
FORTHCOMING IN BJPS

Dust, Time, and Symmetry

Gordon Belot

ABSTRACT

Two symmetry arguments are discussed, each purporting to show that there is no more

room in general relativistic cosmology than in Minkowski spacetime for a preferred

division of spacetime into instants of time. The first argument is due to Gödel, and

concerns the symmetries of his famous rotating cosmologies. The second turns upon the

symmetries of a certain space of relativistic possibilities. Both arguments are found

wanting.
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1 Introduction

In Newtonian physics there is a preferred notion of time: spacetime falls in a natural way

into a one dimensional family of three dimensional subsets that we identify as the instants

of time. There is, of course, no such preferred division of spacetime into instants of time

in the Minkowski spacetime of special relativity. But if we introduce into Minkowski

spacetime a preferred inertial frame—a family of freely falling observers, exactly one

passing through each point of spacetime—then we do get a preferred division of

Minkowski spacetime into instants of time—the one dimensional family of three

dimensional subsets orthogonal to our family of observers.

What happens in general relativity? On the one hand, general relativity is a

generalization of special relativity—and intuitively, it ought not to re-establish an

absolute division of spacetime into instants of time. On the other hand, in central

cosmological applications of the theory, one often models the material contents of the

universe as dust—a family of freely falling objects, exactly one passing through each

point of spacetime. And it is natural to wonder whether, as in Minkowski spacetime, such

a family suffices to determine a preferred notion of time.

In this paper I discuss two arguments, each aiming to show that there is no more

room for a preferred notion of time in general relativistic cosmology than in the

Minkowski spacetime of special relativity.

The first argument is due to Gödel, and can be found in his brief and enigmatic ‘A

Remark about the Relationship between Relativity Theory and Idealistic Philosophy’

([1949a]). Section 3 of the present paper offers a commentary on Gödel’s argument.
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Although the focus is somewhat different from that of most philosophical discussions of

Gödel’s writings on time—I do not discuss time travel—my conclusion is the usual one:

that Gödel’s argument teaches us less than it was supposed to about the nature of time in

general relativity. In brief: Gödel shows that there exist cosmological spacetimes whose

symmetry properties are incompatible with a preferred slicing into instants of time; and

he offers some reason to think that this establishes a sense in which the laws of general

relativistic cosmology are incompatible with a preferred notion of time; but a comparison

of this case with other cases in which we take symmetry arguments to establish structural

features of laws shows that Gödel’s conclusion is disappointingly weak.

A discussion of the force and limitations of Gödel’s argument naturally suggests a

second sort of argument, which is the topic of §4 of this paper. Roughly speaking, one

can show that just as in ordinary classical mechanics so in dust cosmology, the theory is

indifferent to the identity of instants of time—in the sense that each theory is invariant

under changes in the instant labeled as the origin. In the general relativistic context, this

means that the theory is invariant under changes of slicing, as well as under changes in

parameterization of a given slicing. And this seems to establish that the laws of dust

cosmology are no more compatible with the choice of a preferred slicing of solutions into

instants than the familiar laws of classical mechanics are compatible with a preferred

choice of origin for the time coordinate. But we will see that this argument, although in

some respects more promising than the first, also has a major shortcoming—it

presupposes a formulation of general relativity which is unlikely to be acceptable to

anyone for whom the status of time in the theory is a genuinely open question.
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The two arguments to be considered turn upon structurally similar symmetry

considerations—although in one case the symmetries in question are the symmetries of

certain relativistic spacetimes, while in the other they are the symmetries of a certain

space of relativistic possibilities. Before turning to these arguments, I begin in the next

section with a discussion of the form such symmetry considerations, which I hope will

prove helpful by setting up later discussion.

2 Symmetry Arguments

Here is an example from the older cosmological literature:

It is entirely wrong to suppose that there are by nature two opposite regions dividing the universe between
them, one ‘below,’ towards which all things sink that have bodily bulk, the other ‘above,’ towards which
everything is reluctant to rise. For since the whole heaven is spherical in shape, all the points which are
extreme in virtue of being equally distant from the centre, must be extremities in just the same manner;
while the centre, being distant by the same measure from all the extremes, must be regarded as at the point
‘opposite’ to them all. Such being the nature of the ordered world, which of the points mentioned could one
call either ‘above’ or ‘below’ without being justly censured for using a quite unsuitable term? … When a
thing is uniform in every direction, what pair of contrary terms can be applied to it and in what sense could
they be properly used? If we further suppose that there is a solid body poised at the centre of it all, this
body will not move towards any of the points on the extremity, because in every direction they are all
alike…. (Timaeus 62c–63a. Translation of Cornford [1997], pp. 262 f.)

This is an elegant instance of a type of symmetry argument that has played a prominent

role in natural philosophical investigations of space, time, and motion. The argument

form can be characterized as follows.

• In the background is the supposition that we are interested in a problem set in the

context of a particular subject matter. In our example, Plato is interested in the

definition of up and down in the cosmological context.

• The point of departure of the argument is the presentation of a structure which is

claimed to provide a perspicuous representation of the subject matter at hand. Here a

structure is a set of individuals instantiating certain properties and standing in certain
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relations to one another. We will suppose that the properties and relations are

qualitative.1 In our example, Plato asks us to model the cosmos as a solid sphere, with

the distinguished central point representing the Earth—we can take our structure to be

a subset of the points of Euclidean space, subject to the usual relations of betweenness

and congruence.

• Our analysis turns upon the symmetries of the given structure. Here a symmetry is an

automorphism of the structure—a permutation of the individuals that fixes each of the

given properties and relations.2 The symmetries of a structure form an algebraically

well-behaved set—a group.3 If two individuals are related by a symmetry, then these

individuals play identical roles in the system of properties and relations encoded in

the structure.4 The structure in our example is invariant under reflections in planes

through the center—and hence under the result of successive reflections, including

rotations of the sphere about its center. It follows that each point on the surface of the

cosmic sphere is qualitatively identical to each other, since for any pair of such points

we can find a rotation that maps the first to the second.

• An approach to solving the given problem is on the table. We consider an instance of

this approach, assumed to take the form of a proposed enrichment of the given

structure by new properties and relations, which is to lead directly to a solution of the

problem at hand. Thus, Plato supposes that any definition of down would involve the

choice of a distinguished normal to the surface of the cosmic sphere—directed from a

distinguished point on the sphere towards the center.

• We now ask whether every symmetry of the original structure is a symmetry of the

extended structure. Suppose that the answer is ‘No.’5 Then the new properties and
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relations fail to respect the symmetries of the original structure—they draw invidious

distinctions between (sets of) individuals which play equivalent roles in the original

structure. To the extent that we are confident that our original structure does indeed

present a perspicuous view of our subject matter, we have reason to reject the

proposed problem solution.6 In our example, every extension of the sort Plato

considers is inadmissible, as the symmetries of the cosmos require us to treat each

point on the surface of the cosmic sphere equivalently.

The point of vulnerability of such an arguments is its point of departure—Does

the proffered structure really represent a perspicuous representation of the subject matter,

whose symmetries any problem solution must respect? It might be objected to Plato that

the heavens are not uniform—the distribution of the stars is utterly asymmetric. So why

can’t we define down by privileging, say, Polaris? Similarly: Why shouldn’t we take

advantage of any asymmetries in the shape of our central body in determining the

direction of its motion? Plato can only respond that such suggestions miss the point of the

sort of cosmological investigation he is engaged in—for his purposes, the description of

the heavens as an undifferentiated sphere is the appropriate one, and any further structure

defined at this level must respect the symmetries of this description.

Note that, thus far, arguments of this form give us reason to reject individual

proposed solutions. But if we are very confident that the approach considered is the only

sensible approach to the problem, and if all instances of this approach can be shown to

run afoul of our symmetry requirement, then we have reason to conclude that the problem

is insoluble. Thus, Plato concludes that if the world is spherically symmetric, there can be

no such definition of up or down.7 Aristotle rejects a presupposition of the approach Plato
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considers, and concludes that down points from each point of the cosmic sphere towards

the center (De Caelo, 308a).

3 Gödel’s Argument

Let us now turn to the argument of Gödel’s ‘A Remark about the Relationship between

Relativity Theory and Idealistic Philosophy.’8 For our purposes, it is helpful to note that

this paper can be broken into the following divisions:

(i) The first two paragraphs note that the structure of time according to the special

theory of relativity is very different from what is suggested by commonsense and

experience.

(ii) The third and fourth paragraphs discuss a difficulty that stands in the way of

establishing a corresponding thesis about the nature of time in general relativity,

deriving from a certain feature present in many relativistic cosmologies.

(iii) In the fifth paragraph, it is shown that this difficulty is not insuperable, for there

exist solutions of the equations of relativistic cosmology that lack this feature. A

symmetry argument shows that time has the desired structure in those solutions.

(iii*) In the next three paragraphs it is noted that those same solutions possess a strange

causal structure which appears to render time travel possible. It follows that in

such solutions: the problem discussed under (ii) does not arise; and time has the

desired structure.

(iv) In the final paragraph Gödel argues that the structure of time in the cosmological

models discussed under (iii) and (iii*) has consequences for the nature of time in

all general relativistic cosmologies—notwithstanding the obstacle noted in (ii).
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Gödel’s famous paper has, of course, been widely discussed. (iii*) has received the lion’s

share of attention, with (iv) attracting somewhat less.9 I mean to bypass (iii*)

entirely—and with it all of the distractions surrounding time travel—and focus on the line

of argument that leads from (i) and (ii) through (iii) to (iv) (henceforth ‘(i)–(iv)’). This is

possible because (iii) and (iii*) are redundant with respect to one another in the structure

of Gödel’s argument. Indeed, (i)–(iv) is a freestanding argument, which appears to have

been worked out by Gödel prior to his discovery of the causal pathologies inherent in his

solutions (see Stein [1995], §§2 and 3).

I discuss (i)–(iv) sequentially in the next four subsections, before turning to the

task of evaluating the success of Gödel’s argument. I aim to provide a rational

reconstruction of Gödel’s reasoning, making explicit some of the background that he

presupposes. Textual and historical remarks will, for the most part, be relegated to the

notes.

3.1 Time in Special Relativity

Gödel opens his paper by remarking that ‘One of the most interesting aspects of relativity

theory for the philosophical-minded consists in the fact that it gave new and surprising

insights into the nature of time, of that mysterious and seemingly self-contradictory being

which, on the other hand, seems to form the basis of the world’s and our own existence’

([1949a], p. 557). Indeed, consideration of the structure of Minkowski spacetime leads

Gödel to conclude that ‘one obtains an unequivocal proof for the view of those

philosophers who, like Parmenides, Kant, and the modern idealists, deny the objectivity

of change and consider change as an illusion or an appearance due to our special mode of

perception’ ([1949a], p. 557).
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The argument works as follows. According to Gödel, the existence of an objective

lapse of time is a necessary condition for the existence of genuine change; and the

division of reality into a one dimensional family of three dimensional instants prima facie

capable of being successively realized is in turn a necessary condition for an objective

lapse of time.10 But the familiar relativity of simultaneity in Minkowski spacetime shows

that such a decomposition into instants is not possible absolutely, but only relative to a

choice of inertial observer. Gödel insists that a merely relative decomposition cannot

found an objective lapse of time: ‘Each observer has his own set of “nows”, and none of

these various systems of layers can claim the prerogative of representing the objective

lapse of time.’11

The crucial point is that there is no invariant means of decomposing Minkowski

spacetime into subsets worth calling instants—this is part of what Minkowski had in

mind in announcing that ‘Henceforth space by itself, and time by itself, are doomed to

fade away into mere shadows, and only a kind of union of the two will preserve an

independent reality’ ([1952], 75). For our purposes, it is helpful to stipulate that an instant

in Minkowski spacetime is a connected, three dimensional, spacelike submanifold. We

will call a partition of a manifold by (embedded) submanifolds of equal dimension a

foliation.12 Then the present point can be reformulated as: There is no extension of the

structure of Minkowski spacetime by an invariant equivalence relation which foliates

Minkowski spacetime by instants.13 (Here is a sketch of a proof; it will come in handy

later, but can be omitted without loss of continuity. Suppose that we have an invariant

equivalence relation of the desired sort. Choose an instant, T, from among its equivalence

classes, and choose a point, x, lying on T. There is a unique inertial observer passing
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through x whose worldline is orthogonal to T at x. Choose a boost relative to this observer

that fixes x. This boost does not fix T as a set. So the image of T under this Lorentz

symmetry is distinct from T but has non-empty intersection with it—hence it cannot be an

equivalence class of our equivalence relation. So the relation is not invariant under

Lorentz symmetries after all.)

Before moving on to consider the next phase of Gödel’s argument, it is helpful to

recall some facts about the definability of simultaneity relations in structures related to

Minkowski spacetime.

We can employ Einstein’s construction to associate to a privileged inertial

observer a simultaneity relation whose equivalence classes foliate Minkowski spacetime

by instants. The observer carries a clock, and employs the following rule: if a light signal

sent by the observer at time t and reflected by the event in question would return to the

observer at time t+2ε, then the event is assigned time coordinate t+ε; events assigned the

same time coordinate are counted as simultaneous by the observer. The corresponding

equivalence relation is not, of course, invariant under the full set of symmetries of

Minkowski spacetime. But it is invariant under those spacetime symmetries that leave

invariant the worldline of the privileged observer—i.e., under the symmetries of the

structure that results when Minkowski spacetime is supplemented by the privileged

worldline.14

A similar picture emerges if we proceed instead by supplementing the structure of

Minkowski spacetime by the choice of a field of inertial observers at relative rest (this

gives us a congruence of inertial worldlines—exactly one privileged inertial worldline

through each point of spacetime). Let us call the resulting structure augmented Minkowski
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spacetime. We can proceed geometrically: the family of hypersurfaces everywhere

orthogonal to our set of worldlines forms a family of spacelike instants, which is

transverse to the privileged worldlines (i.e., each worldline intersects each member of the

family exactly once). Note: (i) that the same family of instants results when any of the

comoving inertial observers applies the Einstein simultaneity construction; and (ii) that

the resulting family of orthogonal hypersurfaces is the unique transverse foliation

invariant under the symmetries of augmented Minkowski spacetime (Giulini [2001],

Theorem 5).

The symmetries of augmented Minkowski spacetime are just the symmetries of

Newtonian spacetime, absolute space and all—every symmetry is a product of a temporal

symmetry (which shifts or reflects events along each privileged worldline) and a spatial

symmetry (which acts on each instant via the same Euclidean isometry; the temporal

translations determining the requisite notion of sameness). This suggests the following

way of describing our situation. Minkowski spacetime itself does not decompose in a

natural way into space and time—it does not support invariant relations that deserve to be

called ‘at the same place as’ or ‘at the same time as.’ But if we supplement its structure

with a privileged congruence of inertial observers—which can be viewed as introducing a

notion of ‘at the same place as’—, this brings along with it a notion of ‘at the same time

as’—namely, the equivalence relation whose equivalence classes are the instants

orthogonal to the privileged observers. Thus, adding a certain sort of notion of space to

Minkowski spacetime automatically yields a sort of notion of time.
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3.2 Time in the Standard Cosmological Models

The observation that the structure of Minkowski spacetime is incompatible with the lapse

of time and the existence of genuine change would be of limited interest if similar

conclusions did not follow in more fundamental contexts. It is the principal aim of

Gödel’s paper to show that such conclusions can indeed be established in general

relativistic cosmology.

In relativistic cosmology, one is concerned with solutions to the field equations of

general relativity that model a universe filled with some sort of (more or less realistic)

matter. Gödel focuses on dust cosmology, in which spacetime is everywhere filled with

freely-falling dust motes (representing galaxies), whose interaction with one another is

mediated via their joint role in determining the curvature of spacetime. This is thought to

provide a reasonable idealization of the dynamics of the large-scale structure of the

universe, except at early (and, possibly, late) times at which non-gravitational interactions

cannot be neglected. A solution to the equations of dust cosmology consists of: a

spacetime geometry; a congruence of timelike geodesics (i.e., a family of such curves,

exactly one passing through each point of spacetime), representing the worldlines of the

dust motes; and a positive real-valued function on spacetime, describing the matter

density at each point (this varies as the dust worldlines converge and diverge).15 In fact:

the dust world-lines and matter density can be reconstructed from knowledge of the

spacetime metric alone (see, e.g., Sachs and Wu [1977], §3.14). So, in effect, the

geometry of such a world itself determines a distinguished set of co-moving  observers.

Within this framework, we can introduce some helpful terminological stipulations

(these will be in effect for the remainder of this paper). In a dust cosmological spacetime,
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an instant is a three dimensional (embedded) submanifold which intersects each dust

worldline exactly once.16 A choice of time is foliation of spacetime by a (necessarily one

dimensional) family of instants (equivalently—the choice of an equivalence relation on

spacetime with instants as equivalence classes). Finally, a time is called absolute if it is

invariant under the symmetry group of the cosmology under consideration.17 This last

stipulation accords well with Gödel’s usage.18

Now, a typical general relativistic spacetime admits no symmetry.19 So in such a

solution, any time is an absolute time—and any decent solution of the equations of dust

cosmology admits infinitely many times.20 So there is not, in the generic case, any

difficulty in constructing an absolute time—the challenge is rather to provide a generally

applicable technique for singling out physically interesting times.21

Gödel pursues a different question: Does every dust solution admit an absolute

time—or do there exist symmetric solutions in which it is possible to run an analog of the

argument that shows that there is no invariant foliation of Minkowski spacetime by

instants?

Einstein’s static universe is the most highly symmetric dust solution, and was the

first to be discovered.22 As in the Minkowski case, the group of spacetime symmetries is

 transitive—any pair of points is related by some isometry (we also say that a spacetime

with such symmetry group is spacetime homogeneous). But unlike in the Minkowski

case, there is a family of three dimensional spatial instants which is invariant under the

symmetries of the spacetime—thus Gödel’s argument for the nonexistence of change and

a lapsing time will not go through in Einstein’s static universe.
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This should not be entirely surprising. The structure we are investigating includes

a privileged congruence of freely falling worldlines. Such a congruence is the natural

general relativistic analog of the congruence of inertial observers that underwrites the

construction of the absolute time in augmented Minkowski spacetime. And, in fact, we

find that, as in augmented Minkowski space time, so in the Einstein static universe: (i)

there is a family of instants orthogonal to the privileged congruence of worldlines; (ii)

this family is the unique family of instants invariant under the spacetime symmetries; and

(iii) the symmetries can all be written as products of temporal translations and spatial

isometries.23

Here is Eddington on the nature of time in Einstein’s static universe:

… we have already urged that the relativity theory is not concerned to deny the possibility of an absolute
time, but to deny that that it is concerned in any experimental knowledge yet found; and it need not perturb
us if the conception of absolute time turns up in a new form in a theory of phenomena on a cosmical scale,
as to which no experimental knowledge is yet available. Just as each limited observer has his own particular
separation of space and time, so a being coextensive with the world might well have a special separation of
space and time natural to him.24

And here is Jeans:

… Einstein tried to extend the theory of relativity so that it should cover the facts of astronomy and of
gravitation in particular. The simplest explanation of the phenomena seemed to lie in supposing space to be
curved…. It was natural to try in the first instance to retain the symmetry between space and time which
had figured so prominently in [special relativity], but this was soon found to be impossible. If the theory of
relativity was to be enlarged so as to cover the facts of astronomy, then the symmetry between space and
time which had hitherto prevailed must be discarded. Thus time regained a real objective existence,
although only on the astronomical scale, and with reference to astronomical phenomena. (Jeans [1936], pp.
21 f.).

By the end of the 1920’s, it had been established that the spiral nebulae were: (i)

located outside of our galaxy; and (ii) systematically red-shifted. As a result,

cosmologists turned their attention to expanding solutions, and Big Bang models quickly

became the new standard.25 These solutions admit a unique absolute time, consisting of

the instants orthogonal to the dust worldlines. Alternatively, these instants can be

characterized as the spaces of constant spatial curvature, or the spaces of constant mass



15

density—these quantities are preserved by the symmetries of the solutions, so no

symmetry ever maps an event off of the instant upon which it lies.26 These instants are

homogeneous—the spacetime has a six dimensional symmetry group acting as a

transitive group of isometries on each instant.

Speaking of these models, Jeans remarks:

Now, the second property [in addition to expansion] which all the mathematical solutions have in common
is that every one of them makes a real distinction between space and time. This gives us every justification
for reverting to our old intuitional belief that past, present, and future have real objective meanings, and are
not mere hallucinations of our individual minds—in brief we are free to believe that time is real. … we find
a distinction between time and space, as soon as we abandon local physics and call the astronomy of the
universe to our aid.27

This is the context of Gödel’s project. Immediately after his discussion of the lack

of an absolute time in the Minkowski case, Gödel remarks that some will object that this

conclusion does not carry over to the cosmological regime, where the behavior of matter

distinguishes an absolute time—at least in all solutions then known. Gödel takes Jeans as

his foil: ‘From this state of affairs, in view of the fact that [these solutions] seem to

represent our world correctly, James Jeans has concluded that there is no reason to

abandon the intuitive idea of an absolute time lapsing objectively’ ([1949a], p. 559).

3.3 Time in Gödel’s Stationary Rotating Solutions

Gödel opens phase (iii) of his paper by remarking that ‘There exist cosmological

solutions of another kind than those known at present,’ and goes on to announce that he

has discovered solutions which ‘possess such properties of symmetry that for each

possible concept of simultaneity and succession there exist others which cannot be

distinguished from it by any intrinsic properties, but only by reference to individual

objects, such as, e.g., a particular galactic system.’28 In our present terminology, Gödel
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asserts that his newly discovered stationary rotating solutions do not support an absolute

time.29 This is an argument of the form discussed in §2 above.30

(The balance of this subsection outlines the context and structure of Gödel’s

proof, and may be omitted without loss of continuity.)

The examples discussed in the previous subsection suggest a couple of sufficient

conditions for the existence of an absolute time.

• In Big Bang models, the subspaces of constant matter density form an absolute time.

This will happen whenever a solution has the following two properties: (i) it is dust-

space homogeneous, in the sense that for any two dust worldlines, there is a

symmetry of the cosmology that maps the first onto the second (this ensures that the

cosmology can be foliated by instants of constant matter density); (ii) the matter

density is not everywhere constant (this ensures that the there will be no more than

one way to foliate the cosmology by instants of constant matter density). Since matter

density is invariant under symmetries, its level surfaces provide an absolute time for

such solutions.

• In augmented Minkowski spacetime, Einstein’s static universe, and Big Bang

solutions, the family of instants everywhere orthogonal to the preferred freely falling

congruence forms an absolute time. Now, in relativistic physics, as in Newtonian

mechanics, we can at each spacetime point introduce a standard of rotation—the

compass of inertia—by declaring that matter is rotating at that point if the

surrounding matter rotates relative to a free gyroscope at that point.31 It is possible to

construct a family of instants orthogonal to the dust worldlines if and only if the

solution is everywhere non-rotating.32 The instants of orthogonality for any non-
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rotating solution form an absolute time, since they are defined in terms of data (the

metric and dust velocity at a point) invariant under any symmetry.33

These conditions are logically independent. The Einstein static universe is non-

rotating, and hence falls into instants of orthogonality. But it is spacetime

homogeneous—every pair of points is related by a symmetry—so the matter density is

constant on the entire spacetime and does not provide a means of labeling instants. On the

other hand, Gödel himself later discovered rotating solutions which are expanding and

dust-space homogeneous—in these solutions the level sets of matter density form an

absolute time, but there are no instants of orthogonality.34 Further—although in the Big

Bang case the two conditions pick out the same family of instants, there exist so-called

tilted homogeneous cosmologies in which the both conditions obtain but lead to distinct

foliations by instants. 35

And neither condition is necessary: already in 1924, Lanczos discovered a

solution describing the behavior of a rotating dust cylinder, which violates both of our

conditions but which nevertheless admits an absolute time.36

Gödel appears to have sought a rotating dust solution in order to dispel the idea

that absolute time, deposed by special relativity, is restored by cosmological

considerations ([*1949b], p. 12). But while a solution which is atemporal in the desired

sense must rotate, not every rotating solution is atemporal in the desired sense. What

further conditions are required?

Gödel’s approach is a variation on the strategy for the Minkowski case, sketched

above in §3.1: he considers an arbitrary foliation by instants; then show that for any of
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these instants, there is a point on the instant which is fixed by a symmetry which does not

fix the instant itself.

In the Minkowksi case, we observed that any boost relative to an inertial observer

passing through the point along the normal to the instant had the desired effect. In the

general relativistic case, a symmetry fixing a point will act on the tangent space of that

point as a (homogeneous) Lorentz symmetry (differing from the identity iff the symmetry

differs from the identity). In the realm of dust cosmology, a symmetry fixing a given

spacetime point must also fix the dust velocity vector at that point—and hence acts,

infinitesimally, as a product of reflections or rotations in the hypersurface orthogonal to

the dust velocity vector. It follows that if a point is fixed by a continuous family of

symmetries, this family will include a one parameter subgroup of symmetries acting

infinitesimally as rotations at the fixed point. Call a dust solution locally rotationally

symmetric if every point is fixed by such a group.

Gödel’s stationary rotating solution is both locally rotationally symmetric and

everywhere rotating.37 No such solution admits an absolute time: given a foliation by

instants, we select an arbitrary instant, T; this instant is not everywhere orthogonal to the

dust worldlines, because the solution is everywhere rotating; so we can select a point, x,

on T at which orthogonality fails; now act on T by a symmetry which fixes x and acts

infinitesimally as a rotation; this symmetry does not fix T, since the instant is not

orthogonal to the dust worldline passing through x; nor does it map T to another instant in

the foliation, since the symmetry has x as a fixed point; so the foliation is not invariant

under the symmetries of the spacetime.38
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3.4 Gödel’s Argument for the Significance of these Results

In the closing paragraph of his paper, Gödel confronts a crucial line of objection: ‘It

might, however, be asked: Of what use is it if such conditions prevail in certain possible

worlds? Does that mean anything for the question interesting us whether in our world

there exists an objective lapse of time?’ These are pointed questions: Gödel himself

grants that his solutions (lacking a red-shift) are far from physically realistic—and that

more adequate models of our cosmos do support an absolute time.

In answer, Gödel offers two sorts of considerations.39

First, he remarks that while his stationary rotating solutions are not physically

realistic, ‘there exist however also expanding rotating solutions. In such universes an

absolute time also might fail to exist, and it is not impossible that our world is a universe

of this kind’ ([1949a], p. 562). Presumably he has in mind already the family of

expanding rotating solutions described in Gödel ([1952]). But those solutions do admit a

well-behaved absolute time—or, rather, those with low rates of cosmic rotation do so.40

And observation places a fantastically low upper bound on the rate of cosmic rotation for

all known solutions (see Scherfner [1998]). So there is no empirical need for rotating

solutions in cosmology, let alone for ones that fail to support an absolute time.

Gödel’s second suggestion, with which he ends the paper, is more provocative:

The mere compatibility with the laws of nature of worlds in which there is no distinguished absolute time
… throws some light on the meaning of time also in those worlds in which an absolute time can be defined.
For, if someone asserts that this absolute time is lapsing, he accepts as a consequence that whether or not an
objective lapse of time exists (i.e., whether or not a time in the ordinary sense of the word exists) depends
on the particular way in which matter and its motion are arranged in the world. This is not a straightforward
contradiction; nevertheless, a philosophical view leading to such consequences can hardly be considered as
satisfactory.41

Critics have baulked at accepting even this rather weak conclusion.42 In the standard Big

Bang account, the present matter density of the universe and the details of the relative
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motions of the galaxies together place constraints on the topology of space, and

determine whether the universe will expand forever, or will begin to contract and end in a

singularity after a finite time. If questions about the shape of space and the extent of time

are allowed to depend on the arrangement of matter and motion, why should it be

unsatisfactory to say the same of the lapse of time? Let us call this Earman’s challenge.

The comparison underwriting Earman’s challenge does indeed cast Gödel’s

conclusion in a rather unflattering light. In the remainder of this subsection, I lay out a

second comparison, and use it to motivate a Gödelian response to this challenge. This line

of thought will, however, lead to a negative assessment (in the following subsection) of

the ultimate success of Gödel’s argument.

Consider the question of the existence of a preferred parity in nature. This question,

like the questions regarding the extent of time and the shape of space that the interlocutor

urges us to consider, admits an interpretation under which it is to be settled by examining

the distribution of matter and motion in our cosmos. That is, one asks whether there exist

types of processes or objects which enjoy a predominance over their parity-reverses.43

But the question of a preferred parity also admits a second sort of reading, under

which it is concerned with properties of the laws of nature rather than with features of

any particular world. Under this second construal, the question is to be settled by

determining whether the fundamental laws of nature are invariant under parity

inversion.44

We face a similar choice when we come to the question of the structure and nature of

time in general relativity—one construal leads to a focus on properties of particular

realistic solutions, while another leads to a focus on features of the laws of the theory.
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The former sort of approach appears to support the view of Jeans et al.: because realistic

cosmological solutions feature privileged foliations by instants, the special relativistic

argument against becoming does not apply; so the pre-relativistic division of spacetime

into space and time is reinstated at the level of astronomy. Gödel urges that the latter sort

of approach leads to a very different conclusion—since the laws permit cosmological

solutions supporting an analog of the special relativistic argument, we are very far from

having absolute time in general relativity.

Now, in the parity case, it is generally held that the interest of the law-structural

construal of the question dwarfs that of the particular solution/empirical regularity

construal. I suggest the following rationalization. The search for more fundamental

theories involves making bets: isolating features of extant theories to be carried over (or

generalized) from those to be left behind, in order to give form to the search for new

theories. Because so much of the most creative and influential work in physics is directed

towards creating these new theories, it is very natural that this activity should structure

our attempts to understand our current theories. This provides the context in which it is

natural to think that, in at least one very important sense, the investigation of properties of

laws leads to deeper insights than does the natural-historical cataloguing of regularities in

the world.45

What Gödel asserts in the closing sentence of his paper is that as when asking after a

preferred parity, so when asking after the nature of time in general relativity—the interest

of the law-structural construal dwarfs that of the particular solution/empirical regularity

construal. I like to think of Gödel as motivated here by considerations running parallel to

those sketched in the preceding paragraph.
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I find some encouragement in this in the manuscript drafts ([*1946/9-B2]; [*1946/9-

C1]). These are precursors to the paper we have been discussing, but have a different

focus from that of the published paper—in them Gödel aims to extract from relativistic

physics a substantial vindication of a thesis he finds in Kant, namely that ‘time is neither

“something existing in itself” (i.e., a separate entity besides the objects in it), nor “a

characteristic or ordering inherent in the objects”, but only a characteristic inherent in the

relation of the objects to something else.’46 Gödel remarks that he is not himself ‘an

adherent of Kantian philosophy in general’ ([*1946/9-B2], fn. 1; [*1946/9-C1], fn. 1).

But he expresses the hope that his discussion will show that the questions arising in a

comparison of Kantian doctrine with relativistic physics ‘are interesting and perhaps even

fruitful for the future development of physics.’47

Now, Gödel thinks of general relativity as a theory very likely to be false.

In the present imperfect state of physics, however, it cannot be maintained with any reasonable degree of
certainty that the space-time scheme of relativity theory really describes the objective structure of the
material world. Perhaps it is to be considered as only one step beyond the appearances and towards the
things (i.e., as one ‘level of objectivation’, to be followed by others).48

We are told more about these levels in a footnote:

each … is obtained from the preceding one by the elimination of certain subjective elements. The ‘natural’
world picture, i.e., Kant’s world of appearances itself, also must of course be considered as one such level,
in which a great many subjective elements of the ‘world of sensations’ are already eliminated.49

For Gödel, scientific progress consists in the attainment of greater ‘objectivation,’ a

process that leads us towards knowledge of things as they are in themselves:

A real contradiction between relativity theory and Kantian philosophy seems to me to exist only in one
point, namely, as to Kant’s opinion that natural science in the description it gives of the world must
necessarily retain the forms of our sense perception and can do nothing else but set up relations between
appearances within this frame.
… at this point, it seems to me, Kant should be modified, if one wants to establish agreement between his
doctrines and modern physics; i.e., it should be assumed that it is possible for scientific knowledge, at least
partially and step by step, to go beyond the appearances and approach the world of things.
The abandoning of that ‘natural’ picture of the world which Kant calls the world of ‘appearance’ is exactly
the main characteristic distinguishing modern physics from Newtonian physics.50
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Gödel’s makes some cursory remarks regarding the nature of the progress achieved by

special relativity and quantum mechanics. In discussing the former, he focuses on the

dissolution of the absolute distinction between space and time, and emphasizes that this

required the application of something very like the principle of sufficient reason (to rule

out Lorentzian approaches to special relativity).51 Regarding quantum mechanics he

mentions the disparity between the theoretical language of the new theory and the

‘“laboratory language”’ (which he claims had until then sufficed for the purposes of

theoretical physics) ([*1946/9-B2], p. 19; [*1946/9-C1], p. 28).

I sum this up as follows. Gödel hopes that his investigations will contribute

towards scientific progress. That is, he hopes that his analysis of the nature of time will

contribute to a deeper understanding of the respects in which general relativity represents

an increase in ‘objectivation’ by yielding a world picture incrementally closer to the

nature of things as they are in themselves. The examples he gives of achievements along

these lines within the other revolutionary theories of the early 20th century suggest that he

has in mind, above all else, high level features—regarding the structure of the conceptual

framework—rather than the details of particular representations of the world.

If this characterization is accepted, I think we ought—as in the case of the

consensus view regarding the question of a preferred parity—to grant that there is a sense

in which the investigation of properties of laws leads to deeper insights than does the

natural historical cataloguing of regularities in the world in considering questions like the

nature of time in general relativity. This does something to shore up Gödel’s argument in

response to Earman’s challenge—for such a concession appears to secure a sense in
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which it is unsatisfactory to look towards special features of physically realistic solutions

in settling such questions.52

3.5 Is Gödel’s Argument Successful?

Now, all parties will grant that we can hope to learn about the nature of time by attending

to features of the laws of general relativity. It is natural to ask: To what extent does the

argument of Gödel’s paper advance this program?

The answer is, I think, not very far: the particular law-structural construal that Gödel

opts for does not provide as much insight as he hoped. I offer two sorts of reason.

First sort of reason. Gödel asks whether the laws of dust cosmology guarantee the

existence of an absolute time; and answers that they cannot do so, since there exists a dust

solution that does not admit an absolute time. This is an argument by counter-example,

and as such invites evasion by monster-barring—and in the case at hand, this stratagem

would not by any means be entirely ad hoc. Gödel identifies two features of his solutions,

each held to be incompatible with the ordinary notion of time: (i) they include closed

timelike curves; and (ii) their symmetry prevents the construction of an absolute time.

Regarding (i). While it is no longer as common as it once was to rule solutions

containing closed timelike curves physically unrealistic on a priori grounds, such

solutions are nonetheless routinely excluded from consideration. For it is quite

standard among people working with general relativity as a dynamical

theory—especially those looking for deeper quantum theories of gravity—to take the

content of the theory to be demarcated, not by the class of solutions to the equations

that Einstein wrote down, but by the class of solutions that can be recovered in a



25

Hamiltonian reformulation of the theory. For those interested in understanding the

nature of time in the theory, this practice is quite reasonable: it would appear to be a

promising strategy to focus on the relation between time as it is in general relativity

and as it is in other theories—and the Hamiltonian approach provides an over-arching

scheme in which to write down and compare dynamical theories. Now, in order to

recast general relativity in Hamiltonian form, one must restrict attention to solutions

that satisfy a certain causality condition (namely, that they can be foliated by spacelike

instants which intersect every timelike and null curve exactly once)—and this means

excluding from our attention solutions (such as Gödel’s stationary rotating worlds)

which include closed timelike curves.

Regarding (ii). For any set of differential equations, solutions with greater than

minimal symmetry are freaks within the complete space of solutions.53 It is not at all

uncommon in contemporary work on general relativity in the Hamiltonian formalism

to simply ignore symmetric solutions, which lead to technical complications in the

study of the dynamics.54 In any case, if one thinks of general relativity as a mere

approximate theory, any property which is possessed only by very special solutions

probably ought not to play a very prominent role in attempts to understand the theory.

Second sort of reason. More importantly: Gödel’s argument, despite being a tour de force

in many respects, does not seem to cut very deep in the direction he points us towards.

We might in classical particle mechanics be interested in the question whether there is a

distinguished origin for time. An argument analogous to Gödel’s would proceed by

observing that the existence of such a feature does not follow directly from the laws,

since the laws allow a world containing only a single particle eternally at rest—in which
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what happens at one instant is indistinguishable from what happens at any other, so that a

choice of a distinguished temporal origin would violate the symmetries of that world. But

there is another, deeper, question that we are more likely to have in mind in asking

whether time has a distinguished origin: namely, whether the equations of motion are

invariant under time translation. If they are so invariant, then it seems that the dynamics

treats all instants as being on a par with one another, and the laws of nature single out no

preferred instant—although, of course, in all but those worlds in which the particles

remain forever at rest, it will be possible to distinguish instants from one another while

respecting the symmetries of the situation. This invariance property is deep: it is tied up

with the conservation of energy, and is the sort of feature that one wants to carry over in

constructing more fundamental theories. It is in analogous properties that we should be

interested when we ask about the nature of time in general relativity.55

4 Another Argument

I pursue this line of thought a bit further, and consider a line of argument suggested by

the above discussion. I begin in §4.1 with a more full discussion of the symmetry

property that when present indicates that the dynamics of a classical mechanical system

fails to select a preferred origin of time. When this feature is present, the laws of the

theory are indifferent to the identity of instants. In classical mechanics, this implies that

parameterizations of time differing only in their choice of origin are on all fours with one

another. It is natural to think that if one could construct a parallel argument in the general

relativistic case, identifying a sense in which the dynamics of the theory is indifferent to

the identity of instants, this would show that in general relativity distinct times composed
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out of distinct sets of instants would be on all fours with respect to one another—and that

this would secure a sense in which the laws of general relativity were incompatible with a

preferred time. In §§4.2 and 4.3, respectively,  I note that it is far from straightforward to

establish anything like this for general relativity as a whole, and note that there exists a

formulation of dust general relativity in which the desired symmetry property is present.

In §4.4, however, I worry that this argument has little probative force—as in Minkowski

spacetime, so in general relativistic cosmology: those attached to pre-relativistic notions

of time will be happy to add the necessary structure by hand, thus spoiling any symmetry

argument that departs from the more spare structure prima facie mandated by the physics

as it is usually understood.

4.1 Time Translation Invariance in Classical Mechanics

Suppose that we are studying a system of classical particles. The natural dynamical

variables for our theory of this system are the temporally evolving positions and momenta

of the particles. Under one familiar approach, our theory is set in the phase space of the

system, the space of possible positions and momenta of the particles. A point of the phase

space specifies an instantaneous position and momentum for each particle; schematically,

we denote such points (q,p). This space carries a natural geometric structure.56 And this

structure, together with information encoded in the Hamiltonian function of the

theory—the real-valued function on the phase space that assigns to each possible state of

the system its total energy—is enough to determine the dynamics of the theory, by

determining for each point of the phase space a unique curve which passes through that
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point.57 The points lying on a curve through a given point represent the dynamical past

and future of the state represented by that point.

For our purposes it is helpful to work in a slightly different framework, in which

the dynamics of the theory is formulated on a larger space, each of whose points

corresponds to a point of phase space together with a real number—schematically, we

write (q,p;t). There is no standard name for this space; I will call it the extended phase

space. The new variable should be thought of as labeling an instant of time, the instant of

time at which the system is in the state (q,p). We can define our dynamics by giving this

space a geometrical structure; in the construction of this structure, we employ both our

system’s Hamiltonian and the  geometrical structure of its phase space.58 In this

formulation, the differential equations of classical mechanics serve to determine the

geometrical structure of the extended phase space. And this structure singles out a set of

curves on the extended phase space, exactly one through each point. For each value of t,

each of these curves passes through at most one point of the form (q,p;t). We interpret

these dynamical trajectories as follows: the curve that passes through (q0,p0;t0) allows us

to associate values of q and p to each value of t at which the state of the system is

defined; thus such a curve tells us what state the system is in at each such instant if it is in

the state (q0,p0) at the instant labeled by t0. We write (q',p';t')→(q",p";t") if (q',p';t') and

(q",p";t") lie on the same dynamical trajectory.

This framework treats instants in abstraction from their contents. There is a

venerable tradition, deriving from Leibniz, according to which this strategy drastically

over-counts the number of genuine possibilities:

Supposing anyone should ask, why God did not create everything a year sooner; and the same person
should infer from thence, that God has done something, concerning which it is not possible there should be
a reason, why he did it so, and not otherwise: the answer is, that his inference would be right, if time were
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any thing distinct from things existing in time. For it would be impossible there should be any reason, why
things should be applied to such particular instants, rather than to others, their succession continuing the
same. But then the same argument proves, that instants, considered without the things, are nothing at
all….59

But even Leibnizeans may well want to adduce the invariance of the standard theory

under time translation as part of an argument for their favored interpretative stance. So

everyone should grant the conceptual interest of the technical question of the time

translation invariance of classical mechanics. And the extended phase space provides a

natural setting in which to address this question.60

To this end, we want to study the symmetries of theories defined on extended

phase spaces. Such a symmetry is a permutation of the (q,p;t)’s which leaves invariant all

of the structure we have defined on this space.61 It follows that the set of dynamical

trajectories is invariant under these symmetries—that the image of a dynamical trajectory

under a symmetry is a dynamical trajectory—since the structure that determines these

curves is itself invariant. This can be unpacked as follows. Let S be a symmetry of the

extended phase space; we write S(q,p;t) for the state which results when we apply S to the

state (q,p;t). Then the invariance of the dynamics means that for any symmetry S,

(q',p';t')→(q",p";t") implies S(q',p';t')→S(q",p";t")—in order to find the dynamical

trajectory through S(q',p';t'), we do not need to solve the dynamics again, but simply to

act upon the original dynamical trajectory by the same symmetry transformation that we

apply to the initial data.

Suppose, for instance, that S is the symmetry which translates all of the particle

positions some fixed amount in some direction, while leaving the momenta and t

invariant. This is a symmetry any of reasonable isolated mechanical system in Euclidean

space. If we know what happens when the initial data are set to be q and p at t and we
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want to know what happens if we alter our initial data by replacing q by the shifted initial

positions, we can simply apply the same shift to the dynamical state which follows at

time t' from the original initial data. The significance of this invariance is that we are

unable to use the laws to single out a preferred origin in space: for the invariance of our

dynamics tells us that no dynamical evidence could distinguish between the case where

the system is located at the origin, and the case where its location differs from the origin

by a translation.

Now consider the map, Sβ, defined by Sβ(q,p;t)= (q,p;t+β) for some real number β.

That is, Sβ corresponds to a time translation. The physics is time translation invariant if,

for each α and β, (q',p';t')→(q",p";t'+α) implies (q',p';t'+β)→(q",p";(t'+β)+α). In classical

particle mechanics, this condition holds for a given system if and only if its energy

function does not depend upon t (this fails, for instance, if our particles are constrained to

move on a surface that changes shape in an externally prescribed manner). When time

translation is a symmetry, the instants of time are dynamically identical—whether we set

the positions and velocities to be q and p at t' or at t", the subsequent evolution will look

exactly the same.

Thus the situation is a familiar one. Let us consider the extended phase space of

some (time-independent) system of particles as a structure in the sense of §2: its

individuals are the instantaneous states of the particles; these states stand in a number of

relations, encoding the fact that the space is a manifold carrying a certain geometric

structure which determines the dynamics. We can consider extending this structure by

introducing a new property whose intended extension is the set of initial data representing

the system as being at the temporal or spatial origin. But there are no reasonable
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candidates for such extensions that respect the symmetries of the original structure.62 The

laws of classical mechanics are indifferent to the identity of points of space and instants

of time.

4.2 Time Translation Invariance in General Relativity?

Now let us turn to the general relativistic case. There, speaking conveniently loosely, the

situation can be described as follows.

The lessons of the dust case notwithstanding, it is natural to think that the distinction

between space and time, dissolved in special relativity, remains unreinstated at the level

of the dynamics of the theory. Natural, yes—but how can this thought be made precise?

One question is whether there is a method, generally if not universally applicable, for

constructing privileged foliations by instants in general relativity.63 As noted above (fn.

21) this remains an open question—even setting aside difficulties involving symmetric

solutions, the most promising general methods are known to fail for certain dust

solutions. But note that if such a technique were to exist, its availability would guarantee

the existence of many competitors—for every proposed absolute time, there would be

ever so many competing schmabsolute times whose recipes are tweakings of the given

recipe.64 And the prospects of singling one of these out on physical (as opposed to

pragmatic or mathematical) grounds appear remote at this time.

So let us turn instead to a related question, which allows us to advance (a bit) further.

One supposes that there is a sense in which the dynamics of general relativity is

indifferent to the identity of instants—for otherwise it might well be possible to exploit

dynamical differences to reinstate space and time. Let us look for an analog of the
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argument of the previous subsection that established the corresponding conclusion for

classical mechanics. Now, the space of instants in any general relativistic spacetime is

infinite dimensional. So if we are hoping for something along the lines of the time

translation invariance of classical mechanics, we should look for an infinite dimensional

symmetry group of the theory whose action permutes the identity of instants.

We are interested in formulations of general relativity in which the states of the

theory form a space with an interesting geometrical structure, whose symmetry properties

we aim to investigate. There are two main formulations along these lines, both

prominently featuring the action of an infinite dimensional group of symmetries.

Under the first approach, the space of states is the space of spacetime solutions of the

Einstein field equations, upon which the group of spacetime diffeomorphisms acts.65 The

principle of general covariance—the invariance of the theory under the action of the

diffeomorphism group—tells us that any way of laying down on the spacetime manifold

the tensor fields describing the geometrical and material behavior of a given solution is as

good as any other. This has been taken by many to suggest that the theory will be

mangled if any preferred split into space and time is introduced—but it remains difficult

to establish a clear connection between this form of the principle of general covariance

and our desired conclusion, since instants play no straightforward role in this formulation

of general relativity.

Under the second major approach, the space of states of the theory is made up of

instantaneous states—spatial initial data for the Einstein equations rather than solutions to

them.66 Here the group of spatial diffeomorphisms comes to the fore, permuting the roles

of the points of the instant upon which the initial data are laid down. But the group of
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spatiotemporal diffeomorphisms no longer acts as a symmetry group (see, e.g., Kuchař

[1986]). Although the physical content of the full symmetry group of the space of

solutions must be encoded in some way in this new space, this is not achieved via the

action of a symmetry group which permutes the identity of instants.

Nonetheless, there is a special case in which a group action of the sort we seek crops

up—namely, dust coupled to gravity.

4.3 Time Translation Invariance in Dust Cosmology

In this subsection, I describe some results due to Brown and Kuchař ([1995]) concerning

the remarkable symmetry properties of their formulation of dust general relativity.

It is helpful to begin by imposing some technical conditions. First, we restrict

attention to globally hyperbolic solutions—those that can be foliated by spacelike instants

which intersect every timelike and null curve exactly once. The spacetime manifold

underlying any such solution is topologically of the form Σ×R, for some three manifold Σ

(to be thought of as describing the topology of space). The space of solutions of the

equations falls into disconnected components, one for each possible topology of Σ. It is

common practice to fix some Σ from the beginning, and to study the corresponding set of

solutions. We follow this practice, and further demand that our Σ be compact (so that our

solution is spatially finite but without boundary, eliminating worries about boundary

conditions at spatial infinity). It follows that every spacelike instant intersects each

timelike and null curve exactly once and is topologically equivalent to Σ (see Budic et al.

[1978], Theorem 1). Finally, we choose our Σ to be such that that no spacetime metric on

Σ×R admits any (continuous family of) symmetries.67 This last assumption is in place to
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drive home that the symmetry considerations we come across below are different in kind

from those discussed by Gödel.

For any dust solution satisfying these conditions, the set S of dust motes forms a

three dimensional manifold topologically isomorphic to Σ. Each of these dust motes can

be thought of as carrying a clock that measures proper time along the mote’s worldline.

So each event in such a spacetime can be named by mentioning the dust mote which

occupies it, and the time which then shows on the dust mote’s clock—the space of

possible events of our theory is of the form S×R. We now require the origins for the

clocks’ times to be chosen so that the set of events where each of the clocks reads zero is

a smooth submanifold of S×R. This set, which by construction includes exactly one event

involving each dust mote, is a possible instant, which we call the fiducial instant. Once a

fiducial instant is chosen, we can use real-valued functions S to specify possible instants:

if T(z), z∈ S, is such a function, then the corresponding instant is given by tracing T(z)

units of proper time along the worldline of z from the event at which z lies on the fiducial

instant, for each dust mote z.

This method of naming events is technically unremarkable—we are simply

defining quantities on the state space of our theory. But it will seem misguided to many to

talk about the identity of the events of a general relativistic world—let alone

measurements of proper time!—in abstraction from the geometric and matter fields which

describe what is going on at those events. My response is the same as in the classical

mechanical case: the objection is an expression of an (entirely reasonable) interpretative

tendency; but we are here pursuing a technical question which can be investigated

without prejudice to interpretative questions.
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Now, in their standard form the equations of dust general relativity have as

solutions sets of tensors (describing the behavior of the geometry and dust) on a four

dimensional spacetime manifold. Brown and Kuchař construct a formulation of dust

general relativity in which solutions consist of tensors defined upon our space of possible

events rather than upon a spacetime manifold. This may appear to be a trifling difference,

since both are topologically Σ×R. But this reformulation turns out to be much more

convenient for our purposes.68

It works as follows. Given an instant in a solution of the standard equations, we

can ask for a description of the instantaneous disposition of the geometric and material

degrees of freedom of the system from the point of view of the dust motes. To any

geometric or matter tensor defined on an instant of spacetime, there corresponds one

defined on S describing the same situation.

There is a small set, Φ, of such tensors defined on S—comprising the metric

structure of the instant, the ‘rate of change’ of this metric structure, and the matter density

along the instant—which form a dynamically closed set, capturing the full content of the

theory.69

We form a space of states for our theory, where each state is of the form (Φ,T),

specifying the values of our chosen tensors on S and the identity of the instant at which

they assume these values. As in our formulation of classical mechanics in the extended

phase space, the differential equations of our theory serve to give our space of states a

geometrical structure which encodes the dynamics of the theory.

In the former case, this structure determined one dimensional families of states,

corresponding to possible histories of the system: writing (q',p';t')→(q",p";t") if the two
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states lie in the same one dimensional family of states, which occurs iff the dynamics

evolves one into the other. And unless dynamical singularities develop, each family of

dynamically related states includes exactly one state for each instant of time.

In the present case, a possible history for our system (that is, dust coupled to

gravity) again involves an assignment of values to our dynamical variables, Φ, for each

possible instant—where now the possible instants, being parameterized by smooth real-

valued functions on S, form an infinite dimensional family. The geometric structure on

our space of states singles out infinite dimensional families of states—where such a

family includes all and only those states which belong to a single dynamically possible

history of our system.70 Let us call such a family a dynamical history, and write

(Φ,T)→(Φ',T+τ) when (Φ,T) and (Φ',T+τ) belong to the same dynamical history. And as

in the classical mechanical case, we have a well posed initial value problem: specifying

the state of the dynamical variables at a given instant determines their values at each

other instant (unless singularities develop, and the state is not defined at some instants).71

In this form, general relativity has the sort of temporal symmetry that we seek.

Suppose that we have chosen a fiducial instant, and that relative to this choice we

consider another instant labeled by a function Θ(z) on S. We now consider what happens

if we take this new instant as our fiducial instant. The result is that an instant labeled by

T(z) relative to our original choice of fiducial instant is now labeled T'(z)=T(z)–Θ(z); this

induces a transformation on the space of instantaneous dust states such that (Φ,T) gets

mapped to (Φ,T–Θ); this mapping preserves all of the structure of our space which plays

a role in determining the dynamics—so the group of smooth real-valued functions on the

space of dust motes is a symmetry group for our theory.72 And as in the classical
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mechanical case, we find that the dynamics is indifferent to this transformation: if

(Φ,T)→(Φ',T+τ), then (Φ,T–Θ)→(Φ',T–Θ+τ) for any smooth functions T, τ, and Θ

defined on S—each dynamical history is an invariant set of these mappings. Note that

whereas in the classical mechanical case the group of time translations was one

dimensional (corresponding to the freedom to reset the origin of a single clock), in the

present case it is infinite dimensional (corresponding the freedom of each dust mote to

independently reset the origin of its clock).

4.4 Is this Second Argument Successful?

So dust general relativity admits of an attractive formulation invariant under a symmetry

group that permutes the identity of instants. The analogous result in the classical

mechanical case secured a sense in which the laws of that theory fail to select a preferred

origin for time. The present result appears to carry us quite a bit further. Each possible

fiducial instant is associated in a natural way with a time—that time whose instants

correspond to the level sets of proper time of the dust motes, under the supposition that

they agree to set their clocks to zero along the given instant. Given any choice of fiducial

instant and its associated time, we can always find another possible fiducial instant whose

corresponding time, considered as a set of instants, is wholly disjoint from that of the

fiducial instant that we started with. The fact that the laws of the theory are indifferent to

the identity of instants shows that it is impossible that they could ever favor the first time

over the second. This seems to give us an excellent start towards showing that in this

formulation the laws of general relativity do not favor any time over any other.



38

But can this really be so? Let us keep working in this formalism, but restrict

attention to those states which lie in the rotation-free solutions. Instant-relabeling remains

a symmetry of this restricted space of states (thought of as equipped with the geometrical

structure it inherits from the larger space).73 But in this smaller class of states it is quite

clear that there is a preferred absolute time—namely, that given by instants orthogonal to

the dust worldlines! Why isn’t this fact registered in the symmetry properties of our

formulation of the theory?

The problem is that in restricting attention to instantaneous states that give rise to

non-rotating solutions, we have done nothing to rule out the choice of an arbitrary instant

within such a solution as our fiducial instant.74 In order to get a preferred time, we must

impose a further constraint, restricting our attention to instants which are orthogonal to

the dust worldlines.75 This means restricting attention to a small subset of possible

instantaneous states for each non-rotating solution. This subset is no longer invariant

under any instant re-labelings which carry us out of the class of orthogonal fiducial

instants. And we at last have a means, invariant under the (relatively restricted)

symmetries of our latest space of states, of recognizing within that space the privileged

nature of the absolute time composed of hypersurfaces of orthogonality in nonrotating

solutions.

One lesson to be learned is that here, as elsewhere, symmetry arguments can be

got round—one can always argue that the structure studied ought to be replaced by

another with a different set of symmetries. Against Plato’s argument: the Earth is not a

sphere, so couldn’t up be above here? Against the argument of the previous subsection:

the universe doesn’t appear to rotate—so can’t we employ the orthogonal foliation
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present in standard cosmological models? In both of these cases, the symmetry argument

is wrecked as we include more information about the actual world. In the first case, the

structure under consideration is a representation of our world; so taking more information

into account means augmenting our structure, yielding a more detailed representation of

the world. In the second case, our structure is a representation of salient possibilities;

taking more information into account means eliminating some of the original possibilities

as irrelevant, resulting in a thinning-out of our structure.

We are in an uncomfortable, if unsurprising, situation.

Every student of special relativity should be exposed to arguments like those of

§3.1 above, which delimit what can be expected from a notion of simultaneity in

Minkowski spacetime. But, of course, these arguments are polemically inert in the

dispute between the orthodox, who hold that the metric structure of Minkowski spacetime

encodes the physical kernel of Einstein’s theory, and those reactionaries and heretics who

supplement this structure by the choice of a preferred inertial frame. For what is at stake

in that dispute is whether or not Minkowski spacetime provides a perspicuous starting

point for physical reasoning—and so symmetry arguments taking that structure as their

point of departure are liable to be dismissed as question-begging.

Just so in the present case—the choice of a conception of instant, on the one hand,

and the adoption of a view about the nature of time in general relativity, on the other,

form a very tight circle indeed. In this situation we cannot hope that a symmetry

argument would convince a party to a debate about the nature of time, because the debate

would in part concern the proper point of departure for any such argument.
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We have run up against one aspect of a very general problem.76 Physical theories

typically admit a variety of formulations. Often the difference between variant

formulations is founded upon a difference in the set of possibilities countenanced.

Sometimes, interpretative questions will hang upon such differences—and judgments as

to the correct formulation will be influenced in turn by interpretative judgments.77 Then

we can be faced with an intractable problem—for it is not always easy to see what

grounds we could adduce in arguing for a preferred formulation.

5 Conclusion

Neither of the arguments considered achieve their desired target—namely, showing that

there is no more place for absolute time in general relativistic cosmology than in special

relativity.  Where does this leave us regarding the status of absolute time in general

relativity?

If we are asking about the structure of individual solutions, then the answer is

relatively clear.  On the one hand, solutions like the Big Bang models admit a unique

time invariant under the symmetries of the solution. On the other, Gödel constructed a

solution in which no candidate for a notion of time is invariant under the relevant

symmetries. What do these examples tell us about our world? Not so much. Gödel’s

example is very far from being empirically adequate. The Big Bang models are much

closer—but their high degree of symmetry represents an idealization that will sooner or

later have to be dropped. More realistic models will lack any symmetry—and here the

problem lies not constructing a time invariant under symmetries, but in singling out a

single such time from among the huge multitude available.
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If we focus on the structure of the laws rather than the structure of individual

solutions, we are faced with this same problem: the symmetries of the laws do not seem

to single out any preferred notion of time. But then such features depend on the

formulation of the laws chosen. And here there is the potential for a clash of

intuitions—in the case of dust general relativity, for instance, some will be happy to

restrict attention to non-rotating solutions and to formulate the laws in such a way that

there will be a preferred time. Others will think that, even if the restriction to non-rotating

solutions is made, a formulation singling out such a time is anathema.

At best, the arguments of this paper represent one way into the issues that would

have to be resolved before we can fully understand the nature of time in general

relativity.
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1 In the sense, e.g., of Adams ([1979], §1). See Ismael and van Fraassen ([2003]) for a quite different sense
and a discussion of another aspect of symmetry arguments.
2 A property, P, is fixed by a permutation, Φ, of the individuals if: P(a) iff P(Φ(a)) for each individual, a. A
dyadic relation, R, is fixed by such a Φ if: R(a,b) iff R(Φ(a),Φ(b)), for all individuals a and b. And so on.
3 Our symmetries are functions, so composition of functions gives us an associative binary operation on the
set of symmetries; the identity mapping is an identity for this operation; the existence of an inverse for each
symmetry follows from the fact that symmetries are bijections.
4 This is very clear under an alternative approach to characterizing symmetries. We consider descriptions of
the structure in a language which includes a predicate symbol for each property and relation, and enough
constants to serve as names for the individuals. Relative to an assignment of names to individuals, we can
form the set of all the atomic sentences in this language stating truths about our structure. A symmetry can
be thought of as a permutation of the names of the individuals which leaves invariant this set of atomic
truths. The group of such permutations is isomorphic to the automorphism group of the structure.
5 I.e., we can find individuals, x1,…,xn, a symmetry, Φ, of the original structure, and a new relation, R, such
that R(x1,…,xn) but not R((Φ(x1), …,Φ(xk)).
6 If, on the other hand, the proposed extension respects the symmetries of the original structure, then the
solution that it serves has passed a test. If it can be shown that it is the unique invariant extension of the sort
under consideration, then we have excellent reason to accept the proposed solution—so long as we have
good reason to restrict attention to the approach at hand.
7 Of course, one man’s modus ponens is another’s modus tollens: Charles Johnson, late president of the Flat
Earth Research Society, is said to have remarked that ‘If earth were a ball spinning in space, there would be
no up or down’ (see Martin [2001]).
8 Gödel’s cosmological investigations resulted in several papers, whose nature and inter-relations it may be
helpful to recall here. Gödel himself published three papers on our topic: Gödel ([1949a]), with which we
are principally concerned,  is a non-technical discussion of the philosophical significance of Gödel’s
stationary rotating solutions; Gödel ([1949]) is a technical paper containing proofs of a number of
remarkable results concerning these solutions; Gödel ([1952]) is a technical exposition of some of the
properties of the expanding rotating solutions later discovered by Gödel. Three relevant papers unpublished
by Gödel are now also available: Gödel ([*1946/9-B2]) and ([*1946/9-C1]) are ancestors of Gödel
([1949a]); Gödel ([*1949b]) is the manuscript for a talk in which Gödel presented his results to his
colleagues at the Institute for Advanced Studies. (I follow the conventions of the editors of Gödel’s
collected works in citing these papers.)
9 For discussion of (iv), see Stein ([1970], §3), Yourgrau ([1991], pp. 53–5; [1999], pp. 47 f. and 84–103),
Savitt ([1994], §1), Earman ([1995], Appendix to Chapter 6), and Dorato ([2002], §4). Each of these
emphasizes considerations deriving from (iii*) rather than (iii).
10 Gödel appears to be sympathetic to the worry that the notion of successively realized instants is,
ultimately, incoherent—as he mentions with approval arguments to this effect due to McTaggart and
Mongré/Hausdorff ([1949a], fnn. 1 and 4; [*1946/9-B2], fn. 14).
    In an early draft of the article, Gödel enigmatically refers to the divisibility of spacetime into instants as
concerning the (order) structure of our idea of time, while the successive actualization of such instants
concerns the content of that idea ([*1946/9-B2], p. 6). Felix Hausdorff, writing as Paul Mongré, appears to
have drawn a related distinction in a work cited by Gödel. For discussion of Mongré’s view, see Eichhorn
([1992], pp. 87 f.).
11 ([1949a], p. 558). See also ([1949a], fn. 5; [*1946/9-C1], fn. 28). In Gödel’s use, ‘objective’ is opposed
to ‘subjective,’ while ‘absolute’ is opposed to ‘relative.’ The paradigm of a subjective notion for Gödel is,
perhaps, time or space as conceived of by Kant; the paradigm of a relative notion is simultaneity relative to
an observer in Minkowski spacetime.
12 This is somewhat more restrictive than the usual definition—see, e.g., Abraham and Marsden  ([1985], p.
95).
13 I take the structure of Minkowski spacetime to be given by a flat metric of Lorentz signature on R4. The
symmetries of this structure are the (inhomogeneous) Lorentz transformations. So here invariance means
that the image of an equivalence class of this relation under a Lorentz symmetry is again an equivalence
class of the relation. In fact, the only invariant equivalence relations on Minkowski spacetime are the trivial
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ones: that under which each point is equivalent only to itself, and that under which each point is equivalent
to every other. See, e.g., Giulini ([2001], Theorem 4).
14 There are a number of other invariant equivalence relations in this case (e.g., count two events as
simultaneous if light signals sent by the observer coincidentally and reflected by the events in question
return coincidentally to the observer, thus partitioning each Einstein simultaneity class by concentric
spheres). But the Einstein equivalence relation is the only one whose equivalence classes intersect exactly
once the worldline of each inertial observer comoving with the privileged observer. If, however, one adds a
sense to the privileged worldline (eliminating temporal inversion as a symmetry), one does get further such
invariant equivalence relations; see Giulini ([2001], §6). See Malament ([1977]) and Stein ([1991]) for
discussion of related results departing from the causal structure of Minkowski spacetime, rather than from
its metric structure.
15 More precisely, a dust cosmology is an ordered triple, consisting of: a spacetime manifold carrying a
metric tensor of Lorentz signature; a positive spacetime scalar, ρ; and a timelike vector field ua, normalized
so that uaua=-1. The metric satisfies the Einstein field equations for a stress-energy tensor of the form
Tab=ρuaub. The dust worldlines are the integral curves of ua.
    Gödel investigates the equations for dust cosmology with a cosmological constant term. When, as in the
case of his stationary rotating universes, this constant is assigned a negative value, such solutions can be
reinterpreted as involving a perfect fluid with positive pressure and a vanishing cosmological constant (in
which case the dust motes no longer follow geodesics). See, e.g., Kramer et al. ([1980], §5.2) for the recipe.
Adopting this reinterpretation would make no difference to the considerations of the present paper.
16 Note that instants, in this sense, are not required to be spacelike. This represents a liberalization of our
ordinary use—one which proves helpful for present purposes (first in discussing Gödel’s argument, since
Gödel’s stationary rotating cosmologies admit slicings into instants (the level sets of the coordinate x0 in
Gödel [1949]) but do not contain any spacelike instants (property (7) in Gödel [1949]); then again in the
reformulation of general relativity in dust variables, discussed in §4.3 below).
17 As noted above, in the dust case, we are able to reconstruct the matter variables from knowledge of the
geometry alone. So everything goes well, in the sense that we do not need to distinguish between the study
of the structure ‘spacetime geometry + matter fields’ and the study of the structure ‘spacetime geometry.’
Things do not always go well however: there are solutions of the Einstein-Maxwell equations where the
matter configuration and the geometry have different symmetry groups (see Kramer et al. [1980], p. 114)).
18 It is convenient, and harmless, to ignore a further condition that Gödel explicitly builds into his notion of
absolute time: namely, that the instants arise as the level sets of a time function that increases for all
possible future-moving observers (for this see ([1949], p. 447), ([1949a], fn. 13), and ([1952], p. 179); but
see also ([*1949b], p. 11)). Note that stable causality is a necessary and sufficient condition for the
existence of such a time function (see Hawking and Ellis [1973], p. 198 and Sachs and Wu [1977], §8.3.5).
19 Asymmetric models form a dense and open subset of the space of solutions; see Isenberg and Marsden
([1982]).
20 I.e., typically we expect our cosmological spacetime to be a trivial R- or S1-principal bundle over the
space of dust motes—in this case, any section will provide an instant, and a time can be constructed by
setting all of the dust motes’ proper time clocks to zero at this instant, then taking the level surfaces of
proper time as the instants.
21 The most widely studied candidate is the (generically unique) foliation by surfaces of constant mean
curvature. But there exist dust cosmologies which do not admit any such foliation; see Isenberg and
Rendall ([1998]). See Henkel ([2002]) for an alternative approach—which also has trouble with dust.
22 De Sitter spacetime was discovered at around the same time, and enjoyed a period of popularity as a
cosmological model in the early days of relativistic cosmology, despite being a vacuum solution. Like
Minkowski spacetime, de Sitter spacetime is a homogeneous spacetime of constant curvature, and does not
admit an absolute time unless supplemented by a freely falling congruence.
23 The spacetime can be written as S3×R, with the dust worldlines assuming the form {x}×R for x∈S3 and
the hypersurfaces of orthogonality assuming the form S3×{t} for t∈R. The temporal translations map (x,t)
to (x,t+α) for some α∈R. The spatial isometries arise by identifying S3 with the unit quaternions and
allowing it to act on itself by left or right multiplication. See Ozsváth and Schücking ([1969], §3).
24 Eddington ([1920], p. 163; see 12 f. and 28 f. for the earlier discussions alluded to). Eddington seems to
moderate his enthusiasm for absolute time in his ([1923], §§1 and 71).
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25 Here and below, I use ‘Big Bang model’ to denote FRW solutions with vanishing cosmological constant.
26 Rather, this is true if the solution expands forever. In solutions that expand and then contract, there will
be two instants corresponding to each (non-minimal) instantiated value of the mass density; these will be
related by a discrete spacetime symmetry (a temporal reflection).
27 Jeans ([1936], pp. 23 and 24). Jeans appears to be somewhat more cautious in his ([1942], pp. 63–9).
28 Gödel ([1949a], p. 560). The claim is stated more precisely in the technical companion paper: ‘If Σ is any
system of mutually exclusive three-spaces, each of which intersects each world line of matter in one point,
then there exists a transformation which carries [the solution] S … into itself, but does not carry Σ into
itself; i.e., an absolute time does not exist, even if it is not required to agree in direction with the times of all
possible observers (where “absolute” means: definable without reference to individual objects, such as, e.g.,
a particular galactic system)’ ([1949], p. 447).
29 A dust solution is stationary if it is possible to foliate it by instants with isomorphic geometries and
matter distributions. Gödel later discovered a family of rotating solutions that are expanding (and therefore
non-stationary); see Gödel ([1952]).
30 That this is so is especially clear in an earlier version of the argument: ‘a definition in terms of physical
magnitudes of an absolute world time is demonstrably impossible. If, however, such a world time were to
be introduced in these worlds as a new entity, independent of all observable magnitudes, it would violate
the principle of sufficient reason, insofar as one would have to make an arbitrary choice between infinitely
many physically completely indistinguishable possibilities, and introduce a perfectly unfounded
asymmetry’ ([*1946/9-B2], p. 10).
31 As Gödel puts it, ‘the angular velocity we are interested in is the angular velocity relative to the
directions of space defined by axes of gyroscopes moving along with matter. For this is the angular velocity
which the astronomer who, with his measuring apparatus, moves along with matter will observe’
([*1949b], p. 6). See Malament ([2002]) for details concerning this notion of rotation, and a delimitation of
what one can hope for from a standard of rotation in general relativity.
32 For helpful discussion, see Malament ([1995]).
33 What happens if the dust motes apply the Einstein simultaneity convention? In the Einstein static
universe, any dust mote applying this convention will arrive at the instants of orthogonality as its surfaces
of simultaneity. But the existence of particle horizons in Big Bang models means that in such solutions the
Einstein simultaneity convention leads to pathological results—for any dust mote, there will be events
which are not simultaneous with any event on its worldline (see Wald [1984], §5.3b). Event horizons will
cause similar problems in other spacetimes. Some of these difficulties can be circumvented  by considering
the result of allowing each of a set of privileged communicating observers to apply the Einstein convention.
When this procedure works for dust motes, it leads to the surfaces of orthogonality (see Sachs and Wu
[1977], §5.3).
34 See Gödel ([1952]). The matter density time consists of well-behaved spacelike instants in those
solutions with low rates of rotation. But those with high rates of rotation feature closed timelike curves and
timelike instants of constant matter density.
35 See King and Ellis ([1973], p. 221) or Hewitt ([1991]). In such cosmologies, the foliation by
hypersurfaces of constant mass density is, while the foliation by instants of orthogonality is not, fixed leaf-
wise by symmetries (or rather, by those in the connected component of the identity in the symmetry group).
36 See Lanczos ([1997]). According to Ellis ([2000], pp. 1401 f.), this solution was not widely known or
well-understood at the time; Kragh ([1996], pp. 109 f.) is interesting in this connection. In any case,
Lanczos’s solution had only a very brief career of cosmological plausibility: Lanczos conceived of his dust
cylinder as representing our galaxy, which he took to exhaust the universe, and he suggested that our sun
lay near the axis of symmetry ([1997], p. 378); this picture no longer looked reasonable once it was
conclusively established (in the mid-1920s) that the universe is much larger than our galaxy.
    Gödel seems to have been unaware of the existence of this rotating solution: ‘All cosmological solutions
with non-vanishing density of matter known at present have the common property that, in a certain sense,
they contain an “absolute” time coordinate, owing to the fact that there exists a one-parametric system of
three-spaces everywhere orthogonal to the worldlines of matter. It is easily seen that the non-existence of
such a system of three spaces is equivalent with a rotation of matter relative to the compass of inertia’
([1949], p. 447).
37 In Gödel’s solution matter everywhere rotates at the same rate. But the solution is spacetime
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homogeneous, so there is no distinguished axis of rotation and the dust worldlines do not diverge. As Gödel
remarks ([*1949b], pp. 4 f.): ‘The world may be perfectly homogeneous and still rotate locally in every
place…. Nevertheless, the world may be said to rotate as a whole (like a rigid body) because the mutual
distances of any two material particles (measured by the orthogonal distance of their world lines) remains
constant during all times. Of course, it is also possible and even more suggestive to think of this world as a
rigid body at rest and of the compass of inertia as rotating everywhere relative to this body. Evidently this
state of affairs shows that the inertial field is to a large extent independent of the state of motion of matter.
This contradicts Mach’s principle but it does not contradict relativity theory.’ This is perhaps misleading in
one respect: finite rigid bodies do after all have distinguished axes of rotation (as does Lanczos’s rotating
cylinder); but see Gödel ([*1949b], pp. 2 f.) for an infinite Newtonian rigid body which rotates without
having a distinguished axis of rotation. See Ozsváth and Schücking ([1969]) for a spatially closed anti-
Machian rotating universe.
38 This argument can be found at Gödel ([1949], 449). Gödel’s solution is not the unique solution with the
requisite properties. But amongst such solutions, it has maximal symmetry, and is of the greatest physical
interest. For other locally rotationally symmetric everywhere rotating spacetimes and their shortcomings,
see Ellis ([1967], Case Ib) and van Elst and Ellis ([1996], §§4.2 and 4.5). On the interest and influence of
Gödel’s solution, see Ellis ([1996]; [2000]).
39 Yourgrau ([1991], pp. 53–5; [1999], pp. 47 f.) suggests that Gödel has in mind a third sort of argument,
which is supposed to turn upon the local indistinguishability of the experience of time in his solutions from
that in solutions admitting an absolute time. The argument (but not its attribution to Gödel) is taken up by
Savitt ([1994], §1); it is criticized by Earman ([1995], Appendix to Chapter 6) and Dorato ([2002], §4); for
a reply, see Yourgrau ([1999], pp. 93–8).
    I set this argument aside here because I do not think see any textual basis for attributing it to Gödel: the
crucial sentence, ‘But, if the experience of the lapse of time can exist without an objective lapse of time, no
reason can be given why an objective lapse of time should be assumed at all’ ([1949a], p. 561), appears in
the penultimate paragraph of the article, a paragraph explicitly devoted to the significance of closed
timelike curves in Gödel’s stationary rotating solutions for the existence of objective lapse of time in those
worlds; the topic of the significance of the lack of an objective lapse of time in Gödel’s solutions for the
nature of time in other worlds is not announced and addressed until the following paragraph. (Further, I
doubt that the determination that the experience of time would be the same in the two sorts of universe can
be arrived at in a non-question begging fashion.)
40 See Gödel ([1952], §3). The surfaces of constant matter density form an absolute time, in the present
weak sense, in all of these solutions. The further condition that Gödel requires in order for a time to be
absolute (see fn. 18 above) is satisfied in solutions with low rates of rotation, but violated in those that
rotate more rapidly (see fn. 34 above).
41 ([1949a], p. 562). For variant formulations, see ([*1946/9-B2], p. 10) and ([*1946/9-C1], p. 17).
42 For the objection below, see Earman ([1995], p. 198); see Savitt ([1994]) and Dorato ([2002]) for further
discussion.
43 And, as Kant observed, there do exist such processes and object types: ‘In the case of human beings, the
hair on the crown of the head grows in a spiral from the left to the right. All hops wind around their poles
from left to right, whereas beans wind in the opposite direction. Almost all snails, with the exception of
perhaps, only three species, have shells which, when viewed from above, that is to say, when their
curvature is traced from the apex to the embouchure, coil from left to right’; and, furthermore, ‘all the
peoples of the world are right-handed (apart from a few exceptions which, like that of squinting, do not
upset the universality of the regular natural order’ ([1768], pp. 368 and 369).
44 The two construals lead to distinct (though not entirely unrelated) questions: while one does not expect
the solutions of a given set of equations to have the same symmetry properties as the equations themselves
(see fn. 53 below), certain empirical asymmetries of a fundamental nature would lead one to suspect an
asymmetry in the laws.
45 Here we see a disanalogy between the question of parity and the question of the direction of time. In the
latter case, the success of thermodynamics is founded upon a tremendously broad array of time-asymmetric
regularities—the existence of which is arguably as deep a fact as the behavior under time reversal of any
dynamical laws. But it is just this feature of thermodynamics which makes it such an unusual case—the
challenge of understanding the status of what looks like a probability distribution over initial conditions but
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which behaves in many respects like a law of nature is the source of many of the conceptual problems
surrounding statistical thermodynamics.
46 ([*1946/9-C1], p. 1). See also very similar ([*1946/9-B2], p. 1).
47 ([*1946/9-B2], fn. 1). There is no corresponding passage in ([1946/9-C1]).
48 ([*1946/9-B2], p. 13). See also ([*1946/9-C1], fnn. 6 and 16).
49 ([*1946/9-B2], fn. 24). See also very similar ([*1946/9-C1], fn. 27).
50 ([*1946/9-B2], p. 18). See also very similar ([*1946/9-C1], p. 27).
51 ([*1946/9-B2], p. 21; [*1946/9-C1], p. 30). The principle in question appears to be also in play at
([*1946/9-B2], p. 10 and fn. 18).
52 But, of course, this falls short of establishing Gödel’s point. For note: if we ask ‘What does this theory
tell us about future physics?’ then it does indeed seem that we ought to focus on examining the structural
features of the theory for ones which we believe will survive (in one form or another) in future physics,
perhaps almost to the exclusion of paying attention to the physics of particular solutions; but if we ask
instead ‘What does this theory tell us about the world?’ then considerations about the empirical patterns of
prediction of one or another solution suddenly begin to seem much more salient. See van Fraassen ([2004])
for a similar point, raised in the course of criticism of the neo-Kantianism of Reichenbach and Friedman.
53 See Olver ([1993], Chapter 3). Thus, while the equations of Newtonian mechanics are invariant under
temporal and spatial translation, very few of their solutions are boring enough to be likewise invariant.
54 The space which parameterizes the physical possibilities of the theory without redundancy is singular at
the points corresponding to symmetric possibilities—although the singularities have a relatively tame and
tractable structure; see Isenberg and Marsden ([1982]). On the conceptual side, those who share the
intuitions of Hacking’s ([1975]) Leibniz—see, e.g., Smolin ([2001])—will hesitate to include symmetric
models in the space of possibilities.
55 Note that general relativity had not yet been cast into a form in which questions about the symmetries of
its laws could be precisely posed when Gödel was working on cosmological topics.
56 Let Q be the manifold of possible positions of the particles; then the phase space is the cotangent bundle,
T*Q. This latter manifold carries a canonical symplectic structure (i.e., a closed non-degenerate two -form).
57 See, e.g., Abraham and Marsden ([1978], §§3.1–3.3).
58 See Abraham and Marsden ([1978], Theorem 5.1.13). The Hamiltonian can now be allowed to depend on
t as well as on q and p.
59 From §6 of Leibniz’s third letter to Clarke. See Weiner ([1951], p. 224).
60 The shift from the phase space of the theory to its extended phase space has further conceptual and
technical advantages; see Souriau ([1997], pp. xviii f.) and Woodhouse ([1980], pp. 33–5).
61 That is, a symmetry is a diffeomorphism on the extended phase space which preserves the contact form
that determines the dynamics.
62 Note that our choice to employ real numbers as names for instants did not foreclose the question whether
there is a preferred instant which deserves to be called The Origin, because all of the dynamically relevant
structure is invariant under systems of renaming which change which instant is labeled by zero. Compare
with Plato’s case: even if we chose to name a certain point on the celestial sphere ‘Polaris’ or ‘(0,0,1)’ this
would not help to pick out up, for all of the relevant cosmological structure is invariant under
transformations which permute such names. See fn. 4 above.
63 For present purposes, let us say that Cauchy surfaces count as instants in non-dust solutions.
64 Why? Restrict attention to globally hyperbolic vacuum solutions on R×Σ for a given spatial topology, Σ.
If we omit symmetric solutions (or choose Σ so that they do not arise—see Fischer and Moncrief [1996])
then the space of solutions is a principal fiber bundle over the space of solutions modulo spacetime
diffeomorphisms. A generally applicable technique for constructing foliations by Cauchy surfaces amounts,
roughly speaking, to choosing from each equivalence class of solutions one in which the sets of the form
{t×Σ}, t∈R, are all Cauchy surfaces (the preferred timeslices). (Actually, this is a bit too strong—what we
want is this, modulo the choice of a preferred parameterization of the family of slices.) Such a recipe
amounts to selecting a section of the principal bundle satisfying a certain open condition. Now, since the
bundle is principal, if it admits any sections, it admits an infinite dimensional family of sections (for some
spatial topologies the bundle is trivial and so admits sections; Fischer and Moncrief ([1996], p. 215)). And
since the condition is open, if any section satisfies it, then so do sufficiently nearby sections (i.e., those
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differing from the given one by the action of an automorphism of the bundle sufficiently close to the
identity).
65 See Crnkovic and Witten ([1987]) for this approach. A diffeomorphism is just a smooth permutation of
the spacetime manifold. Intuitively, the action is given by lifting up the geometrical and matter fields,
stretching and contracting the underlying manifold however you like, then laying the fields back down. The
geometry of the new solution is identical to that of the old—all that changes is which spacetime point plays
which geometrical role.
66 See, e.g., Wald ([1984], Appendix E.2).
67 That this is possible is established by Fischer and Moncrief ([1996]).
68 The difference is in some ways analogous to the difference between the formulation of fluid mechanics in
Lagrangian variables and in Eulerian variables. In the present case the formulation in terms of dust
variables has a large number of advantages—in addition to those noted below, it leads to a Hamiltonian
constraint linear in the momenta.
69 The formulation that Brown and Kuchař produce includes a further set of tensors which give a mapping
from Σ to S; these play a role in reconstructing spacetime solutions from dust space solutions. But the
corresponding degrees of freedom are pure gauge and, presumably, can be factored out to yield the
formulation described in the text.
70 These are the gauge orbits obtained by integrating the null distribution of the presymplectic form defined
on our space of states.
71 The ordinary gauge freedom of general relativity reappears if we attempt to reconstruct a spacetime
solution from a dust space solution: each dust space solution corresponds to a diffeomorphism-equivalence
class of spacetime solutions. It is in this sense that the dust formulation captures the full (diffeomorphism-
invariant) content of the theory. (It is also true that many dust space dynamical histories correspond to any
equivalence class of diffeomorphic spacetime solutions.)
72 As in the case of classical mechanics, a change of origin for our set of instants merely re-poses the same
initial data at another instant. This is not manifest if one works in the usual variables; see Brown and
Kuchař ([1995], equation 2.27).
73 (Φ,T) and (Φ,T–Θ) typically lie in distinct dynamical histories—our symmetry group permutes
dynamical histories which correspond to the same diffeomorphism-class of spacetime solutions
74 Brown and Kuchař ([1995], equation 7.10).
75 Brown and Kuchař ([1995], equation 7.19).
76 It is, I think, part of what Mach ([1960], p. 284) and Poincaré ([1963], p. 19) meant to advert to in
speaking of the world as having been given only once. See also Souriau’s discussion of the ‘paradox of the
physicist’ ([1997], pp. xxiv ff.).
77 In Newtonian mechanics one is faced with the choice between the standard formulation of the theory and
that which results when one first restricts attention to nonrotating systems, then identifies points in the
standard phase space related by the action of the group of symmetries of Euclidean space. Given that the
cosmos appears to have vanishing rotation, it seems that both are viable options. Each enjoys an advantage
over the other: the former is simpler and more familiar; the latter admits a pretty interpretation under which
space is relational and motion is relative. See Belot ([2000]) for discussion and references.


