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Abstract

An observableW that distinguishes all the unentangled states from some en-

tangled states is called a witness. We consider witnesses on n qbits, and use

the following normalization: A witness W satisfies |tr(Wρ)| ≤ 1 for all sepa-

rable states ρ, while kWk > 1, with the norm being the maximum among the

absolute values of the eigenvalues of W . Although there are n-qbit witnesses

whose norm is exponential in n, we conjecture that for a large majority of

n-qbit witnesses kWk ≤ O(√n logn). We prove this conjecture for the family

of extremal witnesses introduced by Werner and Wolf (Phys. Rev. A 64,

032112 (2001)). Assuming the conjecture is valid we argue that multiparticle

entanglement can be detected only if a system has been carefully prepared

in a very special state. Otherwise, multiparticle entanglement lies below the

possibility of detection, even if it exists, and even if decoherence has been

“turned off”.

I. INTRODUCTION

Why we do not see large macroscopic objects in entangled states? There are two ways to

approach this question. The first is dynamic: the coupling of a large object to its surround-

ings and its constant random bombardment from the environment cause any entanglement

that ever existed to disentangle. The second approach- which does not in any way undermine

the first- puts the stress on the word we. Even if the particles composing the object were

all entangled and insulated from the environment, we shall still find it hard to observe the

superposition. The reason is that as the number of particles n grows we need an ever more

precise knowledge of the state, and an ever more carefully designed experiment in order to

recognize the entangled character of the state of the object.

In this paper I examine the second approach by considering entanglements of multi par-

ticle systems. For simplicity, the discussion concentrates mostly on two-level systems, that
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is, n-qbit systems where n is large. An observable W that distinguishes all the unentangled

states from some entangled states is called a witness [1]. I shall use the following normal-

ization: A witness W satisfies |tr(Wρ)| ≤ 1 for all separable (that is, unentangled) states ρ,
while kWk > 1. Here kWk is the operator norm, the maximum among the absolute values

of the eigenvalues of W .

For each n ≥ 2 there is a witness W , called the Mermin-Klyshko operator [2], whose
norm, kWk = √2n−1, increases exponentially with n. The eigenvector at which this norm
obtains is called the generalized GHZ state; it represents a maximally entangled system of

n qbits. However, we shall see that this large norm is the exception, not the rule. My

aim is to show that the norm of a majority of the witnesses grows with n very slowly,

kWk ≤ O(
√
n logn), slower than the growth of the measurement error. We shall prove

this with respect to a particular family of witnesses, and formulate it as a conjecture in the

general case. This means that unless the system has been very carefully prepared in a very

specific state, there is a very little chance that we shall detect multiparticle entanglement,

even if it is there.

The paper proceeds as follows: In the next section I shall review some of the known

witnesses for n qbits, those associated with the generalized Bell inequalities introduced by

Werner and Wolf [3]. The third section examines the typical norm of the Werner Wolf

operators, which is closely associated with the shape of the set of quantum correlations

for two possible measurements per particle. Subsequently, I formulate the random witness

conjecture, and examine how it bears on our original question namely, why we do not see

large objects in entangled states.
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II. WITNESSES AND QUANTUM CORRELATIONS

A. The two particles case

Let A0, A1, B0, B1 be four Hermitian operators in a finite dimensional Hilbert space H

such that A2i = B
2
j = 1. On H⊗H define the following operator

W =
1

2
A0 ⊗B0 + 1

2
A0 ⊗B1 + 1

2
A1 ⊗B0 − 1

2
A1 ⊗B1 (1)

It is easy to see that |tr(Wρ)| ≤ 1 for any separable state ρ on H⊗H. This is, in fact, the
Clauser Horne Shimony and Holt (CHSH) inequality [4]. Indeed, if X0,X1, Y0, Y1 are any

four random variables taking the values ±1 then

−1 ≤ 1
2
X0Y0 +

1

2
X0Y1 +

1

2
X1Y0 − 1

2
X1Y1 ≤ 1 (2)

as can easily be verified by considering the 16 possible cases. Hence cij = E(XiYj), the
correlations between Xi and Yj, also satisfy the inequalities

−1 ≤ 1
2
c00 +

1

2
c01 +

1

2
c10 − 1

2
c11 ≤ 1 (3)

If ρ is a separable state on H⊗H we can represent tr(ρ Ai⊗Bj) as correlations cij between
such Xi’s and Yj’s. In other words, the correlations can be recovered in a local hidden

variables model.

From Eq (2) three other conditions of the form Eq (3) can be obtained by permuting the

two X indecies or the two Y indices. The resulting constraints on the correlations form a

necessary and sufficient condition for the existence of a local hidden variables model [5,6].

One way to see this is to consider the four-dimensional convex hull C2 of the sixteen real

vectors in R4:

(X0Y0,X0Y1,X1Y0, X1Y1) Xi = ±1, Yj = ±1 (4)

and prove that an arbitrary four-dimensional real vector (c00, c01, c10, c11) is an element of

C2 if, and only if, the cij satisfy −1 ≤ cij ≤ 1 and all the conditions of type Eq (3). The
inequalities, then, are the facets of the polytope C2.
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By contrast with the classical case let ρ be a pure entangled state on H⊗H. Then for a
suitable choice of Ai’s, and Bj’s in Eq (1) we have |tr(Wρ)| > 1 [7], so the operatorsW of this

type are sufficient as witnesses for all pure entangled bipartite states. To obtain a geometric

representation of the quantum correlations let ρ be any state, denote qij = tr(ρ Ai ⊗ Bj),
and consider the set Q2 of all four dimensional vectors (q00, q01, q10, q11) which obtain as we

vary the Hilbert space and the choice of ρ, Ai, and Bj. The set Q2 is convex, Q2 ⊃ C2 but it
is not a polytope. The shape of this set has been the focus of a great deal of interest [8—12].

To get a handle on its boundary we can check how the value of kWk changes with the choice
of Ai’s, and Bj’s. Cirel’son [8,9] showed that kWk ≤

√
2. This is a tight inequality, and

equality obtains already for qbits. In this case, H = C2 and Ai = σ(ai), Bj = σ(bj) are spin

operators, with a0, a1,b0,b1 four directions in physical space. There is a choice of directions

such that kWk = √2, and the eigenvectors |φi ∈ C2 ⊗ C2, corresponding to this value are
the maximally entangled states.

The condition kWk ≤ √2 while necessary, is not sufficient to determine the boundary of
Q2. As it turns out the boundary is quite complex; the values on the boundary determine

the range of violation of the CHSH inequality attainable by quantum systems, and therefore,

serves as an important test of quantum theory [10—12].

B. The n particles case - Werner Wolf operators

Some of these results can be extended to n particle systems, provided that the operators

are restricted to two binary measurements per particle. To account for classical correlations

consider 2n random variablesX1
0 , X

1
1 ;X

2
0 ,X

2
1 ; ...;X

n
0 ,X

n
1 , each taking the two possible values

±1. We shall parametrize the coordinates of a vector in the 2n-dimensional real space R2n

by sequences s =(s1, ..., sn) ∈ {0, 1}n. Now, consider the set of 22n real vectors in R2n

(a(0, ..., 0), ..., a(s1, ..., sn), ...a(1, ..., 1)), a(s1, ..., sn) = X
1
s1
X2
s2
...Xn

sn (5)

Their convex hull in R2n, denoted by Cn, is the range of values of all possible classical

correlations for n particles and two measurements per site. Werner and Wolf [3] showed
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that Cn is a hyper-octahedron and derived the inequalities of its facets. These are 2
2n

inequalities of the form

−1 ≤
X

s1,...,sn=0,1

βf(s1, ..., sn)X
1
s1
X2
s2
...Xn

sn ≤ 1 (6)

where each inequality is determined by an arbitrary function f : {0, 1}n → {−1, 1} with

βf(s1, ..., sn) =
1

2n

X
ε1,...,εn=0,1

(−1)ε1s1+...+εnsnf(ε1, ..., εn) (7)

In other words, to each choice of function f there corresponds a choice of coefficients βf .

Since βf is the inverse Fourier transform of f on the group Zn2 we have by Plancherel’s

theorem [13]:

X
s

|βf(s)|2 = 1

2n

X
ε

|f(ε)|2 = 1 (8)

Using the analogy with the bipartite case let A10, A
1
1, ..., A

n
0 , A

n
1 be 2n arbitrary Hermitian

operators in a Hilbert space H, satisfying (Aji )2 = 1. The quantum operators corresponding

to the classical facets in Eq (6) are the Werner Wolf operators on H⊗n given by:

Wf =
X

s1,...,sn∈{0,1}
βf(s1, ..., sn)A

1
s1
⊗ ...⊗Ansn (9)

It is easy to see from Eq (6) that |tr(ρWf)| ≤ 1 for every separable state ρ and all the
f ’s. However, the inequalities may be violated by entangled states. Let Qn be the set of all

vectors in R2n whose coordinates have the form q(s1, ..., sn) = tr(ρA
1
s1
⊗ ...⊗Ansn) for some

choice of state ρ and operators Aji as above. The set Qn is the range of possible values of

quantum correlations, and it is not difficult to see that Qn is convex and Qn ⊃ Cn. To obtain
information about the boundary of Qn we can examine how kWfk varies as we change the
Aji ’s. In this case too, it was shown [3] that for each fixed f , the maximal value of kWfk
is already obtained when we choose H = C2, and the Aji ’s to be spin operators. Therefore,

without loss of generality, consider

Wf =
X

s1,...,sn∈{0,1}
βf(s1, ..., sn)σ(a

1
s1
)⊗ ...⊗ σ(ansn) (10)
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Where a10,a
1
1, ..., a

n
0 ,a

n
1 are 2n arbitrary directions. We can calculate explicitly the eigen-

values of Wf [3,14]. Let zj be the direction orthogonal to the vectors a
j
0, a

j
1, j = 1, ..., n.

Denote by |−1ij and |1ij the states “spin-down” and “spin-up” in the zj-direction; so the
vectors |ω1,ω2, ...,ωni, ω = (ω1,ω2, ...,ωn) ∈ {−1, 1}n form a basis for the n-qbits space. Let
xj be orthogonal to zj and let θ

j
s be the angle between a

j
s and xj, s = 0, 1. For each f there

are 2n eigenvectors of Wf which have the generalized GHZ form

|Ψf(ω)i = 1√
2
(eiΘ(ω) |ω1,ω2, ...,ωni+ |−ω1,−ω2, ...,−ωni) (11)

and the corresponding eigenvalue

λf(ω) = e
iΘ(ω)

X
s1,...,sn∈{0,1}

βf(s1, ..., sn) exp i
¡
ω1θ

1
s1
+ ...+ ωnθ

n
sn

¢
(12)

where Θ(ω) in Eqs (11,12) is chosen so that λf(ω) is a real number. Hence

kWfk = max
ω

|λf(ω)| (13)

As in the CHSH case we can check how large kWfk can become as aj0, aj1 range over all
possible directions. Using Eqs (12,13) we see that

max
directions

kWfk = max
θ10 ,θ

1
1 ,..., θ

n
0 ,θ

n
1

¯̄̄̄
¯̄ X
s1,...,sn∈{0,1}

βf(s1, ..., sn) exp i
¡
θ1s1 + ...+ θnsn

¢¯̄̄̄¯̄ (14)

with the maximum on the left is taken over all possible choices of directions a10,a
1
1, ...,a

n
0 , a

n
1 .

The Mermin-Klyshko operators [2], mentioned previously, correspond to a particular choice

of f0 : {0, 1}n → {−1, 1} and aj0,aj1, with the result that kWf0k =
√
2n−1. This is the

maximal value of Eq (14) possible. The maximum value is attained by a small minority of

the operators Wf , only those which are obtained from Wf0 by one of the n!2
2n+1 symmetry

operations of the polytope Cn (as compared with the total of 2
2n of facets in Eq (6)).

In any case, for most f ’s there is a choice of angles such that Wf is a witness. This

means that in addition to the fact that |tr(ρWf)| ≤ 1 for every separable state ρ, we also have
kWfk > 1. The 2n exceptional cases are those in which the inequality in Eq (6) degenerates
into the trivial condition 1 ≤ X1

s1
X2
s2
...Xn

sn ≤ 1. All the other Wf ’s are witnesses. The
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reason is that all inequalities of type Eq (6) are obtained from the basic inequalities for C2

(including the trivial ones) by iteration [3]. If the iteration contains even one instance of

the type Eq (2) the corresponding operator can be chosen to violate the CHSH inequality.

III. RANDOM WITNESSES

A. Typical behavior of max
directions

kWfk

Although the norm of kWfk can reach as high as
√
2n−1 this is not the rule but the

exception. Our aim is to estimate the typical behavior of max
directions

kWfk as we let f range
over all its values. To do that, consider the set of all 22

n
functions f : {0, 1}n → {−1, 1}

as a probability space with a uniform probability distribution P, which assigns probability
2−2

n
to each one of the f ’s. Then, for each set of fixed directions aji we can look at kWfk

as a random variable defined on the space of f ’s. Likewise, also max
directions

kWfk in Eq (14) is
a random variable on the space of f ’s, for which we have

Theorem 1 There is a universal constant C such that

P {f ; max
directions

kWfk > C
p
n log n }→ 0 as n→∞ (15)

The proof of this result is based on the theorem of Salem, Zygmund, and Kahane [15] and

is given in the appendix. This means that for the vast majority of the f ’s the violation of

the classical inequalities Eq (6) is small. Accordingly, the boundary of Qn is highly uneven

about the facets of Cn, it does not extend far above most of the facets of Cn, but occasionally

it has an extended exponential hump.

The expected growth of |λf | is even slower when the directions aji (or the angles θji ) are
fixed.As a direct consequence of Tchebychev’s inequality [16] we get:

Proposition 2 For λf in Eq (12) we have for all M > 1 : P {f ; |λf | > M} ≤ 1
M2 .
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(See the appendix for details). This means that most of the eigenvalues of the Wf ’s are

bounded within a small sphere. The application of a randomly chosen Wf to any of its

eigenstates |Ψf(ω)i in Eq (12) is unlikely to reveal a significunt violation of Eq (6).

B. The random witness conjecture

For appropriate choices of angles the Werner-Wolf operators Eq (10) are, with very few

exceptions, entanglement witnesses on the space of n q-bits They are very special witnesses

for two reasons: firstly, they are local operators. This means that if we posses many copies

of a system made of n-qbits, all in the same state |Φi, we can measure the expectation
hΦ |Wf |Φi by performing separate measurements on each qbit of the system. Secondly, even
as local observables the Werner Wolf operators are special, because of the restriction to two

measurements per particle. Indeed, one would have liked to extend the results beyond this

restriction, and obtain all the inequalities for any number of measurement per site, but this

problem is NP -hard even for n = 2. [17]

However, the Wf ’s are the most likely to be violated among such local operators, be-

cause they are derived from the facets of Cn. There are, therefore, reasons to believe that

iMoreover, we already noted that all the norm estimates are also valid for the wider fam-

ily given in Eq (9), with the Aij’s acting on any finite dimensional space, and satisfying

(Aij)
2 = I. Hence, the estimate of theorem 1 includes many more witnesses than those

given in Eq (10). To an n qbits system we can add auxiliary particles and use quantum and

classical communication protocols. As long as our overall measurement retains the structure

W =
X

s1,...,sk∈{0,1}
βf(s1, ..., sk)A

1
s1
⊗ ...⊗Aksk (16)

with the Aij’s satisfying (A
i
j)
2 = I and k ≤ O(n), the estimate of theorem 1 holds.

Hence, there is a reason to suspect that the typical behavior of the Werner Wolf operators

is also typical of general random witnesses. A random witness is an observable drawn

from the set of all witnesses W with uniform probability. It is easy to give an abstract
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description of W: Consider the space of Hermitian operators on (C2)⊗n, it has dimension
dn = 2

n−1(2n+1). For an Hermitian operator A define the norm [[A]] = sup kA |α1i ... |αnik
where the supremum ranges over all choices of unit vectors |αii ∈ C2. Denote the unit
sphere in this norm by K1 = {A; [[A]] = 1}. It is a hypersurface of dimension dn− 1, which
is equipped with the uniform (Lebesgue) measure, and its total hyper-area is finite. Now,

denote by K2 the normal unit sphere K2 = {A; kAk = 1}. Here, as usual, kAk = sup kA |Φik
is the operator norm, where the supremum is taken over all unit vectors |Φi. The set of
witnesses is W = K1 \ K2. Note that if A ∈W then necessarily kAk > 1. It is not difficult
to see that W is relatively open in K1, and therefore has a non zero measure in K1. We
consider the set of all witnesses W on (C2)⊗n and the normalized Lebesgue measure P on
it.

Conjecture 3 There is a universal constant C such that

P {W ∈W; kWk > C
p
n log n }→ 0 as n→∞. (17)

C. Discussion

Assume the conjecture is valid and consider the following highly ideal situation: A

macroscopic object (a single copy of it) is prepared in a state unknown to us and is carefully

kept insulated from environmental decoherence. Since the state is unknown we choose

randomly a witness W to examine it. Now, suppose that we hit the pot and the system

happens to be in an eigenstate of W ; in fact, the eigenstate corresponding to its maximum

eigenvalue (in absolute value). This means, in particular, that the state of the system is

entangled; but can we detect this fact using W? A measurement of a witness on a single

copy is a very complicated affair (just think about any one of the Wf ’s in Eq (10)). Such a

measurement invariably involves manipulations of the individual particles. If we make the

reasonable assumption that each such manipulation introduces a small independent error, we

obtain a total measurement error that grows exponentially with n. By the random witness
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conjecture, Eq (17), this means that we are unlikely to see a clear non-classical effect. The

typical witness is a poor witness.

If this is true in the idealized situation it is all the more true with respect to the “mea-

surements” performed by our sensory organs. Arguably, one can associate with observation,

in the everyday non-technical sense, a quantum mechanical operator. However, it is not very

likely to be an entanglement witness, and even on the happy occasion that it is, it is not

likely to reveal anything. So even if my cat miraculously avoided decoherence and remained

in an entangled state, I am unlikely to see anything non classical about him.

Note that this analysis is not meant as a solution to the measurement problem. The

measurement problem is a dilemma that concerns the ψ − realists, who maintain that the
quantum state is a part of physical reality (and not merely our description of it). For the

ψ-realists the fact that the cat can be in a dead-alive superposition is itself a problem,

regardless of weather we can actually detect such a state in practice. The present discussion

is agnostic with respect to the reality of the quantum state, and strives to explain why large

things would hardly ever appear to us non-classical even if decoherence were turned off.

All this does not mean, of course, that we cannot see large scale entanglements. If a

system has been carefully prepared in a known special state (say, the generalized GHZ state

Eq (11)) and its coherency has been maintained, we may be able to tailor an experiment

to verify this fact. Hopefully, this will happened when quantum computers are developed.

However, as n grows the task is becoming exponentially more difficult.

There is some analogy between the present approach to multiparticle systems and the

point made by Khinchin on the foundations of classical statistical mechanics [18,19]. While

thermodynamic equilibrium has its origins in the dynamics of the molecules, much of the

observable qualities of multiparticle systems can be explained on the basis of the law of large

numbers. The tradition which began with Boltzmann identifies equilibrium with ergodicity.

The condition of ergodicity ensures that every integrable function has identical phase-space

and long-time averages. However, Khinchine points out that this is an overkill, because

most of the integrable functions do not correspond to macroscopic (that is, thermodynamic)
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observables. If we concentrate on thermodynamic observables, which involve averages over

an enormous number of particles, weaker dynamical assumptions will do the job.

I believe that a similar answer can be given to our original question, namely, why we do

not see large macroscopic objects in entangled states. Since decoherence cannot be “turned

off” the multiparticle systems that we encounter are never maximally entangled. But even

if the amount of entanglement that remains in them is still significant, we cannot detect it,

because the witnesses are simply too weak.

IV. APPENDIX

In the proof of theorem 1 we shall rely on a theorem in Fourier analysis due to Salem,

Zygmund and Kahane [15]. Our aim is to consider random trigonometric polynomials. So let

(Ω,Σ,P) be a probability space, where Ω is a set, Σ a σ-algebra of subsets of Ω, and P : Σ→
[0, 1] a probability measure. For a random variable ξ on Ω denote by E(ξ) = R

Ω
ξ(ω)dP(ω)

the expectation of ξ. A real random variable ξ is called subnormal if E(exp(λξ)) ≤ exp(λ2
2
)

for all −∞ < λ <∞.
A trigonometric polynomial in r variables is a function on the torus Tr given by

g(t) =g(t1, t2, ..., tr) =
X

b(k1, k2, ..., kr)e
i(k1t1+,k2t2+...+krtr) (18)

where the sum is taken over all negative and nonnegative integers k1, k2, ..., kr which satisfy

|k1| + |k2| + ... + |kr| ≤ N . The integer N is called the degree of the polynomial. Denote

kgk∞ =maxt1,...,tr
|g(t1, t2, ..., tr)|.

Theorem 4 (Salem, Zygmund, Kahane) Let the ξj(ω), j = 1, 2, ..., J be a finite sequence of

real, independent, subnormal random variables on Ω. Let gj(t), j = 1, 2, ..., J be a sequence

of trigonometric polynomials in r variables whose degree is less or equal N , and such thatP
j |g(t)|2 ≤ 1 for all t. Then

P
ω;

°°°°°
JX
j=1

ξj(ω)gj(t)

°°°°°
∞
> C

p
r logN

 ≤ 1

N2er
(19)
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for some universal constat C.

Note that the formulation here is slightly different from that in [15], but the proof is

identical. Our probability space Ω is the set of all functions f : {0, 1}n → {−1, 1} with
the uniform distribution which assigns each such function f a weight 2−2

n
. On this space

consider the 2n random variables ξε(f) defined for each ε = (ε1, ..., εn) ∈ {0, 1}n by

ξε(f) = f(ε) (20)

Now, note that f ∈ Ω iff −f ∈ Ω hence for each fixed ε we get E(ξε) = 2−2
nP

f f(ε) =

−2−2nPf f(ε) = −E(ξε), and therefore E(ξε) = 0, similarly, for ε, ε0 we have E(ξεξε0) =
δ(ε, ε0) and so on; the 2n random variables ξε(f) are independent. Now, by a similar argument

E(exp(λξε)) = 2−2n
X
f

exp(λf(ε)) = (21)

2−2
n
X
f

1

2
[exp(λf(ε)) + exp(−λf(ε))] = 1

2
(eλ + e−λ) ≤ eλ

2

2

To define the trigonometric polynomials note that by Eq (7,20)

X
s1,...,sn∈{0,1}

βf(s1, ..., sn) exp i
¡
t1s1 + ...+ t

n
sn

¢
= (22)

=
1

2n

X
ε

f(ε)
X
s

(−1)ε1s1+...+εnsn exp i ¡t1s1 + t2s2 + ...+ tnsn¢ =
=
X
ε

f(ε)
1

2n

nY
j=1

¡
exp itj0 + (−1)εj exp itj1

¢
=
X
ε

ξε(f)gε(t)

with

gε(t) = 2
−nY

j

¡
exp itj0 + (−1)εj exp itj1

¢
(23)

The polynomials gε(t) do not depend on f , have 2n variables t
j
0, t

j
1, j = 1, 2, ..., n, and

their degree is n. We shall prove that
P

ε |gε(t)|2 = 1 for all t. Indeed, |gε(t)|2 =
2−2n

¯̄̄Q
j (1 + (−1)εj exp(iφj))

¯̄̄2
, with φj = tj1 − tj0. But, |1 + exp iφj|2 = 4 cos2

³
φj
2

´
and

|1− exp iφj|2 = 4 sin2
³
φj
2

´
and therefore

P
ε |gε(t)|2 =

Q
j

³
cos2

³
φj
2

´
+ sin2

³
φj
2

´´
= 1.
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From Eqs (14,22) we get

max
directions

kWfk =
°°°°°X

ε

ξε(f)gε(t)

°°°°°
∞

(24)

Hence, we can apply the Salem Zygmund Kahane inequality Eq (19) to the present case,

with N = n and r = 2n, to obtain theorem 1.

To prove proposition 2 consider |λf | as a random variable on the space of f ’s. By Eq (12)
we get

|λf | =
¯̄̄̄
¯̄ X
s1,...,sn∈{0,1}

βf(s1, ..., sn) exp i
¡
t1s1 + ...+ t

n
sn

¢¯̄̄̄¯̄ (25)

with tjsn = ωjθ
j
sn. By Eq (22) we get |λf | = |Pε ξε(f)gε(t)|. But E(

P
ε ξεgε) = 0, and

E(|Pε ξεgε|2) =
P

ε |gε|2 = 1. Therefore, by Tchebishev’s inequality we have P {f ; |λf | >
M} ≤ 1

M2 for all M > 1.
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