

In order to clarify the information-theoretic properties of the Schr*dinger
theory, we need to define a notion of transition probability for arbitrary
convex sets (see Mielnik, 1969; Landsman, 1998, Prop. 2.8.1).

Definition. Let K be a convex set, and let A(K) be the set of affine func-
tions from K into R. If x, y ∈ ∂eK, then the affine ratio (or transition
probability) of x and y relative to K is given by

pK(x/y) =def inf{f(y); f ∈ A(K), range(f) ⊆ [0, 1], and f(x) = 1 }.

The affine ratio has a natural geometrical interpretation. In particular, if
K is a contained in the vector space V , then each affine function f : V → R

foliates V into a family of hyperplanes {f−1(t)}t∈R. Now consider those
f ’s where K lies between the 0 and 1 hyperplanes, and where x lies in the
intersection of K with the 1 hyperplane. Then any y ∈ ∂eK falls within a
unique t ∈ [0, 1] hyperplane. Finally, consider all such foliations, and take
the infimum of the t such that f(y) = t.

In some nice cases, there is a unique affine function f such that f(x) = 1
and min{f(y) : y ∈ K} = 0; thus, pK(x/y) = f(y). For example, when K is
the unit sphere in R

3, and x, y are points on the surface of the sphere, then
pK(x/y) = 1

2
(1 + x · y). That is, the transition probability is given by the

(normalized) tangent function to K at x.
In fact, the sphere is a familiar case from QM: it is affinely isomorphic

to the set of density operators on C
2, and the affine ratio corresponds to

the standard quantum-mechanical transition probability. Indeed, the equiv-
alence between the two notions holds quite generally.
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Figure 1: The Bloch sphere

Lemma 1. Let H be a complex Hilbert space, and let K be the convex set

of density operators on H. Then for any projection operators E,F ∈ ∂eK,
pK(E/F ) = Tr(EF ).

Proof. Consider the affine function f : K → [0, 1] given by f(D) = Tr(ED),
for all D ∈ K. We claim that f(F ) = pK(E/F ), for all F ∈ ∂eK. For
this it will suffice to show that for any g ∈ A(K), if range(g) ⊆ [0, 1] and
g(E) = 1, then g ≥ f . Let g be such a function. Since A(K) is order-
isomorphic to B(H)sa, there is a self-adjoint operator A on H such that A
has spectrum in [0, 1], and g(F ) = Tr(AF ), for all F ∈ ∂eK. Let |α〉 be a
unit vector in the range of E, and let |β〉 be a unit vector in the range of F .
Then 〈α|A|α〉 = g(E) = 1, and it follows that A|α〉 = |α〉. By the spectral
theorem, EA = AE = E, and so 〈β|(I − E)A|β〉 ≥ 0. Therefore,

〈β|A|β〉 = 〈β|EA|β〉+ 〈β|(I − E)A|β〉 ≥ 〈β|E|β〉. (11)

That is, g(F ) ≥ f(F ), for all F ∈ ∂eK.

We can now show that the Schr*dinger theory satisfies the no cloning
axiom, but violates the no bit commitment axiom. First, we claim that the
permissible state transformations of a theory with state space L correspond
to affine endomorphisms of L. (A transformation is reversible iff it is one-
to-one.) If η is an affine endomorphism of L, and if L′ = η(L), then

pL′(η(x)/η(y)) ≥ pL(x/y), ∀x, y ∈ L. (12)

In the Schr*dinger theory, we have two subsystems A,B (each qubits) com-
bined in a nonstandard way into a composite system AB. Suppose for re-
ductio ad absurdum that states of system A can be cloned by using system
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B as a cloning machine. That is, there is a ready state x0 of B and a state
transformation η on AB such that η(x⊗ x0) = x⊗ x for all pure states x of
A. Let x and y be non-orthogonal pure states; that is, 0 < pA(x/y) < 1. It
then follows that

pA(x/y) ≤ pAB(x⊗ x0/y ⊗ x0) ≤ pAB(x⊗ x/y ⊗ y) ≤ pA(x/y)
2, (13)

in contradiction with the assumption x and y are non-orthogonal. (The first
inequality follows from the fact that x 7→ x⊗x0 is an affine embedding of A
into AB. The second inequality follows from the fact that the cloning map
cannot decrease transition probabilities. The final inequality follows from
the fact that pAB(x ⊗ x/y ⊗ y) ≤ T , where T is the transition probability
of x ⊗ x and y ⊗ y relative to the full state space of B(C2 ⊗ C

2); and
T = |〈x ⊗ x|y ⊗ y〉|2 = |〈x|y〉|4 = pA(x/y)

2.) Therefore, the cloning map η
does not exist.

In order to see that the Schr*dinger theory allows an unconditionally
secure bit commitment protocol, consider the direct analogue of the BB84
protocol (Bennett & Brassard, 1984). In this protocol, Alice encodes bit 0
into the mixed state D0 = 1

2
(|01〉〈01|+ |10〉〈10|), and she encodes bit 1 into

the mixed state D1 = 1
2
(|αβ〉〈αβ|+ |βα〉〈βα|), where |α〉 = 2−1/2(|0〉+ |1〉)

and |β〉 = 2−1/2(|0〉 − |1〉). Since TrA(D0) = TrA(D1), this protocol is
perfectly concealing. If Alice could prepare the EPR-Bohm state E, i.e., the
projection onto the vector 2−1/2(|01〉 − |10〉), then this protocol would not
be binding; because E can be transformed by local nonselective operations
into either D0 or D1. However, in the Schr*dinger theory, there are no such
entangled states; indeed, there is no state that Alice can transform into
either D0 or D1. Therefore, this protocol is perfectly binding.

Since the Schr*dinger theory prohibits cloning, but allows uncondition-
ally secure bit commitment, it follows from Theorem 2 that it does not
admit a C∗-algebraic formulation. We devote the next section to establish-
ing a stronger claim: the Schr*dinger theory does not admit a JB algebraic
formulation.

4.2 Pathology of the Schr*dinger theory

By using the generalized definition of transition probability for arbitrary
convex sets, we can see classical transition probabilities are always in {0, 1},
whereas quantum mechanical transition probabilities can lie anywhere in the
unit interval. We will use the transition probability to define a generalized
notion of the superposition of two pure states.
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Definition. Pure states x, y ∈ ∂eK are said to be orthogonal just in case
pK(x/y) = 0. Two orthogonal states x, y ∈ ∂eK are said to be superposable
in K just in case there is a z ∈ ∂eK such that pK(x/z) = 1

2
= pK(y/z).

This definition is motivated by the following considerations. If observ-
ables correspond to affine functions on K (as is usually assumed in the
convex sets approach), a measurement designed to distinguish x from y can
be represented by an affine function f : K → [0, 1], where f(x) = 1 and
f(y) = 0. If there is such a function f , then pK(x/z) = 1

2
= pK(y/z) iff

f(z) = 1
2
. That is, when the system is in state z, the x and y outcomes of

an f -measurement are equally likely.
For the case of JB algebra state spaces, if two pure states can be con-

nected by a continuous path, then they can be coherently superposed.3

Lemma 2. Let K be the state space of a JB algebra, and let x, y be orthog-
onal states in ∂eK. If x and y are connected by a norm-continuous path in
∂eK, then x and y are superposable in K.

Proof. Suppose that x, y ∈ ∂eK are orthogonal, and that x and y are con-
nected by a norm-continuous path in ∂eK. Let F = face(x, y). By part 3
of the Root Theorem, there is an affine isomorphism φ from F onto Bn,
with n ≥ 2. Let {e1, e2, . . . , en} be the canonical orthonormal basis for R

n.
Since there is an affine automorphism of Bn that maps φ(x) to e1, we may
suppose that φ(x) = e1. An exercise in elementary geometry shows that
φ(y) = −e1. (φ preserves affine ratios, and −e1 is the unique r ∈ Bn such
that pBn(e1/r) = 0.) Furthermore, pBn(e1/e2) = pBn(−e1/e2) =

1
2
. Thus,

if we choose z = φ−1(e2), then pK(x/z) ≥ pF (x/z) = 1
2
and pK(y/z) ≥

pF (y/z) =
1
2
.

The Schr*dinger theory seems to have some non-trivial superselection
rule, because it does not seem to allow coherent superpositions of, say, |01〉
and |10〉. We begin by confirming that such states are not superposable.

Lemma 3. Let K be the set of separable states of B(C2 ⊗ C
2). Then |01〉

and |10〉 are not superposable in K.

3According to Hardy (2001), QM is differentiated from classical probability theory by
the assumption that there is a continuous transition between any two pure states. Hardy’s
claim is true in the JB algebraic framework (if we take the relevant topology to be the
norm topology), if we think of “quantum” systems as those systems that have a single non-
trivial superselection sector, and “classical” systems as those systems whose superselection
sectors are singletons.
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Proof. Let x = |01〉〈01|, let y = |10〉〈10|, and suppose for reductio ad ab-
surdum that there is a z = |αβ〉 = |α〉|β〉 ∈ ∂eK such that pK(x/z) = 1

2
=

pK(y/z). If L is the full state space of B(C2⊗C
2), then pK(v/w) ≤ pL(v/w)

for any v, w ∈ ∂eK (since ∂eK ⊆ ∂eL). Thus, Lemma 1 entails that

1 = pK(x/z) + pK(y/z) (14)

≤ pL(x/z) + pL(y/z) (15)

= |〈01|αβ〉|2 + |〈10|αβ〉|2 ≤ 1. (16)

We now show that either |〈01|αβ〉|2 = 0 or |〈10|αβ〉|2 = 0. For this, let

a = |〈0|α〉|2, b = |〈1|β〉|2, c = |〈0|β〉|2, d = |〈1|α〉|2. (17)

Thus, Eqn. 16 becomes ab+ cd = 1. Since {|0〉, |1〉} is an orthonormal basis
for C

2, we also have b = 1 − c and d = 1 − a. Hence, a + c − 2ac = 1.
The functions [0, 1] 3 a 7→ a + c − 2ac (for fixed c ∈ [0, 1]) and [0, 1] 3
c 7→ a + c − 2ac (for fixed a ∈ [0, 1]) are affine. Thus, a + c − 2ac achieves
its maximum value only at extreme points of the convex set [0, 1] × [0, 1].
Checking these points, we find that a+ c− 2ac ≤ 1, with equality achieved
only when (a, c) = (1, 0) or (a, c) = (0, 1). If c = 0, then |〈10|αβ〉|2 = cd = 0.
Similarly, if a = 0, then |〈01|αβ〉|2 = ab = 0. Applying Lemma 1 again, it
follows that either

pK(x/z) ≤ pL(x/z) = |〈01|αβ〉|
2 = 0, (18)

or
pK(y/z) ≤ pL(y/z) = |〈10|αβ〉|

2 = 0, (19)

both of which contradict our assumption that z is an equally weighted super-
position of x and y. Therefore, |01〉 and |10〉 are not superposable in K.

The previous Lemma shows that if the Schr*dinger theory permits a
JB algebraic formulation, then the states |01〉 and |10〉 must lie in different
superselection sectors. However, |01〉 and |10〉 are connected by a continuous
path of pure product states.4

Lemma 4. Let K be the set of separable states of B(C2 ⊗ C
2). Then there

is a continuous path in ∂eK between |01〉 and |10〉.

4Since K is not a topological space, this statement doesn’t really make sense. However,
since K is a subset of R

n, (n < ∞), there is a unique topology τ on K that is compatible
with its affine structure; namely, the relative topology from R

n. So, if K were isomorphic
to a JB algebra state space, the transported norm topology would be equivalent to τ .
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Proof. By symmetry, and since path-connectedness of points is transitive,
it will suffice to show that there is a norm-continuous path in ∂eK between
|01〉 and |11〉. Let ‖ · ‖2 denote the Hilbert-Schmidt norm on B(Cn); i.e.,
‖A‖2 = Tr(A∗A)1/2. There is a ‖ · ‖2-continuous function f from [0, 1]
into the set of one-dimensional projections on C

2 such that f(0) = |0〉〈0|
and f(1) = |1〉〈1|. Define a function g : [0, 1] → ∂eK by setting g(t) =
f(t) ⊗ |1〉〈1|. Since ‖A ⊗ B‖2 = ‖A‖2‖B‖2 for all operators A,B on C

2, it
follows that

‖g(t)− g(t′)‖2 = ‖(f(t)− f(t′))⊗ |1〉〈1| ‖2 = ‖f(t)− f(t′)‖2, (20)

for all t, t′ ∈ [0, 1]. Therefore, g is ‖ · ‖2-continuous as a mapping into ∂eK
with the relative topology inherited from the state space of B(C2⊗C

2).

The previous two Lemmas show that the topology and affine structure
of the separable state space do not mesh in the way that these structures
mesh in JB algebra state spaces.

Theorem 3. The set of separable states of B(C2 ⊗ C
2) is not affinely iso-

morphic to the state space of a JB algebra.

Proof. Suppose for reductio ad absurdum that K is affinely isomorphic to
the state space of a JB algebra. Let x = |10〉〈10| and let y = |01〉〈01|. By
Lemma 4, there is a continuous path between x and y, and so Lemma 2
entails that x and y are superposable in K. But this contradicts Lemma 3.
Therefore,K is not affinely isomorphic to the state space of a JB algebra.

This result shows that the simplest Schrödinger-like theory — viz., the
Schr*dinger theory — does not admit a JB algebraic formulation. Thus,
it provides some evidence for the claim that even within the JB algebraic
framework, locally quantum mechanical theories have nonlocally entangled
states; and it suggests that even within the JB algebraic framework, the no
cloning axiom entails the no bit commitment axiom.

The upshot, then, of this section is to confirm worries that the C∗ as-
sumption is doing too much work in the CBH theorem; and, furthermore,
it probably wouldn’t help matters if we were to derive a generalized CBH
theorem for JB algebras. But, of course, there is still hope that within a
suitably broader mathematical framework (e.g., Segal-algebras (see Segal,
1947), and the dual theory of spectral convex sets), the three axioms are
independent, and together entail QM.
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5 Conclusion

This note attempts to clarify the limits of recent information-theoretic char-
acterizations of QM. However, in doing so, it has raised a number of further
questions, both of a technical and a philosophical nature.

First, we conjecture that the three information-theoretic axioms are in-
dependent in the Segal-algebraic framework, and that the conjunction of
the axioms entails QM. This generalized version of the CBH theorem would
not only address the worries raised in the previous section, but might also
help shed light on traditional questions, such as physical reasons for using
complex coefficients rather than reals or quaternions.

Second, the considerations in this paper suggest that we take a closer look
at different ways of putting together composite systems, where all systems
are assumed to have convex state spaces. It is known that there are several
different notions of the “tensor product” of compact convex sets (see, e.g.,
Namioka & Phelps, 1969). Thus, it would be interesting to see which of these
products preserve which information-theoretic properties of the component
systems. More specifically, suppose that ⊗ is a tensor product of compact
convex sets that preserves the defining properties of JB algebra state spaces.
Then does it follow that K ⊗L has nonlocally entangled states whenever K
and L are not simplexes? Or does the JB algebraic framework permit the
existence of a Schrödinger-like theory? If the JB algebraic framework does
not, does the broader Segal-algebraic framework permit the existence of a
Schrödinger-like theory?

Finally, our discussion has raised the question of the role of constraints
(either a priori or operational) on theory construction. On the one hand, if
there are no constraints on theory construction — i.e., if there is no mini-
mum amount of mathematical structure shared by all theories, and if any
fairy tale can count as a legitimate “toy theory” — then it would be hope-
less to try to derive QM from information theoretic principles, or from any
other sort of principles for that matter. (E.g., why assume that the results
of measurements are real numbers? Why assume that measurements have
single outcomes? Why assume that the laws of physics are the same from
one moment to the next?) On the other hand, the idea that it is legiti-
mate to assume a fixed background framework for physical theories seems
to come into tension with the empiricist attitude that drove the two major
revolutions in physics in the 20th century; and the last thing we want is to
impede the search for a future theory that would generalize QM.
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