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Abstract
We present a logical calculus for reasoning about information flow in quan-
tum programs. In particular we introduce a dynamic logic that is capable of
dealing with quantum measurements, unitary evolutions and entanglements
in compound quantum systems. We give a syntax and a relational seman-
tics in which we abstract away from phases and probabilities. We present a
sound proof system for this logic, and we show how to characterize by logical
means various forms of entanglement (e.g. the Bell states) and various linear
operators. As an example we sketch an analysis of the teleportation protocol.

1 Introduction

In this paper we elaborate on the ideas presented in [2, 3, 9] and give a full-
fledgeddynamic Logic for Quantum ProgramsLQP . It is well-known thatPDL
(Propositional Dynamic Logic) and its fragment the Hoare Logic are among the
main logical formalisms used inprogram verificationfor classical programs, i.e.
in checking that a given (classical) program meets the required specification. It
is natural to ask for aquantumversion ofPDL, to be used in the verification
of quantum programs. In our past work [3], we presented several such logical
systems, starting with alogic of quantum measurementsLQM for single quantum
systems, and later extending this system into a dynamic logicLQA of quantum
actions(i.e. compositions of measurements and unitary evolutions). In this paper,
we extendLQA into a logic forcompoundquantum systems. We present a self-
contained version ofLQP such that no knowledge ofLQA orLQM is necessary
to understand the basic concepts. Note the difference between our logic and the
approach with a similar name in [4]: our dynamic logic goes much further in
capturing essential properties of quantum systems and quantum programs, as well
as in recovering the ideas of traditional quantum logic [6, 7].

2 Quantum Frames

In this section we introduce quantum frames for single quantum systems and quan-
tum frames for compound quantum systems; in the later case we restrict our at-
tention ton compound qubits.
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2.1 Single System Quantum Frames

A modal frameis a set ofstates, together with a family ofbinary relationsbetween

states. A (generalized)PDL frame is a modal frame(Σ, {S?→}S∈L, {
a→}a∈A),

in which the relations on the set of statesΣ are of two types: the first, called
testsand denoted byS?, are labelled with subsetsS of Σ, coming from a given
family L ⊆ P(Σ) of sets, calledtestable properties; the others, calledactions, are
labelled with action labelsa from a given setA. Given aPDL frame, there exists
a standard way to give a semantics to the usual language ofpropositional dynamic
logic. ClassicalPDL can be considered as a special case of such a logic, in which

tests are given byclassical tests: s
S?→ t if and only if s = t ∈ S. Observe that

classical tests, if executable, do not change the current state.
In the context of quantum systems, a natural idea is to replace classical tests

by “quantum tests”, given byquantum measurementsof a given property. Such
tests will obviously change the state of the system. To model them, we intro-
duce a special kind ofPDL frames: quantum frames. The “tests” are essen-
tially given by projectors in a Hilbert space. In [3], we consideredPDL with
the above-mentioned standard semantics, having the same clauses in the classical
case, but interpreted in quantum frames. What we obtained is aquantum PDL,
whose negation-free part with dynamic modalities for quantum tests is equivalent
to what is traditionally called “(orthomodular) quantum logic” [6, 7]. In this paper,
we extend the syntax of this logic to deal with unitary evolutions, entanglements
and some quantum protocols.

Definition 1. (Quantum Frame)
Given a Hilbert spaceH, the following steps construct aQuantum (PDL) Frame

Σ(H) := (Σ, {S?→}S∈L, {
U→}U∈U )

1. LetΣ be the set ofone dimensional subspacesofH, called the set ofstates.
We denote a states = x of H using any of the non-zero vectorsx ∈ H
that generate them. Note that any two vectors that differ only inphase(i.e.
x = λy, with λ ∈ C with |λ| = 1) will generate the same statex = y ∈ Σ.

2. Call two statess andt in Σ orthogonaland writes ⊥ t, if and only if∀x ∈ s
and∀y ∈ t: x is orthogonal toy, i.e. if 〈x | y〉 = 0. Or, equivalently we
can state thats ⊥ t if and only if ∃x ∈ s, y ∈ t with x 6= 0, y 6= 0 and
〈x | y〉 = 0. We putS⊥ := {t ∈ Σ | t ⊥ s for all s ∈ S}; and we denote
by S = S⊥⊥ := (S⊥)⊥ the biorthogonal closure ofS. In particular, for
a singleton{x}, we just writex for {x}, which agrees with the notationx
used above to denote the state generated byx.
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3. A set of statesS ⊆ Σ is called a(quantum) testable propertyiff it is
biorthogonally closed, i.e. if if S = S. (Note thatS ⊆ S is always the
case.) We denote byL ⊆ P (Σ) the family of all quantum testable proper-
ties. All theothersetsS ∈ P (Σ) \ L are callednon-testable properties.

4. There is a natural bijective correspondence between the familyL of all
testable properties and the familyW of all closed linear subspacesW ofH,
bijection given byS 7→ WS =:

⋃
S. Observe that, under this correspon-

dence, the image of the biorthogonal closureS of any arbitrary setS ⊆ Σ
is the closed linear subspace

⋃
S ⊆ H generated by the union

⋃
S of all

states inS.

5. For each testable propertyS ∈ L, there exists a partial mapS? onΣ, called
a quantum test. If W = WS =

⋃
S is the corresponding subspace ofH,

then the quantum test is the map induced on states by theprojectorPW onto
the subspaceW . In other words, it’s given by:

S?(x) := PW (x) ∈ Σ , if x 6∈ S⊥ ( i.e. if PW (x) 6= 0)
S?(x) := undefined, otherwise.

We denote by
S?→⊆ Σ × Σ the binary relation corresponding to the partial

mapS?, i.e. given by:s
S?→ t if and only if S?(s) = t. So we havea family

of binary relations indexed by the testable propertiesS ∈ L.

6. For each unitary transformationU onH, consider the corresponding binary

relation
U→⊆ Σ × Σ, given by: s

U→ t if and only if U(x) = y for some
non-zero vectorsx ∈ s, y ∈ t. So we obtaina family of binary relations
indexed by the unitary transformationsU ∈ U (whereU is the set of unitary
transformations onH).

So a quantum frame is just aPDL frame built on top of a given Hilbert space
H, using projectors as “tests” and unitary evolutions as “actions”. Our notion of
“state” in this paper is closely connected to the way quantum logicians approach
quantum systems; i.e., contrary to identifying states with unitary vectors (as cus-
tomary in quantum computation), we took them to beone dimensional subspaces
generated by these vectors. This imposes some limits to our approach, mainly
that we will not be able to expressphase-related properties. While it is possible to
build up a quantum frame starting from unitary vectors as the states, the resulting
logical system will be much more complex3, and so we do not elaborate on it in
this paper.

3It would require the introduction of a propositionaltensoroperator.
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Operators on states, adjoints and generalized tests.To generalize our notations
introduced earlier, observe that everylinear operatorF : H → H induces a
partial mapF : Σ → Σ on states (i.e. subspaces), given byF (x) = F (x), if
F (x) 6= 0 (and undefined, in rest). (Note thatlinearity ensures that this map on
states is well-defined.) In particular, every mapF : Σ → Σ obtained in this way
has anadjointF † : Σ → Σ, defined as the map on states induced by the adjoint
(“Hermitian conjugate”) of the linear operatorF onH. Observe that, for unitary
transformationsU , the adjoint is the inverse:U† = U−1 Also, one can naturally
generalizequantum teststo arbitrary, possiblynon-testable properties, S ⊆ Σ, by
putting: S? := S?. So we identify a test of a “non-testable” propertyS with the
quantum test of its biorthogonal closure. Observe thatS?† = S? (since projectors
are self-adjoint).

Definition 2. (Non-orthogonality, or Measurement, Relation)For all s, t ∈ Σ,

let s → t if and only if s
S?→ t for some propertyS ∈ L. In other words,s → t

means that one can reach statet by doingsome measurementon states.

An important observation is thatthe measurement relation is the same as non-
orthogonality: s → t iff s 6⊥ t. The non-orthogonality relation has indeed
been used to introduce an accessibility relation in the orthoframe semantics within
quantum logic [7].

Definition 3. (Dynamic Modalities and Measurement Modalities)For any prop-
erty T ⊆ Σ and any partial mapF : Σ → Σ induced on states by a linear
operatorF , let [F ]T := F−1(T ) = {s ∈ Σ : F (s) ∈ T , if defined} and
〈F 〉T := Σ\([F ](Σ\T )). Similarly, put2T := {s ∈ Σ : ∀t(s → t ⇒ t ∈ T )}
and 3T := Σ\(2(Σ\T )).

Observe that[F ]T expresses theweakest preconditionfor the “program”F and
post-conditionT . In particular,[S?]T expresses the weakest precondition ensur-
ing the satisfaction of propertyT in any state after the system passes a quantum
test of propertyS. Similarly, 〈S?〉T means that one can perform a quantum test
of propertyS on the current state, ending up in a state having propertyT . 2T
means that propertyT will hold afteranymeasurement (quantum test) performed
on the current state. Finally,3T means that propertyT is potentially satisfied, in
the sense that one can do some quantum test to reach a state with propertyT .

Lemma 1. For every propertyS ⊆ Σ, we haveS⊥ = [S?]∅ = Σ \ 3S and
S = 23S.
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Proposition 1. For every propertyS ⊆ Σ, if T ∈ L (i.e. is testable), then
2S, S⊥, [S?]T ∈ L (are testable), and more generally[F ]T ∈ L, for every (map
on states induced by a) linear operatorF .

Proposition 2. (Testable Properties) A propertyS ⊆ Σ is testable if and only
if any of the following conditions hold: (1)S = S; (2) S = 23S; (3)
∃T ∈ Σ such thatS = T⊥; (4) ∃T ∈ Σ such thatS = 2T . The familyL
of testable properties is a complete lattice with respect to inclusion, having as its
meet set-intersectionS ∩ T , and as its join the biorthogonal closure of set-union
S t T := S ∪ T , called the quantum join ofS andT . For every states ∈ Σ,
the singleton{s} ∈ L is testable. For any arbitrary propertyS ⊆ Σ, we have
S =

⊔
{{s} : s ∈ S} =

⋂
{T ∈ L : S ⊆ T}, so the biorthogonal closure ofS is

the strongest testable property implied by (the property)S.

Theorem 1. In every quantum frameΣ(H) the following properties for quantum
tests are provable:

1. Partial functionality: Ifs
S?→ t ands

S?→ v thent = v.

2. Trivial tests:
∅?→= ∅ and

Σ?→= ∆Σ, where∆Σ = {(s, s) : s ∈ Σ} is the
identity relation onΣ× Σ.

3. Adequacy: Ifs ∈ S thens
S?→ s

4. Repeatability: IfS ∈ L is testable ands
S?→ t, thent ∈ S

5. Compatibility: IfS, T ∈ L are testable andS?;T? = T?;S? thenS?;T? =
(S ∩ T )?.

6. Self-Adjointness: Ifs
S?→ w

T?→ t thent
S?→ v

W?→ s, for somev ∈ Σ and

W ∈ L. In other words: ifs
S?→ w→t thent

S?→ v→s, for somev ∈ Σ.

7. Universal Accessibility: For alls, t ∈ Σ, there exists a statew ∈ Σ such
thats→ w → t

Proofs: Partial functionalityfollows from the fact that projectors correspond to
partially defined maps inH. Trivial tests follows from the fact that projecting
on the empty space yields the empty space and that projecting on the total space
doesn’t change anything.Adequacyfollows from the fact that for everyx ∈W we
have thatPW (x) = x. Repeatabilityfollows from the fact thatPW (x) ∈ W for
everyx ∈ H. Compatibilityfollows from the fact that if two projectors commute,
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i.e. PW ◦ PV = PV ◦ PW , thenPW ◦ PV = PW∩V . Self-Adjointnessfollows
from the more general Adjointness theorem stated below, together with the fact
S?† = S?. Universal Accessibilitycan be proved by cases: Ifs 6⊥ t, i.e. let
s → t, thenw = s ⇒ s → s → t. If s ⊥ t, i.e. lets 6→ t then lets = x, t = y
with x, y ∈ H. Take the superpositionx + y ∈ H of x and y and note that
x+ y 6= 0 (since fromx+ y = 0 ⇒ x = −y ⇒ s = t which contradictss 6⊥ t).
Next observe thatx 6⊥ (x+ y) (Indeed, supposex ⊥ (x+ y) then〈x | x+ y〉 = 0
and then〈x | x〉 + 〈x | y〉 = 0; but x ⊥ y implies 〈x | x〉 = 0. So from
〈x | x〉 = 0 follows thatx = 0, which yields a contradiction). Similarly, we get
y 6⊥ (x+ y). Taking noww = x+ y, we can see thatw ∈ Σ, s→ w andw → t.

Theorem 2. In every quantum frameΣ(H) the following properties for unitary
transformations (stated for allU,U† ∈ U) are provable:

1. Functionality: For every states ∈ Σ we have∃!t : s U→ t

2. Inverse-adjoint (bijectivity):s
U→ t

U†

→ w impliess = w. Similarly, s
U†

→
t

U→ w impliess = w

Proofs: Functionalityfollows from the fact that unitary transformations are well-
defined on all states, i.e. the kernell of the linear map encoding the transformation
is ∅. Inverse-adjointfollows from the fact that unitary operators on a Hilbert space
have the property thatU† = U−1.

Theorem 3. (Adjointness) LetF be a linear transformation and lets, w, t ∈ Σ

be states: Ifs
F→ w→t then there exists some statev ∈ Σ such thatt

F †

→ v→s.

•
F - •

•

6
.................

�.....................
F †

•
?

Proof: To prove this theorem we use the definition of adjointness in a Hilbert
space:〈Fx | y〉 = 〈x | F †y〉. From this, we get the equivalence:〈Fx | y〉 = 0
iff 〈x, F †y〉 = 0; or, otherwise stated,Fx ⊥ y iff x ⊥ F †y. Taking the negation
of both sides and using the fact that the measurement relations→t is the same

as non-orthogonalitys 6⊥ t, we obtain the equivalence:∃w(x F→ w → y) iff

∃v(y F †

→ v → x). This proves the adjointness property.
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As a consequence:

Corollary 1. For every propertyP ⊆ Σ and every linear mapF we have:

P ⊆ [F ]2〈F †〉3P

2.2 Compound System Quantum Frames

In this subsection we like to extend the quantum frame presented above for single
systems into a quantum frame for compound systems. LetH be a Hilbert space of
dimension2 with basis{| 0〉, | 1〉}. We fix a natural numbern ≥ 2 (although later
we will restrict to the casen ≥ 4), and we putN = {1, 2, . . . , n}. A compound-
system quantum framewill be the quantum frameΣ(Hn) build on a Hilbert space
Hn = H⊗n = H ⊗H ⊗ ...⊗H (n times) .

Notation. In fact, we consider all then copies ofH as distinct (although iso-
morphic) and denote byH(i) the i-th component of the tensorH⊗n. Also, for
any set of indicesI ⊆ N , we putHI = H

N
I =

⊗
i∈I H

(i). (So, in partic-
ular, HN = Hn = H.) We denote byεi : H → H(i) the canonical isomor-
phism betweenH andH(i). This notation can be extended to setsI ⊆ N of
indices of length|I| = k, by puttingεI : H⊗k → HI to be the canonical iso-
morphism between these spaces. Similarly, for each setI ⊆ N , we denote by
µI : HI ⊗ HN\I → H the canonical isomorphism between these two spaces.
For any vector| x〉 ∈ H, we denote by| x〉

N
I =

⊗
i∈I | x〉 the corresponding

vector inHI (obtained by tensoring|I| copies of| x〉 ). Given a setI ⊆ N , we
say that a states ∈ Σ(H) has itsI-qubits in states′inΣ(HI), and writesI = s′,
if there exist vectorsψ ∈ s, ψ′ ∈ HI andψ′′ ∈ HN\I such thatψ = µI(ψ′⊗ψ′′).
Note that the statesI , if it exists, then it is unique(having the above property). In
particular, whenI = {i}, we say that states has as itsi-th coordinatethe state
si ∈ H{i} = H(i).

We will further denote the vector| 0〉+ | 1〉 by | +〉, and similarly denote
| 0〉− | 1〉 by | −〉. For the states generated by the vectors in a two dimensional
Hilbert space we introduce the following abbreviations:+ := | +〉, − := | −〉 ,
0 := | 0〉 , 1 := | 1〉. In order to refer to the state corresponding to a pair of qubits,
we similarly delete the Dirac notation, e.g.00 := | 00〉 = | 0〉⊗ | 0〉.
The Bell states will be abbreviated as follows:β00 := | 00〉+ | 11〉 ,
β01 := | 01〉+ | 10〉, β10 := | 00〉− | 11〉 , β11 = | 01〉− | 10〉 and
γ := | 00〉+ | 01〉+ | 11〉+ | 10〉.
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The following two results are well-known:

Proposition 3. LetH(i) andH(j) be two Hilbert spaces. There exists a bijec-
tive correspondenceψ between the linear mapsF : H(i) → H(j) and the states
of H(i) ⊗ H(j). Given the bases{ε(i)α }α and{ε(j)β }β of these spaces, the corre-

spondenceψ is given by the mappingF = Σαβ mαβ 〈ε(i)α | −〉.ε(j)β into the state

ψ(F ) = Σαβ mαβ .ε
(i)
α ⊗ ε

(j)
β .

Proposition 4. Let H = H⊗n and letW = {x⊗ | 0〉⊗(n−1) : x ∈ H} be
given. Any linear mapF : H → H induces a linear mapF(1) : H → H in a
canonical manner: it is defined as the unique map onH satisfyingF(1)(x) =
PW ◦ F (x⊗ | 0〉⊗(n−1)). Conversely, any linear mapG : H → H can be repre-
sented asG = F(1) for some linear mapF : H → H.

Notation. The above results allow us to specify a compound state inH(i) ⊗H(j)

via some linear mapF onH. Indeed, ifF : H → H is any such linear map, let
F(1) : H → H be the map in the above proposition; this induces a corresponding

mapF (ij)
(1) : H(i) → H(j), by puttingF (ij)

(1) := εj ◦ F(1) ◦ ε−1
i , whereεi is

the canonical isomorphism introduced above (betweenH and thei-th component
H(i) of H⊗n ). Then we denote byF (ij) the state

F (ij) := ψ(F (ij)
(1) )

given by the above mentioned bijective correspondenceψ betweenH(i) → H(j)

andH(i) ⊗H(j). The following result is also known from the literature:

Proposition 5. LetF : H → H be a linear map. Then the stateF (ij) is “entan-
gled according toF(1)”; i.e. if F(1)(| x〉) =| y〉 and if the state of a 2-qubit system
is F (ij) ∈ H(i) ⊗ H(j), then any measurement of qubiti resulting in a statexi

collapses the qubitj to stateyj .

Notation. The notationF (ij) can be further extended to define a property (set
of states)F ij ⊆ Σ = Σ(H), by defining it asthe set of all states having the
{i, j}-qubits in the stateF (ij) :

F ij = {s ∈ Σ : s{i,j} = F (ij)}
= {µ{i,j}(ψ ⊗ ψ′) : ψ ∈ F (ij), ψ

′ ∈ HN\{i,j}} ⊆ Σ
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whereµ{i,j} is as above the canonical isomorphism betweenH{i,j} ⊗HN\{i,j}.
In other words,F ij is simply the property of ann-qubit compound state of having
its i-th andj-th qubits (separated from the others, and) in a state that is “entangled
according toF(1)” .

Local properties. Given a setI ⊆ N , a propertyS ⊆ Σ is local in I if it
corresponds to a property of the subsystem formed by the qubits inI; in other
words, if there exists some propertyS′ ⊆ Σ(HI) such that:

S′ = {s ∈ Σ : sI ∈ S′}

or, more explicitly:

S′ = {µI(ψ ⊗ ψ′) : ψ ∈ S′, ψ′ ∈ HN\I}

An exampleis the propertyF ij , which is{i, j}-local. The family of local proper-
ties is closed under union, intersection butnot under complementation.

Local transformations. GivenI ⊆ N , a linear mapF : H → H is I-local if it
“affects only the qubits inI”; in other words, if there exists a mapG : HI → HI

such that:
F ◦ µI (ψ ⊗ ψ′) = µI (G(ψ)⊗ ψ′)

A mapF : Σ → Σ is I-local if it is the map induced onΣ by anI-local linear map
onH. Examplesare: all the testsSI? of I-local properties; logic gates that affect
only the qubits inI, i.e. (maps onΣ induced by) unitary transformationsUI :
H → H such that for allψ,ψ′ ∈ HI , we haveUI ◦µI(ψ⊗ψ′) = µI(U(ψ)⊗ψ′),
for someU : HI → HI . The family of local maps is closed under composition.

Lemma 2. The main lemma in [5] states (in our notation) that, given a quadruple
of distinct indicesi, j, k, l, let F,G,H,U, V : H → H be single-qubit linear
maps, then we have:

Gjk ◦ Vk ◦ Uj [F ij ∩Hkl] ⊆ (H ◦ U† ◦G ◦ V ◦ F )il

Using the formalism ofentanglement specification networksintroduced in [5], this
can be encoded in the following diagrammatic representation:
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[5] and [1] use this as the main tool in explaining teleportation, quantum gate tele-
portation and many other quantum protocols. We will use this work in our logical
treatment of such protocols, by taking this lemma as one of our main axioms.

Observe that in the above Lemma, the order in which the operationsUj andVk

are applied is in factirrelevant. This is a consequence of the following important
property of local transformations:

Proposition 6. (Compatibility of local transformations affecting different sets of
qubits) IfI ∩J = ∅, FI is anI-local map andGJ is aJ-local map, then we have:

FI ◦GJ = GJ ◦ FI

Another important property of local maps (onstates) is:

Proposition 7. (“Agreement Property”) LetFI , GI : Σ → Σ be twoI-local
maps on states, having the same domain4 : dom(F ) = dom(G). Then their
output-states agree on all non-I qubits, i.e.:

F (s)J = G(s)J

for all s ∈ Σ and all J such thatI ∩ J = ∅. (We take this equality to imply in
particular that the right-hand is defined iff the left-hand is also defined.)

Dynamic Characterizations of Main Unitary Transformations.

It is well-known that a linear operator on a vector space in a given Hilbert space
is uniquely determinedby the values it takes on the vectors of an (orthonormal)
basis. An important observation is that this fact is no longer “literally true” when
we move to “states” as one-dimensional subspaces instead of vectors. The reason
is that “phase”-aspects (or, in particular, the signs “+” and “−”) are not “state”

4The domain of a map is defined bydom(F ) = {s ∈ Σ : F (s) is defined}. If F ′ is the
corresponding linear map onH, this means thatdom(F ) = {ψ : F ′(ψ) 6= 0}.
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properties in our setting. In other words, two vectors that differ only in phase,
i.e x = λy whereλ is a complex number with| λ |= 1, belong to the same
subspaces, so they correspond to the same statex = y.

Example 1. (Counterexample) Consider a 2 dimensional Hilbert space in
which we denote the basis vectors by| 0〉 and | 1〉, a transformationI is given
by I(α| 0〉 + β| 1〉) = α | 0〉 + β | 1〉; and a transformationJ is given by
J(α| 0〉+ β| 1〉) = α | 0〉 − β | 1〉. AlthoughI andJ induce different operators
on states , these operators map the basis states to the same images:
I(0) = I(| 0〉) = 0 = J(| 0〉) = J(0), I(1) = I(| 1〉) = 1 = − | 1〉 = J(| 1〉) =
J(1). But of course we do distinguish the subspaces generated by different super-
positions:I(+) = | 0〉+ | 1〉 = + 6= − = | 0〉− | 1〉 = J(+).

Proposition 8. A linear operator on the state spaceΣ(H1) of a 2 dimensional
Hilbert space is uniquely determined by its images on the states:| 0〉, | 1〉, | +〉.

Corollary 2. A linear operator on the state spaceΣ(Hn) of the spaceHn is
uniquely determined by its images on the states:

{| x〉1 ⊗ ...⊗ | x〉n :| x〉i ∈ {| 1〉i, | 0〉i, | +〉i}}

In the definition of a quantum frame given above, we introduced the setU as
the set of unitary transformations for single systems. For compound systems
the setU will be extended with the kind of operators that are active on com-
pound systems. Following the quantum computation literature, we takeU =
{X,Z,H,CNOT, ...} whereX,Z andH are defined by the following table:

0 1 +

X 1 0 +
Z 0 1 -
H + - 0

The transformationCNOT is given by the table:

00 01 0+ 11 10 1+ +0 +1 ++
CNOT 00 01 0+ 11 10 1+ β00 β01 γ
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3 Syntax ofLQP

The Basic Language ofLQP :
To build up the language ofLQP , we are given a natural numbern, and we put
N = {1, 2, . . . , n}. We start from a setQ of propositional variables, together
with anarity map, i.e. everyp ∈ Q has an arityk ≤ n; a setC = {+, 1, ...} of
propositional constants; and a setU = {CNOT2, X1,H1, Z1, ...} of constants,
denotingbasic programs, to be interpreted asunitary transformations; each such
program comes also with an arityk ≤ n. The syntax ofLQP is an extension of
the classical syntax forPDL, with a set of propositionalformulasand a set of
programs, defined by mutual induction:

ϕ ::= pI | ci | πi,j | ¬ϕ | ϕ ∧ ϕ | [π]ϕ
π ::= > | ϕ? | UI | π† | π ∪ π | π;π | π∗

Here, we takeI to denote sequents of distinct indices inN = {1, 2, . . . , n}. In
the above syntax,pI andUI are well-formed terms iff the arityk of p, or of U ,
matches the length of the sequence, i.e.k = |I|. In the semantics we will interpret
p to be a physical property of a system of|I| qubits, and the sentencepI as saying
that the qubits with indices inI have the propertyp consisting ofk =| I | relevant
basic states which are specifically the ones labeled corresponding to the numbers
in the subsetI. Similarly, in the semantics it will become clear that every member
of U encodes a specific quantum logical gate and the subscriptI in UI will then
indicate on which qubits the gate is active. When the arity of a variablep is n,
then we skip the subscript, and simply writep instead ofpn.

For a given propositional constantc ∈ C, we interpret the sentenceci as saying
that “the i-th-qubit is in the state| c〉”. Note that1 as a logical constant (character-
izing the qubit| 1〉) is different from the propositional formula> (verum) which
we formally introduce later in this section, to denote the “top” element of the
lattice of properties. This, in its turn, is also different from theprogram>, intro-
duced in the syntax above, which will simply denote the trivial program, relating
any two states.

Extending the Basic Language ofLQP :

We extend our language by defining the operations for aclassical disjunctionand
a classical implicationin the usual way, i.e.ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ :=
¬ϕ∨ψ. We introduce constantsverum> := 11∨¬11, andfalsum⊥ := 11∧¬11.
We define theclassical dualof [π]ϕ in the usual way as〈π〉ϕ := ¬[π]¬ϕ ; the
measurement modalities2 and3 that are known in the quantum logic literature
can be defined inLQP by putting3ϕ := 〈ϕ?〉> and2ϕ := ¬3¬ϕ. Theortho-
complementis defined as∼ ϕ := 2¬ϕ, or equivalently as∼ ϕ := [ϕ?]⊥. By
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means of the orthocomplement we define new propositional constants0i :=∼ 1i

and−i :=∼ +i, and a binary operation forquantum joinϕtψ :=∼ (∼ ϕ∧ ∼ ψ).
This expressessuperpositions: ϕ t ψ is true at any state which is a superposition
of states satisfyingϕ or ψ. We can also define thequantum dualof a modality
[π]ψ as〈π∼〉ψ :=∼ [π] ∼ ψ. Finally, we put〈π〉−1ψ := 〈(π†)∼〉ψ. As we’ll
see, this captures thestrongest post-conditionensured by applying programπ on
a state satisfying (a precondition)ψ.

Testable formulas. We call a programπ deterministicif π is constructed without
the use of choice∪ or iteration∗. Next we define the set oftestable formulasϕt

of LQP to be a subset of the above given language, constructed by induction in
the following way:

ϕt ::= ⊥ | ci | πi,j | ϕt ∧ ϕt | [π]ϕt

whereπ is anydeterministic program. Observe that the construction ofπ might
involve non-testable formulas. In particular, for an arbitrary (not necessarily
testable) formulaϕ, remark that[ϕ?]ψt is a testable formula.

Proposition 9. For any formulaϕ in LQP ,∼ ϕ and2ϕ are testable formulas.

Local formulas and local programs. We would like to isolatelocal formulas
and programs, i.e. the ones that “affect only the qubits in a given setI ⊆ N ”.
These formulas will express local properties (in the sense defined above). When
we want to stress that a formula or program is local, we denote them withϕI or
πI . The definition is:

ϕI ::= pJ | ci | πij | ϕI ∨ ϕI | ϕI ∧ ¬ϕI | ϕI ∧ [πI ]ϕI

πI ::= ϕI? | UJ | πI ;πI | πI ∪ πI | π∗I

with i, j ∈ I, J ⊆ I. Observe that local formulas are not closed under negation:
this is because the complement of a local property is not necessarily a local prop-
erty. But instead they are closed under set-theoretic difference, disjunction, and
also conjunction: this is becauseϕ ∧ ψ is equivalent toϕ ∧ ¬(ϕ ∧ ¬ψ).
Relabeling local formulas and programs. When we label a local formulaϕI

or a local programπI with a sequence of indicesI, we can of course take any
other sequenceJ of indices, with|J | = |I|, and substitute all theI indices in
our formula (program) with the correspondingJ indices; we denote byϕJ , and
respectivelyπJ , the corresponding formula, or program.

Notation. The unary map induced by a program:We want to capture in our syntax
the constructionF(1), by which a linear mapF onH⊗n was used to describe a
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unary mapF(1) on H. For this, we put:0i! := 0i? ∪ (1i?;Xi), and0I ! :=
0i1 !; 0i2 !; · · · ; 0ik

!, whereI = (i1, i2, . . . , ik). This maps any qubit inI to 0.
Similarly, we put;0I? := (0i1 ∧ 0i2 ∧ · · · ∧ 0ik

)?. Finally we define:

π(i) := 0N\{i}!;π; 0N\{i}?

This is the map we need (which encodes a single qubit transformation). In fact,
we shall only useπ(1) in the rest of this paper.

4 Semantics ofLQP

An LQP -modelis aquantum frame equipped with a valuation function, mapping
each propositional variablep of arity k into a set|| p ||⊆ Σ(H⊗k) of k-qubit
states. Given a sequenceI of lengthi of indices, letε be the canonical isomor-
phism betweenH⊗k andH⊗I .
We will use the valuation map to give an interpretation|| ϕ || ⊆ Σ to all our
formulas, in terms of properties of ourn qubit system, i.e. sets of states inΣ =
Σ(H). In the same time, we give an interpretation|| π || ⊆ Σ × Σ to all our
programs, in terms of binary relations between states. The two interpretations are
defined bymutual recursion.

Interpretation of the Programs: The basic programsUI , with |I| = k, come
from a list of correspondingk-bit unitary transformationsU : H⊗k → H⊗k. We
take|| UI || to be the (map on states induced by the) unique linear map onH such
that:

|| UI || ◦µI (ψ ⊗ ψ′)) := µI(εI ◦ U ◦ ε−1
i (ψ) ⊗ ψ′)

for everyψ ∈ HI , ψ′ ∈ HN\I . Here, recall thatεI is the canonical isomorphism
betweenH⊗k andHI , andµI is the canonical isomorphism betweenHI ⊗HN\I
andH.
As for the others:

|| > || := Σ× Σ , || ϕ? || := || ϕ ||?
|| π1 ∪ π2 || := || π1 || ∪ || π2 || , || π∗ || := || π ||∗
|| π1;π2 || := || π2 || ◦ || π1 || , || U†

I || := || UI ||−1

|| (π†)† || := || π || , || (π1;π2)† || := || π†2;π
†
1 ||

|| (π1 ∪ π2)† || := || (π1)† ∪ (π2)† || , || (π∗)† || := || (π†)∗ ||

whereR∗ is the reflexive-transitive closure of relationR. Note thatdeterministic
programsπ have as interpretations|| π || (maps on states which are induced by)
linear mapsonH.
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The interpretation|| π || allows us to extend the notation
π→ to all programs, by

putting: s
π→ t iff (s, t) ∈ || π ||.

Interpretation of the Formulas: We give the interpretation here first for all ex-
cept propositional variablespi and entangled state formulasπij :

|| ϕ ∧ ψ || = || ϕ || ∩ || ψ || ; || ¬ϕ || = Σ\ || ϕ ||
|| 1i || = 1i ; || +i || = +i

and finally || [π]ϕ || = {s ∈ Σ | ∀t : s π→ t⇒ t ∈ || ϕ ||}.
The last clause obviously definesthe weakest precondition[π]ϕ ensuring that
(postcondition)ϕ will be satisfied after executing programπ. As for the proposi-
tional variables, we put:

|| pI || = {s ∈ H : sI ∈ εI(|| p ||)}
= {µI(εI(ψ)⊗ ψ′) : ψ ∈|| p ||, ψ′ ∈ HN\I}

whereεI andµI are the above-mentioned canonical isomorphisms, andsI is (as
defined above) the state of the qubits inI. So the meaning ofpI is that the system
of qubits with indices inI is separated from (i.e. non-entangled with) the rest of
the system, and that moreover this system has the property expressed byp.

The interpretation ofπij , for deterministic programsπ, is given by the con-
structionF ij above. Since the interpretation|| π || of a deterministic program is
a linear map onH, we know, by the results mentioned above, that the mapF(1)

can be used to specify a set of compound statesF ij ⊆ H. This is our intended
interpretation forπij :

|| πij ||:= || π ||ij

For the program>, we put:|| > ||:= {s ∈ Σ : s{i,j} is defined} = {µ{i,j}(ψ ⊗ ψ′) :
ψ ∈ H{i j}, ψ

′ ∈ HN\{i,j}}, i.e. the property of having the{i, j}-qubits in a sep-
arated state from the others. This can be extended to other programs in the natural
way, by putting e.g.|| π ∪ π′ij ||:=|| πij ∪ π′ij || etc.

Proposition 10. The interpretation of any testable formula is a testable property.
The interpretation of anI-local formula (or deterministic program) is anI-local
formula (or linear map on states).

Lemma 3. ||∼ ϕ ||=|| ϕ ||⊥, || [ϕ?]ψ ||= [|| ϕ ||?] || ψ ||, || 2ϕ ||= 2 || ϕ ||,
|| ϕ || =|| 23ϕ ||
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Proposition 11. The following are equivalent, for every formulaϕ:
1. || ϕ || is testable
2. ϕ is semantically equivalent to23ϕ
3. ϕ is semantically equivalent to some formula2ψ
4. ϕ is equivalent to some formula∼ ψ

5 Axioms for LQP

First, we admitall the axioms and rulesof classicalPDL, except for the one
concerning testsϕ?. In particular, we have a basic axiom and rule for sentences
involving modalities[π], stated for elementary sentences and basic programs:

Kripke Axiom. ` [π](p→ q) → ([π]p→ [π]q)
Necessitation Rule. if ` p then ` [π]p
Considering2p, we introduce the following axioms:
Test Generalization Rule. if p→ [q?]r for all q , then ` p→ 2r
Testability Axiom. ` 2p→ [q?]p
Testability can be stated in its dual form by means of〈q?〉p → 3p or equiva-
lently as〈q?〉p→ 〈p?〉>. This dual formulation of Testability allows us to give a
straightforward interpretation: if the property associated top can be actualized by
a measurement (yielding an output state satisfyingp), then we can directly test the
propertyp (by doing a measurement forp). The Test Generalization Rule encodes
the fact that2 is a universal quantifier over all possible measurements.

OtherLQP -axioms are:

Partial Functionality. ` ¬[p?]q → [p?]¬q
Adequacy. ` p ∧ q → 〈p?〉q
Repeatability. ` [φt?]φt for all testableformulas φt

Universal Accessibility. ` 〈π〉22p→ [π′]p
Unitary Functionality. ` ¬[U ]q ↔ [U ]¬q
Unitary Bijectivity 1. ` p↔ [U ;U†]p
Unitary Bijectivity 2. ` p↔ [U†;U ]p
Adjointness. ` p→ [π]2〈π†〉3p

Substitution Rule. From ` Θ infer ` Θ[pI/ϕI ]
Compatibility Rule . For all testableformulasψ,ϕ and every variablep 6∈ ϕ,ψ:

From ` 〈ϕ?;ψ?〉p→ 〈ψ?;ϕ?〉p infer ` 〈ϕ?;ψ?〉p→ 〈(ϕ ∧ ψ)?〉p

Proposition 12. (Quantum Logic, Weak Modularity or Quantum Modus Ponens)
All the axioms and rules of traditional Quantum Logic are satisfied by our testable
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formulas. In particular, from our axioms one can prove “Quantum Modus Po-
nens”5 ϕ∧ [ϕ?]ψ ` ψ. In its turn, this rule is equivalent to the condition known in
quantum logic as Weak Modularity, stated as follows:ϕ ∧ (∼ ϕ t (ϕ ∧ ψ)) ` ψ.

Theorem 4. (Soundness, Expressivity, Completeness of the above axioms with
respect to PDL frames) In the presence of (axioms of classical logic, plus) Kripke’s
Axiom, Necessitation, Test Generalization, Testability and Substitution Rule, all
the other axioms above are sound and expressive with respect to the corresponding
semantic conditions mentioned in the Section 2 above. More precisely: any of
these axioms is valid on a PDL frame iff the corresponding semantic condition is
satisfied by the frame. Moreover, the system given by the above axioms is complete
for the class of PDL frames satisfying all the corresponding semantic conditions.

Proposition 13. The formula< π >−1 ϕ expresses the strongest testable post-
condition ensured by executing programπ on any state satisfying (precondition)
ϕ. In other words: for every testableψ, the following are equivalent:

1. `< π >−1 ϕ→ ψ

2. ` ϕ→ [π]ψ

Moreover, in the context of the other axioms, this equivalence is itself equivalent
to the Adjointness Axiom.

Basic Axioms for constants (0, 1,+,−).
The first axiom says thatci’s are “states” in the i-th part of the system, i.e. they
are atomic properties, which determine completely whether any other property is
jointly satisfied. We state in aweak, as well as instrongerversion:
Atomicity (weak version). For allc ∈ {0, 1,+,−}: ` ci ∧ pi → 22(ci → pi)
Atomicity (strong version). For allc ∈ {0, 1,+,−}:
`

∧
i∈I ci ∧ pI → 22(

∧
i∈I ci → pI)

The following axioms state that+i and−i are proper superpositions of0i and1i:

Proper Superposition Axioms: ` +i → 30i ∧31i and ` −i → 30i ∧31i.

Next two axioms assert that1 and+ aretestableproperties:

Constants are testable.` 231i → 1i and ` 23+i → +i.
Determinacy Axiom of Deterministic Programs. For deterministic programs
π, π′:

5This explains why the weakest precondition[ϕ?]ψ has been taken as the basic implicational con-

nective in traditional Quantum Logic, under the name of “Sasaki hook”, denoted byϕ
S→ ψ.
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`
(
22

∧
(c(1),...,c(n))∈{0,1,+}n (〈π〉−1(c(1)1 ∧ . . . ∧ c(n)

n ) ↔ 〈π′〉−1(c(1)1 ∧ . . . ∧ c(n)
n ))

)
→ (〈π〉p↔ 〈π′〉p)
This expresses the above-mentioned property of linear operators onH of being
uniquely determined by their values on all the states| x〉1 ⊗ · · · | x〉n, with
| x〉i ∈ {| 0〉i, | 1〉i, | +〉i}.
Agreement Axiom. If two I-local programsπ, π′ have the same domain, then
their output states agree on all non-I qubits: i.e. ifI ∩ J = ∅ then
22(〈πI〉> ↔ 〈π′I〉>) → (〈πI〉pJ ↔ 〈π′I〉pJ)
Compatibility of programs affecting different sets of qubits. If I∩J = ∅ then
` [πI ;πJ ]p↔ [πJ ;πI ]p
Entanglement Rule. From ` p1 → [π(1)]q1 infer ` πij → [pi?]qj
Entanglement Composition Axiom. For distinct indicesi, j, k, l, programs
π, π′, π′′ and local{1}-programsσ1, ρ1 we have:

` πij ∧ π′kl → [σj ; ρk;π′′jk?](π;σ1;π′′; ρ
†
1;π′)il

Trivial Entanglement . ` pi,j → >ij This says that separation of thei, j-qubits
implies their trivial entanglement.

Theorem 5. (Teleportation Property). Ifϕ1 is a 1-local testable property and if
` ϕ1 → [π(1);σ(1)]q1, then` ϕ1 ∧ σ23 → [π12?]q3.

Proof: We apply the Entanglement Composition Axiom, takingi = 4, j = 1, k =
2, l = 3, and substituting the programs> for π, σ for π′, π for π′′, ϕ1? for σ1, and

id1 = X1;X1 for ρ1. We obtain:̀ >41∧σ23 → [ϕ1?; id2;π12?](>; p1?;π; id†1;σ)43.
On the other hand, we have:` ϕ1 ∧ σ23 → [04!](p1 ∧ >41 ∧ σ23) (since04! is
4-local and has the same domain asid4, so by Agreement Axiom it agrees with
id4 on non-4 qubits, thus preservingϕ1 andσ23; but also` [04!]04 and using the
Trivial Entanglement Axiom, we get the conclusion). From these two together, we

obtain:` ϕ1∧σ23 → [04!][π12?](>;ϕ1?;π; id†1;σ)43. But on the other hand, we

have` (>;ϕ1?;π; id†1;σ)43 → [04?]q3. (This is because we assumed` ϕ1 →
[π(1);σ(1)]q1, from which it follows that̀ 01 → [>;ϕ1?;π(1); id

†
1;σ(1)]q1, using

the fact thatid† = id and` [ϕ1?]ϕ1, by Repeatability axiom and the testability
of ϕ1. Apply now Entanglement Rule, obtaining the above conclusion.) From
these two, we get that:̀ ϕ1 ∧ σ23 → [04!;π12?; 04?]q3. The desired conclusion
follows from the Agreement Axiom and the fact that04!;π12?; 04? andπ12? are
{1, 2, 4}-local programs with the same domain.
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Characteristic Formulas. In order to formulate our next axioms (dealing with
special logic gates), we give some characteristic formulas for binary states, con-
sidering two qubits indexed byi andj:

States Characteristic Formulas

| 00〉ij = | 0〉i⊗ | 0〉j 〈0i?〉0j ∧ [1i?] ⊥
Bell states:
βi,j

xy = | 0〉i⊗ | y〉j + (−1)x | 1〉i ⊗ ỹ〉j 〈0i?〉yj ∧ 〈1i?〉ỹj ∧ 〈+i?〉(−)x
j

with 0̃ = 1 and1̃ = 0 , x, y ∈ {0, 1} where(−)x = − if x = 1
and(−)x = + if x = 0

γi,j = βi,j
00 + βi,j

01 =
| 00〉ij+ | 01〉ij+ | 10〉ij+ | 11〉ij 〈0i?〉+j ∧〈1i?〉+j ∧〈+i?〉+j

Characteristic Axioms for Quantum GatesX andZ.

In general, for all unitary transformationsU ∈ U , we have as aconsequenceof
the previous axioms that:̀ pK → [UI ]pK , for I ∩K = ∅.
In addition to this, we require forX,Z,H:

` 0i → [Xi]1i ; ` 1i → [Xi]0i ; ` +i → [Xi]+i

` 0i → [Zi]0i ; ` 1i → [Zi]1i ; ` +i → [Zi]−i

` 0i → [Hi]+i ; ` 1i → [Hi]−i ; ` +i → [Hi]0i

Notation. Forx, y ∈ {0, 1} and distinct indicesi, j ∈ N , we make the following
abbreviations for “Bell formulas”:βij

xy := (Zx
1 ;Xy

1 )ij .

Proposition 14. The Bell statesβi,j
xy are characterized by the logic Bell formulas

βij
xy. In other words, a state satisfies one of these formulas iff it coincides with the

corresponding Bell state.

Proof: It is enough to check that the formulasβij
xy imply the corresponding char-

acteristic formulas in the above table. For this, we use the Entanglement Ax-
iom and the following (easily checked) theorems:` 01 ↔< Zx

1 ;Xy
1 > y1,

` 11 ↔< Zx
1 ;Xy

1 > ỹ1, ` +1 →< Zx
1 ;Xy

1 > (−)x
1 .

Characteristic Axioms for CNOT . With the above notations, we put:

` 0i ∧ cj → [CNOTij ]cj ; ` 1i ∧ 0j → [CNOTij ]1j

` 1i ∧ 1j → [CNOTij ]0j ; ` 1i ∧+j → [CNOTij ]+j

` +i ∧ 0j → [CNOTij ]β
ij
00 ; ` +i ∧ 1j → [CNOTij ]β

ij
01

` +i ∧+j → [CNOTij ]γij where γij = 〈0i?〉+j ∧〈1i?〉+j ∧〈+i?〉+j
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Proposition 15. For all x, y ∈ {0, 1}: ` (xi ∧ yj) → [Hi;CNOTi,j ]βij
xy

Corollary . If i, j, k are all distinct then
` 〈CNOTij ;Hj ; (xi ∧ yj)?〉pk ↔ 〈βi,j

xy?〉pk. Proof: From the above andH† =
H, CNOT † = CNOT , we get` βij

xy → [CNOTi,j ;Hi](xi ∧ yi), and so `
〈CNOTij ;Hj ; (xi ∧ yj)?〉> ↔ 〈βij

xy?〉>. The conclusion follows from this,
together with the Agreement Axiom.

6 Correctness of the Teleportation Protocol

Following [8], quantum teleportation is the name of a technique that makes it pos-
sible to teleport the state of a quantum system without using a channel that allows
for quantum communication, but with a channel that allows for classical commu-
nication. We are working inH ⊗ H ⊗ H, with H being the two-dimensional
(qubit) space, and son = 3. We assume two agents, Alice and Bob who are sepa-
rated in space and each has one qubit of an entangled EPR pair that is represented
by β2,3

00 ∈ H(2) ⊗ H(3). Alice holds in addition to her part of the EPR pair also
a qubitq1 ∈ H(1) in an unknown stateϕ1. Alice “teleports” this state to Bob,
i.e. she performs a program that will output a state satisfyingϕ3. To do this, she
first entanglesq1 with her partq2 of the EPR pair (i.e. she performs aCNOT1,2

gate on the two qubits and then a Hadamard transformationH1 on the first com-
ponent). Bob’s qubit has suffered during the actions of Alice and when Alice will
measure her qubits she will destroy the entanglement of the EPR pair that she
shares with Bob. The initial state of Bob’s qubit is known and we can calculate
which changes it has gone through when we know the result that Alice obtains
from the two measurements. Moreover, the result that Alice obtains from the two
measurements indicate the actions that Bob has to perform in order to transfer his
qubit into q3 into the stateq1 was before the protocol. It is enough for Alice to
send Bob two classical bits encoding the resultx1 of the first measurement and
the resulty2 of the second measurement. This means that Bob will have to apply
y times theX-gate followed byx times theZ gate, if he wants to force his qubit
q3 into the stateϕ3.
In our syntax, the quantum program described here is:

π =
⋃

x,y∈{0,1}

CNOT12;H1; (x1 ∧ y2)?;Xy
3 ;Zx

3

and the validity expressing the correctness of teleportation is

` ϕ1 ∧ β2,3
00 → [π]ϕ3
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for all testable1-local formulasϕ1. To show this, observe that by applying the
above Corollary (at the end of the last section) in which we takei = 1, j = 2, k =
3 and then substitutep3 with [Xy

3 ;Zx
3 ]ϕ3, we obtain that the validity above (to be

proved) is equivalent to:̀ ϕ1 ∧ β2,3
00 → [β1,2

xy ?][Xy
3 ;Zx

3 ]ϕ3.

Replacing the logical Bell formulas with their definitionsβij
xy := (Zx

1 ;Xy
1 )ij , we

obtain the following equivalent validity:̀ ϕ1∧id23 → [(Zx
1 ;Xy

1 )1,2?][X
y
3 ;Zx

3 ]ϕ3 ,
whereid = Z0

1 ;X0
1 is the identity. This last validity follows from applying the

Teleportation Property and the validitỳ ϕ1 → [Zx
1 ;Xy

1 ;Xy
1 ;Zx

1 ]ϕ1 (due to
X−1 = X,Z−1 = Z).
Note. This proof of correctness can be easily adapted to cover logic-gate telepor-
tation. Moreover, the whole range of quantum programs covered by the “entan-
glement networks” in [5] can be similarly treated using our logic.
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