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Passage of Time in a Planck Scale Rooted Local Inertial Structure
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It is argued that the ‘problem of time’ in quantum gravity necessitates a refinement of the local
inertial structure of the world, demanding a replacement of the usual Minkowski line element by a
(4 + 2n)-dimensional pseudo-Euclidean line element, with the extra 2n being the number of internal
phase space dimensions of the observed system. In the refined structure, the inverse of the Planck
time takes over the role of observer-independent conversion factor usually played by the speed
of light, which now emerges as an invariant but derivative quantity. In the relativistic theory
based on the refined structure, energies and momenta turn out to be invariantly bounded from
above, and lengths and durations similarly bounded from below, by their respective Planck scale
values. Along the external timelike world-lines, the theory naturally captures the ‘flow of time’
as a genuinely structural attribute of the world. The theory also predicts expected deviations—
suppressed quadratically by the Planck energy—from the dispersion relations for free fields in the
vacuum. The deviations from the special relativistic Doppler shifts predicted by the theory are
also suppressed quadratically by the Planck energy. Nonetheless, in order to estimate the precision
required to distinguish the theory from special relativity, an experiment with a binary pulsar emitting
TeV range γ-rays is considered in the context of the predicted deviations from the second-order shifts.

PACS numbers: 04.50.+h, 03.30.+p, 04.60.-m

I. INTRODUCTION

Soon after the final formulation of general relativity,
Einstein argued that quantum effects must modify the
new theory of gravity [1]. Despite almost a century of
debate, however, today there is little consensus on what
eventual form such a modified theory should take [2].
One of the few notions that does enjoy unanimity in
this context is the recurrent suggestion of a ‘minimum
length’, which is usually taken to be the Planck length
l
P

:=
√

~ G
N

/c3. It is generally believed that the Planck
scale (cf. p. 471 of [3]) marks a threshold beyond which
the usual continuum description of spacetime is unlikely
to survive. Already in the wake of Einstein’s pioneering
argument there existed a number of speculative propos-
als for discrete spacetimes. For instance, Heisenberg sug-
gested that the spatial continuum should be replaced by
a ‘lattice world’, composed of cells of a finite size [4, 5].
Later he abandoned the idea, however, concluding that
the assumption of minimum length appeared to be in-
compatible with Lorentz invariance. Indeed, an elemen-
tary implication of Lorentz contraction reveals that an
assumed minimum length in one inertial frame may have
a different—and even vanishing—value in another.

It is now well known that in a remarkable paper Snyder
[6] eventually resolved this apparent incompatibility be-
tween the existence of a minimum length and Lorentz in-
variance (see also [7]). In the modern parlance, Snyder’s
resolution amounts to finding a non-linear basis for the
Poincaré algebra that allow two, instead of one, observer-
independent scales; namely, the maximum speed c as
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well as a minimum length l
P
. Recent years have seen

a revival of theories allowing two observer-independent
scales based on such non-linear actions of the Poincaré
group [8, 9, 10, 11]. Physically, these theories correspond
to non-linear modifications of special relativity, allowing
the low-energy photons in some cases to travel faster than
the upper bound c. One may classify these neo-Snyder
theories as ‘bottom-up’ attempts to construct quantum
gravity, in a manner not too dissimilar from how general
relativity was founded by Einstein on special relativity.

The theory developed in this paper shares the general
‘bottom-up’ philosophy of these approaches. However,
it also fundamentally differs from them in a number of
different ways. For instance, as expected of any frame-
work underlying quantum gravity, the only fundamental
scale in the theory proposed here is the Planck scale;
although the vacuum speed of light remains an observer-
independent absolute upper bound on speeds as before,
it now plays only a secondary and derivative role. What
is more, unlike the diversity of the two-scales theories,
the theory developed here is unique, with energies and
momenta invariantly bounded from above, and lengths
and durations similarly bounded from below, by their re-
spective Planck scale values. Away from the Planck scale
the theory reduces in general, as any such theory must,
to Einstein’s special theory of relativity.

Perhaps most significantly, and at least compared to
the two-scales theories (cf. [12, 13]), the theory proposed
here is based on operationally better grounds, thereby
retaining the original rationale of Einstein’s one-scale
theory. In particular, the central aim of the proposed
theory is to eliminate the operationally questionable du-
alistic conception of time implicitly taken for granted
in physical theories. This leads to a generalization of
Lorentz invariance that is fundamentally different form
either the conception of a ‘broken Lorentz invariance’—
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as in some approaches to quantum gravity [14], which
may give rise to a ‘preferred frame’—or the conception
of ‘modified Lorentz invariance’—as in the two-scales the-
ories [9], which may not give rise to a ‘preferred frame’.
By contrast, the generalized invariance employed in the
present theory is—by its very essence—hostile to the no-
tion of a ‘preferred frame’. In fact, the employed invari-
ance respects the principle of relativity fully across the
conceptual and physical domains that are even broader
than those in Einstein’s theories of relativity.

As expected within at least some of the mainstream ap-
proaches to quantum gravity (for a review, see [15]), the
theory proposed here also predicts (exact) deviations—
suppressed quadratically by the Planck energy—from the
dispersion relations for the propagation of free fields in
the vacuum. In recent years it has become increasingly
probable that theories predicting even such minute de-
viations from the dispersion relations may be subjected
to observational tests (see [15, 16, 17, 18, 19] and ref-
erences therein). In addition to these possibilities, we
shall also attempt to estimate the precision required to
distinguish the modified Doppler shifts predicted by the
present theory from those predicted by special relativ-
ity, by considering an experiment with a binary pulsar
emitting TeV range γ-rays.

One of the oldest issues in natural philosophy is ‘the
problem of change’ [20]. Since the days of Aristotle,
physics has been tremendously successful in explaining
how the changes occur in the world, but largely oblivious
to the deeper question of why do they occur at all. The
situation has been aggravated by the advent of Einstein’s
theories of spacetime, since in these theories there is no
room to accommodate a structural distinction between
the past and the future [21]—a prerequisite for a true
understanding of why the changes occur in the world.
By contrast, the causal structure of the proposed theory
below not only naturally distinguishes the future form
the past, but also forbids inaction altogether, thereby
providing an answer to the deeper question of change.

In what follows we begin with the conceptual basis
of the proposed theory in Secs. II to V, culminating
in a (4 + 2n)-dimensional fundamental quadratic invari-
ant, namely (30). The basic physical consequences of the
theory erected on this new quadratic invariant are then
spelt out in Sec. VI. In the following section, Sec. VII,
we raise and answer the age-old question: ‘How fast does
time flow?’ (see, e.g., [22]). Since the proposed theory
naturally quantifies the motion of the present moment
(or ‘now’) along timelike world-lines of observers, what
we have is an experimentally verifiable complete theory of
the local inertial structure that captures the ‘flow of time’
as a genuine attribute of the world. Finally, before con-
cluding in Sec. IX, the options for possible experimental
verifiability of the theory are explored in Sec.VIII.

II. TIME IN SPECIAL RELATIVITY

Recall that among Einstein’s primary concerns while
constructing special relativity were the notions of abso-
lute time and relative motion. In particular, he noted
that some of the assumptions underlying these concepts
within the then existing framework of physics were oper-
ationally ill-founded. To rectify this inadequacy, he pro-
posed an operationally better founded structure we now
take to be the local inertial structure of the world. As
is well known, this structure—later geometrically refined
by Minkowski—is based on the following two postulates:
(i) The laws governing the states of physical systems are

insensitive to the state of motion of the reference coordi-

nate system, as long as it remains inertial, and (ii) No

speed of a causally admissible influence can exceed the

vacuum speed of light. The second of the two postulates
can be succinctly restated as

v ≤ c , (1)

with the understanding that it is a statement true for all
local inertial observers regardless of their state of motion.
This is reaffirmed by the law of composition of velocities
proposed by Einstein: assuming all velocities involved
have the same direction, the velocity of a material body,
say vk (k = 1, 2, or 3), in one inertial frame is related
to its velocity, say v′k, in another frame, moving with a
velocity −vk

r with respect to the first, by the relation

v′k =
vk + vk

r

1 + c−2 vk vk
r

. (2)

Thus, as long as neither vk nor vk
r exceeds the causal

upper bound c, v′k also remains within c. It is this ab-
soluteness of c that lends credence to the view that it
is merely a conversion factor between the dimensions of
time and space. This fact is captured most conspicuously
by the four-dimensional quadratic invariant of spacetime,

dt2
E

:= dt2
N
− c−2dx2 , (3)

where x is a vector in the 3-space, and t
N

and t
E

are the
Newtonian (or absolute or coordinate) and Einsteinian
(or proper or wristwatch) times, respectively. In natural
units where c is taken to be unity, this line element can
be put in the familiar Minkowski form:

dt2
E

:= dt2
N
− dx2 =: −ηab dxadxb . (4)

The central tenet of special relativity is now simply the
assertion that it is the time interval dt

E
, and not the

Newtonian interval dt
N

, that is actually registered by an
inertial observer between two nearby events in spacetime,
with the causality restriction equivalent to (1) being

dt2
E
≥ 0. (5)

To date there exists no convincing experimental evidence
contradicting the varied predictions of Einstein’s theory.
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Despite the phenomenal empirical successes of special
relativity, however, a closer inspection reveals that, as
yet, Einstein’s first postulate—the principle of relativity
—is not fully respected within the current framework of
physics. As we shall see, when thoroughly implemented,
the principle necessitates generalizations of the upper
bound (1) and the law of composition (2), which in turn
demand a Planck scale amelioration of the metric (3).

III. TIME IN QUANTUM GRAVITY

To appreciate the above assertions, consider an ob-
ject system, equipped with an ideal classical clock of un-
limited accuracy, moving with a uniform velocity v in a
Minkowski spacetime M, from an event e1 at the origin
of a reference frame to a nearby event e2 in the future
light cone of e1. For our purposes, it would suffice to re-
fer to this system, say of n degrees of freedom, simply as
‘the clock’ (cf. [23]). As it moves, the clock will also nec-
essarily evolve by the virtue of its ‘external’ motion, say
at a uniform rate ω, from one state, say s1, to another,
say s2, within its own ‘internal’ relativistic phase space,
say N . This evolution of the clock—or rather that of its
state—from s1 to s2 will, of course, trace out a unique
trajectory in the phase space N , which, as is customary
for any state space, may be parameterized by the New-
tonian time t

N
and viewed as a curve in the resulting

(1 + 2n)-dimensional extended phase space (or contact
manifold) [24]. For simplicity, here we shall assume the
phase space to be finite and 2n dimensional; apart from
possible mathematical encumbrances, however, nothing
prevents the following reasoning to remain valid for the
case of infinite dimensional phase spaces (e.g. for clocks
made out of relativistic fields).

Now, one may think of the motion and evolution of the
clock conjointly as taking place in a combined (4 + 2n)-
dimensional space, say E , the elements of which may
be called event-states and represented by pairs (ei, si).
Undoubtedly, it is this combined space that truly cap-
tures the complete specification of all possible physical
attributes of the classical clock. Therefore, we may ask:
What will be the time interval actually registered by the

clock as it moves and evolves from the event-state (e1, s1)
to the event-state (e2, s2) in this combined space E? It
is only by answering such a physical question that one
can determine the correct topology and geometry of the
combined space in the form of a metric analogous to (3).

Of course, the customary answer to the above question,
in accordance with the spacetime metric (3), is simply

∆t
E

=

∫ e2

e1

1

γ(v)
dt

N
=

|t2 − t1|

γ(v)
, (6)

with the usual Lorentz factor

1 < γ(v) :=
(

1 − c−2v2
)−

1

2 . (7)

In other words, the customary answer is that the space
E has a product topology, E = M×N , and—more to

the point—the clock recording the duration ∆t
E

in ques-
tion is insensitive to the passage of time that marks the
evolution of variables within its own phase space N .

This may appear to be a perfectly adequate answer.
After all, a classical clock is supposed to register the time
external to itself, and the phase space of its evolution is
an internal space, dependent on the physical attributes
of the clock. In other words, the time measured by such a
clock is presumed to be ‘external’, existing independently
of it, whereas its dynamic evolution, although parameter-
izable by this background time, is viewed to be ‘internal’,
specific to the clock itself. Such a dualistic conception
of time has served us well in special relativistic physics.
In fact, we encounter no serious difficulties with its im-
plementation in physical theories—classical or quantal—
until quantum gravity is confronted head-on [25].

The formidable difficulties in constructing quantum
gravity, of course, stem from the fact that the basic prin-
ciples of general relativity and quantum mechanics are
fundamentally at odds with each other [2]. One of the
many ways these difficulties can manifest themselves is
via the so-called ‘problem of time’ within the canonical
approaches to the task [26]. The problem, essentially, is
that, unlike in special and general theories of relativity,
in classical and quantum mechanics time is treated as
an external parameter, marking the evolution of a given
physical system. Within the above approaches, most at-
tempts that try to reconcile the dynamical role of time in
relativity with the parametric role of time in mechanics
seek to understand this external parameter in terms of
some internal structure of the system itself [26].

Needless to say, to date no such attempt has succeeded
in providing unequivocal understanding of the ‘external’
time that observers do register on their clocks. What is
worse, the dichotomy of time into external versus internal
time emphasized by most such approaches to quantum
gravity only manages to obscure the real culprit lurking
behind the difficulty; namely, the dichotomy of simul-

taneity into relative versus absolute simultaneity. Un-
like in spacetime physics, where the unphysical notion
of absolute simultaneity was eliminated by Einstein, in
state-time physics, the notion remains axiomatic. It is
in this sense, then, that Einstein’s first basic postulate—
the principle of relativity—is not as yet fully respected
within the established framework of physics.

IV. PROPER TIME IN THE ‘REST FRAME’

Let us look at these assertions more closely by unpack-
ing them once again with the help of the moving and
evolving clock considered above. In the ‘global inertial
frame’ [3] in which the clock is at rest, the proper time
interval it is supposed to register is simply dt

E
= dt

N
.

Using this Newtonian time t
N

as an external parame-
ter, within this frame one can determine the phase space
N for the dynamical evolution of the clock using the
standard Hamiltonian prescription [27]. Of course, as
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long as we start with a Lorentz invariant action, the re-
sulting phase space within each such frame—although
not manifestly covariant—would be consistent with the
principles of special relativity. Suppose now we consider
time-dependent canonical transformations of the dimen-
sionless phase space coordinates yµ(t

N
) (µ = 1, . . . , 2n),

expressed in Planck units, into coordinates y′µ(t
N

) of the
following general linear form:

y′µ(yµ(0), t
N

) = yµ(0) + ωµ
r (y(0)) t

N
+ bµ , (8)

where ωµ
r and bµ do not have explicit time dependence,

and the reason for the subscript r in ωµ
r , which stands

for ‘relative’, will become clear soon. Interpreted actively,
these are simply the linearized solutions of the familiar
Hamiltonian flow equations [24],

dyµ

dt
N

= ωµ
r (y(t

N
)) := Ωµν ∂H

∂yν
, (9)

where ωr is the Hamiltonian vector field generating the
flow, y(t

N
) is a 2n-dimensional local Darboux vector in

the phase space N , Ω is the symplectic 2-form on N ,
and H is a Hamiltonian function governing the evolution
of the clock. In the dual description, the vector field ωr

generating the integral curves of (9) can be defined by

ωr
µdyµ := Ω ( · , ωr) = dH ≡

∂H

∂yµ
dyµ, (10)

with d being the exterior derivative. Since Ω ( · , ωr)—
with only one of the two slots of the 2-form Ω filled—is
a 1-form dual to the vector field ωr , its components are
denoted by ωr

µ. In other words, as in any phase space,
the indices µ of the vector field ωµ

r is lowered, not by a
possible metric on N , but by the symplectic 2-form Ω.
Being antisymmetric, however, the 2-form Ω is not suit-
able as a metric on N . Fortunately, at least locally, one
can define a Euclidean metric δ on N to evaluate inner
products. Using this metric, it is then easy to see from
relations (9) and (10) that, when Hamiltonian happens
to be the total energy of the system, the dimensionless
magnitude of the vector field ωr is given by

t
P

ωr =
dE

E
P

, (11)

where E
P

is the Planck energy, which, along with t
P
,

explicates the balance of dimensions on the two sides.
For a later use, let us make a few comments on the

physical meaning of the Euclidean metric δ on the phase
space and the corresponding dimensionless line element

dy2 := δµν dyµdyν . (12)

In general, every symplectic manifold (N , Ω) admits
a family of compatible almost complex structures [29],
but none of these need be integrable. When one is, it
gives rise to a Riemannian metric on (N , Ω) defined
by g(X, Y) := Ω(X, JY), where X,Y are two arbitrary

vector fields and J is the complex structure. A prime
example of such a complex manifold (known as a Kähler
manifold) is the projective Hilbert space, with its well
known Fubini-Study metric of a constant holomorphic
curvature. Now, of course, this Fubini-Study metric gives
rise to transition probabilities in quantum mechanics and
reduces to the Euclidean metric δ in the classical limit,
whereas the corresponding symplectic form gives rise to
the celebrated geometric phase factor and reduces to
the classical symplectic form Ω in the classical limit[30].
Therefore, the ‘flat’ Euclidean metric δ (or the element
(12)) of our phase space can be viewed as the ‘quantum
shadow’ of the ‘curved’ quantum state space metric (i.e.,
of the Fubini-Study metric), also giving rise to transition
probabilities—albeit of a rather trivial kind, yielding only
extreme values of 0 or 1 (cf. [31]).

Now, since a phase space in general is simply a bare
symplectic manifold, one may wonder about those clocks
whose mathematical phase space descriptions do not re-
quire (or even admit) such a ‘quantum shadow’. Since the
‘non-metrical’ phase space description of such a clock can
only be recovered in a singular unphysical limit (~ = 0)
from the metrical quantum state space description in
terms of the Fubini-Study metric, in the present the-
ory the pure symplectic description of a clock will be
deemed ‘too classical’, and the corresponding clock will
be deemed ‘too crude’ (i.e., not sensitive enough to re-
solve the Planck scale effects predicted by the present
theory). Conversely, it has been argued by Klauder that
any consistent quantization scheme inevitably ends up
using the Euclidean metric, if only implicitly, and that in
general it is impossible to ascribe any operational mean-
ing to coordinatized phase space expressions for physical
quantities, such as Hamiltonians, if the corresponding
phase space does not admit the Euclidean metric [32, 33].
Therefore, in what follows it will be taken for granted
that the phase space of our Planck scale sensitive clock is
equipped with the ‘quantum shadow metric’ δ. In other
words, in line with the ‘bottom-up’ philosophy advocated
in the Introduction, it will be taken for granted that it
is this remnant of quantum mechanics—this ‘quantum
shadow metric’ δ—that renders our clock sensitive to the
Planck scale effects predicted by the present theory.

If we now denote by ωµ the uniform time rate of change
of the canonical coordinates yµ, then the time-dependent
canonical transformations (8) imply the composition law

ω′µ = ωµ + ωµ
r (13)

for the evolution rates of the two sets of coordinates, with
−ωµ

r interpreted as the rate of evolution of the trans-
formed coordinates with respect to the original ones (in
fact, Arnold [24], for example, calls ωr simply ‘the phase
velocity vector field’). Crucially for our purposes, what
is implicit in the law (13) is the assumption that there
is no upper bound on the rates of evolution of physical
states. Indeed, successive transformations of the type (8)
can be used, along with (13), to generate arbitrarily high
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rates of evolution for the state of the clock.
More pertinently, the assumed validity of the composi-

tion law (13) of evolution rates turns out to be equivalent
to assuming absolute simultaneity within the (1 + 2n)-
dimensional extended phase space [24], say O. To ap-
preciate this fact, let us view O as an abstract mani-
fold, and compare the causal structure of its elements—
which may be called occasions oi, representing the pairs
oi := (ti, si)—with the familiar causal structure of events
in spacetime (see, e.g., [3]). It is clear that the causal re-
lationships between two such occasions, say oi and oj , fall
into the following three mutually exclusive possibilities:
(i) It is possible, in principle, for a state of a physical sys-
tem to evolve from occasion oj to occasion oi, in which
case oj is said to be in the past of oi. (ii) It is possible,
similarly, for a state to evolve from occasion oi to occa-
sion oj , in which case oj is said to be in the future of oi.
(iii) It is impossible, in principle, for a state of a physical
system to be at both occasions oi and oj . Now, if we fur-
ther assume the validity of the composition law (13), or
equivalently the possibility of limitlessly high rates of evo-
lution for physical states, then, in analogy with events in
spacetime, the occasions in O belonging to the third cate-
gory above would form a 2n-dimensional set (i.e. a phase
space) defining the notion of absolute simultaneity with
oi. Thus in this case, within the (1 + 2n)-dimensional
manifold O, the 2n-dimensional phase spaces simply con-
stitute strata of ‘hypersurfaces of simultaneity’, much like
the strata of spatial hypersurfaces within a Newtonian
spacetime. Indeed, the extended phase spaces such as
O are usually taken to be contact manifolds [24], with
topology presumed to be a product of the form R ×N .

Thus, not surprisingly, the assumption of absolute time
in contact spaces, in defiance of the relativity principle,
is equivalent to the assumption of ‘no upper bound’ on
the possible rates of evolution of physical states. Now,
as a variant of the recurrent suggestion of ‘a minimum
length’ (or of a ‘minimum time’; cf. [28]) discussed in
the Introduction, suppose we impose the following upper
bound on the rates of evolution of the state of our clock:

∣

∣

∣

∣

dy(t
N

)

dt
N

∣

∣

∣

∣

=: ω ≤ t−1
P

, (14)

where t
P

is the Planck time. Clearly, if this upper bound
is to have any physical significance, it must hold for
all possible evolving phase space coordinates yµ(t

N
) dis-

cussed above. And that is amenable if and only if the
composition law (13) is replaced by

ω′µ =
ωµ + ωµ

r

1 + t2
P

ωµ ωµ
r

(15)

(no summation over µ — cf. the composition law (2)),
which implies that as long as neither ωµ nor ωµ

r exceeds
the causal upper bound t−1

P
, ω′µ also remains within t−1

P
.

Along with (15), if we now insist, as we must, on retain-
ing the causal relationships among possible occasions in

O classified above, then, the usual positive definite prod-
uct metric of the space O would have to be replaced by
a pseudo-Euclidean indefinite metric defined by

dt2
A

:= dt2
N
− t2

P
dy2, (16)

or, in Planck units, by

dt2
H

:= dt2
N
− dy2 =: −ζαβ dyαdyβ , (17)

together with the causality condition

dt2
A
≥ 0 (18)

analogous to (5), where the line element dy2 is defined
in (12), and, for a later use, we have renamed dt

A
in (17)

by dt
H

, with subscript H standing for ‘Hamiltonian’ (or
‘internal’). Thus, if the causal upper bound (14) is to be
invariantly respected, then, even in the rest frame, the ac-

tual proper duration registered by the clock would be dt
A
,

and not the usually supposed interval dt
N

. Therefore, it is
the time t

A
, and not the Newtonian time t

N
, that should

appear in the Hamiltonian flow equations, such as (9),
governing the evolution of states. In the resulting me-
chanics, different canonical coordinates that are evolving
with nonzero relative rates would differ in general over
which occasions are simultaneous with a given occasion.
As unorthodox as this resulting picture may appear, it is
an inevitable consequence of the upper bound (14).

Let us now return to the simple thought experiment
considered in the previous section and ask: In the clock’s
rest frame, what will be the time interval registered by
it as it evolves from occasion o1 := (t1, s1) to occasion
o2 := (t2, s2) within the space (O, ζ)? According to the
line element (16), the answer clearly is

∆t
A

=

∫ o2

o1

1

γ(ω)
dt

N
=

|t2 − t1|

γ(ω)
, (19)

were

1 < γ(ω) :=
(

1 − t2
P

ω2
)−

1

2 . (20)

Thus, if the state of the clock is at all evolving, we will
have the phenomenon of ‘time dilation’ even in the rest
frame. In particular, for a clock evolving at the rate t−1

P
,

the time stands still! Similarly, we may now speak of
a phenomenon of ‘state contraction’ in analogy with the
familiar phenomenon of ‘length contraction’:

∆y′ = ω ∆t
A

=
ω ∆t

N

γ(ω)
=

∆y

γ(ω)
. (21)

It is worth emphasizing here that, as in ordinary special
relativity, nothing is actually ‘dilating’ or ‘contracting’.
All that is being exhibited by these phenomena is that
the two sets of mutually evolving canonical coordinates
happen to differ over which occasions are simultaneous.

In addition to the light cones in spacetime bounded by
the maximum possible speed c, we may now also speak
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of Planck cones in the (1 + 2n)-dimensional space (O, ζ)
bounded by the maximum rate of evolution t−1

P
. Anal-

ogous to a light cone delimiting the allowed causal rela-
tions between a given event and other events in spacetime
(cf. [3]), a Planck cone would delimit the causal relations
between a given occasion oi and other occasions within
the space (O, ζ). Accordingly, the occasions that lie on
the boundary of the ‘future Planck cone’ of oi defined
by t−1

P
can be reached by a physical state at oi if and

only if it is evolving at the maximum possible rate t−1
P

.
These occasions, and similarly defined occasions lying on
the ‘past Planck cone’ of oi, form a 2n-dimensional set
within (O, ζ), and may be said to be Planck-like related
to oi. Occasions that are on neither the past nor the fu-
ture Planck cone of oi but lie interior to the Planck cones
are also causally accessible by a physical state at oi, and
may be said to be time-like related to oi. The remaining
occasions lying exterior to the Planck cones comprise a
causally forbidden(1+ 2n)-dimensional set within (O, ζ),
and may be said to be state-like related to oi.

V. PROPER TIME IN A ‘MOVING FRAME’

So far we have used a specific Lorentz frame, namely
the rest frame of the clock, to obtain expression (16) for
the actual proper duration. For a frame with respect to
which the same clock is uniformly moving, the expression
for actual proper duration can be now obtained at once
by using the Minkowski line element (3), yielding

dt2
A

= dt2
N
− c−2dx2 − t2

P
dy2. (22)

If we now eliminate the explicit appearance of the speed
of light c by defining it as a Planck scale ratio l

P
/t

P
, then

this actual proper duration can be rewritten as

dt2
A

= dt2
N
− t2

P
dz2, (23)

with the dimensionless 3 + 2n vector z defined by

z := l−1
P

x + y . (24)

The answer to the central question raised in Sec. III
is now clear: The time interval actually registered by
the clock as it moves and evolves from the event-state
(e1, s1) to the event-state (e2, s2) in the combined space
E is given, not by (6) as customarily assumed, but by

∆t
A

=

∫ (e2, s2)

(e1, s1)

1

γ(θ)
dt

N
=

|t2 − t1|

γ(θ)
, (25)

were, in accordance with the line element (23),

1 < γ(θ) :=
(

1 − t2
P

θ2
)−

1

2 , (26)

with

θ :=

∣

∣

∣

∣

dz(t
N

)

dt
N

∣

∣

∣

∣

=
∣

∣l−1
P

v + ω
∣

∣ . (27)

This answer for the actual proper duration registered by
the clock between the event-states (e1, s1) and (e2, s2)
comprises the central, empirically verifiable, claim of the
theory proposed here. The fundamental reason behind
such an overall ‘time dilation’ effect encoded in this an-
swer is the fact that, according to the present theory, dif-
ferent inertial observers disagree in general, not just over
which events occur simultaneously with a given event,
but over which event-states occur simultaneously with a
given event-state. Note, however, that away from the
Planck scale, and/or for slow evolutions of states, the
ameliorated gamma factor (26) duly reduces to the usual
gamma factor (7) of special relativity, which of course
presumes absolute simultaneity of physical states.

We are now in a position to isolate the two basic postu-
lates on which the theory developed here can be erected
in the manner analogous to the usual special relativity.
In fact, the first of the two postulates can be taken to
be Einstein’s very own first postulate, as stated above,
except that we must now revise what we mean by an in-
ertial coordinate system. In normal practice, an inertial
coordinate system is taken to be a system of four dimen-
sions, one temporal and three spatial, moving uniformly
in spacetime. In the present theory it is understood to be
a system of 4 + 2n dimensions, ‘moving’ uniformly in the
combined space E , with four being the external space-
time dimensions, and 2n being the internal phase space
dimensions of a system under scrutiny. Again, the inter-
nal dimensions of the object system can be either finite
or infinite in number. The principle of relativity may
now be restated as follows: (i′) The laws governing the

states of physical systems are insensitive to ‘the state of

motion’, in the space E, of the (4 + 2n)-dimensional ref-

erence coordinate system, as long as it remains ‘inertial’.
The second postulate on which the present theory is

based is a generalization of the above stated second pos-
tulate of Einstein. According to it: (ii′) No time rate of

change of a dimensionless physical quantity expressed in

Planck units can exceed the inverse of the Planck time.
In particular, for the dimensionless quantity z defined
above, this postulate may be succinctly restated as

θ ≤ t−1
P

, (28)

with understanding that this is a statement true for all
local inertial observers regardless of their state of motion.
That is to say, in order for this causal upper bound to be
invariantly meaningful, the time rate of change θI of any
such quantity zI must satisfy the composition law

θ′I =
θI + θI

r

1 + t2
P

θI θI
r

(29)

analogous to (15), where I = 1, 2, . . ., or 3 + 2n.
Note that away from the Planck scale and/or when ω is

negligible, θ ≈ l−1
P

v, and (28) duly reproduces (1). More-
over, for external directions, I = 1, 2, or 3, (29) is identi-
cal to the composition law (2) for velocities, and for in-
ternal directions, I = 4, 5, . . ., or 3 + 2n, it is identical to



7

the similar composition law (15) for evolution rates. This
means, in particular, that, despite the generalization, the
constant ‘c’ still remains an observer-independent upper
bound on admissible speeds. This invariance of ‘c’ will
be reaffirmed later (cf. eq. (60)) as a derivative notion.

With the composition law (29), it is now easy to see
that, just as in Einstein’s special relativity, the above two
revised postulates inevitably lead to the actual proper
duration (23), along with the causality condition (18).
For the sake of conceptual clarity, so far in these ex-
pressions we have used the notations t

E
and t

N
for the

proper and coordinate times, respectively. Employing
more familiar notations for these notions of time and us-
ing Planck units, we now rewrite expression (23) as

dτ2 = dt2 − dz2 =: − ξAB dzAdzB, (30)

where the index A = 0, . . . , 3 + 2n runs along the 4 + 2n
dimensions of the pseudo-Euclidean manifold (E , ξ).
This, then, according to the present theory, is the true
quadratic invariant of the inertial structure of the world.

VI. REFINED LOCAL INERTIAL PHYSICS

Having arrived at the above refined chart of the inertial
structure, we shall now see how it is further justified by its
amicable theoretical consequences. In particular, we shall
see how, in the theory based on the refined structure,
energies and momenta turn out to be invariantly bounded
from above, and lengths and durations similarly bounded
from below, by their respective Planck scale values.

A. Permitted coordinate transformations

The coordinate transformations in the combined space
(E , ξ) analogous to the Lorentz transformations in the
Minkowski spacetime that preserve the above fundamen-
tal quadratic invariant ((30) or (22)) can be written as

zA = ΛA
B z′B + bA , (31)

where bA and ΛA
B are constants, constrained by

ΛA
C ΛB

D ξAB = ξCD . (32)

At least for simple, finite dimensional, phase spaces, the
coefficients ΛA

B can be easily determined. Consider, for
example, a massive relativistic particle at rest (and hence
also not evolving) with respect to a primed coordinate
system in the external spacetime, which is moving with
a uniform velocity v with respect to another unprimed
coordinate system. Since, as it moves, the state of the
particle will also be evolving in its six dimensional phase
space (and since the evolution of a mechanical system is
simply the continuous unfolding of canonical transforma-
tions [24]), we can view its motion and evolution together

with respect to a (4 + 6)-dimensional unprimed coordi-
nate system in the space (E , ξ), and thus view it to be
moving and evolving, say, at an arbitrary combined rate
θ (cf. (27)). Now, from (31) we have the differential
relations

dzA = ΛA
B dz′B . (33)

Since dz′ vanishes in the present case, these reduce to

dzI = ΛI
0 dt′ (I = 1, 2, . . . , 9 = 3 + 6), (34)

and dt = Λ0
0 dt′ . (35)

Now, dividing (34) by (35) we have one relation between
the coefficients ΛI

0 and Λ0
0 ,

ΛI
0 = θIΛ0

0 , (36)

and setting C = D = 0 in (32) we have another,

−1 = ΛA
0Λ

B
0 ξAB = −(Λ0

0)
2 +

3+6
∑

I=1

(ΛI
0)

2 . (37)

The solution of these two simultaneous equations is

Λ0
0 = γ(θ) and ΛI

0 = γ(θ) θI , (38)

with γ(θ) given by (26). As in the familiar case of Lorentz
transformations, hear also the other ΛA

B can be deter-
mined uniquely only up to arbitrary rotations. One con-
venient choice that would satisfy the constraint (32) is

Λ0
J = γ(θ) θJ and ΛI

J = δI
J +

θIθJ

θ
2 [γ(θ) − 1] . (39)

B. Bounds on lengths and durations

Let us now restrict to the following two very special
cases of only external spatio-temporal transformations:

dxk = γ(v, ω) dx′k (k = 1, 2, or 3), (40)

and dt = γ(v, ω) dt′, (41)

where, reactivating the units for clarity, we have written

γ(θ) ≡ γ(v, ω) =
(

1 − c−2 v2 − t2
P

ω2
)−

1

2 . (42)

Using (11), this gamma factor can also be written as

γ(v, ω) ≡ γ(v, dE) =

[

1 −
v2

c2
−

(dE)
2

E2
P

]−
1

2

. (43)

If we now assume that the difference of particle energy
between the two coordinate systems is small but finite,
that is, if we assume that

dE

E
P

∼
∆E

E
P

=
E′ − E

E
P

, (44)
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then the gamma factor (43) takes the useful form

γ(v, ω) ∼ γ(v, ∆E) =

[

1 −
v2

c2
−

(E′ − E)
2

E2
P

]−
1

2

. (45)

Now (40) and (41) are clearly the infinitesimal coun-
terparts of the refined ‘length contraction’ and ‘time di-
lation’ relations. For a small but finite distance in the
direction of the relative velocity v, the first of these two
relations can be rewritten as

∆x′ = ∆x

√

1 −
v2

c2
− l2

P

(

∆x − ∆x′

∆x′∆x

)2

. (46)

Here we have dropped the index on ∆x and used

E′ − E

E
P

=
l
P

∆x′
−

l
P

∆x
, (47)

which follows from an inversion of units analogous to the
one routinely used in high energy physics. The ‘length
contraction’ expression (46) can be exactly solved for the
‘contracted’ length ∆x′ in terms of the ‘uncontracted’
length ∆x. However, the solutions of (46) provided by
the computer software Maple are far too long and compli-
cated to be reproduced here. Fortunately, exact solutions
of (46) are not necessary for our purposes of demonstrat-
ing the existence of a lower bound on lengths.

We begin with the assumption that the ‘contracted’
length ∆x′ is negligibly smaller than the ‘uncontracted’
length ∆x. The question then is, how small the ‘con-
tracted’ length can get? In other words, is there an ab-
solute lower bound on lengths? The answer, according
to the present theory, is, yes, there is a lower bound, and
it is no other than l

P
. To see this, note that under the

assumption ∆x′ ≪ ∆x, the relation (46) reduces to

∆x′ = ∆x

√

1 −
v2

c2
−

l2
P

(∆x′)2
. (48)

Squaring both sides of this equation yields

(∆x′)4 −

(

1 −
v2

c2

)

(∆x)2(∆x′)2 + (∆x)2 l2
P

= 0 . (49)

The only positive real root of this quartic equation for
∆x′ that gives the correct physical limit

lim
∆x≫ l

P

∆x′ = ∆x

√

1 −
v2

c2
=

∆x

γ(v)
(50)

is the following expression for ‘length contraction’,

∆x′ = ∆x

√

√

√

√

1

2

(

1 −
v2

c2

)

+

√

1

4

(

1 −
v2

c2

)2

−
l2
P

(∆x)2
,

(51)

provided the reality condition

1

4

(

1 −
v2

c2

)2

≥
l2
P

(∆x)2
(52)

is satisfied. Substituting this last inequality back into the
solution (51) then gives

∆x′ ≥
√

l
P
∆x . (53)

Thus, as long as ∆x is chosen to be greater than l
P
,

the ‘contracted’ length ∆x′ also remains greater than l
P
.

That is to say, along with the upper bound implied by the
condition γ(v, ω) > 1, the ‘contracted’ length remains in-
variantly bounded from below as well as from above:

∆x > ∆x′ > l
P

. (54)

Starting again from the infinitesimal expression (41)—
now for ‘time dilation’—and using almost identical line of
arguments as the case above (along with the assumption
∆τ ≪ ∆t for the ‘dilated’ time), we arrive, in analogous
manner, at a refined expression for ‘time dilation’,

∆τ = ∆t

√

√

√

√

1

2

(

1 −
v2

c2

)

+

√

1

4

(

1 −
v2

c2

)2

−
t2
P

(∆t)2
,

(55)
together with the corresponding invariant bounds on the
‘dilated’ or proper time ∆τ :

∆t > ∆τ > t
P

. (56)

C. Reaffirming the bound on velocities

So far we have not assumed or proved explicitly that
the constant ‘c’ is an upper bound on possible speeds.
As emphasised before (cf. comments after (29)), in the
present theory the upper bound ‘c’ and its observer-
independence turn out to be derivative notions. To see
this explicitly, consider the ratio of ‘contracted’ length
(51) and ‘dilated’ duration (55); that is, consider

u′ = u

√

√

√

√

√

√

√

1
2

(

1 − v2

c2

)

+

√

1
4

(

1 − v2

c2

)2
−

l2
P

(∆x)2

1
2

(

1 − v2

c2

)

+

√

1
4

(

1 − v2

c2

)2
−

t2
P

(∆t)2

, (57)

where we have defined ‘velocities’ u and u′ as

u :=
∆x

∆t
and u′ :=

∆x′

∆τ
. (58)

It is clear from these definitions that, for an arbitrary
∆x′ subject to the bounds (54), u′ would be the largest
possible velocity when ∆τ happens to be the smallest
possible duration, which, in turn, for arbitrary but finite
v and ∆t (according to (55)), is given by the condition

1

4

(

1 −
v2

c2

)2

=
t2
P

(∆t)2
. (59)
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Consequently, substituting this condition back into the
ratio (57) gives the following upper bound on u′:

u′ ≤ u

√

1 +
√

1 − c2 u−2 . (60)

Thus, as long as u does not exceed c (and the resulting
upper bound remains real), u′ also remains within c. In
other words, in the present theory c retains its usual sta-
tus of the observer-independent upper bound on causally
admissible speeds, albeit in a rather derivative manner.

D. Elements of particle mechanics

Let us now take the mass of the particle considered
above to be m. Then, just as in the standard special
relativity [34], the fundamental quadratic invariant (30)
leads to the ‘momentum space’ quadratic invariant

ξABPAPB = −m2 c2 , (61)

provided we define the 4 + 2n momentum P as

m
dzA

dτ
=: PA :=

(

E/c , P I
)

, (62)

where the energy of the particle is now defined as

E := γ(v, dE) m c2 , (63)

with γ(v, dE) given by (43), and the 3 + 2n momentum
P I (I = 1, 2, . . . , 3 + 2n) of the particle is defined as

P := Pext + Pint , (64)

with

Pext ≡ p := γ(v, dE) mv (65)

and

Pint := γ(v, dE) m l
P
ω . (66)

Clearly, apart from the modified gamma factor, the ex-
pression (63) of energy is no different from the familiar
one. The expression (64) for momentum, on the other
hand, has two parts: an ‘external’ part Pext and an ‘in-
ternal’ part Pint. Again, apart from the modified gamma
factor, the external momentum Pext is no different from
the familiar one, and hence in what follows it will be de-
noted simply by p. On the other hand, the notion of
the internal 2n momentum Pint is novel, and its physical
meaning is as follows: Recall that ω in (66) is simply the
Hamiltonian vector field, which Arnold [24] occasionally
refers to as ‘the phase velocity vector field’. In the similar
manner, Pint may be referred to as the phase momentum

vector field on N . Its usefulness will become clear soon.
Substituting now the explicit expression for P from

(62) into the quadratic invariant (61), we obtain the fol-
lowing modified expression for the dispersion relation:

|p|2 c 2 + m2 c4 = E2 − |Pint|
2 c2 . (67)

Using the definitions (66) for Pint and (63) for energy,
along with the equations (10) and (11) for dynamics, the
1-form associated with the vector field Pint (which we
denote also by Pint for convenience) can be written as

Pint =
E dE

c E
P

. (68)

Substituting this into (67), we finally arrive at the refined
dispersion relation between energies and momenta:

p2 c2 + m2 c4 = E2

[

1 −
(dE)

2

E2
P

]

. (69)

It is worth noting that this is an exact relation between
energies and momenta. We shall return to it in Sec. VIII
to discuss how it can be experimentally verified. As a
consistency check, note also that in the rest frame of the
massive particle both p and dE vanish identically, and
(69) reproduces the famous mass-energy equivalence:

E = m c2. (70)

If we now define refined energy E
R

as

E
R

:= E

√

1 −
(dE)2

E2
P

, (71)

then (69) takes the following perspicuous form:

E2
R

= p2 c2 + m2 c4. (72)

Since E
R
→ E → m c2 as p → 0, in the present theory

this relation plays the role similar to that played by the
usual dispersion relation in special relativity.

E. Covariant conservation laws

Consider an isolated system of mass msys composed of
a number of constituents undergoing an internal reaction.
In view of the quadratic invariant (61), and considering
what we have learned from special relativity [34], it is
only natural to assume that the 4 + 2n momentum Psys

of the system would be conserved in such a reaction,

∆Psys = 0 , (73)

where ∆ denotes the difference between the initial and
final states of the reaction, and Psys is defined by

msys

dzA

dτ
=: PA

sys :=
(

Esys/c , pk
sys , Pµ

sys

)

, (74)

with k = 1, 2, 3 being the external three dimensions and
µ = 4, 5, . . . , 3 + 2n being the phase space dimensions of
the system as a whole. It is clear from this definition
that, since dzA is a (4 + 2n)-vector whereas msys and dτ
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are invariants, PA
sys is also a (4 + 2n)-vector, and hence

transforms under (33) as

P ′A
sys = ΛA

B PB
sys . (75)

Moreover, since Λ does not depend on anything but the
permitted coordinate transformation being performed in
the space (E , ξ), the difference on the left hand side of
(73) is also a(4 + 2n)-vector, and therefore transforms as

∆P ′A
sys = ΛA

B ∆PB
sys . (76)

Thus, if the conservation law (73) holds for one set of
(4 + 2n)-dimensional coordinates in (E , ξ), then, accord-
ing to (76), it does so for all (4 + 2n)-dimensional coordi-
nates related by the transformations (31). Care must be
taken, however, when implementing such a deceptively
simple conservation law in a real physical reaction.

To appreciate one of the main subtleties, let us unpack
(73) into its external, internal, and constituent parts:

0 = ∆Psys = (∆Esys/c , ∆psys , ∆P
sys
int ) , (77)

with

∆Esys :=
∑

f

Ef −
∑

i

Ei (78)

and

∆psys :=
∑

f

pf −
∑

i

pi , (79)

where the indices f and i stand for the final and initial
number of constituents of the system. Thus, as in the
special theory of relativity (and unlike in the two-scales
theories [35]), in the present theory energies and mo-
menta remain additive. What is crucial to note, however,
is that P

sys
int , being the phase momentum vector field of

the system as a whole, does not, in general, warrant de-
composition analogous to (79) into constituent parts.

Another aspect the conservation law (73) worth noting
is that all of its 4 + 2n components stand or fall together:
any one of them entails all the others. Since ∆Psys is a
(4 + 2n)-vector, the relativity principle in the form of
the coordinate transformations (76) dictates that, if any
one of the components of the (4 + 2n)-momentum Psys is
invariantly conserved in a reaction, then the entire vector,
with all of its components, must also be so conserved. In
particular, if the energy Esys is conserved in a reaction,
then so is the momentum psys, and vise versa.

Sometimes it is asserted [17] that the desire to maintain
unmodified energy-momentum conservation laws accom-
panying a modified dispersion relation such as (69) may
come at a price of introducing a preferred class of iner-
tial observers in a theory; and, conversely, avoiding such
a preferred class of observers would necessarily lead to
a modification of conservation laws. However, it is clear
form the above discussion that, in the present theory,
not only are there no preferred class of observers, but
also the conservation laws of special relativity—at least
in the external sector—remain essentially unchanged.

F. Bounds on energies and momenta

Not surprisingly, analogous to the lower bounds on
lengths and durations, in the present theory energies and
momenta are also invariantly bounded from above. In
the case of energy, this can be seen from the definition of
energy (63) itself. Using (45), and an assumption similar
to the one we used for the ‘contracted’ length (again em-
ployed for the same practical reasons), namely E′ ≫ E,
the definition (63) of energy can be expressed as

E′ =
E

√

1 − v2

c2 − (E′)2

E2

P

. (80)

Squaring both sides of this equation leads to the following
quartic equation for energy:

E′ 4 −

(

1 −
v2

c2

)

E′ 2E2
P

+ E2E2
P

= 0 . (81)

The only positive real root of this equation for E′ that
gives the correct physical limit

lim
E≪E

P

E′ = E
(

1 − c−2v2
)−

1

2 = γ(v)E (82)

is the following refined expression for energy:

E′ = E

√

√

√

√

(

1 −
v2

c2

)

E2
P

2E2
−

√

(

1 −
v2

c2

)2 E4
P

4E4
−

E2
P

E2
,

(83)
provided the reality condition

(

1 −
v2

c2

)2
E4

P

4E4
≥

E2
P

E2
(84)

is satisfied. Substituting this last inequality back into the
solution (83) then gives

E′ ≤
√

E
P
E . (85)

Thus, as long as E does not exceed E
P
, E′ also remains

within E
P
. That is, along with the lower bound implied

by the condition γ(v, ∆E) > 1, the energy remains in-
variantly bounded from both below and above:

E < E′ < E
P

. (86)

Note that, unlike the evaluations of limit (50), the
closed form evaluation of the limit (82) is not straight-
forward and requires an iterative use of the L’Hôpital’s
rule. In other words, the dependence of E′ on the van-
ishing ratio E/E

P
is rather subtle compared to, say, the

dependence of ∆x′ on the analogous ratio l
P
/∆x.

Starting again from the definition (65) for momentum,
and using almost identical line of arguments as the case
above, we can arrive at an analogously refined expression
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for momentum as follows. As in special relativity, the
ratio of (65) and (63) gives the identity

p c

E
=

v

c
, (87)

which, upon using the Planck momentum k
P

:= E
P
/c,

can also be written as

E

E
P

=
p c

k
P
v

. (88)

Using (45) and this identity into (65) (along with the
assumption p′ ≫ p) and then squaring both sides of (65)
leads to the following quartic equation for momentum:

p′ 4 −

(

1 −
v2

c2

)

v2

c2
k2

P
p′ 2 +

v2

c2
k2

P
p2 = 0 . (89)

The only positive real root of this equation that gives the
correct physical limit

lim
pv ≪ k

P
c

p′ = p
(

1 − c−2v2
)−

1

2 = γ(v) p (90)

is the following refined expression for momentum:

p′ = p

√

√

√

√

(

1 −
v2

c2

)

k2
P

2p2

v2

c2
−

√

(

1 −
v2

c2

)2 k4
P

4p4

v4

c4
−

k2
P

p2

v2

c2
,

(91)
provided the reality condition

(

1 −
v2

c2

)2 k4
P

4p4

v4

c4
≥

k2
P

p2

v2

c2
(92)

is satisfied. Substituting this last inequality back into the
solution (91) then gives

p′ ≤
√

k
P

p ×

√

v

c
. (93)

Thus, as long as v does not exceed c and p does not
exceed k

P
, p′ also remains within k

P
. That is, along with

the lower bound implied by the condition γ(v, ∆E) > 1,
the momentum remains invariantly bounded from above
as well as from below:

p < p′ < k
P

. (94)

In summary, we conclude from the bounds (54), (56),
(86), and (94) that, in the present theory, all physical
quantities of interest are invariantly bounded by their
respective Planck scale counterparts.

G. Massless particles and Doppler shifts

In Einstein’s special relativity, Doppler shifts provide
one of the most transparent demonstrations of how the
principle of relativity holds in nature. Despite the highly

nonlinear character of the ‘external’ relations hidden in
the overall linear transformations (31), the same remains
true here, albeit with Planck scale enhanced Doppler
shifts. In order to appreciate this, let us first spell out
the general properties of massless particles in the theory.

It is evident from the invariant (61) that energy and
momentum of any such massless particle must satisfy

E2 = |P|2 c2 ≡ |p|2 c2 + |Pint|
2 c2 , (95)

which—as we saw in the case of the general dispersion
relation (69)—is equivalent to the relation

p2 c2 = E2

[

1 −
(dE)2

E2
P

]

. (96)

Using the identity (87), it is then easy to see that the
massless particle must move with the speed

v = c

√

1 −
(dE)2

E2
P

. (97)

Thus, any massless particle such as a photon with non-
zero energy always moves with a speed somewhat less
than c, and if the difference dE in energy happens to
approach the Planck energy E

P
, then it hardly moves.

Consider now a receiver receding from a photon source
with a uniform velocity v. As a given photon of energy
E propagates, it would also evolve in its phase space
N with a uniform rate, say ω, relative to the canonical
coordinates chosen in N as a part of the reference frame
for the source (recall that, in the present theory, a frame
of reference is a (4 + 2n)-dimensional object). If we now
take the combined relative ‘velocity’ between the source
and the receiver to be θ as defined by (27), then the
energy of the photon observed by the receiver would be
simply

E′ = γ(θ) [E − l
P
θ · P ] , (98)

which follows from a transformation analogous to (31)
applied to the photon’s 4+2n momentum P defined by
(62). If we next assume that the angle between the
(4 + 2n)-dimensional vectors θ and P is Φ, then, as a
result of the relation (95), this transformation simplifies
to

E′ = γ(θ)E [1 − t
P
θ cosΦ ] . (99)

Of course, an external experimenter cannot be expected
to have a direct access to either θ or Φ, but, as we shall
see, the knowledge of either θ or Φ is not necessary.

Now, to see how the principle of relativity works in
the present theory, let us ask what would be the energy
of the photon observed by the receiver if we view the
source to be receding rather than the receiver. In other
words, we now analyze the problem using the (4 + 2n)-
dimensional reference frame of the receiver rather than
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that of the source. The answer, not surprisingly, is given
by the inverse transformation

E = γ(θ) [E′ + l
P
θ ·P′ ] , (100)

which, similarly to (99), reduces to

E = γ(θ)E′ [1 + t
P
θ cosΦ′ ] , (101)

where Φ′ is the angle between the (4 + 2n)-dimensional
vectors θ and P′. If we now make the substitutions
θ′I = −t−1

P
cosΦ′, θI = −t−1

P
cosΦ, and θI

r = θ into the
composition law (29), then we expectedly arrive at the
aberration relation between the angles Φ′ and Φ:

cosΦ′ =
cosΦ − t

P
θ

1 − t
P
θ cosΦ

. (102)

Upon using this relation, along with a use of (26), it is
then easy to see that (99) and (101) are, in fact, identical
relations between the observed and source energies of the
photon. Thus, as in special relativity, the principle of
relativity here as well renders it impossible to distinguish
between the motions of the source or the receiver.

As promised, let us now obtain the relation between
the overall angle Φ and the external angle, say φ, which
is the angle between the relative velocity v and photon
momentum p. This relation between Φ and φ can be
obtained by expanding the dot product t

P
θ ·P as

t
P
θ cosΦ =

1

|P|

(

c−1v p cosφ + t
P
ω |Pint|

)

, (103)

where we have used the fact that—as is evident from the
definition (66)—ω and Pint are parallel vectors. Using
(95), (96), (63), (66), (68), (11), and (44), this expansion
can be reduced to

t
P
θ cosΦ =

(E′ − E)2

E2
P

+
(v

c
cosφ

)

√

1 −
(E′ − E)2

E2
P

.

(104)
Substituting this relation between the angles Φ and φ
back into (99) and using (45) then gives the desired ratio

E′

E
=

ε′
[

ε′ − v
c

cosφ
]

√

(ε′)2 − v2

c2

, (105)

where we have defined

ε′ :=

√

1 −
E2

E2
P

(

1 −
E′

E

)2

, (106)

which clearly becomes unity for E ≪ E
P
, thus reducing

(105) to the familiar expression for Doppler shifts. In
fact, it can be shown that the formula (105) rigorously
reduces to the familiar expression in the E/E

P
→ 0 limit.

Even without solving the relation (105) for E′ in terms
of E, since ε′ < 1, one may be tempted to infer that

at sufficiently high energies any red-shifted photons are
somewhat more red-shifted according to (105) than pre-
dicted by special relativity. This, however, would be
a mistake. It is clear that no such definite statement
can be made for the case of receiver approaching toward
rather than receding from the source—i.e., for the blue-
shifted photons—without actually solving the relation
(105). Unfortunately, (105) is hopelessly nonlinear to
be solved easily. In fact, its solution is a root of an eighth

order polynomial equation in the ratio E′/E, which, of
course, according to Galois theory, does not possess any
general solution in terms of radicals. With diligence, a
particular solution may be found, but instead we shall
discuss approximate solutions in the section after next,
where we investigate into the experimental verifiability
of the Doppler shifts (105). But first we must attend to
a theoretical and conceptual issue of utmost significance.

VII. HOW FAST DOES TIME FLOW?

It is evident that the conception of time afforded by the
present theory, as encapsulated within the fundamental
line element (30), is profoundly unorthodox. In partic-
ular, in addition to motion, time now depends also on
the phase space evolution of systems that record it, and
hence would be different, in general, for different record-
ing systems. Moreover, this new conception of time dis-
pels, at a stroke, the spell of the ‘block’ view of time [20],
which is widely thought to be an inevitable byproduct
of Einstein’s special relativity. According to this ‘block’
view, since in the Minkowski picture time is as ‘laid out’
a priori as space, and since space clearly does not seem
to ‘flow’, what we perceive as a ‘flow of time’, or ‘becom-
ing’, must be an illusion. Worse still, in Einstein’s theory,
the relativity of simultaneous events demands that what
is ‘now’ for one inertial observer cannot be the same, in
general, for another. Therefore, to accommodate ‘nows’
of all possible observers, events must exist a priori, all at
once, across the whole span of time [36]. As Weyl once so
aptly put it, “The objective world simply is, it does not
happen” [37]. Einstein himself was quite painfully aware
of this shortcoming of his theories of relativity—namely,
of their inability to capture the continual slipping away
of the present moment into the unchanging past [38]. To
be sure, the alleged unreality of this transience of ‘now’,
as asserted by the ‘block’ view of time, is far from be-
ing universally accepted (see, e.g., [2, 39, 40]). However,
what remains unquestionable is the fact that there is no
explicit assimilation of such a transience in any of the
established theories of fundamental physics.

By contrast, in the present theory, where proper time is
defined by (30), the ‘block’ view of time endorsed by Weyl
cannot be sustained. For time is now as much a ‘state de-
pendent’ attribute of the world as states are time depen-
dent attributes, and as the states of the world do ‘happen’
and ‘become’, so does time. To appreciate this dynamic

nature of proper time as defined by (30), let us return
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once again to our clock that is moving and evolving—
now possibly non-uniformly—from, say, an event-state
(e1, s1) to an event-state (e5, s5), in the combined space
(E , ξ) (see FIG. 1). According to the line element (30),
the proper duration recorded by the clock would be

∆τ =

∫ (e5, s5)

(e1, s1)

1

γ(θ)
dt , (107)

where γ(θ) is defined by (26) as before. Now, assuming
for simplicity that the clock is not massless, we can repre-
sent its journey by the integral curve of a timelike vector
field V A on (E , ξ), defined, naturally, by

V A := l
P

dzA

dτ

∗
= γ(θ)

(

c , l
P
θI
)

(108)

(I = 1, 2, 3, . . . , 3 + 2n), such that its external compo-
nents V a (a = 0, 1, 2, 3) would trace out, for each pos-
sible state si of the clock, the familiar four-dimensional
timelike world-lines in the Minkowski spacetime (M, η).
In other words, V A would give rise to the usual timelike,
future-directed, never vanishing, 4-velocity vector field
V a for the clock, tangent to each of the external time-
like world-lines. As a result, the ‘length’ of the overall
enveloping world-line would be given by the proper time
(107), whereas the ‘length’ of the external world-line, for
a given si, would be given by the Einsteinian proper time

∆ti
E

=

∫ ei

e1

1

γ(v)
dt , (109)

with γ(v) being the usual Lorentz factor given by (7).
In FIG. 1, five of such external timelike world-lines—
one for each si (i=1,2,3,4,5)—are depicted by the blue
curves with arrowheads going ‘upwards’, and the overall
enveloping world-line traced out by V A is depicted by the
dashed green curve going from the event-state (e1, s1)
to the event-state (e5, s5). It is at once clear from this
picture that the external world-line of the clock is not
given all at once, stretched out till eternity, but ‘grows’
progressively further as time passes, with each temporally
successive stage of the evolution of the clock, like a tendril
on a garden wall. In fact, from FIG. 1, line elements (22)
and (3), and the condition (18), it is easy to see that the
instantaneous directional rate of this growth is simply

Ua =
V a

√

−ηbcV bV c

dt
E

dy
, with

dt
E

dy
≥ t

P
, (110)

where dy := |dy| is the infinitesimal dimensionless phase
space distance between the two successive states of the
clock (cf. definition (12)), and dt

E
is the usual infinites-

imal Einsteinian proper duration defined by (3). Thus
‘now’ for the clock (depicted by the red dot in the FIG.
1) moves in the future direction along its world-line, at
the rate of no less than one Planck unit of time per Planck
unit of change in its physical state. Crucially, since the 4-
velocity of an observer can never vanish, the lower bound

(e1, s1)

(e5, s5)

Phase
space

Space

Time
The moving ‘now’

bc

bc

bc

bc

bc

FIG. 1: Space-time-state diagram depicting the ‘flow of time’.
(A similar diagram was used pejoratively in [22] to describe
and discredit Dunne’s early attempt [41, 42] to capture the
‘flow of time’ in physics. The objections raised in [22] and
[43] against Dunne’s failed attempt are not applicable here.)

on the above rate shows that not only the ‘now’ moves,
but it cannot not move. To parody Weyl quoted above,
the objective world cannot simply be, it can only happen.

To consolidate this conclusion, let us note that even
the overall enveloping world-line (the dashed green curve
in FIG. 1) cannot remain ‘static’ in the present scenario.
This can be seen by first parallelling the above analy-
sis for the (1 + 2n)-dimensional ‘internal’ space (O, ζ),
instead of the external spacetime (M, η). In the FIG.
1 this amounts to slicing up the combined space (E , ξ)
along the phase space axis instead of the spatial axis, and
then observing that even the ‘internal’ world-line cannot
but ‘grow’ progressively further as time passes, at the
rate of

Uα =
l
P

V α

√

−ζβγV βV γ

dt
H

dx
, with

dt
H

dx
≥ c−1 , (111)

where V α is the ‘internal’ part of the vector field V A,
dx := |dx| is the infinitesimal spatial distance between
two slices, and dt

H
is the infinitesimal ‘internal’ proper

duration defined by (17). Thus, the ‘now’ for the clock
moves in the future direction, along its ‘internal’ world-
line, also in the ‘internal’ space (O, ζ). Consequently,
even the overall world-line—namely, the dashed green
curve in the FIG. 1—cannot be ‘static’, but ‘grows’ at
the combined, instantaneous, directional rate of

UA =

(

V a

√

−ηbcV bV c

dt
E

dy
,

l
P

ωµ

√

−ζβγV βV γ

dt
H

dx

)

,

(112)
where ωµ ≡ V µ is the instantaneous evolution rate for the
clock. What is more, this overall rate of motion for the
‘now’ also cannot vanish. This can be seen easily by using
the rest frame for the clock to evaluate the magnitude of
UA, and then using the lower bound from (110) to obtain
the lower bound on this magnitude, which yields

√

−ξABUAUB ≥ t
P

. (113)
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Thus, in the present theory, not only does the external
‘now’ move along timelike world-lines, but there does not
remain even an overall ‘block’—such as a ‘static’ space
(E , ξ)—that could be used to support a ‘block’ view of
time. That is to say, the new conception of ‘becoming’
embedded in the structure (E , ξ) is truly Heraclitean [20].

It is also worth noting that, in the present theory, even
the four-dimensional spacetime continuum no longer en-
joys the absolute status it does in Einstein’s theories of
relativity. Einstein dislodged the older concepts of ‘ab-
solute time’ and ‘absolute space’, only to be replaced by
the new framework of ‘absolute spacetime’—namely, a
continuum of in principle observable events, idealized as
a connected pseudo-Riemannian manifold with observer-
independent spacetime intervals. Since it is impossible to
directly observe this remaining absolute structure with-
out recourse to the behaviour of material objects, it is
perhaps best viewed as the ‘ether’ of the modern times
[44]. By contrast, it is evident from both the fundamen-
tal quadratic invariant (30) and the FIG. 1 above, that in
the present theory this four-dimensional spacetime con-
tinuum no longer has the absolute, observer-independent
meaning. In fact, apart from the laws of nature, there is
very little absolute structure left in the present theory,
for even the quadratic invariant (30) is dependent on the
phase space structure of the material system being ob-
served. That is to say, even the manifold (E , ξ) that
replaces the Minkowski spacetime (M, η) in the present
theory does not have the absolute status, as its construc-
tion is not independent of the system being observed.

The presence of the absolute spacetime continuum in
Einstein’s theories of relativity makes them conducive to
the ‘block’ view of time, as we discussed above. In partic-
ular, they are generally regarded as compatible with the
tense-less notions of time. To be sure, along the time-
like world-lines of material objects, the times of events in
these theories are linearly ordered relative to each other
by the transitive, asymmetric, and irreflexive relation
‘precedes’ (see, e.g., [39]). But there is no explicit refer-
ence to absolute past, present, or future in this purported
relation. And, in essence, it is this lack of any reference
to such tenses in the relation ‘precedes’ along the world-
lines that is responsible for the recurring speculations on
‘time travel’ based on these theories (see, e.g., [45]). For,
if time does not ‘flow’ from the past to the future via the
present, then it is no different in nature from space, and
hence the instants of time should be as traversable as the
places in space are. By contrast, in the theory developed
here time does ‘flow’ from the determined past to the un-
determined future, and hence ‘time travel’ is in principle

inconceivable. Consequently, over and above its intrinsic
necessity, an experimental verification of the predictions
of the present theory acquires an added incentive. And
to that empirical possibility we turn next.

VIII. EXPERIMENTAL VERIFIABILITY

It is worth noting that, although unity in the Planck
units of the quantum gravity regime, in the m.k.s. units
of everyday physics the factor t

P
of the present theory

that converts state space distances into temporal units is
some 35 orders of magnitude smaller than the factor c−1

of special relativity that converts spatial distances into
temporal units. Even in the ‘natural units’ of the regime
of particle (or quantum) physics where ℏ = c = 1, the
former conversion factor is some 28 orders of magnitude
smaller than the latter. And, of course, it is this minute-
ness of the Planck time that is responsible for the lack of
positive experimental data on physics at that scale.

In recent years, however, there have been a number of
attempts to remedy this dire state of affairs (see, e.g.,
[15, 16, 17, 18, 19] and references therein). Most of these
attempts revolve around Planck scale modifications of the
usual special relativistic dispersion relation—analogous
to the one considered above (cf. (69)). The modify-
ing terms in these relations are usually either linearly
or quadratically suppressed by the Planck energy, and
one relies on some astrophysical phenomena—such as the
gamma-ray bursts—to obtain observational bounds on
the deviations from the special relativistic predictions.
As long as these deviations are linearly suppressed by
the Planck energy, astrophysical observations do tend
to put useful bounds on them. However, when the de-
viations happen to be quadratically suppressed by the
Planck energy—as is the case in the relation (69) pro-
posed above—then the minuteness of the deviations ren-
ders even such high energy astrophysical strategy for
their detection far less promising. And yet, it has been
argued in Ref.[17] that advanced cosmic-ray observatories
and neutrino observatories that have been planned to be
operational in the near future may provide experimental
possibilities to test such quadratically suppressed devia-
tions (cf. also [19]). If this optimism of Ref. [17] turns
out to be justified, then the dispersion relations (69) pre-
dicted by the present theory may also be subjected to
a test by the same means. Since this and related pos-
sibilities are already extensively discussed in the litera-
ture cited above, we shall not dwell on them any further.
Instead, we shall concentrate on a different possibility—
that of a verifiability of the Doppler shift formula (105)
predicted by the present theory.

As mentioned towards the end of Sec. VI, it is rather
difficult to solve the relation (105) exactly, but it can be
approximated—even at high energies—to yield a practi-
cal result. Actually, since the experimenter is usually a
receiver rather than a source of the radiation, we shall
use an equivalent formula for Doppler shifts, namely

E′

E
=

√

(ε′)2 − v2

c2

ε′
[

ε′ + v
c

cosφ′
] , (114)

written in terms of the angle φ′—as determined by the
receiver—between the relative velocity and photon mo-
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mentum. This angle is related to the corresponding angle
φ determined by the source via the following generalized
and energy-dependent aberration relation

cosφ′ =
ε′ cosφ − v

c
(ε′)

−2
+ c

v

(

1 − (ε′)
2
)

ε′ − v
c

cosφ
, (115)

which follows from the expression (102) and a pair of
relations such as (104). In the rigorous limit E/E

P
→ 0

this aberration relation reduces to the usual one derived
by Einstein almost a hundred years ago. It can be used,
for instance, to obtain (114) from (105). Of course, (114)
can also be easily derived directly from (101), just as we
derived (105) from (99) in the section before the last.

Now, a Maclaurin expansion of the right hand side of
(114) around the value E/E

P
= 0, after keeping terms

only up to the second order in the ratio E/E
P
, gives

E′

E
≈

√

1 − v2

c2

1 + v
c

cosφ′

+
1

2

E2

E2
P





1 − 2 v2

c2 − v3

c3 cosφ′

(

1+ v
c

cosφ′
)2
√

1 − v2

c2





(

1 −
E′

E

)2

+ . . .

(116)

This truncation is an excellent approximation to (114).
Even for TeV photons, the next term in the expansion—
E4/E4

P
—is of the order of 10−64. The quadratic equation

(116) can now be solved for the desired ratio E′/E, and
then the physical root once again expanded, now in the
powers of v/c. In what results if we again keep terms
only up to the second order in the ratio E/E

P
, then,

after some straightforward algebra, we arrive at

E′

E
≈ 1 −

v

c
cosφ′ +

[(

1 +
1

2

E2

E2
P

)

cos2φ′ −
1

2

]

v2

c2
+ . . .

(117)
In the limit E ≪ E

P
this expansion clearly reduces to

E′

E
≈ 1 −

v

c
cosφ′ +

[

cos2φ′ −
1

2

]

v2

c2
+ . . . , (118)

which is simply the familiar special relativistic result.
Comparing (117) and (118) we see that up to the first

order in v/c there is no difference between the special rel-
ativistic result and that of the present theory. The first
deviation between the two theories occur in the second-
order coefficient, precisely where special relativity differs
also from the classical theory. What is more, this second-
order deviation depends non-trivially on the angle be-
tween the relative velocity and photon momentum. For
instance, up to the second order, both red-shifts (φ′ = 0)
and blue-shifts (φ′ = π) predicted by (117) differ signifi-
cantly from those predicted by special relativity. In par-
ticular, the red-shifts are now somewhat less red-shifted,
whereas the blue-shifts are somewhat more blue-shifted.
On the other hand, the transverse red-shifts (φ′ = π/2
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FIG. 2: The energy-dependent signatures of refined relativity.
The green curves are based on the predictions of the present
theory, for E/E

P
= 0.3 to 0.99 in the ascending order, whereas

the blue curve is based on the prediction of special relativity.

or 3π/2) remain identical to those predicted by special
relativity. As a result, even for the photon with energy
approaching the Planck energy, an Ives-Stilwell type clas-
sic experiment [46] would not be able to distinguish the
predictions of the present theory from those of special rel-
ativity. The complete angular distribution of the second-
order coefficient predicted by the two theories, along with
its energy dependence, is displayed in the FIG. 2.

In spite of this non-trivial angular dependence of
Doppler shifts, in practice, due to the quadratic Planck
energy suppression, distinguishing the expansion (117)
from its special relativistic counterpart (118) would be a
highly non-trivial task. This can also be inferred from
FIG. 2, which makes it clearer that a near-future verifi-
cation of the prediction (117) by means of a terrestrial
experiment is highly unlikely. The maximum laboratory
energy that may be available to us is of the order of TeV,
yielding E2/E2

P
∼ 10−32. This represents a correction of

one part in 1032 from (118), demanding a phenomenal
sensitivity for its detection, well beyond the means of
the state-of-the-art precision technology.

Let us see if we can do better than this by using an ex-
traterrestrial source. For example, suppose we attempt
to distinguish between the second order Doppler shifts
predicted by the two theories using a binary pulsar emit-
ting γ-ray pulses. Of course, most of the known pulsars
are radio sources, but a handful of them are indeed γ-
ray pulsars emitting photons of energy in the range of
TeV (see, e.g., [47]). Now, it is well known that binary
pulsars not only exhibit Doppler shifts, but the second-
order shifts resulting from the rapid motion of a pulsar
orbiting about its companion can be isolated, say, from
the first order shifts, because they depend on the square
of the relative velocity, which varies as the pulsar moves
along its two-body elliptical orbit (see, e.g., [48]). Due
to these Doppler shifts, the rate at which its pulses are
observed on Earth reduces slightly when the pulsar is re-
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ceding from the Earth in its orbit (φ′ = 0), compared to
when it is approaching the Earth (φ′ = π). The parame-
ter relevant in the ‘time of arrival’ analysis of these pulses
is variously called the ‘Red-shift-Doppler parameter’ or
the ‘time dilation parameter’ [48], which is a non-trivial
function of the gravitational red-shift, the masses of the
two binary stars, and other Keplerian parameters. For
a radio pulsar also exhibiting periastron precession sim-
ilar to the perihelion advance of Mercury, this parame-
ter can be determined with an excellent precision. This
is, of course, the case for the most famous pulsar: PSR
1913+16 [49]. Now, the arrival times of the pulses of this
pulsar—which have been monitored for three decades—
are extremely sensitive to the ‘time dilation’ parameter,
and thereby to the second-order Doppler shifts brought
about by its orbital motion. What is more, the overall
precision on the timing of the pulses of PSR 1913+16,
and consequently that of its periastron advance, is fa-
mously better than one part in 1012. Indeed, the moni-
toring of the decaying orbit of PSR 1913+16 constitutes
one of the most precise tests of general relativity to date.

Encouraged by these facts, one might hope that—at
least in principle—similar careful observations of a suit-
able γ-ray pulsar may be able to distinguish the predic-
tions of the present theory from those of special relativity.
However, the highest energy radiating pulsar known to
date emits γ-ray photons of energy no greater than 10
TeV, giving the discriminating ratio E2/E2

P
to be of the

order of 10−30, which is only two orders of magnitude
improvement from a possible terrestrial scenario. Thus,
it appears that, even with such an exotic astrophysical
source as a γ-ray pulsar, it would be quite a challenge to
distinguish between the predictions of the two theories.

Facing this difficulty, one may ask a converse question:
How energetic the γ-rays emitted by a pulsar have to be
to meet the achievable precision? Even if we dare to go
by the remarkable precision available on PSR 1913+16,
the answer would have to be: exceeding 1010 TeV.

Of course, no such ultra-high energy pulsar has been
found. Worse still, there are reasons to believe—at least
within the standard framework of special relativity—that
none above 10 TeV can ever be found. Above the 10
TeV threshold, γ-rays are expected to severely attenu-
ate through pair-production in the intervening infrared
background long before reaching the Earth. There are,
however, good indications that this theoretical thresh-
old is, in fact, not respected by nature [50, 51]. Perhaps
within a refined inertial structure, such as the one being
proposed here, there is no such threshold (cf. [16, 18]).
Whatever turns out to be the resolution of this conflict,
there may be independent reasons for a pulsar to refrain
from emitting radiations of energy as high as 1010 TeV.
For instance, the intrinsic dynamics of the magnetically
trapped charged particles responsible for producing the
radiation emitted by the pulsars may be subject to its
very own high energy threshold. We simply do not know.
On balance, however, we cannot rule out the possibility
of finding in the future a suitable γ-ray binary pulsar

emitting radiation of energies exceeding 1010 TeV.
The discussion above is clearly meant to be indicative

of the difficulties rather than that of realistic possibilities.
And even then we face almost insurmountable obstacles
to our aim. This is a great pity, not the least because
an experimental test of the present theory has a direct
bearing on one of the oldest disputes in natural philoso-
phy: Does the perceived ‘flow of time’ reflect a genuinely
structural attribute of the world, as the present theory
maintains, or is it an illusion, as special relativity seems
to suggest? In view of the issues discussed in the pre-
vious section, an empirical corroboration of a signature
predicted by the present theory would lend much needed
support to the former—Heraclitean—notion of time.

IX. CONCLUDING REMARKS

Perhaps one of the most attractive features of the
above theory is its economy of thought, parallelling the
rationale of Einstein’s special relativity. In particular,
unlike the two-scales theories mentioned in the Introduc-
tion, the present theory is based on only one observer-
independent fundamental scale, namely, the inverse of
the Planck time, and this fact makes it a truly Planck
scale rooted theory. To be sure, the vacuum speed of
light also remains an invariant in the theory, but it plays
only a secondary and derivative role. And yet, this gen-
eralization of Einstein’s second postulate does not neces-
sitate any compromise with his first postulate, namely,
the principle of relativity. Quite the contrary, a more
complete implementation of this basic principle offers at
least four-fold improvement over his special relativity.
First, it allows one to eliminate the dualistic notion of
time pervasive in our physical theories—from classical
to quantal—that has caused so many conceptual diffi-
culties in our understanding of ‘quantum gravity’. Sec-
ond, it allows one to capture and quantify the elusive
‘flow of time’ as a genuinely structural attribute of the
world. Third, it renders redundant one of the last rem-
nants of ‘ether’—namely, the absolute spacetime—from
the local inertial structure. And fourth, it allows one to
eliminate the unphysical concepts of unbounded energies,
momenta, lengths, and durations from a physical theory.

These are more than sufficient reasons to take the
present theory seriously, despite its unorthodox appeal.
But the theory has even more to offer. For example,
it provides a natural contraception for the speculations
on time travel. A prerequisite for the possibility of time
travel is a tenseless structure of spacetime, necessitated
by the special and general theories of relativity. By con-
trast, the notions of past, present, and future are intrinsic
to the spacetime structure proposed in the present theory,
and hence time travel becomes in principle inconceivable.

Another somewhat related implication of the present
theory concerns the thermodynamic arrow of time. It is
well known that—from Boltzmann to Prigogine—no one
has succeeded in explaining the thermodynamic unidi-
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rectionality of time in terms of micro-physics, essentially
because the microscopic laws of physics happen to be
symmetric in time. But according to the present the-
ory the local causal structure intrinsically distinguishes
the future from the past, due to the built-in directional
‘flow of time’, and thereby provides an opportunity to
derive the thermodynamic arrow of time from the time-
symmetric microscopic laws. This aspect of the proposed
theory has not been discussed in the present paper, but
it will be explicated fully in a separate publication.

In addition to these theoretical implications, several
phenomenological aspects of the present theory are also
worth noting. As mentioned before, several attempts to
construct a theory of quantum gravity predict energy-
dependent deviations from the dispersion relations based
on special relativity. The present theory shows that such
deviations can be understood on the basis of the first
principles of a theory, thereby providing a natural phys-
ical understanding of the deviations. The prediction of

these deviations, along with the deviations from the spe-
cial relativistic Doppler shifts, suggest that the present
theory may be viewed also as a non-artificial test-theory
for the experimental investigations of special relativity.

Given the refined local inertial structure embedded
in the quadratic invariant (30), the next natural chal-
lenge, of course, is to understand how this new struc-
ture refines the classical—and, indeed, the quantum—
conceptions of gravity as prescribed by the principle of
equivalence. This challenge, with quite a broad under-
standing of the term ‘quantum gravity’, will be taken up
and addressed fully in a companion paper.
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[14] V.A. Kostelecký and S. Samuel, Phys. Rev. D 39, 683

(1989).
[15] L. Smolin, arXiv:hep-th/0303185.
[16] J. Alfaro and G. Palma, Phys. Rev. D 67, 083003 (2003).
[17] G. Amelino-Camelia, Int. J. Mod. Phys. D 12, 1633

(2003).
[18] S. Sarkar, Mod. Phys. Lett. A 17, 1025 (2002).
[19] T. Jacobson, S. Liberati, and D. Mattingly, Phys. Rev.

D 67, 124011 (2003).
[20] K. Popper, The World of Parmenides: Essays on the

Pre-Socratic Enlightenment (Routledge, London, 1998).
[21] P.C.W. Davies, The Physics of Time Asymmetry (Surrey

University Press, 450 Edgware Road, London, 1974).
[22] M. Lockwood, Mind, Brain and the Quantum (Blackwell

Publishers, Oxford, 1989), p. 264.
[23] H. Salecker and E.P. Wigner, Phys. Rev. 109, 571 (1958).
[24] V.I. Arnold, Mathematical Methods of Classical Mechan-

ics, 2nd edition (Springer-Verlag, New York, 1989).
[25] R. Penrose, Gen. Relativ. Gravit. 28, 581 (1996).
[26] C.J. Isham, in Integrable Systems, Quantum Groups, and

Quantum Field Theories, edited by L.A. Ibort and M.A.
Rodriguez (Kluwer, Dordrecht, 1993), pp. 157-288.

[27] H. Goldstein, Classical Mechanics, 2nd edition (Addison-
Wesley, Reading, 1980), pp. 570-575.

[28] V. Ambarzumian and D. Iwanenko, Z. Phys. 64, 563
(1930).

[29] Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-
Bleick, Analysis, Manifolds and Physics, Revised edition
(Elsevier Science Publishers B.V., North-Holland, 1982).

[30] J. Anandan, Phys. Lett. A 147, 3 (1990).
[31] D.I. Fivel, Phys. Rev. A 50, 2108 (1994).
[32] J.R. Klauder, Foundations of Physics 27, 1467 (1997).
[33] J.R. Klauder, arXiv:quant-ph/0112010.
[34] E.F. Taylor and J.A. Wheeler, Spacetime Physics, 2nd

edition (W.H. Freeman and Company., New York, 1992).
[35] S. Judes and M. Visser, Phys. Rev. D 68, 045001 (2003).
[36] R. Penrose, The Emperor’s New Mind (Oxford University

Press, Oxford, 1989), pp. 303.
[37] H. Weyl, Philosophy of Mathematics and Natural Science

(Princeton University Press, Princeton, 1949), p. 116.
[38] R. Carnap, in The Philosophy of Rudolf Carnap, P.A.

Schilpp (ed.) (LaSalle, IL: Open Court, 1963), pp. 37-38.
[39] A. Shimony, Search for a Naturalistic World View, Vol. II

(Cambridge University Press, Cambridge, 1993), p. 271.
[40] A. Shimony, in The Geometric Universe: Science, Ge-

ometry, and the Work of Roger Penrose, S.A. Huggett et
al. (eds) (Oxford University Press, Oxford, 1998), p. 161.

[41] J.W. Dunne, An Experiment with Time (A. and C. Black,
London, 1927).

[42] J.W. Dunne, The Serial Universe (Faber and Faber Ltd.,
London, 1934).

[43] C.D. Broad, Philosophy 10, 168 (1935).
[44] A. Einstein, in The Collected Papers of Albert Einstein,

Vol. 7, translated by Alfred Engel (Princeton University
Press, Princeton, 2002), pp. 160.

[45] S. Krasnikov, Phys. Rev. D 65, 064013 (2002).
[46] H.E. Ives and G.R. Stilwell, J. Opt. Soc. Am. 28, 215

(1938).
[47] A.M. Atoyan et al., Astron. Astrophys. 383, 864 (2002).

http://arxiv.org/abs/gr-qc/0212128
http://arxiv.org/abs/hep-th/0303185
http://arxiv.org/abs/quant-ph/0112010


18

[48] C.M. Will, Theory and Experiment in Gravitational

Physics, revised edition (Cambridge University Press,
Cambridge, 1993), chapter 12.

[49] C.M. Will, Living Rev. Rel. 4, 4 (2001);
arXiv:gr-qc/0103036.

[50] F. Aharonian, et al., Astron. Astrophys. 349, 11 (1999).
[51] D. Finkbeiner, M. Davis, and D. Schlegel, Astrophys. J.

544, 81 (2000).

http://arxiv.org/abs/gr-qc/0103036

